
COMMON LISP
An Interactive Approach

PRINCIPLES OF COMPUTER SCIENCE SERIES
Series Editors

Alfred V. Aho, Bellcore, Morristown, New Jersey

Jeffrey D. Ullman, Stanford University, Stanford, California

Egon Börger, Editor

Trends in Theoretical Computer Science

Ruth E. Davis

Truth, Deduction, and Computation: Logic and Semantics for Computer Science

Nicholas J. DeLillo

A First Course in Computer Science with ADA

A. K. Dewdney

The Turing Omnibus: 61 Excursions in Computer Science

Vladimir Drobot

Formal Languages and Automata Theory

Eitan M. Gurari

An Introduction to the Theory of Computation

Martti Mäntylä

An Introduction to Solid Modeling

Bertrand Meyer

Software Engineering: Principles and Practices

Shamim Naqvi and Shalom Tsur

A Logical Language for Data and Knowledge Bases

Christos Papadimitriou

The Theory of Database Concurrency Control

Richard Snodgrass

The Interface Description Language: Definition and Use

Steven Tanimoto

Elements of Artificial Intelligence Using COMMON LISP

Jeffrey D. Ullman

Computational Aspects of VLSI

Jeffrey D. Ullman

Principles of Database and Knowledge-Base Systems, Volume I: Classical Database

Systems

Jeffrey D. Ullman

Principles of Database and Knowledge-Base Systems, Volume II: The New Tech-

nologies

Jeffrey D. Ullman

Theory of Relational Databases

COMMON LISP
An Interactive Approach

STUART C. SHAPIRO
State University of New York at Buffalo

COMPUTER SCIENCE PRESS
AN IMPRINT OF W. H. FREEMAN AND COMPANY • NEW YORK

Library of Congress Cataloging-in-Publication Data

Shapiro, Stuart Charles
Common LISP: an interactive approach / by Stuart C. Shapiro.

p. cm.
Includes index.
ISBN 0-7167-8218-9
1. LISP (Computer program) I. Title. II. Title: LISP.

QA76.73.L23S53 1991
005. 13’3—dc20 91-12377

CIP

Copyright c© 1992 by Stuart C. Shapiro

No part of this book may be reproduced by any mechanical, photographic,
or electronic process, or in the form of a phonographic recording, nor may it
be stored in a retrieval system, transmitted, or otherwise copied for public or
private use, without written permission from the publisher.

Printed in the United States of America

Computer Science Press

An imprint of W. H. Freeman and Company
The book publishing arm of Scientific American
41 Madison Avenue, New York, NY 10010
20 Beaumont Street, Oxford OX1 2NQ, England

1 2 3 4 5 6 7 8 9 0 RRD 9 9 8 7 6 5 4 3 2 1

To Caren

Contents

Preface xiii

To the Reader xxi

I THE BASICS 1

1 Getting Started 3
Exercises . 5

2 Numbers 7
Exercises . 9

3 Lists 11
Exercises . 14

4 Arithmetic 15
Exercises . 18

5 Strings and Characters 21
Exercises . 23

6 Symbols 27
Exercises . 32

vii

viii

7 Packages 35
Exercises . 42

8 Basic List Processing 45
Exercises . 49

9 The Special Form quote 51
Exercises . 51

II PROGRAMMING IN PURE LISP 53

10 Defining Your Own Functions 55
Exercises . 58

11 Defining Functions in Packages 61
Exercises . 65

12 Saving for Another Day 67
Exercises . 70

13 Predicate Functions 73
Exercises . 75

14 Conditional Expressions 77
Exercises . 79

15 Recursion 81
Exercises . 85

16 Recursion on Lists, Part 1—Analysis 89
Exercises . 93

17 Recursion on Lists, Part 2—Synthesis 97
Exercises . 103

18 Recursion on Trees 111
Exercises . 120

19 The Evaluator 127
Exercises . 130

20 Functions with Arbitrary Numbers of Arguments 135
Exercises . 137

ix

21 Mapping Functions 139
Exercises . 142

22 The Applicator 145
Exercises . 148

23 Macros 151
Exercises . 154

III PROGRAMMING IN IMPERATIVE LISP 157

24 Assignment 159
Exercises . 162

25 Scope and Extent 165
Exercises . 168

26 Sequences 171
Exercises . 173

27 Local Variables 177
Exercises . 179

28 Iteration 181
Exercises . 190

29 Input/Output 193
Exercises . 198

30 Destructive List Manipulation 203
Exercises . 209

31 Property Lists 213
Exercises . 215

32 Hash Tables 219
Exercises . 224

IV OBJECT-ORIENTED PROGRAMMING 227

33 Methods 229
Exercises . 234

x

34 Classes 237
Exercises . 256

V APPENDICES 259

A Solutions to Selected Exercises 261

B COMMON LISP Reference Manual 281
B.1 Organization . 281
B.2 System-Dependent Operations 282
B.3 Control Functions . 283

B.3.1 Variable Environments 283
B.3.2 Assignment . 284
B.3.3 Sequences . 284
B.3.4 Exits . 285
B.3.5 Conditionals . 285
B.3.6 Iteration . 287
B.3.7 Mapping Functions . 287

B.4 Utility Functions . 288
B.5 Input/Output . 288
B.6 CLOS . 290
B.7 Arrays . 292

B.7.1 Constructors . 292
B.7.2 Selectors . 292

B.8 Boolean Operators . 292
B.9 Character Predicates . 293
B.10 File Operators . 293
B.11 Functions . 293

B.11.1 Constructors . 293
B.11.2 Operators . 293

B.12 Hash Tables . 294
B.12.1 Constructors . 294
B.12.2 Selectors . 294
B.12.3 Attributes . 294
B.12.4 Operators . 294

B.13 Lists and Conses . 294
B.13.1 Constructors . 294
B.13.2 Selectors . 295
B.13.3 Predicates . 297
B.13.4 Operators . 298

B.14 Numbers . 298
B.14.1 Constructors . 298
B.14.2 Predicates . 300

xi

B.14.3 Operators . 300
B.15 Objects . 301

B.15.1 Constructors . 301
B.15.2 Predicates . 302
B.15.3 Attributes . 303
B.15.4 Operators . 303

B.16 Packages . 304
B.16.1 Constructors . 304
B.16.2 Selectors . 304
B.16.3 Operators . 304

B.17 Sequences . 306
B.17.1 Selectors . 306
B.17.2 Attributes . 306
B.17.3 Operators . 306

B.18 Strings . 307
B.18.1 Selectors . 307
B.18.2 Predicates . 307

B.19 Symbols . 307
B.19.1 Constructors . 307
B.19.2 Selectors . 309
B.19.3 Predicates . 310
B.19.4 Attributes . 310
B.19.5 Operators . 310

Index 313

PREFACE

The purpose of this book is to teach the Common Lisp programming lan-
guage. The book is intended to be a self-paced study guide, requiring ad-
ditional information from an instructor, manual, consultant, or friend only
to fill in the details of the local operating system and a few implementation-
dependent features. This book is a Common Lisp version of LISP: An Inter-
active Approach, published by Computer Science Press in 1986. The major
motivation for creating the new version was the widespread adoption of Com-
mon Lisp as the standard Lisp dialect. In the earlier edition, I presented
Lisp in a dialect-independent way and discussed the different approaches of
the major dialects. In this edition, however, I am strictly following the Com-
mon Lisp standard set out in Guy L. Steele, Jr.’s COMMON LISP: The
Language, Second Edition (Bedford, MA: Digital Press, 1990). (Steele’s book
is often referred to as CLtL-2, and I will do so hereafter.) The Lisp version
of this book has been used as the text of the Lisp portion of data structures,
programming languages, and artificial intelligence courses and as a self-study
guide for students, faculty members, and others learning Lisp independently.
Draft versions of this book have also been used in Common Lisp courses,
artificial intelligence courses, and for self-study.

xiii

xiv PREFACE

Teaching LISP

Lisp is the language of choice for work in artificial intelligence and in symbolic
algebra. It is also important in the study of programming languages, because,
since its inception over thirty years ago, it has had full recursion, the con-
ditional expression, the equivalence of program and data structure, its own
evaluator available to the programmer, and extensibility—the syntactic in-
distinguishability of programmer-defined functions and “built-in” operators.
It is also the paradigm of “functional,” or “applicative,” programming. Be-
cause of the varied interests in Lisp, I have tried to present it in a general and
neutral setting, rather than specifically in the context of any of the special
fields in which it is used.

Above all, Lisp is an interactive language. A Lisp program is not built up
from imperative statements, but from forms, each of which has a value. The
Lisp programmer sits in front of a terminal, interacting with the Lisp listener.
During such a session, a program gets written, read, tested, modified, and
saved for future use. Most Lisp implementations provide more than just a
programming language, they provide an entire environment including tracing,
inspectors, debuggers, and other programmer aids, almost all written in Lisp
itself.

I learned Lisp by experimenting with it, typing S-expressions and seeing
what happened. That is the learning style I encourage in this book. Teaching
Lisp by having the student sit down at a terminal and experiment right from
the start influences the order of topics. For peace of mind, the first thing a
novice needs to know about being in a new environment is how to get out.
Therefore, Chapter 1 is concerned solely with getting into Lisp and getting
back out. Lisp input is not tied to line boundaries, and extra spaces are
ignored. Students need to experience this flexibility early so they do not feel
they are under more constraints than they really are. A novice makes mistakes
(and so do we all). Therefore, it is important to show the debugger and error
messages early. Since typing errors will occur, backspace and delete keys are
important, and the student should experience the entire character set. The
general approach is to prepare the student for the unexpected. Since new
concepts must be built on existing conceptual structures, numeric examples
are used before symbolic examples.

Since the best language for defining Lisp is Lisp itself, many Lisp functions
are introduced by having the student define them first. This means that some
functions I have been tempted to discuss early have been put off until the
student has enough background to define them.

I have written the exercises so that it is reasonable to expect the student to
do all of them. Therefore the only long projects are those that are distributed
throughout the text as exercises that have the student modify and extend
functions that are saved on files.

Preface xv

Because I suspect that many students will have had experience with some
imperative programming language, I teach pure Lisp before the imperative
constructs. This forces the student away from the “Pascal with parentheses”
style that I saw so much in the past. By the time I introduce imperative Lisp
in Part III, the student should be used to the functional style of pure Lisp
and should be able to develop a good, balanced programming style.

A COMMON LISP Approach

Rather than just translating the earlier version of this book into Common
Lisp, I have incorporated a thorough Common Lisp approach. Although
Common Lisp is still obviously a dialect of Lisp, the quantitative additions
of functions and features have made a qualitative difference. Besides the
obvious, well-known, and pervasive change from dynamic scoping to lexical
scoping, I think that the most important developments have been: the in-
troduction of packages, the change in focus from S-expressions to forms, and
the development of a mature typing system. These are all given prominent
attention in this book.

The existence of packages (multiple name spaces for symbols) in Common
Lisp is very important for allowing several people to cooperate in producing
a large system. Most Common Lisp texts, however, seem to be direct trans-
lations of their Lisp predecessors and relegate the discussion of packages to
a section of advanced topics at the end of the book, if they discuss packages
at all. Those authors seem to feel that the novice Lisper will be program-
ming alone, not as a member of a team, and therefore doesn’t need to worry
about packages. This is false because as soon as one sits down to a terminal
with a loaded Common Lisp one is part of a team; the other team members
are the people who implemented the Common Lisp environment being used.
Before users even start defining new functions, there are at least four pack-
ages in the environment they must use: the user package, the lisp package,
the keyword package, and at least one package for implementation-specific
functions. The fact that there are so many predefined functions means that
unless users are willing to be greatly constrained in their choice of function
names, they need to define their functions in their own packages. However,
packages can be very confusing for Lispers who have not learned about them
in an organized way. I have seen experienced, Ph.D.-level Lispers hack away,
adding qualifications to symbol names in their code, with no understanding of
the organized structure of the package system. The reasons that packages are
even more confusing in Lisp than in other, compiler-oriented languages, such
as Ada, is that in Lisp one may introduce symbols on-line, and one typically
stays in one Lisp environment for hours, losing track of what symbols have
been introduced. A symbol naming conflict may be introduced in the course
of debugging that will not occur when the fully developed files are loaded into

xvi PREFACE

a fresh environment in the proper order. To teach the student about packages
in an organized way, I introduce them early in Chapter 7, which follows the
initial discussion of symbols in Chapter 6. I then use packages consistently
and frequently throughout the rest of the book and have the students do ev-
ery set of exercises in a different package. If the students do every exercise
they will have created at least seven different files, each in its own package
with some files making use of others. I often ask the students to write their
own versions of predefined Common Lisp functions, and I always have them
do this in a different package and shadow the predefined function first.

Package Systems, S-expressions, and Forms

The development of the package system is related to the change of focus
from S-expressions to forms. The index of CLtL-2 contains no entry for
S-expressions or symbolic expressions, but the entry for forms contains 14
subentries and points to a total of 39 different pages. S-expressions are syn-
tactic units, sequences of characters that form the written version of Lisp pro-
grams and data structures. We used to say that the Lisp language consisted
of S-expressions, the major action of Lisp was the evaluation of S-expressions,
and the read-eval-print loop consisted of reading an S-expression, evaluat-
ing it, and then printing the value as an S-expression. A form, on the other
hand, is a Common Lisp object that can be evaluated, and the major action
of Common Lisp is the evaluation of such forms, or objects. The Common
Lisp read-eval-print loop really has five steps: reading an S-expression,
creating the object the S-expression denotes, evaluating the object, choos-
ing a printed representation of the value, and printing that representation.
One reason this distinction is important is that there are so many differ-
ent printed representations of the same Common Lisp object. Consider the
symbol mypackage::frank, and consider the situation where that symbol
has been exported from the mypackage package and imported into the user
package. How many different ways do we have to type that symbol to the
Common Lisp listener if we are in the user package? The package qualifier
may be typed as mypackage, MYPACKAGE, or it may be omitted. In fact, each
character of mypackage may be typed independently in lowercase or upper-
case, or in uppercase preceded by an escape character, giving 39 = 19, 683
ways to type the package name (ignoring all the ways of using escape brack-
ets), plus one way to omit it. Since the symbol has been exported, if we type
the package name, we may type the package name/symbol name connector
either as :: or as :, giving 19, 683 × 2 = 39, 366 ways to type the qualifier,
plus one way to leave it out. Each character of frank may also be typed
in uppercase or lowercase or in uppercase preceded by an escape character,
giving 35 = 243 ways of typing the symbol name (ignoring the various ways
of using escape brackets), for a total of 39, 367 × 243 = 9, 566, 181 ways of

Preface xvii

typing the printed representation of one symbol (ignoring escape brackets). I
have heard inadequately taught Lispers claiming that such expressions were
different symbols and talking about the “symbol with the pipes” as if the
escape brackets were part of the symbol’s name. In this book, I distinguish
the S-expression from the form—the printed representation from the object—
in Chapter 1 and continue making the distinction consistently and explicitly
through the entire book.

COMMON LISP Types

The change in focus from S-expressions to forms is bound up with the devel-
opment of a mature typing system, since Common Lisp has typed objects
rather than typed expressions. Previous Lisps had only two prominent data
types: lists and atoms. Numbers and strings existed but weren’t considered
all that significant for Lisp programming. Literal atoms were distinguished
in several ways but didn’t form their own data type. On the other hand,
Common Lisp has an extensive set of types, each with a predicate to rec-
ognize objects of that type and a collection of operations defined for it, all
organized into a type hierarchy. This book does not discuss all the Com-
mon Lisp types, but those covered include: numbers (integers, floating-point
numbers, and ratios), characters, strings, symbols, packages, lists, conses,
functions, hash tables, and single dimensional arrays. Common Lisp is an
object-oriented language similar to the way that CLU is object-oriented, as
opposed to the modern meaning of that phrase in object-oriented program-
ming. (CLOS, which is discussed in Part IV of this book, is object-oriented
in that way.) Common Lisp is object-oriented in the sense that: variables
have objects as their values, and two variables can be bound to the same
object; composite objects have objects as their parts; objects, rather than
expressions, have values and types.

To see the significance of Common Lisp’s typing of objects, compare an
untyped language such as Fortran with a strongly typed language such as
Pascal with Common Lisp. In Fortran, one may store a value of one type
into a variable, and then pass that variable by reference to a procedure that
operates on it as if it were another type. In Pascal, the compiler would catch
this as an error because the variable would be declared as one type, whereas
the formal parameter would be declared as another type. In Common Lisp,
this would be caught as an error during execution because the operator would
complain that the object it was given to operate on was of the wrong type.

Common Lisp has a macro check-type that can be used to make sure the
objects passed to a function are of the correct type. One may choose never
to use check-type, but one then runs the risk of a built-in function, called
many levels deep in user-defined functions, complaining that some object is
of the wrong type. It then can be very hard to find which function actually

xviii PREFACE

made the mistake. I introduce check-type in Chapter 16 as a special case
of assert, which is introduced in Chapter 15 as a way of making sure that
actual arguments of recursive functions satisfy the criteria that ensure that
the recursive function will terminate. Once introduced, check-type is used
consistently throughout the rest of the book.

New Features in This Book

Other changes made in this version of the book because of the change to
Common Lisp include:

• The documentation string is a required part of a function definition.

• first and rest are used instead of car and cdr.

• eql is the standard equality function instead of eq because all the Com-
mon Lisp functions that take a :test keyword use eql as their default
test.

• setf is used instead of setq.

Besides the change to Common Lisp, I have made other revisions in this
version of the book:

• Part I is extensively reorganized and includes a clear explanation of the
differences between symbols, symbol names, and printed representations
of symbols.

• There is a two-chapter introduction to CLOS, the Common Lisp Object
System in Part IV. Although all of the features of CLOS are not covered,
I have presented enough to get the student started in object-oriented
Common Lisp programming. Learning the rest of CLOS should not
be too difficult.

• Many example interactions illustrate the material in the text, so that
students will know what to expect when they experiment on their own.

• Each exercise is labeled as either review, instruction, drill, utility, or
part of one of the extended programming projects, so that an intelligent
choice can be made when only selected exercises are to be done.

• Solutions to about one-third of the programming exercises are included
in Appendix A.

• An instructor’s manual that contains solutions to all the programming
exercises is available from the publisher.

Preface xix

• Appendix B is a Common Lisp reference manual. It includes all Com-
mon Lisp functions, macros, and special forms introduced in the text.
They are shown at a level understandable to a student who finishes this
text. Quite a few of the functions, macros, and special forms listed in
Appendix B have additional features and options. For those, the reader
is referred to CLtL-2.

Acknowledgments

I appreciate the comments and suggestions made on drafts of this book by
Susan Anderson-Freed, Kulbir Arora, James Hightower, Robin Hill, Jack
Hodges, Bharat Jayaraman, Gerald Maguire, Will Mathys, Gregory Rawl-
ins, Guy Steele, and Jeffrey Ullman. Any remaining problems are my own
fault. I am grateful to: João Martins and Ernesto Morgado for many dis-
cussions of abstract data types, which form the basis for the organization of
Appendix B; Ruth E. Davis for providing me with her LATEX style file; the
folks at Computer Science Press/ W. H. Freeman and Company, including
Bill Gruener, Nola Hague, Tina Hastings, Diana Siemens, and Carol Loomis
for their help and encouragement; and, above all, to my wife Caren, for her
constant support and understanding.

TO THE READER

The purpose of this book is to help you learn the Common Lisp dialect of
the programming language Lisp (LISt Processing language) by experimenting
with it via an interactive computer terminal. The recommended method is
to read a chapter or two, sit down at a terminal and try the examples and
exercises of those chapters, leave the terminal and go on to the next chapters,
and so on.

It would be best for you to complete every exercise, but for your guidance,
they are coded (r), (i), (d), (u), (p1), or (p2), meaning,

(r) A review of the material in the text. The purpose of such an exercise is
for you to see for yourself that Common Lisp behaves as described in
the text.

(i) An instructional exercise. It provides information not otherwise men-
tioned in the text. These are the most important exercises to do.

(d) A drill exercise. It provides additional practice with Common Lisp.

(u) A utility exercise. It asks you to prepare or to modify programs you will
be expected to use in later work. These are also extremely important
to do, because later exercises will depend on them.

(p1) A project 1 exercise. These exercises are distributed throughout the
book, and, by doing all of them, you will write a small rule-based system,
and use that to implement a miniversion of the program Eliza, that
carries on conversations with humans. Unless you are going to skip this
project entirely, do all its exercises.

xxi

xxii TO THE READER

(p2) A project 2 exercise. These exercises are distributed throughout the
book, and by doing all of them, you will write an interactive desk cal-
culator program. Unless you are going to skip this project entirely, do
all its exercises.

Answers to about one-third of the programming exercises appear in Ap-
pendix A. Appendix B contains a Common Lisp manual. Since this manual
is intended to help you even after you have finished this book, some of the
material in it will not be understandable until you are well into the book.
If you find the manual too advanced for you, use the index to find where
the material was discussed in the text. Appendix B.2 lists implementation-
dependent material which you should fill out during the course of your study
for easy reference later on.

Unlike other programming languages, Lisp does not operate on a series of
imperative statements—“do this, then do this, and so on,” but rather on ex-
pressions, called symbolic expressions or S-expressions, which Lisp evaluates.
More accurately, a session with Common Lisp involves an interaction with
a Lisp listener, during which the following five steps are repeated until you
decide to stop

1. You type an S-expression to the Lisp listener.

2. The Lisp listener interprets your S-expression as the printed represen-
tation of a Common Lisp object.

3. That object is evaluated. Its value is also a Common Lisp object.

4. The Lisp listener chooses a printed representation for the value object.

5. That printed representation is printed for you to read.

Common Lisp is object-oriented in the sense that objects, rather than expres-
sions, are evaluated, and unlike many other programming languages, objects,
rather than expressions, have types. Common Lisp is not object-oriented in
the sense of object-oriented programming, but it does have an object-oriented
programming facility, which is the subject of Part IV of this book.

