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Abstract. In this paper, we define timed relational abstractions for verifying
sampled data control systems. Sampled data control systems consist of a plant,
modeled as a hybrid system and a synchronous controller, modeled as a discrete
transition system. The controller performs control actions on the plant by period-
ically sampling the state of the plant. The correctness of the system depends on
the controller design as well as an appropriate choice of its sampling period.
Our approach constructs a timed relational abstraction of the hybrid plant by re-
placing the continuous plant dynamics by relations. These relations map a state
of the plant to states reachable within the sampling time period. We present tech-
niques for building timed relational abstractions, while taking care of discrete
transitions that can be taken by the plant between samples. The resulting ab-
stractions are better suited for the verification of sampled data control systems.
The abstractions focus on the states that can be observed by the controller at the
sample times, while abstracting away behaviors between sample times conserva-
tively. As the abstractions are discrete, infinite-state transition systems, conven-
tional verification tools can be used. We use k-induction to prove safety properties
and bounded model checking (BMC) to find potential falsifications. We present
our idea, its implementation and results on many benchmark examples.

1 Introduction

We present techniques for verifying safety properties of sampled data control systems
using timed relational abstractions. Sampled data control systems consist of a discrete
controller that periodically senses the state of a continuous physical plant, and actuates
by setting inputs or sending control commands to the plant. Sampled data control sys-
tems are quite common in practice. Complex (network) control systems often involve
many control tasks that are scheduled periodically, with each task controlling a different
aspect of the plant. The cadencing of these tasks to enforce the safety and stability of
the system is an important problem. The choice of sampling period is crucial: a small
sampling time can place infeasible constraints on the scheduling policy, whereas large
sampling times can cause instabilities or safety violations.

In this paper, we consider a simple and natural model of a sampled data control
system. The controller is modeled by an infinite state (linear) transition system. It com-
municates synchronously with a plant modeled by an affine hybrid automaton. The
controller runs periodically with a fixed sampling period Ts > 0. At each time period,
the controller senses the state of the plant and performs controller actions that may in-
clude (a) setting control input signals for the plant, and (b) commanding the plant to



execute a controlled discrete transition, resulting in an instantaneous jump and a mode
change in the plant.

Our verification approach uses the idea of timed relationalization, extending the idea
of untimed relational abstractions [33]. A timed relational abstraction considers the set
of states of the plant that are potentially observable by the controller at the sample times,
while safely abstracting away all the intermediate states. To this end, we build relations
that map a state of the plant at the beginning of a sampling period to states that can be
reached at the end. Using these relations, the entire plant can be safely abstracted away
by a discrete, infinite-state transition system. This system is composed together with
the controller to yield an overall discrete system that can be analyzed by existing tools
such as k-induction [34], bounded model-checking [4] and abstract interpretation [8,
18], while exploiting advances in abstract domains, SAT and SMT solvers.

There are two key challenges in constructing the timed abstraction: (a) dealing with
the continuous dynamics inside a mode, and (b) handling autonomous transitions that
can be taken by the plant between two sampling periods. For systems with affine dy-
namics the former problem is solved by computing a matrix exponential for the matrices
defining the dynamics in each mode [22]. However, the numerical exponential compu-
tation is potentially unsound due to round-off and truncation errors. Likewise, solving
for autonomous transitions involves computing a symbolic matrix exponential to deal
with the unknown switching times for each transition. To solve both problems, we ex-
ploit advances in interval arithmetic to compute guaranteed enclosures to the matrix
exponential [23, 26, 15, 5]. This yields interval linear relations. We then use a template-
based mechanism using SMT solvers to abstract the resulting interval linear relations in
terms of relations expressible in linear arithmetic.

We have implemented our approach to relationalization and present an extensive
evaluation over a set of benchmark systems. Our evaluation performs a relational ab-
straction of the plant using the techniques described in this paper. The resulting abstrac-
tion is analyzed using the SAL tool-set from SRI [32, 37]. The results of our evaluation
are quite promising: we show that our techniques can successfully handle complex sam-
pled data control systems efficiently and soundly. Our implementation, the data from
our experiments along with an extended version of the paper will be available online 1.
We now discuss the related work.

Relational Abstractions: Relational abstractions have been used primarily for check-
ing liveness properties [3, 28]. There are many subtle distinctions between the various
forms of relational abstractions used. Transition invariants [28], used in termination
proofs, relate the current state to any previous state at a given program location. Like-
wise, progress invariants relate the current state and the immediately previous state at a
given location [16]. Podelski and Wagner provide a verification procedure for (region)
stability properties of hybrid systems [29], wherein they derive binary reachability re-
lations over trajectories of a hybrid system, similar in spirit to a relational abstraction.
Note that Podelski and Wagner use a hybrid system reachability tool to compute their
abstractions in the first place. The techniques in this paper and our previous work [33]
are meant to solve the reachability problem using these relations.

1 http://systems.cs.colorado.edu/research/cyberphysical/
relational
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Our previous work explored the idea of abstracting the dynamics inside each dis-
crete mode of a hybrid automaton by an untimed relational abstraction [33]. The rela-
tional abstractions presented here capture the relationship between the current state at
time t = t0 and any state reachable at time t = t0 + Ts units. The consideration of the
sampling time Ts is essential for verifying sampled data control systems. Furthermore,
it is also important to note that unlike our previous relational abstraction, it is essential
for the abstraction presented here to account for the plant’s discrete transitions that can
be taken in the time interval t ∈ [t0, t0 + Ts].

Abstractions of Hybrid Systems: Discrete abstractions have been studied for hy-
brid systems. These include predicate abstraction [1, 36] and invariance-based abstrac-
tions [25]. The use of counterexample-guided abstraction refinement for iterative refine-
ment has also been investigated in the past [1, 6]. In this paper, the proposed abstraction
yields a discrete but infinite state system.

Hybridization is a technique for converting nonlinear systems into affine systems by
subdividing the invariant region into numerous subregions and approximating the dy-
namics as a hybrid system by means of a linear differential inclusion in each region [19,
2, 9]. However, such a subdivision is expensive as the number of dimensions increases
and often infeasible if the invariant region is unbounded.

Reachability Analysis: Reasoning about the reachable set of states for flows of nonlin-
ear systems is an important primitive that is used repeatedly in the analysis of nonlinear
hybrid systems. This has been addressed using a wide variety of techniques in the past,
including algebraic techniques, interval analysis, constraint propagation, and Bernstein
polynomials [30, 24, 27, 31, 10].

Synchronous Systems: Techniques for verifying synchronous system models, with
piecewise constant continuous dynamics, have been studied in the past, notably by
Halbwachs et al. [18] and as part of the NBAC tool by Jeannet et al. [20]. Our work
considers a synchronous controller with affine hybrid plants. Furthermore, we consider
the idea of an up front relationalization of the plant dynamics, enabling a verification
procedure to focus purely on discrete systems.

Motivating Examples: We discuss two simple motivating examples that clearly illus-
trate the need for verification of sampled data control systems.

Consider a proportional-integral (PI) controller defined by u′ := −30x − y
composed with a plant defined by ẋ = 5x + u, ẏ = x. With a period Ts = 0.1s, the
controller is able to stabilize the plant but fails to do so with a period Ts = 0.5s.

Consider an inverted pendulum controller:

u′ :=

−16, y ≥ 2 ∨ 16x− y ≤ −10
16, y ≤ −2 ∨ 16x− y ≥ 10
u, otherwise

.

The linearized plant has the dynamics ẋ = y ẏ = 20x+ 16y + 4u. If the controller is
implemented in the continuous domain, it results in a stable system. However, a digital
implementation, regardless of the sampling period, is unable to stabilize the pendulum.
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2 Sampled Data Control Systems

Let R denote the set of real numbers. We use a, . . . ,z with subscripts to denote (col-
umn) vectors and A, . . . , Z to denote matrices. For a m × n matrix A, the row vector
Ai, for 1 ≤ i ≤ m, denotes the ith row.

Controller
(Program)

Plant
(Hybrid Aut.)

Sample Clock Ts

actuate

sense

Fig. 1. Schematic for a Sampled Data Con-
trol System.

We discuss models for sampled data
control systems. Figure 1 shows the
schematic diagram for a such a control
system consisting of a discrete controller
communicating with a hybrid plant. The
controller has a time period Ts > 0. Ev-
ery Ts time units, the controller senses
the state of the hybrid plant and issues
commands to control the plant. The com-
mands can take the form of (a) events en-
abling a discrete transition of the plant, or
(b) values for control inputs that are as-
sumed to be held constant throughout the
sample time period. We model the con-
troller as a discrete transition system [21].

Definition 1 (Discrete Transition System). A discrete transition system Π is a tuple
〈L,x, T , `0, Θ〉 wherein, L is a finite set of discrete locations; x : (x1, . . . , xn) is a set
of variables with variable xi of type type(xi); T is a set of discrete transitions; `0 ∈ L
is the initial location; and Θ[x] is an assertion capturing the initial values for x.

Each transition τ ∈ T is of the form 〈`,m, ρτ 〉, wherein ` is the pre-state of the
transition and m is the post-state. The relation ρτ [x,x′] represents the transition rela-
tion over current state variables x and next state variables x′.

We now discuss the overall model for the plant as a hybrid automaton with con-
trolled and uncontrolled transitions.

Definition 2 (Plant Model). A plant P is an extended hybrid automaton described by
a tuple 〈x,u, Q,F ,X , T , q0, X0〉, wherein,

– x : (x1, . . . , xn) denotes the continuous state variables, and u : (u1, . . . , um) the
control inputs,

– Q is a finite set of discrete modes. q0 ∈ Q is the initial mode and X0 the initial set
of states.

– F maps each discrete mode q ∈ Q to an ODE dx
dt = Fq(x,u, t).

– X maps each discrete model q ∈ Q to a mode invariant X (q) ⊆ Rn.
– T represents a set of discrete transitions. Each transition τ ∈ T is a tuple 〈s, t, γ, U〉

wherein s, t represent the pre- and post- state respectively. γ[x] is the transition
guard assertion, and U maps each variable xi ∈ x to an update function Ui(x).
The transition relation for τ is defined as ρτ (x,x′) : γ(x) ∧ x′ = U(x).

– We partition the transitions in T as autonomous transitions Taut and controlled
transitions Tctrl. Autonomous transitions can be taken by the plant non-deterministically,
whenever enabled. On the other hand, controlled transitions are taken upon an ex-
plicit command by the controller.
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The state of the plant is a tuple (q,x,u) consisting of the current mode q, state
values x and controller input u. Note that the control input is set at the beginning of a
time period, and is assumed to remain constant throughout the period.