The evaluation of some objects cause new functions to be defined which can
be used later in the programming session. This is how complicated programs
are written in Lisp. Programs, in the form of sequences of S-expressions, can
be saved in files for later use. You will learn how to do this in the course of
working through this book.

The basic instructional style of this book is for you to learn by experi-
menting. Don’t worry about making mistakes. That’s part of learning. If
one of your inputs causes an error, try to figure out what it was, do it again
correctly, and then continue.

COMMON LISP
An Interactive Approach

Part I

THE BASICS

CHAPTER 1

GETTING STARTED

Your goal for this chapter is to learn how to access your system’s Common
Lisp and how to exit from it. Although this may not seem like much, it is
obviously very important. It is also very dependent on the particular system
you are using, so you will have to get much of the information from a manual,
a teacher, a consultant, or a friend.

The first problem is to log onto your computer system. This might involve
simply turning on your microcomputer or it might require typing in some
accounting information.

If you are using a Lisp machine or have “booted” a microcomputer with
a Common Lisp disk, you may already be talking to Common Lisp. Other-
wise, you will have to access it. This might require just typing lisp, cl, some
abbreviation of the implementation of Common Lisp that you are using, or
it might require first retrieving the Common Lisp system.

Once you have started your Common Lisp, you are ready to interact with
it. We say that you are about to interact with the top-level Lisp listener, or
simply the top level of Lisp.

Most Common Lisp listeners will tell you they are waiting for input by
printing a prompt. This can be a greater-than symbol, a question mark, an
arrow, a colon, or something else. You are now supposed to type something
to Lisp called a symbolic expression, or S-expression. We will get into great
detail about what an S-expression is, but for now, let’s use small numerals,
like 3.

When you type an S-expression to Lisp (remember to end each entry
by pressing the carriage return key), Lisp will perform the following

3

4 I: THE BASICS

sequence of actions:

1. It will read your S-expression.

2. It will interpret your S-expression as the printed representation of a
form—a Lisp object intended to be evaluated.

3. It will evaluate the form as some other (or perhaps as the same) value
object.

4. It will choose a printed representation for the value object.

5. It will print the printed representation it has chosen.

Because of this sequence, Lisp listeners are also called read-eval-print loops
(combining steps 1 and 2 into the read step, and steps 4 and 5 into the print
step).

After printing each value, the Lisp listener will again print a prompt (or
not, if it’s one of those Common Lisps that don’t use prompts) and will wait
for your next S-expression. That’s all there is to using Lisp: you type the
printed representation of a form; Lisp evaluates it and types back a printed
representation of the value of the form.

For our first example, the S-expression we will enter is the arabic numeral
3. Notice that this is only one of the printed representations we use in our
daily lives for the number 3. Another common printed representation we use
for 3 is the roman numeral III. I mention this not because Common Lisp
uses roman numerals, but to point out that the distinction between printed
representations of objects and the objects themselves is one you are already
familiar with. Anyway, Lisp interprets the numeral 3 as representing the
number 3 and evaluates that form (that is, the numeric object 3). In Lisp,
numbers evaluate to themselves, so 3 evaluates to 3. Lisp then must choose
a printed representation for 3 and, in fact, chooses the arabic numeral 3 and
prints that.

In this text, I will show a sample Lisp interaction as:

> 3
3

The > is what I will use for the Lisp prompt, and it is followed by an S-
expression as you would type it to Lisp. The line after that shows Lisp’s
response.

In some Lisps, when you make a mistake, or when you make certain mis-
takes, Lisp will enter a debugger (sometimes called a break loop or break
package). The debugger is a Lisp listener, just like the top level, except that
some special commands are available to obtain information relevant to figur-
ing out your error. We will look at this in more detail in later chapters. If

1: Getting Started 5

you make a mistake while in the debugger, you may (depending on the imple-
mentation of Common Lisp you are using) get into another debugger. The
first debugger will remember the information relevant to your first mistake;
the second one will have information relevant to your second mistake. This
can go on for many levels of nested debuggers.

The debugger is recognizable because it uses a different prompt. For exam-
ple, Kyoto Common Lisp’s (KCL’s) top-level prompt is >, while its debugger
prompt is >>. To get out of KCL’s debugger, type :q. If you are several levels
down in debuggers, you may have to do this repeatedly, or your Common
Lisp might have a single command to jump all the way back to the top level.
For example Lucid’s Common Lisp uses :a to return to the top-level listener
from any debugger level.

If the Lisp you’re using has a debugger, you can often force your way into
it by typing the appropriate interrupt key. This may be the break, rub,
or del key, or it may be some control character such as ctrl-c (this means
typing the c key while holding down the ctrl key). Sometimes, for the
interrupt key to work, it must be struck before any other character is typed
on the line, and sometimes it must be typed more than once in succession.

Having returned to the top-level listener, you may want to terminate your
Lisp session. The way to get out of Common Lisp varies with different
implementations. To leave KCL, type (bye) followed by a carriage return.
(It is important to type the parentheses as shown.) Other implementations
may use (exit), (system:exit), ctrl-d, or something else.

Finally, you need to know how to log off your computing system. As
was the case for the other system-dependent information discussed in this
chapter, you must find out how to do that from your manual, your teacher,
a consultant, or a friend.

Exercises

1.1 (i) What is the procedure for getting into your Lisp? Find out and
write it here:

1.2 (i) What is the procedure for getting out of your Lisp? Find out and
write it here:

6 I: THE BASICS

1.3 (i) Get into Lisp. What is the top-level listener’s prompt? Write it
here: .

1.4 (d) Get out of Lisp and log off.

1.5 (r) Get back into Lisp. Enter the numeral 3 and a carriage return.
Note that Lisp types 3 back and issues a prompt. Try 5 this time. Log
off.

1.6 (i) Get back into Lisp. Does it have an interrupt key? If so, write it
here: and get into the debugger.

1.7 (i) What is your debugger’s first-level prompt? Write it here: .

1.8 (i) How do you get out of the debugger? Write it here:

Do it! Are you back to the top level?

1.9 (i) Try going at least three levels deep in the debugger. Does the prompt
change again? Write the answer here:

1.10 (r) While in the debugger, try typing a small numeral to Lisp. Lisp
should echo it.

1.11 (i) How do you go back up a single level in the debugger? Write it here:

Do it.

1.12 (i) How do you go all the way to the top-level listener from deep in the
debuggers? Write the answer here:

Do it.

1.13 (d) Exit Lisp and log off your system.

1.14 (u) Copy all the answers you wrote here to the appropriate blanks in
Appendix B.2.

CHAPTER 2

NUMBERS

In Chapter 1, you learned how to get into and out of your Common Lisp top-
level listener and how to recognize the top-level and debugger-level prompts,
and you had your first experience with the Lisp read-eval-print loop. You
should recall that the read-eval-print loop operates in the following way: you
type an S-expression, which is the printed representation of some form (some
Lisp object we intend to have Lisp evaluate); Lisp reads your S-expression
and creates the form you (presumably) intended; Lisp then evaluates the
form—its value is some other object; finally, Lisp prints the latter object,
using some printed representation it chooses. Notice that Lisp is an object-
oriented language in the sense that it evaluates objects, not expressions. Lisp
is also object-oriented in that, unlike many programming languages, Lisp has
typed objects rather than typed variables.1

In this chapter, you will get more experience interacting with the Lisp
listener and distinguishing between objects and their printed representations.
We will again use numbers, since you are already familiar with them.

Numbers are one type of Common Lisp object, and there are several
subtypes, including integers and floating-point numbers.

Integers are used for whole numbers, such as 5 or 127. Common Lisp
recognizes arabic numerals as printed representations of integers, except that
they cannot contain commas or blanks. Thus, we write 54325 rather than
54,325. For a negative integer, just precede the digits by a minus sign; for

1It should be noted that these two senses of “object-oriented” are not exactly
the sense in the expression “object-oriented programming,” which is the subject of
Part IV of this book.

7

8 I: THE BASICS

example, -5 or -4326. A positive integer may be preceded by a plus sign; +24
is recognized as the same object as 24. An integer may end with a decimal
point as long as there are no digits after it: 12. is read as an integer; 12.0
is not.

Integers may be as large as you need, even several hundred or thousand
digits long. The size is limited only by the size of the computer you are using.

The value of an integer is itself. So if you enter a numeral, such as −123,
Lisp will type it right back at you:

> -123
-123

Floating-point numbers are used for numbers with fractional parts such as
3.14156. A floating-point number looks like an integer except that it must
include a decimal point with at least one digit after it; 12.0 is read as a
floating-point number.

Floating-point numbers may also be written in a computerese form of
scientific notation. This is done by following the digits of the number with
an exponent marker, an optional sign, and some more digits. If the exponent
marker is present, the decimal point is not necessary.

The exponent marker can be e, s, f, d, or l or any of these letters in
uppercase. The exponent marker s or S indicates a short-float number,
f or F indicates a single-float number, d or D indicates a double-float
number, and l or L indicates a long-float number. These are various sub-
types of floating-point numbers. These different types of numbers vary in the
minimum number of bits used to represent them. The more bits used, the
more digits will be represented. The number of bits used is implementation-
dependent, but, in general, short-float numbers will use fewer bits than
single-float numbers, single-float will use fewer than double-float,
and double-float will use fewer than long-float. (Some implementations
of Common Lisp don’t even distinguish these four different types.)

The exponent marker e (or equivalently, E) will be interpreted as the same
as s, f, d, or l depending on a certain parameter setting of your Common
Lisp. We will use e as the standard exponent marker. So in Common Lisp
you may write as 0.34e-5 the number you would write in scientific notation
as 0.34 × 10−5.

The value of a floating-point number is itself, but Common Lisp may
choose a different printed representation than you use.

We can summarize the type hierarchy of Common Lisp numbers that
we have discussed so far, using the official names, in the following table.
Note that the indentations are intended to show that integer and float are
subtypes of number, and that short-float, single-float, double-float,
and long-float are subtypes of float. There is no significance to the order
of types that are at the same level.

2: Numbers 9

number
integer
float

short-float
single-float
double-float
long-float

Exercises

From now on, unless otherwise mentioned, all exercises assume you are typing
to the top-level Common Lisp listener.

2.1 (r) Type some small positive and negative integers, one per line. Note
that Lisp types them back. Try typing some positive integers with the
optional plus sign.

2.2 (i) Type some small floating-point numbers to Lisp. Note the repre-
sentation Lisp uses in typing them back to you.

2.3 (i) Try the numbers -.6, .43e5, and 0.0000521347. Type them one
per line and see how your Lisp responds.

2.4 (i) Try the numbers 1.0e-5, 1.0s-5, 1.0f-5, 1.0d-5, and
1.0l-5. What exponent markers does your Common Lisp use in the
numbers it prints? Write them here: .

2.5 (i) To see the difference between varying amounts of precision, try the
number 1.1s-5, 1.12s-5, and so on, adding digits to the right until you
exceed the ability of short-float numbers to represent them. Then
try the last number using the next higher precision, and keep adding
digits until that precision becomes inadequate, and so on.

2.6 (i) Try typing the numbers 3. and 3.0. Are they interpreted as integers
or as floating-point numbers?

2.7 (i) Does Lisp distinguish the numeral 0.0 from the numeral 0? Find
out by typing 0, -0, .0, 0.0, and -0.0 and comparing what Lisp types
back to you.

2.8 (i) Type a number preceded by some blanks. Note that Lisp ignores
initial blanks (white space) on a line.

2.9 (i) Type the two numbers 54 and 325 on one line with one or more
blanks between them. How does your Lisp respond? Some Lisps expect
only one S-expression per line; others will read more than one.

10 I: THE BASICS

2.10 (i) Type 54,325 to Lisp. How does it treat a numeral with a comma
in it?

2.11 (i) Enter the characters 123.4.5e6e-7. If it causes an error message,
write it here: .

2.12 (i) Type the characters 123;45 on a line. The semicolon is the comment
character. Lisp ignores it and everything after it on the line. If your
Lisp doesn’t respond after you typed the carriage return, try using the
interrupt key and returning to the top level. Then try typing ;45 on
one line and 123 on the next line.

2.13 (i) What is your character erase (backspace) character? Some possibil-
ities are bs, #, ←, ctrl-h (remember, that’s pressing the h key while
holding down the ctrl key), del, rub, and rubout. Write yours
here: .
Enter some numbers, using the backspace character to change your
mind. Note that it works.

2.14 (i) What is your line erase character? Some possibilities are brk, esc,
clear input, @, and ctrl-u. Write it here: . Enter some numbers,
using the line erase character to change your mind. Note how it works.

2.15 (r) Try entering an integer that is so long that it wraps around to the
second line. That is, the digits should appear on your screen on two
lines before you type a carriage return.

CHAPTER 3

LISTS

In Chapter 2, we discussed one type of Lisp object—numbers and subtypes
of numbers. In this chapter, we will begin discussing the most important type
of Lisp object, the list—what Lisp was named for. We will start discussing
the evaluation of lists in the next chapter. In this chapter, we will discuss the
printed representation of lists; that is, list S-expressions. We can define the
list S-expression as follows:

A left parenthesis followed by zero or more S-expressions followed
by a right parenthesis is a list S-expression.

According to this definition, (1 2 3.3 4) is a list S-expression, since 1, 2,
3.3, and 4 are S-expressions (denoting numbers). Also () is a list S-expression,
since it is a left parenthesis followed by zero S-expressions followed by a right
parenthesis. We refer to the (zero or more)
S-expressions in a list as elements or members of the list. So the first list
has four members, which are 1, 2, 3.3, and 4, and the second list has no
members (we call it the empty list). Since a list S-expression is itself an S-
expression, a list can be a member of a list.1 For example, (1 (2 3.3) 4) is
a list with three members, the second of which is the list (2 3.3). Notice that
the parentheses are part of the list; they are not merely grouping brackets as
they are in algebra. For example, if you remove the inner set of parenthe-
ses from the three-member list (1 (2 3.3) 4), you get the four-member list

1In this chapter, we will say “list” instead of “list S-expression” and say “list
object” when we mean the object.

11

12 I: THE BASICS

(1 2 3.3 4), and the list ((1 2 3.3 4)) is different yet, because it is a list
with one member, which is a list. Even () and (()) are different lists. The
first is the empty list; the second is a list with one member, which happens
to be the empty list.

If we typed a list to a Lisp listener, it would read it, construct the list
object it represents, and try to evaluate the list object. As I said above,
we will discuss the evaluation of list objects in the next chapter, so at this
stage, we are only interested in having Lisp print the list back to us. You can
prevent Lisp from evaluating an object by quoting the S-expression you enter.
You quote an S-expression by typing a quote mark in front of it. The quote
mark is the single quote mark on your keyboard that you might use for an
apostrophe. In this text, it will look like this: ’. Notice that there is another
single quote mark on your keyboard that points in the other direction. It is
called a backquote and will look in this text like this: ‘. If you type a quoted
list to Lisp, it will type the list back to you:

> ’(1 2 3.3 4)
(1 2 3.3 4)
> ’(1 (2 3.3) 4)
(1 (2 3.3) 4)
> ’((1 2 3.3 4))
((1 2 3.3 4))

Actually, the Lisp listener is still going through its normal read-eval-print
cycle, but when it reads a quoted S-expression, it constructs a quoted object,
and the value of a quoted object is the object itself, so then it prints the
list you typed in, using a printed representation it chooses. We will discuss
quoted objects more completely in Chapter 9. The printed representation
Lisp chooses for a list is not always the same as the one you use. For example,
Lisp has its own peculiar way of printing the empty list:

> ’()
NIL
> ’(())
(NIL)

We will discuss NIL more in Chapter 6. For now, just think of it as a possible
printed representation of the empty list.

The other way that Lisp’s printed representation of lists may differ from
yours is in matters of spacing and line breaking. Anywhere within a list
that one blank makes sense, you may have several blanks and even a carriage
return, and blanks are optional on either side of a parenthesis. You may
type spacing to please your own eye; Lisp may choose different spacing. For
example:

3: Lists 13

> ’(1(2 3.3)
(4)5)

(1 (2 3.3) (4) 5)

It is important to remember that a list is one S-expression regardless of
how many members it has. So the Lisp listener will read one top-level list at a
time. That is, after printing a value or upon initial entry to Lisp, Lisp prints
a prompt. You now type a left parenthesis, perhaps preceded by a quote
mark. You are typing a top-level list until the number of right parentheses
you type equals the number of left parentheses you have typed. Your list may
extend over several lines. Some Lisps will type a prompt at the beginning of
each line. Others won’t. When you finally type a right parenthesis to match
that first left parenthesis and then type a carriage return, Lisp will type the
value of the list object whose printed representation you entered.

Miscounting parentheses can lead to a common, but very frustrating, ex-
perience. You have typed in too few right parentheses. You think you have
entered an entire list and hit the carriage return. Lisp, however, just types a
prompt (or doesn’t even do that), and you both just sit there staring at each
other. Lisp is waiting for you to finish your list. If you are too confused to
finish it properly, it often works to just type several right parentheses—more
than enough to do the job—and then the final carriage return. Some Lisps
don’t require you to type a carriage return after a list. They recognize when
one is finished, automatically go to the next line, and output the value. These
Lisps avoid the confusion discussed in this paragraph. Many modern Lisp
development environments also make typing lists easier by blinking the cursor
on the matching left parenthesis just after you type each right parenthesis. If
you are using such an environment, it pays to watch that cursor.

An easy way to count parentheses is to count 1 at the first left parenthesis,
increase the count by 1 at each subsequent left parenthesis, and decrease the
count by 1 at each subsequent right parenthesis. When you reach zero again,
you are at the right parenthesis that matches the first left parenthesis and
your list is finished. The list below has the appropriate numbers written
below each parenthesis.

(1 () (2 (3) 4) 5 (((6)) 7))
1 2 1 2 3 2 1 2 3 4 3 2 1 0

Our hierarchy of Common Lisp types is now

list
number

integer
float

short-float
single-float

14 I: THE BASICS

double-float
long-float

Exercises

3.1 (r) Try all the interactions of this chapter for yourself.

3.2 (i) Enter some short unquoted lists and note the error messages. We
will discuss these errors later.

3.3 (i) Type a line containing just a right parenthesis. How does Lisp
respond?

3.4 (i) Enter a quoted list with too many right parentheses. How does your
Lisp respond?

3.5 (i) Enter some quoted lists that, by including carriage returns, extend
over several lines. Carefully observe how Lisp behaves until the list is
finally finished. Note the format in which Lisp prints lists.

3.6 (i) Start entering a list that, by including carriage returns, extends over
several lines, but stop before finishing the list. If you now decide that
you don’t want to enter this list after all, how do you erase it? Your
character erase key may erase even into previous lines. Try that. If you
are using some kind of Lisp Machine, you may have a clear input
key. Press it. Otherwise, try pressing the interrupt character to get
into the debugger (see Exercise 1.6); then get back to top-level Lisp
(see Exercise 1.8). Write your delete-current-list sequence here: .
You should now be able to delete the last character, delete the current
line, or delete the current list.

3.7 (d) Experiment with lists with different spacing. Try spaces between
the quote mark and the first open parenthesis. In each case, compare
Lisp’s printed representation with yours.

CHAPTER 4

ARITHMETIC

In the last chapter, you learned how to type a list S-expression to the Lisp
listener. In this chapter, you will start evaluating list objects. As you will
see, evaluating list objects is the basic operation involved in writing, testing,
and using Lisp. So this topic is very important.

The value of a list is the value obtained by applying the function
named by the first member of the list to the values of the other
members of the list.

We will start exploring the evaluation of lists in the realm of arithmetic.
Here, the functions we will be using are the usual arithmetic operators: addi-
tion, subtraction, multiplication, and division. The symbols that name these
functions are, as usual, +, -, *, and /, respectively. So, for example, if we
asked Lisp to evaluate the list (+ 12 4), Lisp would type back the value 16.

> (+ 12 4)
16

This format, in which arithmetic expressions are written as a list, with
the name of the function (operator) as the first member and expressions that
provide the arguments as the other members of the list, is called Cambridge
Prefix notation: “Cambridge” because Lisp was developed by John McCarthy
and the Artificial Intelligence Group at M.I.T. in Cambridge, Massachusetts;
and “Prefix” because the function (operator) is written before its arguments

15

16 I: THE BASICS

(operands).1 You may compare it with standard arithmetic “infix” notation,
in which the operator is written between its operands (such as 12+4), and with
standard mathematical notation, in which functions are written before their
operands but outside the parentheses [such as f(x, y), which in Cambridge
Prefix notation would be (f x y)].

Evaluating expressions involving subtraction, multiplication, and division
works just like evaluating expressions involving addition:

> (- 12 4)
8
> (* 12 4)
48
> (/ 12 4)
3

One major advantage of Cambridge Prefix notation is that the notation is
consistent regardless of how many arguments the function is given. In normal
notation, to use the “unary” minus sign, you write it in front of its argument:
−12. The “binary” minus sign is written between its two arguments: 12− 4.
If you want to subtract a series of numbers, each from the previous result,
you write the minus sign between every two numbers: 12 − 4 − 2 − 5. In
Cambridge Prefix notation, you always write the operator once, before all
the operands, separate all with blanks, and enclose all in parentheses:

> (- 12)
-12
> (- 12 4)
8
> (- 12 4 2 5)
1

All four arithmetic operators work the same way and can take one or more
arguments.

If all the arguments to any of these arithmetic functions are integers, the
result will be an integer. If any argument is a floating-point number, the
result will be a floating-point number. There is one exception. If you try
to divide an integer by an integer that does not go into it evenly, the result
will be a third kind of number called a ratio. A ratio is written as two digit

1The term “Cambridge Prefix” was patterned after the term “Polish Prefix,”
where the function is written before its arguments, but parentheses are not needed
because the number of arguments of each function is fixed and known. The term
“Polish Prefix” is used because the notation was invented by the Polish logician Jan
�Lukasiewicz. He also invented Polish Postfix notation, which is like Polish Prefix,
but the function follows its arguments. Polish Postfix notation is used by some
pocket calculators today.

4: Arithmetic 17

strings separated by / and optionally preceded by a + or -. There must be
no space within the ratio. Common Lisp always prints a ratio in simplest
terms, but you needn’t. Compare:

> (/ 12 4)
3
> (/ 12.0 8)
1.5
> (/ 12 8)
3/2
> 12/8
3/2

Expressions may be nested within expressions in the usual way. In math-
ematical notation, we might write f(x, g(y)); whereas in Cambridge Prefix
notation, we’d write (f x (g y)). So the Lisp version of 5× (3 + 4) is (* 5
(+ 3 4)), and the Lisp version of 5 × 3 + 4 is (+ (* 5 3) 4). (Notice that
we don’t have to discuss operator precedence, since every operator, with its
arguments, must be enclosed in its own list.) One of the roots of the equation

2x2 + 7x + 5 = 0

is
−7 +

√
72 − 4 × 2 × 5
2 × 2

and is written in Lisp as

(/ (+ -7.0 (sqrt (- (expt 7 2) (* 4 2 5)))) (* 2 2))

Notice that (sqrt number) returns the square root of the number and that
(expt number1 number2) is number1 raised to the power of number2.

Numbers may be checked for equality with the function =. Just as with
the arithmetic operators, = may be given zero, one, two, or more arguments,
although the usual number is two. The arguments may also be any types
of numbers; = cares only about numerical equality. = returns True if all its
arguments are equal and False if any two of them are not equal. Peculiarly,
Lisp uses T as its printed representation of True and NIL as its printed rep-
resentation of False. (Yes, Lisp’s printed representation of False is the same
as its printed representation of the empty list—strange, often confusing, but
true.) Some examples of the use of = are:

> (= 50 50.0 100/2)
T
> (= 50 50.0001)
NIL
> (= (+ 2 2) (* 2 2) (expt 2 2))
T

18 I: THE BASICS

You will not be writing Lisp programs until Part II. In Part I, you will
be using Lisp in a kind of “desk calculator” mode in which you type forms
to the Lisp listener and it immediately types back their values. This is not
just a temporary technique, however. All Lisp programmers use this “desk
calculator” mode all the time to develop and test their programs. You will,
too.

Exercises

4.1 (r) Check Lisp’s responses to the inputs:

(+ 12 4) (- 12 4)
(* 12 4) (/ 12 4)
(- 12) (- 12 4)
(- 12 4 2 5) (= 50 50.0 100/2)
(= 50 50.0001) (= (+ 2 2) (* 2 2) (expt 2 2))

4.2 (i) Ask Lisp to evaluate (notafunction 5 3). What is the error mes-
sage when you try to evaluate a list that doesn’t begin with the name
of a function? Write it here:

4.3 (d) See what happens if you mistakenly leave out the blank between the
operator and the first argument by typing (+2 3) and (*2 3) to Lisp.

4.4 (d) See what happens if you mistakenly leave out the operator alto-
gether, by typing (2 3) to Lisp.

4.5 (d) Try the mistake (2 + 3).

4.6 (d) See what happens if you mistakenly leave out the parentheses, by
typing

> + 2 3

or

> 2 + 3

to Lisp.

4.7 (i) Try the operators +, *, and / with one and with more than two
arguments.

4: Arithmetic 19

4.8 (i) Try each of the four arithmetic operators with no arguments. For
example, + applied to no arguments is written (+). You should get two
numeric answers, and two error messages. What is Common Lisp’s
error message when you give a function too few arguments? Write it
here:

4.9 (i) Try = with zero and with one argument.

4.10 (i) Ask Lisp to evaluate (sqrt 4 9). What is the error message when
you give a function too many arguments? Write it here:

4.11 (r) Check Lisp’s responses to (/ 12 4), (/ 12.0 8), (/ 12 8), and
12/8.

4.12 (d) Try the other operators with mixtures of integers and
floating-point numbers.

4.13 (d) Try doing arithmetic with a mixture of integers, floating-point num-
bers, and ratios.

4.14 (r) Check that Lisp’s response to (* 5 (+ 3 4)) is 35 and that its
response to (+ (* 5 3) 4) is 19.

4.15 (r) Check that Lisp’s response to

(/ (+ -7.0 (sqrt (- (expt 7 2) (* 4 2 5)))) (* 2 2))

is -1.0.

4.16 (d) Have Lisp calculate the other root of the equation

2x2 + 7x + 5 = 0

namely:
−7 −√

72 − 4 × 2 × 5
2 × 2

Make sure the answer is -2.5.

4.17 (d) Using Lisp, find the values of
a. (25 + 30) × 15/2
b. 6 × 3.1416
c. The average of 5, 6.7, −23.2, 75, and 100.3

CHAPTER 5

STRINGS AND
CHARACTERS

The kinds of Common Lisp objects we have discussed so far are numbers
(integers, floating-point numbers, and ratios) and lists. We are building up
to a discussion of the object type symbol. Along with lists, symbols are the
most important kind of objects in Lisp because they are used for program
variables, for function names (as was already briefly mentioned), and as data
to allow Lisp programs to manipulate symbolic data as well as numeric data.
Just as there can be several different printed representations of a given num-
ber (for example, 5e2, 500.0, and 5000e-1), there can be different printed
representations of a given symbol, and novice Lisp users are often confused
by this. To avoid such confusion, we will have to distinguish carefully between
a symbol and the symbol’s name. A symbol’s name is an instance of another
Common Lisp object type, called a string. So before pursuing the discussion
of symbols and symbol names, we will have to discuss strings, and since a
string is made up of characters (another type of Common Lisp object), we
will have to discuss characters also.

A string is a vector (single-dimensional array) of characters and is both
read and printed by Lisp as a sequence of its characters surrounded by dou-
ble quotes. For example, "This is a string." is a string. Like numbers,
strings evaluate to themselves, so if you type a string to the Lisp listener, it
will print it back to you:

> "This is a string."
"This is a string."

21

22 I: THE BASICS

A string can be as long as you like and can contain strange characters such
as the carriage return character.

Just as Common Lisp has functions (such as +, -, *, /, =, sqrt, and expt)
that operate on numbers, Common Lisp also has functions that operate on
objects of other types. For example, the function length will tell you the
number of characters in a string:

> (length "This is a string.")
17

and string= returns True if its two argument strings are made up of the
same characters and False if they have different characters.

> (string= "This is a string." "This is a string.")
T
> (string= "This is a string." "This is another string.")
NIL
> (string= "This is a string." "this is a string.")
NIL

To have Lisp print a particular character in the string, use the form
(char string index), where you type a string in place of string and an inte-
ger less than the length of the string in place of index. The index of the first
character in the string is 0.

> (char "This is a string." 0)
#\T
> (char "This is a string." 1)
#\h
> (char "This is a string." 15)
#\g
> (char "This is a string." 16)
#\.

Notice that a character is printed with a prefix of #\. This is also the way
you type a character to Lisp.

> ’#\T
#\T

Just like numbers and strings, characters evaluate to themselves, so

> #\T
#\T
> #\.
#\.

5: Strings and Characters 23

Just as = tests for equality of numbers and string= tests for equality of
strings, char= tests for equality of characters. Like =, but unlike string=,
char= takes any number of arguments. For example:

> (char= (char "This is a string." 2)
(char "This is a string." 5)
#\i)

T
> (char= #\t (char "This is a string." 0))
NIL

Our hierarchy of Common Lisp types is now:

character
number

integer
ratio
float

short-float
single-float
double-float
long-float

list
string

Exercises

5.1 (r) Check Lisp’s value of the string "This is a string.".

5.2 (i) Look at Lisp’s value of the string "a|b#c;d". Notice that the char-
acters |, #, and ; are treated like ordinary characters in a string.

5.3 (i) Enter a string consisting of the alphabet repeated several times, so
that the string is longer than a line of your terminal. Don’t type a
carriage return until after you have typed the closing " of the string.
Notice that Lisp prints the string back to you without omitting any
characters.

5.4 (i) Enter the string "ab", but type a carriage return between the
a and the b. Notice that Lisp also prints the carriage return.

5.5 (r) Check that (length "This is a string.") evaluates to 17.

5.6 (i) What does Lisp tell you is the length of the string "a|b#c;d"?
Notice that each character printed between the quote marks is counted
exactly once.

24 I: THE BASICS

5.7 (i) What is the length of the string you typed in for Exercise 5.4? The
carriage return is counted as a single character.

5.8 (r) Check Lisp’s value of
(string= "This is a string." "This is a string.")
(string= "This is a string."

"This is another string.")
and
(string= "This is a string." "this is a string.")

5.9 See what happens if you try to give string= more than two arguments.

5.10 (r) Check that the characters at index positions 0, 1, 15, and 16 of
"This is a string." are #\T, #\h, #\g, and #\., respectively.

5.11 (r) Check that a character evaluates to itself by entering the characters
#\T, #\h, #\g, and #\., one per line. Also try the characters #\|, #\#,
and #\;.

5.12 (i) What is the character at index position 4 of

"This is a string."

Lisp uses #\SPACE as the printed name of the space character, because
using the actual space would be too confusing.

5.13 (r) Check Lisp’s value of

(char= (char "This is a string." 2)
(char "This is a string." 5)
#\i)

and

(char= #\t (char "This is a string." 0))

5.14 (i) Check that #\SPACE is Lisp’s way of printing the space character;
evaluate the space character by typing an actual space after the #\.
That is, type on one line a #, followed by a \, followed by an actual
space, followed by a carriage return.

5.15 (i) Check that (char= #\space #\SPACE) evaluates to True.
Perhaps this is because Lisp does not distinguish between lower- and
uppercase letters; perhaps Lisp converts the lowercase letters you type
outside of quoted strings into uppercase letters. We will pursue this
more in Chapter 6.

5: Strings and Characters 25

5.16 (i) What is the character at index position 1 of the string you typed
in for Exercise 5.4? #\NEWLINE is Lisp’s name for what we have been
calling the carriage return character.

5.17 (i) How could you get the character #\" into the middle of a string? Just
typing it there won’t work because it would be considered the ending
quote of the string. Lisp has an escape character for this purpose, and
it is the backslash character \ (sometimes called “bash”). Try this by
evaluating the string "a\"b".

5.18 (i) Convince yourself that when Lisp printed "a\"b" to you in the
previous exercise, it was also using \ as an escape character and not
as a character actually in the string. Do this by asking Lisp for the
length of the string "a\"b" and by using char to ask Lisp to show you
each character in the string.

5.19 (d) How would you actually get the character \ into a string?

5.20 (d) To help convince yourself that the backslash used as an escape
character within a string is not really part of the string, ask Lisp to
evaluate (string= "a\"b" "\a\"\b").

5.21 (i) See what your Lisp does if you ask it to evaluate

(string= "a" #\a)
and

(char= "a" #\a)

5.22 (i) See what your Lisp does if you ask it to evaluate
(= 5 "five").

CHAPTER 6

SYMBOLS

We are finally ready to discuss symbols. Symbols are another Common Lisp
data type, like integers, floating-point numbers, ratios, characters, strings,
and lists.

The subject of the possible printed representations of symbols is somewhat
complicated, and we will discuss it in this and the next chapter. To begin
with, however, we will use sequences of letters and the characters * and - to
form the printed representations of symbols. For example, some symbols are
written as frank, pi, and *read-base*.

A symbol may stand for something that we wish to store information
about. For example, the symbol frank may represent some person. Symbols
are also used as the variables of the Lisp programming language. Treated as
a variable, a symbol may have a value, in which case we say it is bound to that
value, or it may not have a value, in which case we say that it is unbound.
We will see later how to bind a value to a symbol, but some symbols are
already bound to values when we start Lisp. Some symbols that already
have values are pi, *read-base*, *print-base*, and *package*. The value
of pi is what you would expect—the value of the mathematical constant π.
The values of *read-base* and *print-base* tell Lisp what base you will
be using to enter numbers and what base you want Lisp to use to print
numbers, respectively. We will discuss the significance of *package* in the
next chapter. To see the value of a symbol, just type it as a form to the
top-level Lisp listener:

> pi
3.1415926535897936d0

27

28 I: THE BASICS

> *read-base*
10
> *print-base*
10
> *package*
#<Package USER 4515050>

The most important symbols in LISP are T and NIL. We have already
seen that Lisp uses them as the printed representation of True and False,
respectively, and that NIL is also used as Lisp’s printed representation of the
empty list. Because of their importance, they are bound to themselves as
values:

> T
T
> NIL
NIL

Since we often use symbols to stand for people, places, and objects of all
sorts, we often want to talk to Lisp about a symbol rather than about the
symbol’s value. If we want to do this, we quote it:

> ’frank
FRANK
> ’pi
PI

Lisp responded with the symbol spelled in uppercase letters because Com-
mon Lisp converts every lowercase letter you type into uppercase in the pro-
cess of interpreting your S-expression as the printed representation of some
object. You could type in uppercase instead, but it’s more trouble. For ex-
ample, it’s easier to type T and NIL as t and nil and the results are the same:

6: Symbols 29

> t
T
> nil
NIL

We will see how to make use of lowercase letters soon. There are two im-
portant points here. One is that the value of a quoted symbol is the symbol
itself. This is the same rule we saw with lists: The value of a quoted object is
the object itself.

The other important point is that frank and FRANK are just two different
printed representations of the same symbol. Common Lisp allows you to
use lowercase letters just because it’s easier for you to type lowercase letters
than uppercase letters. We can check this with the function eql, which is
Common Lisp’s equality test for symbols:

> (eql ’frank ’FRANK)
T
> (eql ’frank ’pi)
NIL
> (eql ’pi ’PI)
T

Actually, eql is more general than an equality test for symbols. It takes
any two Lisp objects as arguments and returns True if they are identical
(references to the same locations in computer memory), the same symbols, the
same characters, or numerically equal numbers of the same numeric subtype;
otherwise eql returns False.1 For example:

> (eql #\a (char "This is a string." 8))
T
> (eql 50 50.0)
NIL
> (eql 5.0e1 50.0)
T

Returning to our discussion of symbols, every symbol has a print name, or
simply a name, which is a string of the characters used to print the symbol.
The name of the symbol frank is the string "FRANK". You can see the name
of a symbol by using the function symbol-name:

1Readers with some previous exposure to Lisp may have expected the eq func-
tion. In Common Lisp, eq tests implementation equality. Even (eq 50 50) might
be False if the two integers are stored in different memory locations. In Common
Lisp, eql serves the purpose that eq served in earlier versions of Lisp. Therefore
eq shall not be mentioned again until Chapter 30.

30 I: THE BASICS

> (symbol-name ’frank)
"FRANK"
> (symbol-name ’pi)
"PI"

A symbol name can be as long as you want, and it can contain any char-
acter in it. However, if you want to get an unusual character into a symbol
name, you must either precede it with the escape character \ or enclose it
between a pair of escape brackets ||. The normal characters, which can be
included in a symbol name without using an escape character, are the 26 up-
percase letters, the 10 digits, and the characters !, $, %, &, *, +, -, ., /, <, =,
>, ?, @, [,], ^, _, {, }, and ~. As we have seen, uppercase letters are special
because you can type them in lowercase. If you want to get a lowercase letter
into a symbol name, you must precede it with an escape character or enclose
it in escape brackets:

> ’f\rank
|FrANK|
> ’f|rank|
|Frank|
> ’|frank|
|frank|

Although these symbols differ only in the cases of some of the letters of
their names, they are, in fact, different symbols. We can see this by using
eql:

> (eql ’f\rank ’f|rank|)
NIL
> (eql ’f|rank| ’|frank|)
NIL
> (eql ’f\rank ’|frank|)
NIL

In general, Lisp’s printed representation of an object is a character se-
quence that you could use to type the object to Lisp. That way it is easier to
have Lisp read a file that it has written. That is why, in all three examples
above, Lisp used the escape brackets. To convince yourself that the escape
brackets are not part of the name itself, you could do

> (symbol-name ’|frank|)
"frank"
> (string= (symbol-name ’f|rank|) "Frank")
T
> (eql ’f\rank ’|FrANK|)
T

6: Symbols 31

We have now seen Common Lisp objects that are integers,
floating-point numbers, ratios, strings, characters, lists, and symbols. These
are called different types or data types. You may be familiar with program-
ming languages that have typed variables. Common Lisp has typed objects.
The Common Lisp function type-of will tell you, for any object, what its
type is. For example:

> (type-of ’12)
FIXNUM
> (type-of ’123456789)
BIGNUM
> (type-of ’53e21)
SINGLE-FLOAT
> (type-of pi)
DOUBLE-FLOAT
> (type-of ’pi)
SYMBOL

FIXNUM and BIGNUM are two subtypes of integer that differ according to storage
requirements. Notice carefully the difference between the type of the value of
pi and that of pi itself.

Symbols are also used as names of functions. The symbols we have already
seen used as names of functions are +, -, *, /, =, length, char, char=,
string=, eql, symbol-name, and type-of. (Do you remember what each of
them does?) For example:

> (type-of ’+)
SYMBOL
> (type-of ’symbol-name)
SYMBOL

Finally, note that not only might we use a symbol to stand for something
(we might use frank to stand for some person), but Lisp itself uses symbols
to stand for things. For example, Common Lisp uses symbols to stand for
the names of data types:

> (type-of "frank")
STRING
> (type-of (type-of "frank"))
SYMBOL

Our hierarchy of Common Lisp types is now

character
number

integer

32 I: THE BASICS

fixnum
bignum

ratio
float

short-float
single-float
double-float
long-float

symbol
list
string

Exercises

6.1 (r) Check Lisp’s value of pi, *read-base*, *print-base* and *package*.
Your Common Lisp’s printed representation of the value of *package*
might be somewhat different from mine.

6.2 (r) Check Lisp’s value of NIL and T. Try typing them both in uppercase
and in lowercase.

6.3 (r) Enter the quoted symbols ’frank and ’pi. Notice that a quoted
symbol evaluates to the symbol itself.

6.4 (i) Enter the unquoted symbol frank. Write the error message you get
here: .
That means that this symbol is not bound to a value.

6.5 (r) Check Lisp’s value of
(symbol-name ’frank)
and
(symbol-name ’pi).

6.6 (r) Check Lisp’s value of
(eql ’frank ’FRANK)
(eql ’frank ’pi)
and
(eql ’pi ’PI)

6.7 (r) Check Lisp’s value of
(eql #\a (char "This is a string." 8))
(eql 50 50.0)
and
(eql 5.0e1 50.0)

6: Symbols 33

6.8 (i) Check your Lisp’s value of (eql "string" "string"). This is
implementation-dependent.

6.9 (i) See what Lisp does if you ask it to evaluate (eql "a" #\a). eql
should report that two objects of different types are not the same.

6.10 (r) Check what Lisp prints when you enter ’f\rank, ’f|rank|, and
’|frank|.

6.11 (r) Check that eql considers no two of ’f\rank, ’f|rank|, and ’|frank|
to be the same.

6.12 (r) Check Lisp’s value of
(symbol-name ’|frank|)
(string= (symbol-name ’f|rank|) "Frank")
and
(eql ’f\rank ’|FrANK|)

6.13 (d) Try typing in the characters ’abc;de. If necessary, review Exer-
cise 2.12.

6.14 (d) Type a quoted symbol whose print name contains the character #\;.

6.15 (r) Check Lisp’s values of
(type-of ’12)
(type-of ’123456789)
(type-of ’53e21)
(type-of pi)
and
(type-of ’pi)

6.16 (r) Check Lisp’s values of
(type-of ’+)
(type-of ’symbol-name)
and
(type-of "frank")

6.17 (i) See what Lisp considers the type of 10/3 and #\t.

6.18 (i) Check Lisp’s value of (type-of ’(1 2 3)). We will discuss this in
Chapter 8.

6.19 (r) Check Lisp’s value of (type-of (type-of "frank")). Make sure
you understand this.

6.20 (i) What does Lisp consider to be the type of the value of
package? We will discuss packages in the next chapter.

34 I: THE BASICS

6.21 (i) Can a symbol’s name begin with a digit? Evaluate
(type-of ’53g21), and compare that with the value of
(type-of ’53e21).

6.22 (i) Compare the types of ’12 and ’\12. The escape character causes
Lisp to treat the next character as an alphabetic character.

6.23 (i) The character #\# can appear as a normal character in the middle
of a symbol name, but not at the beginning. Convince yourself of this
by typing appropriate entries to Lisp.

6.24 (i) See if the character #\: can be a normal character at the beginning
of a symbol name or in the middle of a symbol name. Try it in both
positions with the escape character before it.

6.25 (d) See if you can create a symbol whose name contains the
#\NEWLINE character.

6.26 (d) See if you can create a symbol whose name contains the #\SPACE
character.