The overall sampled data control system is a tuple 〈C,P, µ, Ts〉 of a discrete con-
troller transition system C, a hybrid plant model P and a mapping from variables in
C to control inputs u of P . A given sampling time Ts > 0 specifies the periodicity
of the controller execution. The state of the system is represented by the joint state of
the plant σP and σC of the controller. We assume that the computations of the con-
troller take zero (or negligible time) compared to the sampling period. Furthermore,
we assume that the commands issued by the controller are in the form of an input u
for the next time period, and/or a command to execute a discrete transition . Finally, to
avoid considering improbable “race conditions”, we assume that the plant itself may not
execute autonomous discrete transitions at sample time instances when the controller
executes 2. The overall system evolves in one of two ways:

1. At sample times t = nTs for n ∈ Z, a controlled transition is taken based on the
current state of the plant and the controller. The transition updates the controller
state, the values of the plant inputs and can also command the plant to execute a
discrete transition out of its current mode.

2. Between two sample times t ∈ (nTs, (n+ 1)Ts), the state of the plant evolves ac-
cording to its current mode q, continuous variables x and input u. If an autonomous
transition τ ∈ Taut is enabled, then it may be non-deterministically executed by the
plant, possibly changing the plant’s state instantaneously.

A plant is affine iff (a) for each discrete mode q, the dynamics are of the form
dx
dt = Aqx+Bqu+ bq , (b) the initial condition Θ and guards γτ for each transition τ ,
are linear arithmetic formulae, and (c) the update functions Uτ are affine.

Why Autonomous Transitions? The ability to model autonomous transitions is im-
portant for two main reasons: (a) real life plants are often multi modal with mode
changes that can be affected by environmental factors such as user inputs, disturbance
inputs, failures or other exceptional situations that are not within control; and (b) even
though we assume that controller commands effect immediately, often there may be de-
lays. Autonomous transitions can be used to model these delays if they can be bounded.

3 Relationalization

In this section, we discuss the notion of timed relationalizations for plants in a sam-
pled data control system. The basic idea behind relationalization is to build a relation
RP (q

′,x′, q,x,u) of all possible pairs of states (q′,x′) and (q,x) such that (a) the
plant is in the state (q,x) at the start time t = t0, (b) it reaches the state (q′,x′) at time
t = t0+Ts, and (c) u is the constant controller input for t ∈ (t0, t0+Ts]. Note that the
discrete modes q, q′ may be different, depending on whether an autonomous transition
is taken by the plant between two samplings.

2 This assumption can be relaxed to allow such simultaneous executions, provided the plant and
the controller do not attempt to update the same state variable.
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n0 : dx
dt

= A1x+ b1start

n1 : dx
dt

= A2x+ b2

τ1 :
1 ≤ x ≤ 2
1 ≤ y ≤ 2

τ2 :

 (|x| >= 10
∨ |y| >= 10)
x′ ∈ [8, 12],
y′ ∈ [−0.5, .5]



Fig. 2. A simple affine hybrid automaton with an autonomous transition τ1 and controlled tran-
sition τ2. Some sample trajectories of the automaton are shown with the autonomous transition
being taken. The red colored trajectories belong to mode n0 and the blue colored trajectories to
mode n1. The guard set is shown in thick lines.

Let us suppose a relation RP can be built that can characterize all pairs (q′,x′)
that a controller can observe at the next time step, given that (q,x) was observed at
the current time step and u was the control input. As a result, we may construct a
purely discrete abstraction of the sampled data control system wherein the behavior of
the plant between two samplings is entirely captured by RP . Therefore, the resulting
discrete transition system can be verified using a host of approaches for verification of
discrete programs. Furthermore, since our goal is to perform safety verification, we do
not need to compute the exact relation RP , but only an over-approximation of it.

We will now describe techniques for constructing timed relational abstractions.

Example 1. Consider the hybrid plant model shown in Figure 2 with two state variables
x, y and no control inputs. The matrices defining the dynamics are

A1 :

(
−1.5 1.2
1.3 0.2

)
b1 :

(
1.0
−0.5

)
A2 :

(
2 1.2
0.1 −3.6

)
b2 :

(
−0.6
−0.6

)
.

There are two modes n0 and n1 with an autonomous transition τ1 from n0 to n1 and
a controlled transition τ2 from n1 back to n0. Relationalization of this automaton will
need to consider 3 cases: (a) the automaton remains entirely inside the mode n0 dur-
ing a sample interval, (b) the automaton remains entirely inside mode n1 and (c) the
automaton switches from mode n0 to n1 sometime during a sampling interval.

We first discuss relational abstraction for the case when the plant remains in some
mode q during a sampling period without any autonomous transitions taken in between.
This situation is abstracted by a relation Rq(x,u,x′) that relate all plant states (q,x)
at some time t and state (q,x′) at time t + Ts with control input u. The resulting Rq
for each q ∈ Q will form a disjunct in the overall relation RP for the plant.

Definition 3 (Timed Relational Abstraction). Consider a continuous system specified
by a time invariant ODE dx

dt = f(x,u) for x ∈ X and control inputs u ∈ U .
A relation R(x,u,x′) is a timed relational abstraction with sample time Ts of the

continuous system iff for all time trajectories x(t) of the ODE with constant control
input u(t) = u, we have (x(0),u,x(Ts)) ∈ R.
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Since we assume that the dynamics are time invariant, the starting time of the observa-
tion can be arbitrarily set to t0 = 0. Time varying dynamics can be treated by lifting this
assumption and specifying the value of the time t as part of the state x of the system.

We now consider the timed relational abstraction for a system with affine dynamics
given by dx

dt = Ax + Bu + b. We note that the solution of the ODE can be written
as x(t) = etAx(0) +

∫ t
s=0

e(t−s)A(Bu(s) + b) ds. If the matrix A is invertible and
u(s) = u for s ∈ [0, Ts), we may write the resulting relation as

x(Ts) = eTsAx(0) +A−1(eTsA − I)(Bu+ b) .