CHAPTER 7

PACKAGES

Common Lisp was designed to enable teams of programmers to
cooperate on building a large system. To help keep them from getting in
each other’s way, Common Lisp was designed so that each programmer could
keep his or her own set of symbols. Each set of symbols is kept in what Com-
mon Lisp calls a package. So that one programmer can make use of some of
what another programmer does, the symbols a programmer intends others to
use can be exported from its original package (called its home package) and
imported into another package.

In the last chapter, you should have learned not to get confused by the
printed representations of a symbol. A symbol can have several printed rep-
resentations and still be the same symbol, with the same symbol name. In
this chapter, you will see that several different symbols can have the same
symbol name—as long as they are in different packages. So you need to be
able to distinguish between a symbol, the symbol’s name, the symbol’s home
package, and the symbol’s printed representations.

Whenever you are interacting with Common Lisp, you are “in” some
particular package. You can tell which one you’re in by checking the value of
the symbol *package* (see Chapter 6):

35

36 I: THE BASICS

> *package*
#<Package USER 4515050>

This indicates that I am in the user package. When you start running Com-
mon Lisp, you should also be in the user package, although the printed
representation your Lisp uses may be slightly different from the one mine
uses.1

The Lisp function describe is useful for finding out various things about
Lisp objects. Among other things, it can tell us the home package of different
symbols:

> (describe ’frank)
Symbol FRANK is in USER package.
It has no value, definition or properties

I will not bother showing some additional material printed by describe be-
cause it is not relevant to our current discussion. You will see it when you
experiment with describe on your own system.

Most symbols already defined in Common Lisp are in the lisp pack-
age,2 exported from that package, and automatically imported into the user
package. So, for example:

> (describe ’pi)
Symbol PI is in LISP package.
The value of PI is 3.1415926535897936d0

> (describe ’symbol-name)
Symbol SYMBOL-NAME is in LISP package.
The function definition of SYMBOL-NAME is
#<DTP-FUNCTION SYMBOL-NAME 11426436>: (SYMBOL)

> (describe ’describe)
Symbol DESCRIBE is in LISP package.
The function definition of DESCRIBE is
#<DTP-FUNCTION DESCRIBE 26354142>:
(SYS::ANYTHING &OPTIONAL SYS::NO-COMPLAINTS)

You can move to a different package with the Common Lisp function
in-package:

> (in-package ’lisp)
#<Package LISP 5114210>

1The new Common Lisp standard will use common-lisp-user instead of user.
Your Common Lisp may already be following the new standard.

2The new Common Lisp standard will use common-lisp instead of lisp.

7: Packages 37

> (describe ’frank)
Symbol FRANK is in LISP package.
It has no value, definition or properties

Notice that this time frank is in the lisp package. This is a different symbol
frank from the one in the user package. To refer to an internal symbol of one
package when you are in another package, you must use its qualified name,
which consists of the package name followed by two colons (::) followed by
the symbol name. For example, when in the lisp package, you can refer to
the frank that’s in the user package as user::frank:

> (describe ’user::frank)
Symbol USER::FRANK is in USER package.
It has no value, definition or properties

If we now return to the user package, we can refer to the frank in the
user package with its unqualified name, but we have to refer to the frank in
the lisp package with its qualified name:

> (in-package ’user)
#<Package USER 4515050>

> (describe ’frank)
Symbol FRANK is in USER package.
It has no value, definition or properties

> (describe ’lisp::frank)
Symbol LISP::FRANK is in LISP package.
It has no value, definition or properties

We can, however, use the qualified name for a symbol in the package we’re
in. It’s just redundant:

38 I: THE BASICS

> (describe ’user::frank)
Symbol FRANK is in USER package.
It has no value, definition or properties

> ’user::frank
FRANK

It is important to realize that the package name and the double colon are
not part of the symbol’s name and that internal symbols in different packages
may have the same names, but they are still different symbols:

> (symbol-name ’lisp::frank)
"FRANK"

> (symbol-name ’user::frank)
"FRANK"

> (string= (symbol-name ’lisp::frank)
(symbol-name ’user::frank))

T

>(eql ’lisp::frank ’user::frank)
NIL

A symbol may be exported from its home package with the Common Lisp
function export. It then becomes an external symbol. The qualified name
of an external symbol is the name of its home package, followed by a single
colon, followed by its symbol-name.

> (export ’frank)
T

> (in-package ’lisp)
#<Package LISP 5114210>

> (describe ’user:frank)
Symbol USER:FRANK is in USER package.
It has no value, definition or properties

An easy way to tell that a symbol in another package has been exported is to
type its qualified name to Lisp using the double colon and see what printed
representation Lisp uses:

> ’user::frank
USER:FRANK

7: Packages 39

Lisp’s use of the single colon indicates that frank is external in the user
package.

> (in-package ’user)
#<Package USER 4515050>

> ’lisp::frank
LISP::FRANK

This shows that frank is still internal in the lisp package.
The in-package function will create a new package if necessary:

> (in-package ’test)
#<Package TEST 16431743>

Some versions of Common Lisp print the package you are in just before the
prompt. Others print it in some information line at the bottom of the screen.

In the test package, lisp::frank and user:frank are available if we use
properly qualified names:

> ’lisp::frank
LISP::FRANK

> ’user:frank
USER:FRANK

> ’user::frank
USER:FRANK

> (describe ’lisp::frank)
Symbol LISP::FRANK is in LISP package.
It has no value, definition or properties

> (describe ’user:frank)
Symbol USER:FRANK is in USER package.
It has no value, definition or properties

If we want, we can import an external symbol from one package into
another with the function import. The benefit of so doing is that we can
then refer to it in the new package with an unqualified name even though its
home package is still the original one.

> (import ’user:frank)
T

> (describe ’frank)

40 I: THE BASICS

Symbol FRANK is in USER package.
It is also interned in package TEST

It has no value, definition or properties

> (eql ’frank ’user::frank)
T

> (eql ’frank ’lisp::frank)
NIL

> ’user::frank
FRANK

It is an error to import a symbol into a package that already has a symbol
with the same name. What you might do in such a case is examined in a few
of the exercises at the end of this chapter.

When a symbol is in a package in such a way that you can refer to it
with its unqualified name, it is said to be interned in the package. Normally,
when you are interacting with Common Lisp and you type a symbol to Lisp,
that symbol is automatically interned into the package you are in if it is not
already there. That is why you never had to worry about this before. That is
also one of the features that makes Lisp easy to use interactively—you don’t
have to declare symbols before using them; just using a symbol causes Lisp
to construct it.

As I said above, standard symbols in the lisp package are external and
are automatically imported into other packages (recall that we are still in the
test package):

> ’lisp::pi
PI

> ’lisp::describe
DESCRIBE

Packages are another Common Lisp data type.

> *package*
#<Package TEST 12356212>

> (type-of *package*)
PACKAGE

Every package has a name, which you may find with the function package-name.
A package’s name may be the same string as some symbol’s name. Neverthe-
less, packages and symbols are different, even if they have the same name:

7: Packages 41

> (package-name *package*)
"TEST"

> (string= (package-name *package*) (symbol-name ’test))
T

> (eql *package* ’test)
NIL

Although Common Lisp has some printed representation of packages to type
to us, as mentioned above, different Common Lisps may use different printed
representations, and there is no printed representation of a package that you
may type to the Common Lisp listener. That is why you use the package
name, but remember that a package and its name are different objects.

The function package-name maps a package to its name. If a package
already exists, the function find-package will map from a package name to
the package it names:

42 I: THE BASICS

> (find-package "TEST")
#<Package TEST 12356212>

> (find-package "LISP")
#<Package LISP 6460611>

Packages may be created by in-package, as we have seen. A pack-
age may also be created by the function make-package. The difference is
that in-package also changes the package we are in, whereas make-package
doesn’t.

> (make-package "foo")
#<Package foo 12760773>

> *package*
#<Package TEST 12356212>

> (in-package ’|foo|)
#<Package foo 12760773>

> *package*
#<Package foo 12760773>

The functions in-package, make-package, and find-package all take as
arguments either the string that is the package name or a symbol that has
the same name as the package. But when using both a symbol and its name,
remember that uppercase versus lowercase matters, even though Common
Lisp changes the case of letters you type in unless you escape them.

Our hierarchy of Common Lisp types is now as shown in Figure 7.1.

Exercises

7.1 (r) Try all the interactions of this chapter for yourself. Be sure to do
them all and in exactly the same order as they were presented in the
text. Return to the user package when you are through.

7.2 (i) Try describe on some objects other than symbols.

7.3 (i) In the user package, evaluate (describe ’bill). Then
export bill. Then change to the test package, and try
(describe ’bill) again. This bill will have test as its home pack-
age. Now try to import user:bill into the test package. Some Com-
mon Lisps will give you an error warning and a chance to unintern
test::bill and replace it with user:bill. Other Common Lisps will
just give you an error.

7: Packages 43

character
number

integer
fixnum
bignum

ratio
float

short-float
single-float
double-float
long-float

symbol
list
string
package

Figure 7.1 The Common Lisp type hierarchy as of this chapter.

7.4 (i) In the test package, do (describe ’pi). You should find that pi is
in the lisp package. Now evaluate (shadow ’pi) and (describe ’pi)
again. You should now find that pi is in the test package. How would
you now get Lisp to describe the pi in the lisp package?

7.5 (i) Export test::pi. Change into the foo package. Do
(describe ’pi). You should find that pi is in the lisp package. Now
do (shadowing-import ’test:pi), and (describe ’pi) again. Now
pi should be the one whose home package is test.

CHAPTER 8

BASIC LIST PROCESSING

In Chapter 3, we introduced the list S-expression and discussed how lists are
typed to the Lisp listener and how it prints them to us. Since then, you have
had a lot of practice in having Lisp evaluate lists.1 In this chapter, we will
start to discuss the use of lists as data objects—that is, list processing—what
Lisp was named for.

The basic function for creating lists is cons:

(cons object list) Takes two arguments. The first can be any Lisp object.
The second must be a list. Returns a list just like its second argu-
ment, but with the first argument inserted as a new first member. For
example:

> (cons ’a ’(b c))
(A B C)
> (cons 2 (cons 4 (cons 6 ’(8))))
(2 4 6 8)

Notice that, just as with other functions we have seen, the argument forms are
evaluated. The value of the first argument form becomes the first member of
the new list and the value of the second argument form provides the remaining
members.

The name “cons” comes from “construct,” since it is the basic list con-
structor. Every Lisp list can be constructed from the empty list and cons.
For example:

1From now on, I will say “list” when I mean a list object, not a list S-expression.

45

46 I: THE BASICS

> (cons ’c ’())
(C)
> (cons ’b (cons ’c ’()))
(B C)
> (cons ’a (cons ’b (cons ’c ’())))
(A B C)

Notice that I used ’() to represent the empty list, even though () and nil
would be equivalent. This is a matter of good style. It clearly shows that I
meant the argument form to evaluate to the empty list, not the symbol nil
or the value False and that I did not mean to type a form that called some
other function but accidently left something out.

The function cons is so basic that we can use it to provide a constructive
definition of Lisp lists:

1. nil is a list.

2. If o is any Lisp object and l is a list, then (cons o l) is a list.

3. Nothing else is a list.

Compare this definition to the one on page 11. That one defined a list by its
printed representation. This one defines a list as a data object by the way it
is constructed.

The function cons constructs a list from an arbitrary object and a smaller
list. We can recover those two arguments with the functions first and rest.2

(first list) Takes a list and returns its first member. If the argument list
is (), returns NIL.

(rest list) Takes a list and returns a list just like it but omitting the first
member. If the argument list is (), returns NIL.

For example:

> (first ’(1 2 3))
1
> (rest ’(1 2 3))
(2 3)
> (first (cons ’a ’(b c)))
A
> (rest (cons ’a ’(b c)))

2Those with some previous experience with Lisp may have expected a discussion
of car and cdr here. I think that, with the inclusion of first and rest as standard
Common Lisp functions, it is finally time to retire car and cdr, except when doing
destructive list manipulation on cons cells, which we won’t do until Chapter 30.

8: Basic List Processing 47

(B C)
> (first ’())
NIL
> (rest ’())
NIL

The relationship among cons, first, and rest may be expressed as the
Lisp identities:

• (first (cons o l)) ≡ o

• (rest (cons o l)) ≡ l

• Unless l is (), (cons (first l) (rest l)) ≡ l

Here are some more examples:

> (first (rest ’(1 2 3)))
2
> (cons (first (rest ’(1 2 3))) (rest (rest ’(1 2 3))))
(2 3)
> (first ’((((())))))
(((NIL)))
> (first (first ’((A B) C)))
A
> (rest (first ’((A B) C)))
(B)
> (cons ’() ’(A B C))
(NIL A B C)

48 I: THE BASICS

> (cons ’(a b c) ’())
((A B C))
> (rest ’(a))
NIL
> (cons nil nil)
(NIL)

Just as string= tests for character-by-character equality of strings, the
function equal returns True if given two lists whose corresponding members
are equal (according to the appropriate equality function) and False if given
two lists of different lengths or if at least one pair of corresponding members
are not equal.

> (equal ’(a (b c) d) ’(a (b c) d))
T
> (equal ’(a (b c) d) ’(a b c d))
NIL
> (equal ’(a) ’((a)))
NIL
> (equal ’(a) (first ’((a))))
T

The function length, which we have already used to tell us the number of
characters in a string, can also tell us the number of members of a list:

> (length ’(a (b c) d))
3
> (length ’(a b c d))
4
> (length ’())
0
> (length ’(atom))
1
> (length ’(alpha beta gamma))
3
> (length ’(5 is a number "this is a string"))
5
> (length ’((a list within a list)))
1
> (length ’(()))
1
> (length ’((((())))))
1
> (length ’(()()()()()))
5

8: Basic List Processing 49

> (length ’(an (interesting ((list) structure))))
2

Finally, let us summarize what we know about the evaluation of lists:

• The first member of the list must be a symbol that names a function.

• The remaining members of the list are treated as argument forms and
are evaluated.3

• The value of the list is the value of the function applied to the values
of the argument forms.

Recall that by “form,” we mean any Common Lisp data object meant to be
evaluated. For instance, in (* pi (expt 7 2)), the area of a circle whose
radius is 7 units, the first argument form is a symbol and the second is a list
both of whose argument forms are numbers.

Exercises

8.1 (i) How does Lisp respond to giving cons a symbol instead of a list as
its second argument; for example, (cons ’a ’b)? This value is another
Lisp object called a dotted pair, which is not used much. For the time
being, if you see a dotted pair it will be because you have made a
mistake.

8.2 (i) Compare your Lisp’s response to (cons ’a (cons ’b ’c)) with its
response to (cons ’a (cons ’b ’())). The former, sometimes called
a dotted list, is not a true list because it was built on a symbol other
than nil. Again, for the time being, if you ever see a dotted list it will
be because you have made a mistake.

8.3 (r) Try all the interactions of this chapter for yourself.

8.4 (d) Using only the function cons, the quoted empty list ’(), strings,
numbers, and quoted symbols, type forms to the Lisp listener that
evaluate to each of the lists that appear in this chapter.

8.5 (i) Check Lisp’s value of (type-of ’(1 2 3)) and of
(type-of ’()). Common Lisp divides objects of type list into the
empty list and objects of type cons. Conses are all nonempty lists
(those constructed by the use of cons).

3The order in which the argument forms are evaluated can vary in different
implementations of Common Lisp.

50 I: THE BASICS

8.6 (i) While Common Lisp is reading a top-level form that you are typing,
the symbol * is bound to the last value Lisp typed back and the symbol
** is bound to the second to the last value. Therefore, you can try
applying a sequence of functions to the same argument without always
retyping the argument form by doing this sort of thing:

> ’(a b c)
(A B C)
> (first *)
A
> **
(A B C)
> (first (rest *))
B
> **
(A B C)
> (first (rest (rest *))))
C

Try this for yourself.

8.7 (d) Using the technique of Exercise 8.6 and the functions you learned
in this chapter, type forms that evaluate to each of the symbols in the
list (((a b) (c d) e) (f g) (h) i).

CHAPTER 9

THE SPECIAL FORM QUOTE

We have been using the quote mark, as in ’a or ’(1 2 3), since Chapter 3.
Actually, the quote mark is an abbreviation of a use of the Lisp function
quote, which is a different kind of function from those we have discussed so
far. quote is a special form. Special forms are special in that their argument
forms are given to them unevaluated and they control the evaluation of their
argument forms themselves. quote is rather simple. It returns its unevaluated
argument form as is—unevaluated.

(quote f) Returns the unevaluated form f unevaluated.

Note that the effect is just what you’re used to. For any S-expression s, the
value of (quote s) is the Lisp object represented by s.
(quote a) is exactly equivalent to ’a. ’(1 2 3) is exactly equivalent to
(quote (1 2 3)).

Exercises

9.1 (r) Enter ’a and (quote a). Note the equivalence.

9.2 (r) Enter ’(1 2 3) and (quote (1 2 3)). Note the equivalence.

9.3 (d) Enter (quote 5e2), ’5e2, and 5e2. Note that the value of quote
is not the S-expression you type for the argument as you type it, but
the Lisp object represented by that S-expression and it is typed back to
you in Common Lisp’s choice of printed representation.

51

52 I: THE BASICS

9.4 (d) Enter (quote ’(1 2 3)) and ’(quote (1 2 3)). What
does your Lisp type back?

9.5 (d) Enter
’(1 2 ’(a b) 3)
and
(quote (1 2 (quote (a b)) 3))

9.6 (d) Enter ’’a and (quote (quote a)). Did you predict what hap-
pened?

Part II

PROGRAMMING IN
PURE LISP

CHAPTER 10

DEFINING YOUR OWN
FUNCTIONS

Although there are quite a few functions provided by the Common Lisp
system (some say that there are too many), you will want to define your own.
Indeed, a Lisp program is nothing but a collection of functions written by
the Lisp programmer.

To define a function, you use the special form defun:

(defun fn varlist doc-string form)
fn must be a symbol.
varlist must be an empty list or a list of symbols.
doc-string must be a string.
form can be any Common Lisp form.
None of these are evaluated. defun returns fn, but its main use is that
it has the side effect of defining fn to be the name of a function whose
formal arguments are the symbols in varlist, whose definition is form,
and whose documentation string is doc-string.

In Lisp terminology, we call the formal arguments of a function lambda
variables. This has historical significance because of the influence of A.
Church’s Lambda Calculus in the design of Lisp. You may see the symbol
lambda as part of your Common Lisp’s printed representation of functions,
but we will not discuss this in too much detail.

Let’s consider an example:

> (defun list3 (o1 o2 o3)

55

56 II: PROGRAMMING IN PURE LISP

"Returns a list of its three arguments in order."
(cons o1 (cons o2 (cons o3 ’()))))

LIST3

This has the effect of defining the function list3, which takes three Lisp
objects as arguments and returns a list whose members are those objects.
After evaluating this defun, we can use list3 just as if it were a built-in
Lisp function:

> (list3 ’a (cons ’b ’()) ’c)
(A (B) C)

The documentation string provides documentation that can be retrieved from
the function name with the Common Lisp function
documentation:

> (documentation ’list3 ’function)
"Returns a list of its three arguments in order."

The choice of the symbols o1, o2, and o3 for the lambda variables of list3
is completely arbitrary. We could have chosen almost any three symbols, but
nil and t, in particular, would have been very bad choices.

The steps in the evaluation of a list were summarized on page 49. Now
that we have seen a programmer-defined function, we can give more details
(almost all Common Lisp functions are defined in Lisp, so this really does
apply to more than just programmer-defined functions).

When a function is called—that is, when Lisp is asked to evaluate a list—
the following happens:

1. Lisp checks that the first member of the list is a symbol that is the
name of a function.

2. The argument forms are evaluated (not necessarily left to right).

3. The values of the argument forms become the values of the correspond-
ing lambda variables. (We say that the variables are bound to the values
of the arguments.)

4. The form in the definition of the function is evaluated.

5. The lambda variables are unbound—returned to their previous states.

6. The value of the form in the definition becomes the value of the original
form.

Let us follow the evaluation of (list3 ’a (cons ’b ’()) ’c)
through the process:

10: Defining Your Own Functions 57

1. list3 is a symbol that is the name of a function.

2. ’a evaluates to A, (cons ’b ’()) to (B), and ’c to C.

3. o1 is bound to A, o2 to (B), and o3 to C.

4. (cons o1 (cons o2 (cons o3 ’()))) is evaluated. Note that the
symbols o1, o2, and o3 have values during this evaluation. The value
of this form is (A (B) C).

5. o1, o2, and o3 return to their previous values (possibly none).

6. (A (B) C) is returned as the value of

(list3 ’a (cons ’b ’()) ’c)

This is the first time that we have seen a symbol get a new value. The
primary method by which a symbol gets a value is to be bound as a lambda
variable. We should not use t or nil as lambda variables because we always
want them to have themselves as values.

For another example of a programmer-defined function, let’s define a func-
tion to interchange the two members of a two-member list:

> (defun switch (l)
"Given a two-member list, returns a list just like it,
but with the two members interchanged."