For general A, we write the result as

x(Ts) = eTsAx(0) + P (A, Ts)(Bu+ b), wherein P (A, t) =
∞∑
j=0

Ajtj+1

(j + 1)!
.

In theory, given Ts and A, we may compute the matrices eTsA and P (A, Ts) to
arbitrary precision. This yields an affine expression for x(Ts) in terms of x(0),u.

In practice, however, arbitrary precision computation of the exponential map is often
impractical, unless the matrix A is known to be diagonalizable with restrictions on its
eigenvalues, or nilpotent. Therefore, for a general matrix A, we resort to error-prone
numerical computations of eTsA and P (A, Ts).

The loss of soundness can be alleviated by using sophisticated numerical approxi-
mation schemes [22]. In particular, we can estimate both matrices using interval arith-
metic calculations as eTsA ∈ [Es, Es] and P (A, Ts) ∈ [Ps, Ps] by taking into account
the arithmetic and truncation errors of the resulting power series expansions [5, 26,
15]. Therefore, the resulting relationalization obtained is interval linear of the form
x′ ∈ [Es, Es]x− [Ps, Ps](Bu+ b) which stands for the logical formula

R(x,u,x′) : (∃ E ∈ [Es, Es], P ∈ [Ps, Ps]) x
′ = Ex− P (Bu+ b) .

As such, the relation above cannot be expressed in linear arithmetic. We will expand
upon the treatment of interval linear relations later in this section.

Example 2. Going back to the system in Ex. 1, we find relational abstractions for mode
n0 when the system does not take an autonomous transition within the sampling period
of 0.2 time units. Using a numerically computed matrix exponential, we obtain the

relation x′ =
(
0.7669 0.214
0.232 1.07

)
x+

(
0.1635
−0.079

)
. On the other hand, using the interval

arithmetic based method described by Goldsztejn [15], we obtain the relation

x′ ∈
(
[0.7669282852020186, 0.7669282852020187] [0.2139643726426075, 0.2139643726426076]
[0.2317947337083272, 0.2317947337083273] [1.0700444963848672, 1.0700444963848673]

)
x

+

(
[0.1635149326785402, 0.1635149326785403]

[−0.0789845829507958,−0.0789845829507957]

)
.

While pathological cases for matrix exponential computation are known (Cf. Gold-
sztejn [15]), the rather tight interval bounds for the exponential seem to be quite com-
mon in our benchmarks, and therefore, the use of numerically computed matrix ex-
ponentials may be quite satisfactory for many applications, wherein the dynamics are
obtained as an approximation of the physical reality in the first place.
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Applying the same for mode n2, we obtain the relation x′ =
(
1.5245 0.2181
0.0182 0.4885

)
x+(

−0.1626
−0.0867

)
. Once again, an interval computation yields intervals of width 10−16 or

less centered around the numerically computed value.

3.1 Dealing with Autonomous Transitions

Thus far, we have described a simple relationalization scheme under the assumption
that no autonomous transitions were taken by the plant during a sampling time period.
We will now describe the treatment of autonomous transitions that can be taken by the
plant between two successive samplings. In general, there is no a priori bound on the
number of such transitions that a plant can take in any given period (nTs, (n + 1)Ts).
Even if the plant is assumed to be non-Zeno, any relationalization has to capture the
effects of the plant executing a finite but unbounded number of transitions. We remedy
this situation by making two assumptions regarding the plant: (a) There is a minimum
dwell time TD > 0 for each mode q of the plant. In other words, whenever a run of
the plant enters some mode q, it remains there for at least TD time units before an
autonomous transition is enabled. (b) No autonomous transitions can be taken precisely
at the time instant t = jTs for j ∈ Z.

τ

(q,x)

(q′,x′)

0

Ts

(q,y)

(q′,y′)

Fig. 3. Schematic for relational ab-
straction of a single autonomous
transition.

The first assumption provides a bound N =⌈
Ts

TD

⌉
on the maximum number of autonomous

transitions taken inside a sampling interval. For
this paper, we will assume that N = 1 to simplify
the presentation, i.e., the controller is assumed to
sample the plant fast enough to restrict the number
of autonomous transitions in any sample period to
at most 1. The second assumption allows us to use
the standard interleaving semantics when the rela-
tionalization of the plant and the system are com-
posed. This assumption fails if the execution time
of the controller is not negligible compared to the
time scale of the plant dynamics, as is sometimes
the case. However, if bounds are known on the ex-
ecution times, we may compute relationalizations
of the plant for two time steps, one for the con-
troller step and the other for the sampling period.
Likewise, the basic ideas presented here extend to more sophisticated task execution
schedules for control tasks.

Let us assume that a single autonomous transition τ : 〈q1, q2, ρ〉 is taken during the
time t ∈ (0, Ts). Our goal is to derive a relation Rτ ((q1,x),u, (q2,x′)) characterizing
all possible pairs of states (q1,x) and (q2,x

′) so that the plant may evolve from con-
tinuous state x in mode q1 at time t = 0 to the state (q2,x

′) at time t = Ts with the
transition τ taken at some time instant 0 < t < Ts. The resulting Rτ for each τ ∈ Taut
will form a disjunct of the overall relation RP for the plant.
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Figure 3 summarizes the situation diagrammatically. We let y be the valuation to
continuous variables just prior to τ being taken and y′ be the valuation just after τ
is taken. Let t be the time instant at which τ is taken. Let the dynamics in mode qi for
i = 1, 2 be given by dx

dt = Aix+Biu+bi. Therefore,x = e−tA1y−P (A1,−t)(B1u+

b1) ∧ x′ = e(Ts−t)A2y′ − P (A2, Ts − t)(B2u+ b2). The overall relation is given by