(list2 (second l) (first l)))
SWITCH

In this definition, I’ve used a function named list2 and one named second
even though I’ve never before said that such functions are available in Com-
mon Lisp. This doesn’t matter, because we can use an undefined function
in the definition of a function, as long as we define it before actually calling
it. The functions list2 and second are just so obviously clear and useful in
this context that it makes sense to define switch this way and worry about
defining list2 and second later. It turns out that second is already defined
in Common Lisp, but list2 isn’t; so let’s define it:

> (defun list2 (o1 o2)
"Returns a list of its two arguments in order."
(cons o1 (cons o2 ’())))

LIST2

We’ve now written a short program consisting of two functions, one of
which uses the other. We must test this program. One of the beauties of
Lisp is that we can test programs “bottom up.” That is, it’s a good idea to

58 II: PROGRAMMING IN PURE LISP

make sure that list2 works properly before testing switch, because if list2
doesn’t work, then surely switch won’t either. In most other programming
languages, it is easy to run a main program, but difficult to test a subprogram.
In Lisp, any function can be tested directly from top-level Lisp, and any form
that appears in a function definition may be evaluated directly by the top-
level listener, as long as you replace each lambda variable in it (or each form
that contains lambda variables) by sample values. So let’s test list2:

> (list2 (second ’(a b)) (first ’(a b)))
(B A)
> (list2 ’b ’a)
(B A)

Now we can test switch:

> (switch ’(a b))
(B A)

You could also do top-down testing, since the only effect of calling an un-
defined function is to put you into the debugger. Some debuggers will provide
an easy way to specify the value the function call would have returned, so
you can simulate the undefined function, and go on testing the other func-
tions. Other debuggers make this process a bit harder. In general, I advise
bottom-up testing.

Exercises

10.1 (r) Define the function list3 as given in this chapter, and test it on
several different groups of arguments.

10.2 (r) Check the values of o1, o2, and o3 both before and after a call to
list3. Notice that, even though they have values within list3, they
have no values either before or after.

10.3 (i) Define switch as given in this chapter and try it out before defin-
ing list2. The error occurs when Lisp tries to evaluate the form
(list2 (second l) (first l)). You should now make sure you know
how to find the value to which the lambda variable l is bound. The
method differs among implementations of Common Lisp. It may be
that the value of l was printed as part of the error message. (This is
the case on the Texas Instruments Explorer Lisp Machine.) Chances are
that you
cannot find out merely by typing l to the debugger listener, because of
various efficiencies used by Common Lisp implementations to store the
values of lambda variables. However, there should be something you can

10: Defining Your Own Functions 59

type to your Lisp to make it tell you. For example, if you are using a
Texas Instruments Explorer Lisp Machine, you can just read it in the er-
ror message or enter
(eh-arg 0). If you are using Kyoto Common Lisp, you enter :vv.
If it is not obvious, see if your Lisp has a help facility you can use in
the debugger. If so, you will probably be told there. As a last resort,
ask your instructor or a more experienced friend. After learning how to
find the value of the lambda arguments, write the method here and in
Appendix B.2:

.
Get out of the debugger and back to the top-level listener.

10.4 (r) Now define list2, test list2, and test switch again.

10.5 (i) You can observe Lisp evaluating a set of functions by using the trace
package. This consists of the two special forms trace and untrace.
(trace fn1 . . . fnk) turns on the tracing of functions fn1, . . . , fnk.
(untrace fn1 . . . fnk) turns them off. Evaluate (trace switch first
second list2) and (switch ’(a b)).
Note that when each function is called, its arguments are printed and
when it returns, its value is printed. Also note that each trace print is
labelled and/or indented so you can tell which value goes with which
call. Now evaluate

(untrace switch first second list2)

and (switch ’(a b)) again. The tracing has been turned off.

10.6 (i) Try giving switch argument lists with fewer than two members and
with more than two members. Make sure you understand why the values
are what they are. Peculiar results are acceptable when the argument
forms do not satisfy the conditions spelled out in the documentation
string, but we will see later how we can get Lisp to test these conditions
for us.

10.7 (d) Redefine list3 using list2 and cons.

10.8 (d) Define the function list1 to be a function that takes one argument
and returns a list with the value of that argument as its only member.

10.9 (d) Redefine list2 using list1 and cons.

10.10 (d) Test list3 while tracing list1, list2, and list3. Notice that
although you didn’t redefine list3, it now uses your new version of
list2.

60 II: PROGRAMMING IN PURE LISP

10.11 (d) Define the functions list4 through list10, each taking the obvious
number of arguments and returning a list of their values. Each definition
need be no longer than your current definition of list2. Use the tracing
facility to watch some of these in action.

10.12 (i) The Common Lisp function list takes an arbitrary number of
arguments and returns a list of all of them. Try this function with
various numbers of arguments.

10.13 (d) Redefine switch to use list, and test this version.

10.14 (d) Define the function (sqr n) to return the square of the number n.

10.15 (i) Common Lisp has the function third, which takes a list and returns
the third member of it. Try this out.

10.16 (d) Using first, second, third, and list, define the function (reverse3
l) to return the reverse of the three-member list, l. For example,
(reverse3 ’(a b c)) should evaluate to (C B A).

10.17 (i) You now know that Common Lisp has the functions first, second,
and third. How many functions in this sequence are defined?

CHAPTER 11

DEFINING FUNCTIONS IN
PACKAGES

Recall from Chapter 7 that packages are used to enable teams of
programmers to cooperate in building large Common Lisp systems. By us-
ing different packages, different programmers can use symbols with the same
names to name different functions. For example, programmers Bill and Sally
may each want to define a function named main-function. If Bill defines
all his functions in the bill package, and Sally defines all her functions in
the sally package, Bill can have a function with the fully qualified name of
bill::main-function,
Sally can have a function with the fully qualified name of
sally::main-function, and each can refer to his or her function within his or
her own package as simply main-function. If Bill
and Sally both export their main-function symbols, other programmers may
choose to import either bill:main-function or
sally:main-function and refer to that one as main-function.

Even if you will be the only person ever using the functions you define, you
should consider yourself to be a member of a team of programmers building
a large Common Lisp system; the other members of the team are the people
who wrote the implementation of Common Lisp that you are using. You may
not want to avoid using a certain symbol to name a function merely because a
symbol with the same name was used for one of the many predefined Common
Lisp functions, and if you do use that symbol, you do not want to redefine the
Common Lisp function for fear of changing Common Lisp. We will develop

61

62 II: PROGRAMMING IN PURE LISP

a particular programming style to make all this easy to do. In this chapter,
we will experiment with the style. In the next chapter, we will see how to
make it a habit.

First of all, make up a new package for defining your functions. Leave the
lisp package for predefined Common Lisp functions and the user package
for using your functions and the predefined functions.1 For now, let’s say you
will define your functions in the learn package. To define a function—say, a
function named fn—do the following:

1. Go into the learn package.

2. Using describe, see if fn is a symbol inherited from another package.

3. If it is, shadow it. (See Exercise 7.4.)

4. Use describe again to make sure that fn is now a symbol in the learn
package.

5. Define the fn function.

6. Test your fn function, using its unqualified name.

7. Check that the original fn function is still available, using its qualified
name.

8. If your fn function is to be used outside the learn package,
export your fn symbol.

In the following interaction, I will use this method to define
last as a function that returns the third member of a three-member list,
even though last is already used by Common Lisp to name a different func-
tion.

1Recall that the new standard calls these packages common-lisp and
common-lisp-user.

11: Defining Functions in Packages 63

> (in-package ’learn)
#<Package LEARN 52200250>

> (describe ’last)
Symbol LAST is in LISP package.
It is also interned in package GLOBAL

The function definition of LAST is
#<DTP-FUNCTION LAST 11424543>: (LIST)

> (shadow ’last)
T

> (describe ’last)
Symbol LAST is in LEARN package.
It has no value, definition or properties

> (defun last (l)
"Returns the third element of a list
that has three or more elements."

(third l))
LAST

> (last ’(a b c))
C

>(lisp:last ’(a b c))
(C)

> (export ’last)
T

> (in-package ’user)
#<Package USER 2150061>

> (learn:last ’(a b c d e))
C

> (lisp:last ’(a b c d e))
(E)

In this book, we will often define our own versions of predefined Common
Lisp functions as a way of studying what they do and how they do it. So we
will be using this technique often.

Some otherwise knowledgeable Lispers have gotten confused by a subtlety
in the use of packages when defining functions to compare symbols. Say we

64 II: PROGRAMMING IN PURE LISP

wish to define the function isqmark to recognize a question mark, and we
want to define it in our learn package:

> (in-package ’learn)
LEARN

> (describe ’isqmark)
Symbol ISQMARK is in LEARN package.
It has no value, definition or properties

> (defun isqmark (o)
"Returns True if O is the question mark symbol;
False otherwise."

(eql o ’?))
ISQMARK

> (isqmark ’?)
T

> (isqmark ’foo)
NIL

Now, say we want to export isqmark and use it in the user package:

> (export ’isqmark)
T

> (in-package ’user)
#<Package USER 2150061>

> (learn:isqmark ’?)
NIL

The problem is really simple. When we defined isqmark, we were in the
learn package, so we actually defined it to return True if the argument were
learn::?. Now that we are testing learn:isqmark in the user package,
we give it the argument user::?, which, of course is not the same symbol
as learn::?. A quick test will show that learn:isqmark is really working
correctly:

> (learn:isqmark ’learn::?)
T

What was probably intended for isqmark was not to recognize the symbol ?
since there can be many such symbols, but to recognize any symbol whose
print name is "?". If this was what was meant, it can be defined easily:

11: Defining Functions in Packages 65

> (in-package ’learn)
#<Package LEARN 4434433>

> (defun isqmark (s)
"Returns True if symbol S has the same name as ’?;
False otherwise."

(string= (symbol-name s) "?"))
ISQMARK

> (isqmark ’?)
T

> (in-package ’user)
#<Package USER 2150061>

> (learn:isqmark ’?)
T

Exercises

11.1 (r) Try the interaction of this chapter for yourself. Be sure to do every-
thing in exactly the same order as given here.

11.2 (d) Using the style of this chapter, define reverse to return the reverse
of a four-member list. That is, (reverse ’(a b c d))
should evaluate to (D C B A).

11.3 (d) Using the style of this chapter and the arithmetic functions you
learned in Chapter 4, define and test the function
(discrim a b c) to take three numbers a, b, and c and return

√
(b2 − 4ac).

11.4 (d) Also in the learn package, define and test the function
(quad-roots a b c), which returns a list of the two roots of the quadradic
equation ax2 + bx + c = 0:(

−b +
√

(b2 − 4ac)
2a

−b −√(b2 − 4ac)
2a

)

See Exercises 4.15 and 4.16 for a specific numerical example. Be sure
to use the discrim function where appropriate. Also make sure that
quad-roots returns a list of two elements rather than a dotted pair (see
Exercise 8.1).

CHAPTER 12

SAVING FOR ANOTHER DAY

So far, all your typing of Lisp S-expressions has been directly to the top-
level Lisp listener. If you defined a function and found that you had made
a mistake in it, you had to type it all in again. You also couldn’t define a
function and save it for another session. Both these problems are solved by
typing your function definitions into a file. You can use a normal text file,
editing it with the same editor that you use to type letters, papers, electronic
mail, or programs in any other programming language. However, there are
certain benefits if you use a special editor that is provided with your Common
Lisp or an Emacs editor such as GNU Emacs.1 I will describe these benefits
below.

Once you type a series of defun forms into some file, you should save it.
First, you must choose a name for the file; on many systems, you must also
choose an extension. The name can be any sequence of letters followed by
digits. (Most systems have more complicated naming rules and allow other
characters, but since these rules differ, let’s use this one.) Let’s say you
choose myfunctions as the name of your file. The extension, if required by
your system, will be the same for all Lisp source files. Let’s say the extension
is lisp. There will also be a separator character between the name and the
extension. This is often the period, so we’ll use that. That makes the name
of your file myfunctions.lisp. How you save a file depends on the editor
you use.

You can choose to load your source file into Common Lisp and use the

1Available from Free Software Foundation, 1000 Massachusetts Avenue, Cam-
bridge, MA 02138, U.S.A.

67

68 II: PROGRAMMING IN PURE LISP

functions defined there in “interpreted mode,” or you can compile the file,
load the compiled version into Common Lisp, and use the compiled versions
of the functions. Generally, compiled functions use less time and space to
execute, but can be more difficult to debug. Therefore, you should debug the
interpreted versions of your functions until you are quite confident of them.
Then you should compile the file and use the compiled versions for efficiency.
Often, you will find more bugs when you compile your file: the compiler
will give you error messages and warnings. You should not consider your
programming task complete until you have compiled your file without error
messages or warnings. The compiler will automatically give the compiled
version of your file the same name as your source file and a standard extension
that is different from the standard extension of Lisp source files.

Once you’ve saved your file, you can get the functions defined in it into
your Lisp by executing the form (load "myfunctions").

(load filename) Reads the file whose name is given by the string filename
and evaluates all the top-level forms in it. If filename contains an ex-
tension, that file will be read. Otherwise, load will either read the file
whose name is given by filename and whose extension is the standard
Lisp source extension, or it will read the file whose name is given by file-
name and whose extension is the standard Lisp compiled file extension,
whichever is more recent.

If your system organizes its files as a directory hierarchy, then there will
be a way for you to specify a “full path name” for your file that is system-
dependent.

Once you’ve loaded your function definitions, you can test them. If you
need to alter a function definition, return to the editor, edit your file, save
it again, load it again, and continue testing. Modern Lisp development en-
vironments, containing either a special Lisp editor or an Emacs-type editor,
make this process much easier.

If you have a modern Lisp development environment, you will be able to
do the following:

• Divide your screen into two windows, with an active editor open to your
Lisp source file running in one window and an active Common Lisp
listener running in the other.

• Move your cursor into the editor window and type and edit defun forms.

• Either copy a form from the editor window into the Common Lisp
window and evaluate it there, or directly evaluate a defun form in the
editor window so that the function is defined in the environment of the
Common Lisp window.

12: Saving for Another Day 69

• Move your cursor into the Common Lisp window and interact with
Common Lisp as you’ve become used to; in particular, to test the
functions defined in the file appearing in the editor window.

• Move your cursor into the editor window and save the file there. This
need be done only every half hour or so, or just before terminating your
session.

This process is the standard method experienced Lispers use to develop
their Lisp programs.

Certain standard styles are recommended when writing Common Lisp
source files:

defun forms: The first opening parenthesis of each defun form starts at
the first character position of a line. The other lines are indented to
show the structure of the form. Many editors will do the indenting
automatically or semiautomatically.

Comments: Comments are preceded by the comment character ; and ex-
tend to the rest of the line. There are three levels of comments:

• Comments outside any function definition start with ;;; and begin
in the first character position on the line.

• Comments inside a function definition, on their own line, start
with ;; and are indented with the rest of the definition.

• Comments on the same line as Lisp code begin with ; and are to
the right of the Lisp code.

Packaging details: Typically, each file will define functions in a separate
package. It is helpful if the beginning of each of your files looks like the
following:

;;; Establish the default package
;;; for symbols read in this file.
(in-package ’package-name)

;;; Shadow any symbols from automatically inherited
;;; packages that have the same names as symbols
;;; in this package.
(shadow ’(symbol1, symbol2 . . .))

;;; Shadow and import any symbols from other packages
;;; that are to be available as internal symbols
;;; in this package, but whose names conflict with
;;; symbols from automatically inherited packages.
(shadowing-import ’(symbol1, symbol2 . . .))

70 II: PROGRAMMING IN PURE LISP

;;; Specify any packages all of whose external
;;; symbols are to be accessible
;;; as internal symbols in this package.
(use-package ’(package-name1, package-name2 . . .))

;;; Explicitly import any other symbols that are to
;;; be accessible as internal symbols
;;; in this package.
(import ’(symbol1, symbol2 . . .))

;;; Export the symbols from this package that are to
;;; be accessible to other packages.
(export ’(symbol1, symbol2 . . .))

Under the new Common Lisp standard, you will be able to do this
using the function defpackage as follows:

(defpackage package-name

(:shadow symbol-names)

(:shadowing-import-from package-name symbol-names)
...
(:shadowing-import-from package-name symbol-names)

(:use package-names)

(:import-from package-name symbol-names)
...
(:import-from package-name symbol-names)

(:export symbol-names))

(in-package package-name)

Exercises

12.1 (p1) Begin a file named match. Set it up so that the functions in it will
be defined in the match package.

12.2 (p1) In your match file, define a function variablep that takes one
symbol as an argument and returns T if the first character of the sym-
bol’s name is #\? and returns NIL otherwise. If you have a modern
Lisp development environment, develop and test this function using
the two-window approach described in this chapter.

12: Saving for Another Day 71

12.3 (i) Compile your match file by evaluating the form
(compile-file "match").

12.4 (i) Load your match file using the load function. Can you tell that
you’ve loaded the compiled file instead of the source file? Test variablep
again.

12.5 (p2) Begin a file named calculator. Set it up so that the functions in
it will be defined in the calculator package.

12.6 (p2) In your calculator file, define the function combine-expr to
take an arithmetic operator, an operand, and a list representing an
arithmetic expression and return the expression with the operator and
operand applied to the first member of the expression. For example,
(combine-expr ’+ 3 ’(5 - 6 * 8)) should evaluate to ((3 + 5) -
6 * 8).

CHAPTER 13

PREDICATE FUNCTIONS

Predicate functions are functions that return either True, represented by Lisp
as T, or False, represented by Lisp as NIL. The predicate functions that we
have seen so far are the equality functions =, char=, string=, eql, and equal.

Another basic set of predicate functions are those that check the type of
their arguments. The names of these functions are typically formed from the
type followed by the letter p. Some type-checking functions for the types
we have seen so far are numberp, integerp, floatp, characterp, symbolp,
stringp, packagep, and listp. Each one returns T if its argument is of the
proper type and NIL if it isn’t. For example:

> (numberp 5)
T
> (integerp 5)
T
> (floatp 5)
NIL
> (characterp "a")
NIL
> (stringp "a")
T
> (symbolp ’\5)
T
> (packagep (in-package ’test))
T

73

74 II: PROGRAMMING IN PURE LISP

> (listp "a list?")
NIL
> (listp ’(a list?))
T

To compare numbers, Common Lisp has the standard set of numeric
predicates including < and >, as well as =, which we’ve seen before.

To combine the results of predicate functions, Common Lisp has the logic
operators and and or. Like the arithmetic operators +, -, *, and /, and and
or take an arbitrary number of arguments. However, and and or are special
in that they don’t always evaluate all their argument forms; they stop as soon
as they can definitely determine the final answer:

(and forms) Takes an arbitrary number of argument forms and evaluates
them one at a time left to right. As soon as one of them evaluates to
False, returns False. If none of them evaluates to False, returns True.

(or forms) Takes an arbitrary number of argument forms and evaluates
them one at a time left to right. As soon as one of them evaluates to
True, returns True. If none of them evaluates to True, returns False.

The fact that and and or stop as soon as they determine their answer is
not only useful for saving computer time; it is extremely useful if an error
would result from blindly evaluating all the arguments. For example:

• Dividing by zero would produce an error, but the form
(or (= y 0) (> (/ x y) 100)) will always return T if x/y is greater
than 100, even if y = 0.

• It is an error to apply length to any argument type we know about so
far except for strings and lists, but the form

(and (or (stringp x) (listp x)) (> (length x) 5))

will always return T or NIL without producing an error.

Even with the few predicates mentioned so far, we can define many addi-
tional functions, as should be clear from the complicated forms in the previous
examples. In particular, we can define other simple and useful functions such
as <=:

(defun <= (x y)
"Returns T if the first number is less than or equal to
the second number; NIL otherwise."

(or (< x y) (= x y)))

13: Predicate Functions 75

Notice that this function will cause an error if x or y is not a number. Com-
mon Lisp provides a way to test that lambda variables are bound to objects of
the proper type. For now, this is all right because the documentation clearly
says that the two arguments must be numbers, and we would not want to
confuse a value of NIL meaning that one of the arguments was not a number
with NIL meaning that the first number is greater than the second. Later we
will see how to produce our own error messages.

Exercises

13.1 (r) Try out numberp, integerp, floatp, characterp, symbolp, stringp,
packagep, and listp. Be sure to try each with a variety of arguments.
In particular, try out the interaction shown at the beginning of this
chapter. At the end of these tests, you should be in the test package.

13.2 (r) To impress upon yourself the fact that and evaluates its argu-
ment forms in order and only until a final answer is evident, evaluate
(and nil nil nil), (and nil t nil), (and foo nil),
(and nil foo), (and t foo), and (and foo t).

13.3 (r) To impress upon yourself the fact that or evaluates its argument
forms in order and only until a final answer is evident, evaluate (or t t t),
(or t nil t), (or foo t), (or t foo),
(or nil foo), and (or foo nil).

13.4 (d) Define a function that takes two numbers x and y and returns T if
x/y > 100, and NIL otherwise. Test your function. It should work even
if y = 0.

13.5 (d) Define a function that takes any Lisp object and returns T if the ob-
ject is a string containing more than five characters or a list containing
more than five members. Test your function with various arguments.

13.6 (d) Make sure you are in the test package. In that package, define the
function <= as shown in this chapter. Before you do, however, check
that lisp:<= is an inherited symbol in the test package, and shadow
it. Test your <= function. Compare it with lisp:<=. In particular,
try both on three or more arguments. We will discuss how to define
functions that take an arbitrary number of arguments in Chapter 20.

13.7 (i) NIL is such an important symbol that Lisp has a special predicate
to recognize it, called null. Try defining null in the test package;
remember to shadow lisp:null. The value of (null object) should
be T if object is NIL and NIL otherwise.

76 II: PROGRAMMING IN PURE LISP

13.8 (i) What is the value of (listp ’())? Of (listp ’nil)? Remember
that ’(), ’nil, (), and nil are all the same.

13.9 (i) Define a function (in the test package) that returns T if its argu-
ment is a nonempty list and NIL otherwise. Lisp calls this function
lisp:consp because it is the recognizer of just those objects that are
returned by calls to cons. Make sure that your function does not cause
an error regardless of the type of its argument.

13.10 (i) We discussed and and or in this chapter. Define not (in the test
package, shadowing lisp:not) to return T when its argument is NIL,
and NIL when its argument is T. Compare your not with your null.
Compare them with lisp:not. Try giving them an argument that is
neither T nor NIL.

13.11 (i) Common Lisp defines the function (atom object) to be
(not (consp object)). Test atom on various arguments. Does Com-
mon Lisp consider a string to be an atom?

13.12 (u) In this book, we will use the terms element or elemental object to
mean those Lisp objects that are testable with eql; that is, symbols,
characters, numbers, and packages.1 (Remember, eql will say that two
numbers are the same only if they have the same value and are of the
same type.) Define the function elementp to return True if its argument
is an element by this definition. Put this definition in a file named util,
in which all symbols will be in the util package. Make elementp an
external symbol in that package.

13.13 (p1) In your file match, which you began for Exercise 12.1, define the
function (match-element e1 e2) to return T if its two arguments are
eql or if either of them is a variable as recognized by match::variablep.

13.14 (p1) Can you use match-element to compare two numbers? Try (match-element
5 5) and (match-element 5 6). Modify
variablep so that it returns NIL if its argument is not a symbol, instead
of causing an error.

1The Common Lisp standard does not actually say that packages may be com-
pared with eql, but that seems to be the case.

CHAPTER 14

CONDITIONAL
EXPRESSIONS

One of the two most powerful features of any programming language is the
conditional—a way of saying, “if this then that else this other.” Common
Lisp has two principal conditionals, if and cond.

(if test then else) If test evaluates to True, returns the value of then; oth-
erwise, returns the value of else. For example:

> (if t ’yes ’no)
YES
> (if nil ’yes ’no)
NO

Just as and and or don’t evaluate all their arguments when they can
determine their answers early, if never evaluates all its arguments. It always
evaluates the test argument, but then either evaluates the then argument or
the else argument, whichever will determine the value of the if form. For
example, the form

(if (= y 0) 9999999999 (/ x y))

will return the value of x/y if y is not zero and the large number 9,999,999,999
if y = 0 and will not produce an error in either case.

A simple function that we can define using if is:

77

78 II: PROGRAMMING IN PURE LISP

(defun absval (n)
"Returns the absolute value of the argument,
which must be a number."

(if (< n 0) (- n) n))

The function if is very convenient if you want to choose one of two possible
computations based on a single test, but for multiple tests and more than two
choices, it gets cumbersome. For example, the function sign, which returns
-, 0, or + depending on the sign of its argument, can be written using if, but
it looks like this:

(defun sign (n)
"Takes a numeric argument
and returns - if it is negative,
0 if it is zero, and + if it is positive."

(if (< n 0)
’-
(if (= n 0) 0 ’+)))

For multiple tests and the choice of one of three or more computations,
Common Lisp has the function cond:

(cond (p1 e1) ... (pn en)) Evaluates the pi in order until one of them, pj

say, evaluates to True. Then returns the value of ej . If no pi evaluates
to True, returns NIL.

Each list (pi ei) is called a cond pair. The first member of a cond pair is
called its test, predicate, or condition. The second member of a cond pair is
called its expression or then part. Notice that

• At most one then part will be evaluated.

• No test will be evaluated after the first one that evaluates to True.

• The value of a cond form is always the value of the last form within it
that is evaluated.

Using cond, we can write a much clearer version of sign:

(defun sign (n)
"Takes a numeric argument
and returns - if it is negative,
0 if it is zero, and + if it is positive."

(cond ((< n 0) ’-)
((= n 0) 0)
((> n 0) ’+)))

14: Conditional Expressions 79

Notice that the double open parentheses at the beginning of each cond pair
are there because the first is the open parenthesis of the cond pair itself and
the second is the open parenthesis of the test form.

In most programming languages, if-then-else is a kind of statement.
In Lisp, cond (as well as if) is an expression, but it is like if-then-else.
Notice the similarity:

if b1 then s1 (cond (p1 e1)
else if b2 then s2 (p2 e2)
else if b3 then s3 (p3 e3)
else s4 (t e4))

Since t always evaluates to True, if p1, p2, and p3 evaluate to NIL, the value
of the cond form will be the value of e4, just as s4 will be executed if b1, b2,
and b3 are false.

Exercises

Do the exercises of this chapter in the package ch14.

14.1 (r) Check Lisp’s value of (if t ’yes ’no) and (if nil ’yes ’no).

14.2 (d) Using if, define a function that takes two numbers x and y, and
returns x/y if y �= 0, but returns the number 9,999,999,999 if y = 0. It
should not cause an error message in either case.

14.3 (r) Define absval as given in this chapter. Try it out with positive and
negative integers, with floating-point numbers, and with zero.

14.4 (r) Define and test sign using if.

14.5 (r) Define and test sign using cond.

14.6 (r) Define and test absval using cond.

14.7 (p1) In your match file, define the function dont-care to return True if
its argument is a question-mark symbol and NIL in any other case. You
might want to review the discussion of isqmark that starts on page 63.
Make sure that (dont-care 5) returns NIL rather than causing an
error.

14.8 (p1) Also in your match file, redefine (match-element e1 e2) so that
it returns True if the two arguments are eql or either argument is ?; if ei-
ther argument is a variable (as recognized by variablep), match-element
should return a two-member list whose first member is the variable and
whose second member is the other argument; otherwise, match-element
should return NIL. Some test examples are

80 II: PROGRAMMING IN PURE LISP

> (match-element ’a ’a)
T
> (match-element ’a ’?)
T
> (match-element ’? ’a)
T
> (match-element ’a ’?x)
(?X A)
> (match-element ’?x ’a)
(?X A)
> (match-element ’a ’b)
NIL

Save this new version of the file.

CHAPTER 15

RECURSION

At the beginning of Chapter 14, I said that one of the two most powerful
features of any programming language is the conditional. The other is a
method for repeating a computation over and over until some condition is
found. This gives us a lot of computation for a relatively small amount of
text. One such method is called recursion.

The definition of a Lisp function contains a form. The first element of the
form also names a function. Some arguments of the form may be embedded
forms, which also involve functions. We say that these functions are used
by the function being defined, or that the function being defined uses these
functions. For example, the function absval, defined on page 77, uses the
functions < and -. A function that uses itself is called a recursive function.
The use of recursive functions is called recursion.

Does it make sense to use a function in its own definition? Sure! Remember
what I said on pages 65–66: we can use an undefined function in the definition
of a function, as long as we define it before actually calling it. When we define
a function using itself, it is undefined only until we finish the definition. By
the time we call it, it is already defined. So everything is OK.

To continue the discussion, let’s look at an example. We will define addi-
tion using only the most primitive arithmetic functions. These are

(zerop n) Equivalent to (= n 0).

(1+ n) Equivalent to (+ n 1).

(1- n) Equivalent to (- n 1).

81

82 II: PROGRAMMING IN PURE LISP

Using only these three functions (plus defun and if), let’s define the function
sum to be a function that returns the sum of two nonnegative integers:

(defun sum (n1 n2)
"Returns the sum of two nonnegative integers."
(if (zerop n1) n2

(sum (1- n1) (1+ n2))))

Let’s trace the evaluation of (sum 3 5):

> (trace sum)
(SUM)

> (sum 3 5)
(1 ENTER SUM: 3 5)
(2 ENTER SUM: 2 6)
(3 ENTER SUM: 1 7)

(4 ENTER SUM: 0 8)
(4 EXIT SUM: 8)

(3 EXIT SUM: 8)
(2 EXIT SUM: 8)

(1 EXIT SUM: 8)
8

Evaluating (sum 3 5) causes the evaluation of (sum 2 6), which
causes the evaluation of (sum 1 7), which causes the evaluation of (sum
0 8), which finally returns 8. What if we evaluated (sum 10000 100)? The
rather short definition of sum would cause a lot of computation.

Each call of sum causes another, recursive, call of sum, until finally sum is
called with a first argument of 0. This causes a value to be returned, and
the computation terminates. When defining a recursive function, we must
make sure that, for every intended set of arguments, the computation will
eventually terminate. A recursive function whose evaluation never terminates
is called infinitely recursive. The process is called infinite recursion. If you
ask Lisp to evaluate a form that causes infinite recursion, Lisp will not return
to you until it encounters a time or space limit, or you get tired of waiting
and press the interrupt key. If you never press the interrupt key, your entire
Lisp session might be terminated by the operating system. Needless to say,
defining an infinitely recursive function is a mistake.

It is easy to avoid defining an infinitely recursive function if you observe
the standard pattern of recursive function definitions:

1. Every recursive function is of the form

(defun fn varlist (cond cond-pairs))

15: Recursion 83

or of the form

(defun fn varlist (if test then else))

2. The test of the first cond pair, or the test of the if, always tests for a
termination condition.

3. The then part of the first cond pair, or the then of the if, gives a result
that does not require a recursive call of the function being defined.

4. The then part of the last cond pair, or the else of the if, uses the
function being defined.

5. If cond is used, the cond pairs should be in increasing order of the
amount of work they might require. (I call this the “law of laziness.”)
Specifically, all cond pairs that use the function being defined should
come after all those that don’t.

6. Each recursive call of the function being defined must somehow bring
the computation closer to the termination condition.

Our definition of sum obviously satisfies points 1–5. To see that it also
satisfies point 6, note that the termination condition is that the first argument
is zero, that each time sum is called the first argument is decremented by 1,
and that since the first argument is both an integer and positive, repeatedly
subtracting 1 from it will eventually cause it to be zero.

Before calling a recursive function, you should be sure that it will termi-
nate. Usually this is fairly easy. Also, it is usually fairly easy to convince
yourself that the definition is correct. This involves checking termination,
checking that every case is considered, and checking that every case is cor-
rect. In our sum example, we already checked termination. A nonnegative
integer is either zero or it isn’t. The test is for whether n1 is zero, so the
only two possible cases are covered by the then part and the else part. The
first case is correct because for any n2, 0 + n2 = n2, and that is what the
then part returns. The second case is correct because if a nonnegative in-
teger is not zero, it must be positive, and for any positive n1 and any n2,
n1 + n2 = (n1 − 1) + (n2 + 1). Since all cases are handled correctly, our
definition of sum must be correct!

Although you now know that the sum function must be called with a
nonnegative integer as its first argument, it is possible that later, when sum
is incorporated into a large program, it will be called by accident with a
negative integer or a nonintegral number. That program will then get into an
infinite recursion, and it might not be obvious what has caused it. To protect
future users of such a function, Common Lisp allows assertions to be put
into function definitions between the documentation string and the form that
defines the body of the function. The form of an assertion is

84 II: PROGRAMMING IN PURE LISP

(assert assertion (variables-to-change) string mentioned-variables)

When the function within which this assert appears is called, the form as-
sertion is evaluated. If it evaluates to True, nothing happens and the function
call takes place normally. However, if assertion evaluates to False, an error is
forced; Lisp prints an error message and gives the user the choice of abort-
ing the computation or replacing the current values of the variables listed as
variables-to-change. If the user chooses the latter, the function is retried with
the new values. The error message printed contains the string. Anywhere in
the string that you want to mention the value of some variable, put ~S and
put the variable next in the group of mentioned-variables. For example, a
reasonable assertion for sum is provided in the definition:

15: Recursion 85

(defun sum (n1 n2)
"Returns the sum of two nonnegative integers."
(assert
(and (integerp n1) (>= n1 0))
(n1)
"N1 must be a nonnegative integer, instead it’s ~S."
n1)

(assert
(integerp n2)
(n2)
"N2 must be an integer, instead it’s ~S."
n2)

(if (zerop n1) n2
(sum (1- n1) (1+ n2))))

Exercises

Do the exercises of this chapter in the package ch15.

15.1 (r) Test the functions zerop, 1+, and 1-, each on several different ar-
guments.

15.2 (r) Define sum the way it is defined the first time in this chapter. Read
it carefully to make sure it is correct. Try it out with several examples.
Use at least one example for each case (here, zero and positive), and try
the examples in the same order as specified by the “law of laziness.”

15.3 (r) Trace your function sum and follow it closely while evaluating (sum
3 5). Turn off the trace.

15.4 (i) Try sum with some large integers as its first argument. Can you find
an integer so large that an error occurs? Write the error message here:

.
This is the same error you will get if a function you write is infinitely
recursive. The error occurs when a large number (but not an infinite
number) of recursive calls have been made.

15.5 (d) Lisp has probably put you into the debugger. Have Lisp tell you
the current values of n1 and n2, either by evaluating them or by the
technique you learned when doing Exercise 10.3. Their current values
are what they are bound to in the most recent call of sum.

15.6 (d) Get out of the debugger and back to the top-level listener. (See
Exercise 1.8.) Notice that the computation is aborted.

86 II: PROGRAMMING IN PURE LISP

15.7 (i) Sometimes a computation that we ask Lisp to do takes so long that
we suspect infinite recursion. In that case, interrupt Lisp, get into
the debugger, and examine where Lisp is and what is happening. In
many Lisps, you interrupt a computation by pressing the same interrupt
key as used to get into the debugger when the top-level Lisp listener is
waiting for input (see Chapter 1), but in some Lisps a different interrupt
key is used. Once Lisp is interrupted, it enters the same debugger
you saw in Chapter 1 and in Exercise 15.5 above. There are now two
different ways to leave the debugger: jump back to the top level without
completing the computation (“abort” the computation), as you did in
Exercise 15.6 above, or continue (or “resume”) the computation from
where it was interrupted. Look in your manual or ask your instructor
or a more experienced friend for the following information:

a. The key to interrupt a computation:

b. The way to continue a computation after an interruption:

c. The way to abort the computation after an interruption:

Also write these answers in Appendix B.2.

15.8 (i) Try sum with a first argument large enough that there is a noticeable
time lapse before the value is printed, but not so large that an error is
caused. Now do this again, but before Lisp prints the value, press the
interrupt key. Examine the current values of n1 and n2 to see how
far the computation has gone. Leave the debugger by continuing the
computation. Check that the answer is correct and has not been affected
by the interruption.

15.9 (i) Try the same sum example, and again press the interrupt key before
it finishes. Look at n1 and n2 again. Are you in the same place you
were before? (The chances of that are slim.) Now get back to the top
level without finishing the computation.

15.10 (i) Ask Lisp to evaluate (sum -4 3). You are now in an infinite recur-
sion. (What element of the argument that sum terminates has broken
down?) Press the interrupt key to see how far Lisp has gotten. Return
to Lisp’s top level without finishing the computation (especially since
you never would finish).

15.11 (i) Redefine sum, using the assertions shown in this chapter. Try (sum
-4 3) again. Resume the computation, using 2 as the new value of n1.
Try (sum -4 3) again, but this time abort the computation.

15.12 (i) Define a different version of sum as follows:

15: Recursion 87

(defun sum2 (n1 n2)
"Returns the sum of two nonnegative integers."
(assert
(and (integerp n1) (>= n1 0))
(n1)
"N1 must be a nonnegative integer, but it’s ~S."
n1)

(assert
(integerp n2)
(n2)
"N2 must be an integer, instead it’s ~S."
n2)

(if (zerop n1) n2
(1+ (sum2 (1- n1) n2))))

Does sum2 always give the same answer as sum for the same arguments?
Trace (sum2 3 5). Note carefully the difference between the ways sum
and sum2 compute the answer. sum accumulates its answer in one of its
arguments “on the way down” and does no computation “on the way
up.” sum2 seems to peel apart the problem on the way down, collects a
“stack” of computations, and then constructs the answer on the way up.
This latter approach is actually more common than the former among
recursive functions.

15.13 (d) Using only zerop, 1-, and either sum or sum2 (and, of course, defun,
cond or if, and assert), define product to be a recursive function that
multiplies two nonnegative integers. Make sure that your function works
correctly. Trace product and your summing function to see how they
work together.

15.14 (d) Using only zerop, 1-, and product (and, of course, . . .), define the
function (power n i) to return the value of ni assuming that n and i
are nonnegative integers. Remember, defining a new function includes
designing it, convincing yourself that it will work, typing it into the Lisp
file, carefully reading it for typing errors, possibly editing it, trying it
with an adequate set of examples, and repeating the last three steps
until it’s correct.

15.15 (i) Compile your sum function by evaluating (compile ’sum), and do
Exercise 15.4 again. Many Common Lisp compilers greatly improve
both the time and the space used by recursive functions.

CHAPTER 16

RECURSION ON LISTS,
PART 1—ANALYSIS

In the last chapter, we wrote recursive functions that operated on integers. We
saw that recursive functions must be written so that every recursive call brings
one of the arguments closer to the termination condition. With integers, the
termination condition is usually zerop, and either 1- (for positive integers)
or 1+ (for negative integers) will always bring an integer closer to zero.

In this chapter, we will start writing recursive functions that operate on
lists. The function rest will always return a list one member shorter than
its argument list. The shortest list is the empty list (), so the termination
condition for lists is null. For our first function, let’s write our own version
of length, which will be limited to lists, but, like lisp:length, will return
the number of members a list has.

First, we will go into the package ch16, and shadow lisp:length.

> (in-package ’ch16)
#<Package CH16 60277265>

> (shadow ’length)
T

Then, we will define ch16::length, using the same pattern we used in the
last chapter:

Termination condition: The length of () is 0.

89

90 II: PROGRAMMING IN PURE LISP

Recursive case: The length of a nonnull list is one more than the length
of the rest of the list.

So our definition is

(defun length (l)
"Returns the number of members in the argument list."
(assert (listp l) (l)

"L must be a list, instead it is ~S." l)
(if (null l) 0

(1+ (length (rest l)))))

Notice that this definition will always terminate and that every case (there
are only two) is correct, so the definition must be correct. Let’s try it:

> (length ’())
0
> (length ’(a b c d e))
5

There was only one then part and one else part in length because length
always recurses all the way to the null termination condition. Often there is
a second termination condition that can allow the recursive function to stop
before () is reached. This condition usually involves some property of the
first member of the list. A good example of this is

(defun member (obj l)
"Returns True if OBJ is eql to a member of the list L,
NIL otherwise."

(assert (listp l) (l)
"L must be a list, instead it is ~S." l)

(cond ((null l) nil)
((eql obj (first l)) t)
(t (member obj (rest l)))))

16: Recursion on Lists, Part 1—Analysis 91

This time, we used cond instead of if because there are three possible
outcomes, not just two. The basic pattern, however, is the same. The test
for () is first because null is always the final termination condition for lists.
The only cond pair involving recursion is last. The definition must be correct
because it always terminates and every case is correct: o is not a member of
an empty list; o is a member of any list whose first member is eql to o; and
if the first member of a nonempty list is not eql to o, o is a member of the
list if and only if it is a member of the rest of the list. Since a list has only a
first part and a rest part, there is no other place for o to hide. (Remember,
we do not consider X to be a member of the list ((A) B (C X D) E).)

The execution of member stops as soon as it can return True and returns
NIL only when it searches the whole list. Some functions reverse this pattern.
Consider:

(defun number-listp (l)
"Returns T if all members of the list L are numbers,
NIL otherwise."

(assert (listp l) (l)
"L must be a list, instead it is ~S." l)

(cond ((null l) ???????????????)
((not (numberp (first l))) nil)
(t (number-listp (rest l)))))

Again, the test for () is first. As soon as we find one member that is not a
number, we can return NIL without looking any further. If (first l) is a
number, we can return T only if (number-listp (rest l)) is T. But what
should we return if l is ()? Is () a list of all numbers? Asked just like that, the
answer is not obvious, but consider (number-listp ’(5)). Since 5 is a num-
ber, the value of
(number-listp ’(5)) is the value of (number-listp ’()). But the value of
(number-listp ’(5)) should be T. Therefore, the value of (number-listp ’())
must be T. This is a common situation: we want to define a function on lists,
but it’s not obvious what its value should be for (), so we write it to handle
the other cases properly and look at the definition to see what its value should
be for (). Our resulting definition is

92 II: PROGRAMMING IN PURE LISP

(defun number-listp (l)
"Returns T if all members of the list L are numbers,
NIL otherwise."

(assert (listp l) (l)
"L must be a list, instead it is ~S." l)

(cond ((null l) t)
((not (numberp (first l))) nil)
(t (number-listp (rest l)))))

The use of (not (numberp ...)) makes this definition awkward. At the
cost of bending our rules a bit, we could write

(defun number-listp (l)
"Returns T if all members of the list L are numbers,
NIL otherwise."

(assert (listp l) (l)
"L must be a list, instead it is ~S." l)

(cond ((null l) t)
((numberp (first l)) (number-listp (rest l)))
(t nil)))

This reads so much better that we will stick with it. Considerations of read-
ability often lead us to interchange the last two cond pairs, and readability is
important because we want our functions to reflect how we think about our
problems.

Now let us write a function to test if two lists have the same length. An
easy way is

(defun same-length1 (l1 l2)
"Returns T if the lists L1 and L2 have the same length,
NIL otherwise."

(assert (listp l1) (l1)
"L1 must be a list, instead it is ~S." l1)

(assert (listp l2) (l2)
"L2 must be a list, instead it is ~S." l2)

(= (length l1) (length l2)))

The trouble with this definition is that both lists must be examined in their
entirety. If one list has 5 members and the other has 10,000, this seems like
a lot of extra work. Let’s try a different version that stops as soon as the
shorter list is exhausted. This is the same method you would use to compare
two piles of stones if you didn’t know how to count. Keep throwing away a
pair of stones, one from each pile, until either pile is empty. If the other pile
is now empty, both piles had the same number of stones in them. Otherwise,
they didn’t.

16: Recursion on Lists, Part 1—Analysis 93

(defun same-length2 (l1 l2)
"Returns T if the lists L1 and L2 have the same length,
NIL otherwise."