Rτ (x,u,x
′) : (∃ t,y,y′)

x = e−tA1y − P (A1,−t)(B1u+ b1)

x′ = e(Ts−t)A2y′ − P (A2, Ts − t)(B2u+ b2)
0 < t < Ts ∧ ρτ (y,y

′)

 . (1)

Note that we have chosen to encode x = e−tA1y instead of encoding the dynamics in
the forward direction y = etA1x. This seemingly arbitrary choice will be seen to make
the subsequent quantifier elimination problem easier.
Eliminating Quantifiers: The main problem with the relation Rτ derived in Eqn. (1)
is that the matrices etAi and P (Ai, t) are, in general, transcendental functions of time. It
is computationally intractable to manipulate these relations inside decision procedures.
To further complicate matters, the variable t is existentially quantified. Removing this
quantifier poses yet another challenge. However, our goal will be to derive an over-
approximation of Rτ expressible in linear arithmetic.

To this end, the main challenge is to construct a good quality and linear over-
approximationRaτ (x,u,x

′) of the relationRτ . We address this challenge using interval
arithmetic techniques.
Interval Over-approximation We subdivide the interval [0, Ts] into M > 0 subin-
tervals each of width δ = Ts

M . Next, we consider each subinterval of the form t ∈
[iδ, (i+ 1)δ) and use interval arithmetic evaluation for the functions etAi and P (Ai, t)
to obtain a conservative approximation valid for the subinterval. In effect, we over-
approximate Rτ as a disjunction

RIτ :
∨

0≤i<M

(∃y,y′)

x ∈ [Ei,1, Ei,1]y − [Pi,1, Pi,1](B1u+ b1) ∧
x′ ∈ [Ei,2, Ei,2]y

′ − [Pi,2, Pi,2](B2u+ b2) ∧
ρτ (y,y

′)

 , (2)

wherein [Ei,1, Ei,1] is a safe interval enclosure of e(−(i+1)δ,−iδ]A1 while [Ei,2, Ei,2] is
an enclosure of e(Ts−[iδ,(i+1)δ])A2 . Likewise, [Pi,1, Pi,1] and [Pi,2, Pi,2] are safe enclo-
sures of P (A1, [−(i+ 1)δ,−iδ]) and P (A2, (Ts − [iδ, (i+ 1)δ])), respectively.

The resulting over-approximation is a disjunction of M interval linear relations. In
effect, the transcendental relation Rτ in Eq. (1) is over-approximated by an algebraic
(bilinear) relation RIτ . The over-approximation error be made as small as necessary by
increasing the number of subdivisions M , and by using a more expensive procedure for
deriving a better approximation of the exponentials by intervals. The problem of eval-
uating safe interval enclosures to the matrices e[t1,t2]A and P (A, [t1, t2]) uses the idea
of scaling and squaring with Horner’s rule for evaluating the truncated power series,
precisely as described by Goldsztejn [15]. A convenient trick used in our implementa-
tion folds the computation of eA,[t1,t2] and P (A, [t1, t2])(Bu + b) into a single matrix

exponential computation for a block matrix of the form
(
A B b
0 0 0

)
.
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Example 3. Consider the hybrid automaton described in Ex. 1. We wish to consider
the relational abstraction when τ1 is taken sometime during the sampling period of 0.2
seconds. To this end, we will choose M = 2 and consider two possible intervals for
the switching time t when the transition τ1 is taken J1 : [0, 0.1] and J2 : [0.1, 0.2].
Considering interval J1, we obtain the following relation (intervals are rounded to 2
significant digits for presentation):

Rτ,J1 : (∃ y)

x ∈
(

[0.99, 1.17] [−0.13, 0.01]
[−0.14, 0.0] [0.98, 1.01]

)
y +

(
[−0.11, 0]

[−0.01, 0.05]

)
∧

x′ ∈
(
[1.23, 1.53] [0.09, 0.25]
[0.0, 0.02] [0.48, 0.7]

)
y +

(
[−0.16,−0.07]
[−0.1,−0.04]

)
∧ y ∈ Gτ1

 .
Templatization The next step is to use a templatization technique to effectively elim-
inate the quantifiers y,y′ from the relation RIτ in Equation (2) while, at the same time,
over-approximating the result by means of a linear arithmetic over-approximation. Re-
call that each disjunct in Equation 2 is an interval linear assertion of the form

RIj : (∃y,y′)

(
x ∈ [Ej,1, Ej,1]y − [Pj,1, Pj,1](B1u+ b1) ∧
x′ ∈ [Ej,2, Ej,2]y

′ − [Pj,2, Pj,2](B2u+ b2) ∧ ρτ (y,y
′)

)
,

An interval linear constraint of the form
∑n
j=1 Ijxj + I0 ≤ 0 is a place holder for a

bi-linear constraint
∑n
j=1 wjxj +w0 ≤ 0, wherein, w0, . . . , wn are freshly introduced

variables and each wj is constrained by requiring that wj ∈ Ij .
In order to eliminate y,y′ from this relation, a technique for eliminating quanti-

fiers for real arithmetic such as Cylindrical Algebraic Decomposition (CAD) [7], or
a more efficient version for quadratic polynomials is called for [38, 12, 35]. However,
the downside of using such complex techniques include (a) it is well known that QE
over non-linear constraints is a hard problem with limited scalability, and (b) the result
after elimination will, in general, be a set of polynomial inequalities (semi-algebraic
constraint). Therefore, the resulting relationalization may not be easy to reason with for
existing tools.