(assert (listp l1) (l1)
"L1 must be a list, instead it is ~S." l1)

(assert (listp l2) (l2)
"L2 must be a list, instead it is ~S." l2)

(cond ((null l1) (null l2))
((null l2) nil)
(t (same-length2 (rest l1) (rest l2)))))

The only difference between same-length2 and the pattern we saw earlier is
that here we are recursing on two arguments simultaneously. Even though the
then part of the first cond pair is not a constant, it is a form whose evaluation
does not involve recursion.

Exercises

Do the exercises of this chapter in the package ch16, except where otherwise
instructed.

16.1 (r) Shadow lisp:length and then enter the definition of length given
in this chapter. Test it with several examples. Trace some small exam-
ples.

16.2 (r) Try evaluating (length "abc"). Observe the error message. Abort
the computation. Now do it again, but this time, specify that you want
to replace the bad value of L with ’(a b c). The correct answer should
now be returned.

16.3 (i) The form (check-type variable type-specifier) may be used in a
function definition instead of assert if the only assertion to be checked
is the type of a variable. For example, in the definition of length,
instead of the form

(assert (listp l) (l)
"L must be a list, instead it is ~S." l)

you may use (check-type l list). Here, the type-specifier is the type
name list. Redefine length using check-type instead of assert. Try
Exercise 16.2 again. From now on, use check-type instead of assert
whenever it is more appropriate.

16.4 (r) Shadow lisp:member and then enter the definition of member given
in this chapter. Test it and trace some examples. Try out (member ’x ’((a) b (c x d) e)).

94 II: PROGRAMMING IN PURE LISP

16.5 (i) Compare the behavior of ch16::member with that of
lisp:member when the first argument is eql to a member of the sec-
ond argument. Lisp actually considers any object other than NIL to
represent True, so lisp:member returns a useful value rather than just
T when it succeeds. Rewrite ch16::member so that it behaves the way
lisp:member does.

16.6 (i) Write the function (before e1 e2 l) so that it returns True if the
element e1 occurs before the element e2 in the list l. Remember, by
“element” I mean an object that can be compared with eql. Since
Common Lisp does not recognize element as a type, we cannot use
(check-type a element) to assert that a must be an element, but we
can use

(check-type a (satisfies util:elementp))

where util:elementp is the predicate you defined in the util file for
Exercise 13.12. The type-specifier (satisfies predicate) is satisfied
by any value that satisfies the given predicate. You will need to load
your util file before trying out the function before. Do not use if or
cond in your definition of before, but use member twice.

16.7 (r) Enter the definition of number-listp and test it.

16.8 (r) Enter the definitions of same-length1 and same-length2. Test
them and compare traces.

16.9 (i) The Common Lisp function (time form) evaluates form, returns
what form evaluates to, and prints how much time it took for the evalu-
ation of form. Use time to compare the running times of same-length1
and same-length2 when one argument has 5 members and the other
has 10, and again when one has 5 members and the other has 100.

16.10 (d) Define the function (count e l) to return the number of times that
the element e appears as a member of the list l. You may have to shadow
lisp:count before redefining it. (Hint: Two of three cond pairs will
cause recursion.)

16.11 (d) Define the function (equal-lelt l1 l2), where l1 and l2 are lists of
elements (all members are elements) and equal-lelt returns T if the
corresponding members of l1 and l2 are eql, but NIL if they are not.
(Hint: In my version, only the third of four cond pairs causes recursion.)

16.12 (d) Shadow lisp:nth and then define the function (nth n l), where n
is an integer and l is a list, to return the nth member of l. Compare
ch16::nth with lisp:nth.

16: Recursion on Lists, Part 1—Analysis 95

16.13 (i) Define (allbut n l), where n is an integer and l is a list at least n
members long. allbut should return a list whose members are the mem-
bers of l omitting the first n. For example,
(allbut 3 ’(a b (c d) e f)) should be (E F). Common
Lisp already has the function nthcdr, which works just like
allbut. Try nthcdr with several examples.

16.14 (i) Define the function (assoc e al), where e is an element and al is a
list all of whose members are lists. The function should return the first
element of al whose first member is eql to e. For example:

(assoc ’Mary
’((John black hair brown eyes)
(Mary blond hair blue eyes)
(Sue red hair hazel eyes)))

should return (MARY BLOND HAIR BLUE EYES). We are treating al as
an association list in that we can associate a list of properties with each
element that is the first member of a member list of al. Common Lisp
already has lisp:assoc defined, so shadow it before you write your
version, and use the Common Lisp version in the future whenever you
need its functionality.

16.15 (p1) In your match file (see Exercise 14.8), define the function
(matchlelt l1 l2) to be like equal-lelt except to consider the sym-
bol ? (recognized by dont-care) to be eql anything. For example,
(matchlelt ’(a ? c d e) ’(a b c ? e)) should return T.

CHAPTER 17

RECURSION ON LISTS,
PART 2—SYNTHESIS

In Exercise 15.12, we saw that there were two kinds of recursive functions.
One kind might perform some computations “on the way down,” but once
it finds an answer, it just returns it and does no computation “on the way
up.” The other kind collects a “stack” of pending computations on the way
down and constructs its answer on the way up. If you look carefully at the
functions we dealt with in Chapters 15 and 16, you will see that the only
ones that did any contruction on the way up returned numbers. We will now
consider recursive functions that construct lists.

Remember that the basic list construction function is cons, which builds
a list from an object and a list. cons will be at the heart of recursive list
construction functions. Remember also that the basic list—on top of which
all others are built—is (), the empty list.

The simplest recursive list construction function is

(defun copy (l)
"Returns a copy of the list L."
(check-type l list)
(if (null l) ’()

(cons (first l) (copy (rest l)))))

Notice that copy pulls apart the list on the way down and puts it back
together on the way up, thus showing the basic pattern of list synthesis func-
tions. copy is useful enough that it is already defined in Common Lisp

97

98 II: PROGRAMMING IN PURE LISP

(under the name lisp:copy-list).
Let’s next write a function that strings together two lists:

(append ’(a b c) ’(d e f)) should return (A B C D E F),
and (append ’() ’(d e f)) should return (D E F).

(defun append (l1 l2)
"Returns a list consisting of the members of L1
followed by the members of L2."

(check-type l1 list)
(check-type l2 list)
(if (null l1) l2

(cons (first l1) (append (rest l1) l2))))

Compare this with sum2 in Exercise 15.12. Note the analogies:

append sum2
null zerop
cons (first l1) 1+
rest 1-

Lisp lists have a strange asymmetry about them: the first member is easier
to get at than the last. This asymmetry becomes apparent when we try to
write a function to reverse a list. (reverse ’(a b c)) should be (C B A).
It is not as easy to write as copy was, but we can use append:

(defun reverse (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(if (null l) ’()

(append (reverse (rest l))
(list (first l)))))

The second argument of the recursive call of append must be
(list (first l)) rather than just (first l) because both arguments of
append must be lists.

A second way of writing reverse is interesting because it illustrates a
common pattern. It is easy to write a function reverse2, which takes two
lists and appends the reverse of its first argument to its second argument:

(defun reverse2 (l1 l2)
"Returns a list consisting of
the members of L1 in reverse order
followed by the members of L2 in original order."

(check-type l1 list)
(check-type l2 list)

17: Recursion on Lists, Part 2—Synthesis 99

(if (null l1) l2
(reverse2 (rest l1)

(cons (first l1) l2))))

Notice that the relation of reverse2 to sum (Chapter 15) is exactly the same
as that of append to sum2.

Given reverse2, we can easily write a second version of reverse, called
reverse1:

(defun reverse1 (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(reverse2 l ’()))

Notice that reverse1 does nothing on its own. It just initializes reverse2’s
second argument to be (). There seldom would be a reason to call reverse2
directly, with a nonnull second argument. It really just serves as a “helper
function” for reverse1. This is a common situation—the helper does all the
work—and actually a fundamental element of Lisp programming style. Each
function does as little work as possible, passing the bulk of the work to some
other function, but, if necessary, doing some processing of the data first.

Comparing reverse with reverse1 (we include reverse1’s helper, of
course), we see that reverse is very inefficient. Look at the recursive form
(append (reverse (rest l)) (list (first l))). The recursive call to
reverse pulls (rest l) apart and pastes it together in reverse order only
to have append pull it apart and paste it together again. reverse1, on the
other hand, “visits” each member of its list only once.

So far, we have essentially been copying lists. A simple modification makes
substitutions in a list:

(defun sub-first (new old l)
"Returns a copy of the list L with the element NEW
replacing the first occurrence of the element OLD."

(check-type new (satisfies util:elementp))
(check-type old (satisfies util:elementp))
(check-type l list)
(cond ((null l) ’())

((eql (first l) old) (cons new (rest l)))
(t (cons (first l)

(sub-first new old (rest l))))))

Notice that a third cond pair has appeared. The pattern is a combination of
what we saw in the last chapter and what we have been seeing in this chapter.

100 II: PROGRAMMING IN PURE LISP

As soon as we find old as the first member of l, we can return a value. If we
never find it, we eventually get to the null list and return NIL. In either case,
we paste back the earlier members on the way up.

If you have forgotten the significance of the type-specifier
(satisfies util:elementp), review Exercise 16.6. We could define our
own element type to make checking for the correct type easier. The form for
defining a new type is

(deftype symbol () documentation-string ’type-specifier)

Evaluating such a form makes symbol the name of a type that is equivalent
to the given type-specifier. You have to supply the () and the quote mark
exactly as shown. They are there for more sophisticated options that are
beyond the scope of this book. The documentation-string is like the docu-
mentation string of functions and is retrievable from the symbol by evaluating
(documentation symbol ’type). This is the same documentation function
we saw earlier, but its second argument specifies that we want the documen-
tation of the symbol as a type name, rather than as a function. We can define
our element type by evaluating

(deftype element ()
"Elements are objects testable by EQL,
namely symbols, characters, numbers, and packages."

’(satisfies util:elementp))

17: Recursion on Lists, Part 2—Synthesis 101

Then, our definition of sub-first can be

(defun sub-first (new old l)
"Returns a copy of the list L with the element NEW
replacing the first occurrence of the element OLD."

(check-type new element)
(check-type old element)
(check-type l list)
(cond ((null l) ’())

((eql (first l) old) (cons new (rest l)))
(t (cons (first l)

(sub-first new old (rest l))))))

We can use lists to represent sets. Let a set of elements be a list of elemental
objects in which no two elements are eql and for which order is irrelevant.
A list in which order is irrelevant but elements can appear more than once
is called a bag. Let’s write a function to turn a bag into a set. I will assume
that we have defined the type bag to be equivalent to the type list. (Note
that there is no way to differentiate a single bag from a single list; we just
treat them differently.)

(defun makeset (b)
"Returns a set containing
just those elements of the input bag B."

(check-type b bag)
(cond ((null b) ’())

((member (first b) (rest b))
(makeset (rest b)))
(t (cons (first b) (makeset (rest b))))))

Note that both the second and third cond pairs involve recursion, but only
the third pair involves explicit list construction. The second pair just recurses
down the bag ignoring the first element. Compare this with your definition
of count from Exercise 16.10.

The union of two sets s1 and s2 is a set that contains every element in s1

or in s2, and only those elements. The definition of union is similar to that
of makeset.

102 II: PROGRAMMING IN PURE LISP

(defun union (s1 s2)
"Returns the union of the sets S1 and S2."
(check-type s1 set)
(check-type s2 set)
(cond ((null s1) s2)

((member (first s1) s2)
(union (rest s1) s2))
(t (cons (first s1) (union (rest s1) s2)))))

Here again, I assume that we have defined the type set. However, defining
set is more involved than defining the type bag. Since the only difference
between a bag and a list is how we treat them, not what they are, it is all right
to make bag a synonym of the type list. However, the list (A B C A C) is
obviously not a set because it has repeated elements. There are at least three
possible solutions to this problem. First, we can just make set a synonym of
the type list. The trouble with this solution is that if someone gives union
a list with repeated elements, we will not be able to detect the error. Some
programmers advocate this solution and just don’t worry about the extra
elements.

The other two solutions to the problem of defining the set type both use
(satisfies setp) as the type-specifier, but they differ in the definition of
setp. In the first of these, we can define setp to examine its argument to
make sure that it is a bag (a list) without repeated elements. The definition
of this setp is left as an exercise. The problem with this solution is that lists
will need to be examined a huge number of times to make sure they are sets.
We will also address this in the exercises.

The third solution to the definition of the set type relies on the fact that
every set must be the result of an execution of the makeset function. If
we can label every object produced by makeset, then all setp has to do
is check for the label. Since every object that makeset produces is a list,
we can label them by putting the symbol :set as the first member of each
of these lists. The symbol :set is a symbol in the special package called
the keyword package. This package has an empty name (notice it before the
colon) and has the special property that all its symbols evaluate to themselves,
just like numbers, characters, and strings. We use a symbol in the keyword
package to label sets, because we don’t expect to get confused by lists of
such symbols. The definition of this setp is also left as an exercise, but let’s
examine the revised definition of makeset. The problem is that if we try to
modify makeset as a single function, the label will keep getting in our way.
(Try it!) The solution is to divide makeset into a main function and a helper
function. The helper function will look like our original makeset, and it will
do all the work (as is usual for helpers).

(defun makeset (b)

17: Recursion on Lists, Part 2—Synthesis 103

"Returns a set containing
just those elements in the input bag B."

(check-type b bag)
(cons :set (make-unlabelled-set b)))

(defun make-unlabelled-set (b)
"Returns a list containing
the elements in the input bag B, without duplicates."

;; Assumes that B has already been checked to be a bag.
(cond ((null b) ’())

((member (first b) (rest b))
(make-unlabelled-set (rest b)))
(t (cons (first b)

(make-unlabelled-set (rest b))))))

I have used a comment to point out that make-unlabelled-set is doing
no type-checking of its own. It shouldn’t be called by any function other
than makeset anyway, so not doing the type checking will make it faster
than checking the type unnecessarily. The problem with this solution is the
necessity of doubling all the set functions, but it may be worthwhile if we are
going to make a package out of our set functions; put them in a file; make
only the main functions, not the helpers, external; and use them in many
other places.

Exercises

Do the exercises of this chapter in the package ch17 except where otherwise
instructed.

17.1 (r) Enter the definition of copy and test it, first checking to see if your
implementation of Common Lisp has a function named copy (one of
mine does, and one doesn’t) and, if so, shadowing it.

17.2 (i) Is a list eql to a copy of itself? Find out using the technique
of Exercise 8.6: enter a quoted list and then evaluate

(eql * (copy *))

Now try it using equal instead of eql. A list and its copy are equal to
each other, but not eql. We will pursue this in the next chapter.

17.3 (i) Define the identity function as

(defun identity (object)
"Returns its argument unmodified."
object)

104 II: PROGRAMMING IN PURE LISP

but first shadow lisp:identity since, amazingly enough, it is a stan-
dard Common Lisp function. Compare the values of
(copy ’(a b c)) and (identity ’(a b c)). Although they seem to
do the same thing, if you now redo Exercise 17.2 using (eql * (identity *))
instead of copy, you will notice again that two lists can look the same
without being identical.

17.4 (r) Shadow lisp:append, and then enter and test the function append
as shown in this chapter.

17.5 (d) Define (firstn n l), where n is an integer and l is a list at least n
members long. firstn should return a list whose members are the first
n members of l. For example:

(firstn 3 ’(a b (c d) e f))

should be

(A B (C D))

17.6 (i) Enter a quoted list, and then evaluate

(eql (firstn (length *) *) (firstn (length *) *))

The moral is that firstn makes a copy of its list.

17.7 (i) Enter a quoted list, and then evaluate

(eql (nthcdr 0 *) (nthcdr 0 *))

nthcdr, which you first met in Exercise 16.13 does not make a copy of
its list. Is this also true if you replaced 0 by some positive integer?

17.8 (i) Enter two quoted lists, and then evaluate

(eql (nthcdr (length **) (append ** *)) *)

Note that append does not make a copy of its second argument. What
about its first argument?

17.9 (r) Define and test reverse (after shadowing lisp:reverse) and reverse1.
Compare their running times on some long list. (See Exercise 16.9.)

17.10 (r) Define and test sub-first.

17: Recursion on Lists, Part 2—Synthesis 105

17.11 (u) Add to your util file, which you created for Exercise 13.12, the
definition of the type element, and make element an external symbol
of the util package. Use this type wherever it is useful in future projects
and exercises.

17.12 (d) Define subst* to be like sub-first but to replace all
top-level occurrences of old by new. For example,

(subst* ’x ’y ’(a b y (x y) z y))

should evaluate to

(A B X (X Y) Z X)

17.13 (u) Create a file named set, the symbols of which should be in the
package named set. In this file, define a predicate setp that returns
True if its one argument is a list of objects, no two of which are eql,
and False otherwise. Make sure that setp returns False when given a
nonlist, rather than causing an error.

17.14 (u) In your set file, shadow ’lisp:set, and define set to be a type
of object that satisfies setp. Make set an external symbol of the set
package.

17.15 (u) Define makeset in the set file, and test it. To do this, you should
define the type bag in your util file and make bag an external symbol
in the util package. Also specify in your set file that you will use
all external symbols of the util package in the set package. Make
makeset an external symbol in the set package.

17.16 (u) Add the definition of union to the set file, and export it. Be sure
to shadow lisp:union in that file. Test set:union.

17.17 (i) Evaluate (union ’(a b c d) ’(b d e f)) while tracing
setp. Note the inordinate number of times the sets are checked.

17.18 (u) Redefine makeset in the set file so that every set is represented by
a list whose first member is :set.

17.19 (u) Redefine setp in the set file so that it just checks that the first
member of a list that represents a set is :set.

17.20 (u) Define set:first and set:rest in your set file to return the ele-
ment that happens to be listed first in a set, and the set without that
element, respectively. Make these external symbols in the set package
and shadow lisp:first and lisp:rest. Go through all the defini-
tions in your set file; make sure to type lisp:first and lisp:rest
explicitly wherever necessary.

106 II: PROGRAMMING IN PURE LISP

17.21 (u) Define (insert e s) in your set file to return a set just like s, but
with e added as an additional element. If e is already in s, s should
be returned unchanged. Make insert an external symbol in the set
package.

17.22 (u) Define empty in your set file to be a function that returns True if
its one argument is a set with no elements, and returns False otherwise.
Make empty an external symbol in the set package.

17.23 (u) Redefine set:union to use the new representation of sets. Define the
help function union-unlabelled-sets as an internal function. Again
evaluate (union ’(a b c d) ’(b d e f)) while tracing setp.

17.24 (u) The intersection of two sets s1 and s2 is the set consisting of those
elements that are in s1 and also in s2. Define intersection in your
set file, with intersection an external symbol in the set package.
Shadow lisp:intersection.

17.25 (u) The relative complement of two sets s1 and s2 is the set consisting
of those elements of s1 that are not also in s2. Define complement in
your set file, with complement an external symbol in the set package.

17.26 (u) A set s1 is a subset of a set s2 if every element of s1 is a member
of s2. Define (subsetp s1 s2) in your set file to return True if the
set s1 is a subset of the set s2, and False otherwise. Make subsetp an
external symbol in the set package, and shadow lisp:subsetp.

17.27 (u) Two sets are equal if they have exactly the same elements. Define
(equal s1 s2) in your set file to return True if s1 and s2 are equal sets,
and False otherwise. Make sure that it does not matter if one set has
its elements in a different order than the other set, and make sure that
the order of the two arguments of set-equal is irrelevant. Make this
equal an external symbol in the set package and shadow lisp:equal
in that package.

17.28 (d) The cross product of two sets s1 and s2 is the set s3, which consists
of all pairs such that the first of each pair is a member of s1 and the
second of each pair is a member of s2. In the ch17 package, define
(xprod s1 s2) to return the cross product of the sets s1 and s2. For
example,

(xprod ’(:set a b) ’(:set c d e))

should evaluate to

(:SET (A C) (A D) (A E) (B C) (B D) (B E))

17: Recursion on Lists, Part 2—Synthesis 107

or any other ordering of these six pairs. Where appropriate, use the
functions whose names are external symbols in the set package, but
do not use any function whose name is an internal symbol in the set
package. Hint: Use a help function xprod1 that takes an object and a
set and returns a list of pairs. For example,

(xprod1 ’a ’(:set c d e))

would return

(:SET (A C) (A D) (A E))

17.29 (p1) A substitution is an association list (see Exercise 16.14), in which
the first member of each sublist is a variable and the other member
of each sublist is a term the variable is bound to. Add to your match
file the function (boundp v subs) that returns True if the variable v
(as recognized by variablep) is bound to anything in the substitution
subs, and False otherwise. You may use the Lisp function assoc in this
definition. You will have to shadow lisp:boundp in your match file.

17.30 (p1) Add to your match file a function (bound-to v subs) that returns
the term that the variable v is bound to in the substitution subs, or NIL
if v is unbound in subs.

17.31 (p1) Add to your match file a function (match pat lst), where pat and
lst are both lists of elements. match should return a substitution—a list
of all pairs (V A) where V is a variable in pat and A is the corresponding
element in lst. If the nth member of pat is not a variable, it must be
eql to the nth member of lst. Otherwise, match should return NIL.
If no element of pat is a variable but each is eql to its corresponding
element of lst, match should return ((T T)). If a variable occurs more
than once in pat, its corresponding elements in lst must be the same.
For example:

> (match ’(a b c) ’(a b c))
((T T))
> (match ’(a b c) ’(a c b))
NIL
> (match ’(a ?x c) ’(a b c))
((?X B) (T T))
> (match ’(a ?x c ?x) ’(a b c d))
NIL
> (match ’(a ?x c ?x) ’(a b c b))
((?X B) (T T))
> (match ’(a ?x c ?y) ’(a b c d))
((?Y D) (?X B) (T T))

108 II: PROGRAMMING IN PURE LISP

The order of pairs in your answer needn’t be the same as above. (Hint:
You may find it useful to define a help function
(match1 pat lst pairs).)