We present a more efficient alternative that side steps the elimination altogether,
relying instead on the use of templates and optimization:

1. We choose a set of template expressions ek(x,x′,u) involving the variables x, u
and x′. We discuss a natural choice for these templates subsequently.

2. For each ej , we carry out the optimization: min ek s.t. RIj (x,y,u,y
′,x′). If the

problem is feasible and bounded, the ak allows us to conclude that

RIj (x,y,u,y
′,x′) ⇒ ek(x,u,x

′) ≥ ak .

As a result by choosing some K > 0 templates e1, . . . , eK , we obtain an assertion

e1(x,u,x
′) ≥ a1 ∧ e2 ≥ a2 ∧ · · · ∧ eK(x,u,x′) ≥ aK .

This assertion serves as an over-approximation toRIj with the quantified variables y,y′

eliminated through optimization. We now provide a natural scheme for the choice of
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templates, and then discuss how the optimization problem for each template expression
can be solved.

The overall relationalization of the plant RP is the disjunction of the relations Rq ,
for each mode, and RIτ , for each autonomous transition τ .

Theorem 1. For any pairs of states σ : (q,x) and σ′ : (q′,x′) such that x′ is reach-
able from x in Ts seconds for constant control input u, the computed relational ab-
straction RP satisfies RP (σ, σ′,u).

Choosing Template Expressions A natural choice for template expression presents
itself in our setup by considering the midpoints of the intervals used in the matrix ex-
ponential computations. We note that y is the state obtained starting from x and evolv-
ing in mode 1 for time [iδ, (i + 1)δ). Likewise, x′ is obtained by evolving according
to the state y′ for time [Ts − (i + 1)δ, Ts − iδ). Finally, y′ = U(y), wherein U is
the affine update map for transition τ . In practice, δ is chosen to be small enough to
yield tight enclosures to etAi and P (Ai, t) matrices. Therefore, a natural choice of tem-
plate expression is obtained by considering the midpoints of the time intervals involved.
Specifically, we consider the affine expressions defined by

x′ − e(Ts−tm)A2U(etmA1x), where tm = (i+
1

2
)δ .

Example 4. In Ex. 3, we showed the interval linear relation obtained by considering
switching times in the interval t ∈ [0.0, 0.1]. The midpoint of this interval is tm = 0.05.
Therefore, we consider the mode n0 taken for time 0.05 units followed by 0.15 units
of mode 1 for generating a suitable template. These template expressions are given by
e1 : x′−1.31x−0.25y and e2 : y′−0.05x−0.6y. We seek to bound these expressions
to obtain a linear arithmetic over-approximation.

Encoding Optimization Next, we turn our attention to setting up the optimization
problem for a given template expression cx + dx′. The intermediate states y,y′ are
related by interval linear expressions of the form

x′ ∈ [E2, E2]y
′ + [P2, P2], x ∈ [E1, E1]y + [P1, P1] .

To set up the optimization problem, we substitute these expressions for x,x′ in the
template to obtain c([E1, E1]y+ [P1, P1]) + d([E2, E2]y

′ + [P2, P2]). This is, in fact,
an interval linear expression involving y,y′. The overall optimization problem reduces
to: min [c, c]y + [d,d]y′ + [c0, c0] s.t. ρτ (y,y′). Here [c, c] = c[E1, E1] , [d,d] =
d[E2, E2] and [c0, c0] = c[P1, P1] + d[P2, P2]. The problem has an interval linear
objective and linear constraints. We now show that the constraints can be encoded into
a disjunctive linear program.

Theorem 2. The optimization of an interval linear objective w.r.t linear constraints

min [c, c]× z s.t. Az ≤ b ,

can be equivalently expressed as a linear program with disjunctive constraints:

min cz+ − cz− s.t. Az+ −Az− ≤ b, z+, z− ≥ 0, z+i = 0 ∨ z−i = 0

where z = z+ − z−.

11



Proof. We may decompose any vector z as z = z+ − z−, where z+, z− ≥ 0, and
enforce z+i z

−
i = 0. Next, consider the objective [c, c]×(z+−z−). Since correspondent

entries in z+, z− cannot be positive at the same time, we may write the objective as a
linear expression cz+ − cz−. Finally, the complementarity condition z+i z

−
i = 0 is

rewritten as z+i = 0 ∨ z−i = 0.

A simple approach to solve the optimization problem for disjunctive constraints is to
use a linear arithmetic SMT solver to repeatedly obtain feasible solutions z+, z−. For
a given feasible solution output by the SMT solver, we fix a minimal set of the values
for z+, z− to zero to enforce the complementarity constraints z+i z

−
i = 0, leaving the

remaining variables as unknowns. An LP solver is then used to compute an optimal
value f∗ for the objective function f , based on the remaining constraints. This yields a
potential optimum. Next, we add a blocking constraint f > f∗ to the SMT solver and
search for a different solution. The process is carried out until the SMT solver returns
UNSAT. At this point, we output the last optimal solution as the final value.

Example 5. Continuing with the examples worked out in Ex. 3, we perform the opti-
mization of the template expressions chosen in Ex. 4 to obtain the relational abstraction:

Rτ1,J1 : −1.0 ≤ 1.31x+ 0.25y − x′ ≤ 1.24 ∧ −0.32 ≤ 0.05x+ 0.6y − y′ ≤ 0.51 .

Likewise, considering the time interval J2 : [0.1, 0.2] for the switching time, we obtain
the abstraction:

Rτ1,J2 : −1 ≤ 0.94x+0.25y−x′ ≤ 0.88 ∧ −0.54 <= 0.17x+0.9y−y′ <= 0.7708 .

The overall timed relational abstraction for the sampling period where τ1 can be taken
sometime in between is Rτ1 : Rτ1,J1 ∨ Rτ1,J2 .

4 Experimental Evaluation

We first briefly describe our implementation of the relational abstractor using the tech-
niques presented here.
Implementation: The relational abstractor takes in a plant description including the
sample time Ts, and outputs the relation as a SAL transition system [32]. The relational-
ization is performed for the continuous dynamics in each mode by computing a matrix
exponential. A numerical approximation of the matrix exponential function is obtained
using Pade’s approximation [22]. We have also implemented a procedure that provides
a sound interval enclosure of the exponential function over interval matrices using the
ideas described by Goldsztejn [15]. However, this procedure is used solely for dealing
with autonomous transitions.

Autonomous transition between modes are handled using the algorithms presented
so far. We implicitly assume minimum dwell time greater than or equal to the sampling
time for the controller. The optimization problems encountered for autonomous transi-
tions are solved using the SMT solver Z3 [11]. SAL provides a k-induction and BMC
engine using the solver Yices [13]. This was used for analyzing the resulting composed
transition system for our evaluations.
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Model Description # Var # Mode # Trs Prop. Description
InvPen Inverted Pendulum Control 5 1 1 θb(0.05) Angle θ ∈ [−0.05, 0.05]
SNCS Network Control System [39] 2 1 2 P1 (x, y) ∈ [−100, 100]2

P2 (x, y) ∈ [−104, 104]2
ACC Adaptive Cruise Control [17] 4 1 2 SAFE No collision between cars.
ACC-T ACC + transmission [17] 3 20 24 SAFE No collision between cars.
Heat-x Room heater [14] 9 8 20 LB Lower bounds on temp.

Cf. [14]
Nav-y NAV benchmarks [14] 4 [7,16] [9,16] RA Cell A is unreachable

RB Cell B is unreachable
Toy Example 1 2 2 5 bnd(k) n1 ⇒ |x| ≤ k
Ring(n,m) Cf. Section 4 n m+1 m+1 bnd(k) n4 ⇒ |x| ≤ k

Table 1. The benchmarks used in our experiments at a glance.

Benchmarks: Table 1 shows the benchmarks used in our evaluation along with their
sources. The benchmarks vary in dimensionality and number of transitions. Note that
many benchmarks do not contain autonomous transitions. For each benchmark, we per-
formed the relational abstraction for different sampling times Ts, and used SAL to an-
alyze safety properties.

The NAV benchmarks, due to Ivancic and Fehnker [14], model a particle traveling
through many 2D cells that each have a different dynamics. We consider two versions
of this benchmark (a) the transitions in the benchmark are all interpreted as controlled,
commanded by a controller, or (b) transitions are autonomous in nature. Starting with
all controlled transitions, we introduce uncontrolled transitions incrementally into these
benchmarks.

Ring Benchmarks: We created a set of sampled data control systems with autonomous
transitions. We consider a plant with k + 1 modes, wherein modes m1, . . . ,mk are
governed by stable dynamics, while mode mk+1 is an unstable mode. The controller
seeks to stabilize this mode by periodically sensing the plant’s state and applies a control
that reverts it back to mode m1.

The benchmark instance Ring(n,k) consists of n state variables and k+1 modes.
The autonomous transitions are added from mode i to mode i + 1 for i ≤ k, while the
controlled transition leads from mode k + 1 to mode 1. The dynamics in each mode is
of the form dx

dt = Ai(x−bi), wherein, for the stable modes Ai is a Hurwitz matrix and
bi is a designated equilibrium for mi. For the unstable mode, we ensure that Ai has a
positive eigenvalue. The switch frommi tomi+1 takes place inside a box [bi−ε, bi+ε].
The controller periodically senses the plant and whenever |x| > c for some fixed c, it
brings the dynamics back into the box |x| < cwhile transitioning to modem1. We wish
to check whether all trajectories lie inside a box |x| ≤ c+ d, for varying tolerances d.

Results: Table 2 shows the experimental results on benchmarks that do not have au-
tonomous transitions. Our experiments are attempted using numerous values of sample
times for each property until either a proof is obtained for the controller or the SAL
tool fails due to a timeout. In the absence of autonomous transitions, the relational-
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Model Prop Ts Result Depth Time
InvPen θb(0.05) 0.1 CE 1 0.1

0.05 P 12 0.9
SNCS P1 1.7 P 2 0.1

P2 1.8 CE 93 5.6
ACC SAFE 0.1 P 7 0.1

gap(100) 0.1 P 4 0.1
ACC-T SAFE 1 P 14 2.2
Nav 1-7 1 RB P <11 <5

1 RA CE <13 <2
Nav 8 1 RB CE 7 0.27

0.2 RB F 25 > 1h

Nav 9 1 RB P 19 213.05
1 RA CE 9 0.37

Nav 10 1 RB CE 19 28.37
0.5 RB F 25 > 1h

Model Ts Prop result depth time
Heat1 LB 1 CE 4 0.1

.2 CE 8 0.1
0.1 P 37 1967

Heat2 LB 1 CE 4 0.1
0.2 P 17 160

Heat3 LB 1 CE 2 0.1
0.2 CE 17 27
0.1 F 30 > 1h

Heat4 LB 1 CE 2 0.1
0.1 CE 10 1.22
0.02 F 25 > 1h

Table 2. Results on benchmarks without autonomous transitions. All timings were measured in
seconds on a laptop running Intel Core i7-2820Q 2.30GHz processor (x86 64 arch) with 8GB
RAM running Ubuntu 11.04 Linux 2.6.38-13. Legend: CE indicates true counter-example, P
indicates proofs, F indicates failure due to timeout.

ization time for all these benchmarks was well under 1 second. We also note that the
counterexamples generated by SAL can be concretized, since the timed abstractions
involving matrix exponentials are seen to be quite precise.

Table 3 shows the results for systems with controlled and autonomous transitions.
These include the system from Ex. 1, the Ring(n,k) systems for varying n and the
NAV benchmark instances as we increase the number of autonomous transitions. We
observe that making all the transitions autonomous leads to a counterexample. This
counterexample may potentially be an artifact of the precision loss due to relation-
alization of autonomous transitions. Future work will consider the refinement of these
counterexamples by subdividing the transition switching time intervals further based on
spurious counterexamples. We note that the time for relationalization remains a small
fraction of the time needed to check the system. The relationalization scheme can be
improved further if SMT solvers such as Z3 can be modified to support the optimization
of objective functions.

Comparison With SpaceEx: We now compare the results obtained for our approach
with the SpaceEx tool over the same set of benchmarks [?]. While performing the com-
parison with SpaceEx, we reiterate two key points of difference: (a) SpaceEx handles
general hybrid systems with support for synchronous time-triggered semantics as well
as the standard event-triggered semantics given by guards and resets. Our technique is
specialized to sampled data control systems. (b) SpaceEx attempts to characterize the
reachable sets for all time instances, whereas our approach focuses on proving proper-
ties at the periodic sampling times.

Typically, running the benchmarks in SpaceEx required choosing from a range
of parameters including template domains, underlying implementation, flowpipe tol-
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Model Prop result depth Tsal Trel
Toy bnd(8) P 2 0.1 < .1

bnd(6) P 2 0.1
bnd(5.5) P 2 0.3
bnd(5) CE 70 204

Ring(3,4) bnd(20) P 10 5.2 0.8
bnd(15) P 30 451

Ring(5,4) bnd(25) P 10 34.7 2.8
bnd(20) P 10 56.2
bnd(15) F 20 > 1h

Ring(7,4) bnd(25) P 10 157 11.9
bnd(20) P 10 357
bnd(15) F 20 >1h

Ring(9,4) bnd(25) P 10 515 19.1
bnd(20) P 10 2929

Ring(11,4) bnd(25) F 10 > 1h 150

Model Prop Ts # Aut. result depth time
Nav1 RB 0.2 6 P 9 199

14 P 9 72
21 P 9 96
24 F 9 169
All CE 9 161

Nav2 RB 0.2 20 P 9 92
21 F 9 160
All CE 7 151

Nav3 RB 0.2 22 P 9 83
All CE 6 13

Nav4 RB 0.2 9 P 18 1305
20 F 18 >1h
All CE 6 7

Table 3. Results on systems with autonomous transitions. For the NAV benchmarks, autonomous
transitions between cells were incrementally enabled over the controlled transitions until all tran-
sitions were autonomous. Tsal refers to running time for SAL and Trel the running time for the
relationalization.

erances, error tolerances, local and global time horizons and limits on the number of
iteration. We ran SpaceEx for each benchmark using multiple option sets, choosing the
option that provided the “best answer” with as few warnings as possible. A detailed
table summarizing our experiences is available upon request.

Table ?? presents a summary of the results obtained by running SpaceEx on our
benchmarks. We note that in many cases, SpaceEx did not reach a fixed point. There-
fore, whenever a property proof was obtained, we report if the proof was obtained over
a finite time horizon. Likewise, for cases where the property was not proved, we ran
SpaceEx for the minimum number of iterations until a potential violation is observed.

The comparison between our approaches clearly showcases some of the relative
merits and demerits of our approach vis-a-vis SpaceEx. There are many benchmarks
wherein our approach is able to establish the property over an infinite time horizon using
k-induction, whereas SpaceEx either proves the property over a finite time horizon or
fails. On the other hand, the NAV benchmarks are an interesting case where SpaceEx’s
performance is at par or clearly superior to that of our approach.

For some of the Ring examples, we observed that using the bounds obtained by
SpaceEx as inductive strengthenings enabled the k-induction technique to prove the
property for a much smaller value of k, leading to improved running times. On the
other hand, for the inverted pendulum example, the inductive strengthenings found by
SpaceEx did not improve the performance of k-induction.

Our future work will focus on an integration of the approaches considered here
in combination with tools such as SpaceEx to achieve infinite horizon safety property
proofs. Another important area of future research will be to extend our approach to
analyze non linear hybrid systems, which are much more challenging.
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Model Prop Ts Result Time
InvPen θb(0.05) 0.05 F 6
SNCS P1 1.7 F 371
Heat1 LB 0.1 F 557
Ring(3,4) bnd(20) 0.2 P (FT) 3475
Ring(5,4) bnd(25) 0.2 P (FT) 2051
Ring(7,4) bnd(25) 0.2 F 6323
Ring(9,4) bnd(25) 0.2 F 709

Model Prop Ts Result Time
Nav 4(A) RB − P (FT) 1501
Nav 6(A) RB − F 1223
Nav 7(A) RB − P (FT) 615
Nav 9(A) RB − F 619
Nav 4(C) RB 1 P (FT) 109
Nav 6(C) RB 1 P (FT) 167
Nav 7(C) RB 1 P 7
Nav 9(C) RB 1 F 6

Table 4. Results of SpaceEx tool on the benchmark. Legend: A: All transitions were Au-
tonomous, C: All transitions were controlled Autonomous, Prop: property, F: Found potentially
spurious counter-example (our approach proves model+property), P: Proved, FT: proof valid
over a finite time horizon, Time: Running time in seconds.
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