17.32 (p1) In your match file, define (substitute pat subs), where pat
is a list like the first argument of match, subs is substitution, and
substitute returns a list like pat except every variable in pat that is
bound in subs is replaced by the element it is bound to. For every appro-
priate pat and lst, it should be the case that (substitute pat (match pat lst))
= lst. Shadow lisp:substitute in your match file.

17.33 (p2) In your calculator file, which you created for Exercise 12.5, revise
the function combine-expr so that the first member of the list it returns
is in Cambridge Prefix notation. That is, (combine-expr ’+ 3 ’(5 - 6 * 8))
should now evaluate to
((+ 3 5) - 6 * 8).

17.34 (p2) Write the function enclose-expression to take a list representing
an arithmetic expression in normal infix notation and return a list whose
one member is the expression transformed into Cambridge Prefix nota-
tion. For now, assume that the only operators in the expression are +
and -. For example,
(enclose-expression ’(5 + 3 - 2)) should evaluate to
((- (+ 5 3) 2)). Add this function to your calculator file. (Hint:
Use your new version of combine-expr in the recursive step of your
function.)

17.35 (p2) A term is one of the operands of addition or subtraction. For exam-
ple, in the expression 5−4+3, the first term is 5, and in the expression 5∗
3/2+7−8, the first term is 5∗3/2. Define the function enclose-term to
take a list like (5 - 4 + 3) or
(5 * 3 / 2 + 7 - 8) and return it with the first term collected as
the first member and expressed in Cambridge Prefix notation. That is

(enclose-term ’(5 - 4 + 3))

should return

(5 - 4 + 3)

and

(enclose-term ’(5 * 3 / 2 + 7 - 8))

should return

17: Recursion on Lists, Part 2—Synthesis 109

((/ (* 5 3) 2) + 7 - 8)

For now, assume the only operators in the expression given to enclose-term
are +, -, *, and /. Add enclose-term to your calculator file.

17.36 (p2) A factor is one of the operands of multiplication or division. For
example, in the expression 5∗4+3, the first factor is 5, and in the expres-
sion 532

/7−8, the first factor is 532
. Define the function enclose-factor

to take a list like (5 * 4 + 3) or
(5 ^ 3 ^ 2 / 7 - 8) and return it with the first factor collected as
the first member. That is,

(enclose-factor ’(5 * 4 + 3))

should return

(5 * 4 + 3)

and

(enclose-factor ’(5 ^ 3 ^ 2 / 7 - 8))

should return

((^ 5 (^ 3 2)) / 7 - 8)

Add enclose-factor to your calculator file.

CHAPTER 18

RECURSION ON TREES

We have been treating lists as linear arrangements of unstructured
elements. That is, we have been considering both (A B C) and
((A B) ((C)) (D)) as simply lists with three members, and all our recursive
functions on lists have recursed only down the rest parts of the lists. We
now want to consider the entire structure of lists whose members are also
lists and allow recursion down the first parts as well. Lists looked at in this
way are often called trees, and the atoms in the lists (remember that every
nonempty list is a cons, and an atom is any Lisp object other than a cons)
are called the leaves of the tree. For example, Figure 18.1 shows the list ((A
B) ((C)) (D)) drawn as a tree. In this drawing, every rectangle is called a
node of the tree and represents a subtree of every tree higher in the drawing.
A line going down and to the left represents the application of the first
function to the higher tree, and a line going down and to the right represents
the application of the rest function. So the node at the very top represents
the tree ((A B) ((C)) (D)), and the two nodes immediately below it, read
left to right, represent (A B) and (((C)) (D)), respectively. We consider
the atoms, which are leaves of the tree, to be trees themselves. That way,
trees form a recursive data structure in which every tree is either an atom
or is constructed (using cons) from two subtrees. As we shall see, recursive
functions operating on trees follow closely this view of trees as recursive data
structures.

To focus on a concrete example of recursion on trees, consider the state-
ment in Exercise 17.2 that a list and its copy are equal
to each other, but not eql. We would like to be able to say that
((A B) ((C)) (D)) and ((A B) ((C)) (D)) are equal as Lisp trees, even

111

112 II: PROGRAMMING IN PURE LISP

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

�
�
�
�
��

�
�

�
�

�
��

�
�

�
�

��

�
�

�
�

�
��

�
�
�
�
�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
��

�
�

�
�

�
��

�
�
�
�
�
��

A

B

C
D

NIL
NIL

NIL

NIL

NIL

Figure 18.1 The list ((A B) ((C)) (D)) drawn as a tree.

18: Recursion on Trees 113

if they are not identical. We can define precisely what we mean by “equal
as Lisp trees” by writing a Lisp predicate function that takes two trees as
arguments and returns T if they are equal as Lisp trees and NIL otherwise.
Remember, we have already written such functions for “equal as lists of el-
ements” (equal-lelt of Exercise 16.11) and for “equal as sets” (set-equal
of Exercise 17.27). Since this function will be “equal as trees,” we will call it
tree-equal.

Let’s consider the cases. A tree, as a recursive data structure, is either
a cons (a nonempty list) or an atom. We know that Common Lisp has
different equality predicates for different kinds of atoms, so for now let’s use
the predicate atom-equal as an equality predicate for any kind of atom and
worry about defining it later.

A cons consists of a first part and a rest part, both of which are trees, so
we can say that two conses are tree-equal if and only if their first parts are
tree-equal and their rest parts are also tree-equal. This gives us

(defun tree-equal (t1 t2)
"Returns T if T1 and T2 are trees with:

1. the same structure,
2. equal corresponding leaves

(according to atom-equal);
NIL, otherwise."
;; T1 and T2 can be any objects.
(cond (both T1 and T2 are atoms

(atom-equal t1 t2))
(both T1 and T2 are conses
(and (tree-equal (first t1) (first t2))

(tree-equal (rest t1) (rest t2))))))

Let’s assume that, like eql, atom-equal can take any Lisp objects as
arguments without giving an error message and that it will surely return
False if given one atom and one cons. Under these assumptions, we can
simplify our reasoning as follows. If T1 is an atom, it is tree-equal to T2
if and only if it is atom-equal to T2. If T1 is not an atom, but T2 is, they
are not tree-equal. If neither is an atom, they are both conses and have
first parts and rest parts. If their first parts are tree-equal, T1 and
T2 are tree-equal if and only if their rest parts are. Otherwise they are
not tree-equal. This reasoning gives us:

(defun tree-equal (t1 t2)
"Returns T if T1 and T2 are trees with:

1. the same structure,
2. equal corresponding leaves

(according to atom-equal);

114 II: PROGRAMMING IN PURE LISP

NIL, otherwise."
;; T1 and T2 can be any objects.
(cond ((atom t1) (atom-equal t1 t2))

((atom t2) nil)
((tree-equal (first t1) (first t2))
(tree-equal (rest t1) (rest t2)))
(t nil)))

Will this function always terminate? Since it is written to follow the
recursive structure of trees closely, it is easy to see that it will terminate. A
tree is either an atom or a cons. If either T1 or T2 is an atom, one of the
first two cond pairs will be taken and recursion will stop. If both T1 and
T2 are conses, the function will definitely recurse on their first parts and
may recurse on their rest parts also (if their first parts are tree-equal).
But both the first part subtree and the rest part subtree of a tree have
fewer nodes than the tree itself (since they don’t contain the top node of
the tree). So we must eventually come to the leaves of the tree (trees with
only one node). But a leaf is an atom, and as we have seen, recursion will
stop as soon as either T1 or T2 is an atom. Therefore every recursion will
eventually bottom out, and the function will always terminate. (Surprisingly,
it is possible to create a tree that contains itself as a subtree by using the
functions called “destructive list manipulation functions.” Don’t use any such
functions until we discuss them later in this book!)

The moral of this discussion is that just as zero is the base case for recursion
on integers and NIL is the base case for recursion on lists, the set of atoms is
the base case for recursion on trees. We can formalize the above definition of
trees as recursive data structures as follows:

1. Every atom is a tree.

2. If t1 and t2 are trees, then (cons t1 t2) is a tree whose first part
is t1 and whose rest part is t2.

3. Nothing else is a tree.

Compare this with the definition of lists in Chapter 8.
Lists are just special cases of trees, such that the only atomic list is NIL. In

general, the result of (cons o1 o2) is called a dotted pair, and is printed as
(O1 . O2). Some people stress the idea that the list (A B) is also the dotted
pair (A . (B . NIL)), but we will reserve the term “dotted pair” only for
those nonatomic conses that cannot be considered lists. As an analogy to the
fact that (A . (B . NIL))
is printed as (A B), Common Lisp prints conses of the form
(A . (B . C)) as (A B . C), and we refer to these as “dotted lists.” We
may refer to the normal lists that we are already familiar with as “strict lists”

18: Recursion on Trees 115

tree
atom

element
character
number

integer
fixnum
bignum

ratio
float

short-float
single-float
double-float
long-float

symbol
package

nonelemental atom
string

cons
dotted list
mixed list
nonempty strict list

Figure 18.2 An organization of Common Lisp types as kinds of trees.

when the distinction is important. There are also “mixed lists.” For example,
(A (B C) . D) is a dotted list whose second element is a strict list. On the
other hand, (A (B . C) D) is a mixed list whose second element is a dotted
pair. Dotted pairs were mentioned in Exercise 8.1, where I said, “For the
time being, if you ever see a dotted pair it will be because you have made a
mistake.” Although you know what they are, you still won’t use them much.

It is interesting to note that the set of trees includes every possible Com-
mon Lisp object, since it includes all conses and all atoms, and an atom is
anything that is not a cons. (That is why I didn’t bother to use check-type
in the definition of tree-equal.) Figure 18.2 shows this organization of the
Common Lisp objects. Note that element is not an official Common Lisp
data type, but was defined on page 100. Also note that the type list does
not appear in this hierarchy, because lists include both nonempty strict lists,
which are conses, and the empty list NIL, which is a symbol.

One useful tree for storing information is called a binary search tree. We

116 II: PROGRAMMING IN PURE LISP

�
�

���
�

��

�
�

��

�
�

���
�

��

SEARCHBINARY

IS

USEFULA

TREE

Figure 18.3 The binary search tree represented by the list
(TREE (A NIL (IS BINARY SEARCH)) USEFUL).

can define a binary search tree to be one of the following: (1) empty, repre-
sented by NIL; (2) a tree of one elemental member, represented by that ele-
ment; or (3) a tree containing one root element and two
binary search subtrees, represented by a list of three members—the root ele-
ment, the left subtree, and the right subtree. In the last case, all the elements
in the left subtree must come (in some ordering) before the root element, and
all the elements in the right subtree must come (in some ordering) after the
root element. No two elements of a binary search tree should be eql. For
example, Figure 18.3 depicts a binary search tree that would be represented
by the list (TREE (A NIL (IS BINARY SEARCH)) USEFUL). In this case, the
elements of the tree are symbols alphabetically ordered according to their
names. This ordering can be tested for with the Common Lisp function
string<. First, let’s define the type bstree:

(deftype bstree ()
"A bstree is a Binary Search Tree.
See the predicate bstreep for details."

’(satisfies bstreep))

We will define the predicate bstreep to be a quick check that is just enough
to make sure that a bstree is either an element or a list of three members,
the first of which is an element.

18: Recursion on Trees 117

(defun bstreep (tree)
"A bstree is either an element, or a three-member list,
the first of which is an element."

(or (typep tree ’util:element)
(and (listp tree)

(= (length tree) 3)
(typep (first tree) ’util:element))))

(typep object type), which we haven’t used before, returns True if the object
is of the given type. We need to use it here because we don’t have the function
elementp and type-of would give us the one principal type of the object,
such as symbol or character.

We can now define a function to build a binary search tree:

(defun bstree-insert (elt tree)
"Returns the binary search tree TREE
with the element ELT inserted in the proper place."

(check-type elt util:element)
(check-type tree bstree)
(cond
((null tree) elt)
((eql elt (bstree-root tree)) tree)
((string< elt (bstree-root tree))
(list (bstree-root tree)

(bstree-insert elt (bstree-left tree))
(bstree-right tree)))

(t (list (bstree-root tree)
(bstree-left tree)
(bstree-insert elt (bstree-right tree))))))

This definition uses the functions bstree-root, bstree-left, and bstree-right,
which we haven’t yet defined. However, the definitions of these functions are
straightforward given the representation we decided on above:

(defun bstree-root (tree)
"Returns the root element

of the binary search tree TREE,
NIL if TREE is empty."

(check-type tree bstree)
(if (atom tree) tree

(first tree)))

(defun bstree-left (tree)
"Returns the left subtree

of the binary search tree TREE,

118 II: PROGRAMMING IN PURE LISP

NIL if TREE is empty or has an empty left subtree."
(check-type tree bstree)
(if (atom tree) ’()

(second tree)))

(defun bstree-right (tree)
"Returns the right subtree

of the binary search tree TREE,
NIL if TREE is empty or has an empty right subtree."

(check-type tree bstree)
(if (atom tree) ’()

(third tree)))

Notice that in all three functions, there is no need to distinguish the empty
from the elemental tree.

Some example calls to bstree-insert are

> (bstree-insert ’tree ’())
TREE
> (bstree-insert ’useful (bstree-insert ’tree ’()))
(TREE NIL USEFUL)
> (bstree-insert ’a

(bstree-insert ’useful
(bstree-insert ’tree

’())))
(TREE A USEFUL)

> (bstree-insert
’is
(bstree-insert ’a

(bstree-insert ’useful
(bstree-insert ’tree

’()))))
(TREE (A NIL IS) USEFUL)

To determine if an element is in a binary search tree, compare it with the
root. If they are eql, the element is there. If the element is earlier in the sort
than the root, look in the left subtree. Otherwise, look in the right subtree.
Of course, no element is in the empty tree. This reasoning is embodied in the
function bstree-member:

(defun bstree-member (elt tree)
"Returns True

if ELT is stored in the binary search tree TREE;
False otherwise."

18: Recursion on Trees 119

NIL

BA

NIL

NIL

C

D

NIL

NIL

Figure 18.4 Another way of drawing ((A B) ((C)) (D)) as a tree.

(check-type elt util:element)
(check-type tree bstree)
(cond ((null tree) nil)

((eql elt (bstree-root tree)) t)
((string< elt (bstree-root tree))
(bstree-member elt (bstree-left tree)))
(t (bstree-member elt (bstree-right tree)))))

On page 13, you learned to check for balanced parentheses in a list S-
expression by counting 1 at the first left parenthesis, increasing your count
by 1 at each subsequent left parenthesis, and decreasing your count by 1 at
each right parenthesis. An interesting question might be: for any given list,
what is the largest number you say when you count its parentheses in this
way? Of course, the answer might be different depending on whether you
represent the empty list as NIL or as (). If we draw a tree by drawing the
left lines (applications of the first function) as vertical lines going down
one level, and the right lines (applications of the rest function) as horizontal
lines, this question is the same as the question of what is the deepest level in
the tree (counting the first level as 0). The tree drawn in Figure 18.1 can be
redrawn in this way, as shown in Figure 18.4.

If we let depth be the maximum level of a tree, we can sketch the Lisp
definition of depth as

120 II: PROGRAMMING IN PURE LISP

(defun depth (tree)
"Returns the depth of the argument TREE."
(if (atom tree) 0 ; an atomic tree has a depth of 0

(1+ the maximum depth of the members of tree,
viewed as a nonempty list)))

To get the maximum depth of the members of a list, we need to write
another function:

(defun max-depth-members (list)
"Returns the maximum depth
of the members of the argument LIST."

(check-type list list)
(if (null list) 0 ; the max depth of the members of ()

(max (depth (first list))
(max-depth-members (rest list)))))

Common Lisp already has the function max, so all we need to do to finish
our “program” for finding the depth of a tree is to complete the definition of
depth:

(defun depth (tree)
"Returns the depth of the argument TREE."
(if (atom tree) 0 ; an atomic tree has a depth of 0

(1+ (max-depth-members tree))))

Notice the interesting recursive structure of max-depth-membersand depth.
They each call the other, and max-depth-members calls itself as well.

Exercises

Do the exercises of this chapter in the package ch18 except where otherwise
instructed.

18.1 (r) Evaluate

(eql ’((a b) ((c)) (d)) ’((a b) ((c)) (d)))

Notice that, although the two lists look the same, they are not eql.

18.2 (i) Common Lisp has a kind of conditional function, typecase, that
will evaluate one of a number of forms depending on the type of an
object.

(typecase key (type1form1) ... (typenformn))

18: Recursion on Trees 121

will evaluate the first formi whose typei is the type of the value of key
and will return that value. If none of the typei is correct, the value of
the typecase will be NIL. For example:

(typecase key
((or symbol character number package) ’element)
(string ’composite))

will have the value ELEMENT if key is an elemental object,
COMPOSITE if key is a string, and NIL if key is any other Common Lisp
object. Use typecase and the type util:element from your util file
to define atom-equal to be a function that returns True when its two
arguments are atoms of the same type and are equal according to the
proper equality predicate and False otherwise.

18.3 (r) Define tree-equal as given in this chapter. (Make sure you shadow
lisp:tree-equal first.) Trace tree-equal and
atom-equal while evaluating

(tree-equal ’((a b) ((c)) (d)) ’((a b) ((c)) (d)))

It should return True.

18.4 (i) Try tree-equal with all sorts of trees with various types of leaves.
In particular, try some trees with strings at the leaves.

18.5 (i) Common Lisp’s equal function actually works the way your tree-equal
should work. Try equal on the same examples you just tested tree-equal
on. Also try lisp:tree-equal on those examples. You should notice
some differences between the behavior of lisp:equal and lisp:tree-equal.

18.6 (i) Try

(eql 5 5.0) (= 5 5.0)
(lisp:tree-equal 5 5.0) (ch18::tree-equal 5 5.0)
(equal 5 5.0) (equalp 5 5.0)

The function equalp is like equal but it uses = to compare numbers
instead of eql. It is Common Lisp’s most general, and most gener-
ous, equality test. Compare equal and equalp on uppercase versus
lowercase characters and strings.

18.7 (i) Look in the manual in Appendix B and find some destructive list
manipulation functions. Don’t use them!

122 II: PROGRAMMING IN PURE LISP

18.8 (d) Play with constructing some dotted pairs. Notice how Lisp prints
them.

18.9 (r) Enter ’(a . (b . nil)) and ’(a . (b . c)). Notice how Lisp
prints them.

18.10 (d) Enter ’(a (b c) . d) and ’(a (b . c) d). Try to construct both
of these by typing nested forms using only cons and quoted symbols.

18.11 (i) Ask Lisp to evaluate some dotted pairs and dotted lists by typing
them to the top level. For example, try

(a . b)
(first . ’(a b))

and

(cons ’a . ’b)

18.12 (d) Load the util file you created for Exercise 17.11. Compare (typep
object ’util:element) with (type-of object) for several elemental
and nonelemental Lisp objects.

18.13 (u) Add the definition of the bstree type and of the bstreep function
to a new file named bstree, declare everything in that file to be in the
bstree package, and export the symbols bstree and bstreep.

18.14 (u) Enter the functions bstree-insert, bstree-root,
bstree-left, and bstree-right in your bstree file. Delete the bstree-
prefix from all four functions, and export their new names. Test these
functions with the examples from the text and with some examples of
your own.

18.15 (u) Add the definition of bstree-member to your file, but omit the
bstree- prefix, and export its name. Be sure to shadow lisp:member.

18.16 (i) Return to the Lisp listener with ch18 as the package. Load the file
with your five bstree functions. Notice that in package ch18 the names
of the five bstree functions are

bstree:insert bstree:root
bstree:left bstree:right
bstree:member

Test them by evaluating

18: Recursion on Trees 123

(bstree:member
’is
(bstree:insert
’is
(bstree:insert
’a
(bstree:insert ’useful

(bstree:insert ’tree ’())))))

while tracing bstree:insert and bstree:member. Your file constitutes
an implementation of a binary search tree data type.

18.17 (u) Add the function build-from-list to your bstree file so that
(build-from-list elist) assumes that elist is a list of elemental
members and builds a binary search tree whose elements are precisely
the members of elist. For example:

> (build-from-list
’(a binary search tree is a useful tree))

(TREE (A NIL (IS BINARY SEARCH)) USEFUL)

Make build-from-list an external symbol of the package
bstree.

18.18 (u) Add the function inorder to your bstree file so that
(inorder tree) returns a list of all the elements in the binary search
tree tree in alphabetical order. For example:

> (inorder ’())
NIL
> (inorder ’tree)
(TREE)
> (inorder

(build-from-list
’(a binary search tree is a useful tree)))

(A BINARY IS SEARCH TREE USEFUL)

Make inorder an external symbol of the package bstree. (Hint: Con-
template the form (append (cons)).)

18.19 (i) Back in the ch18 package, define the function tree-sort to take a
list of symbols and sort them alphabetically, using bstree:build-from-list
and bstree:inorder. Approximately how many calls to string< are
made when sorting a list in this way, as a function of the length of the
list?

124 II: PROGRAMMING IN PURE LISP

18.20 (r) Define depth (and its auxiliary function). Test it out on var-
ious examples, including strict lists, dotted pairs, dotted lists, and
mixed lists. If the depth of ’(a . (b c)) confuses you, remember that
’(a . (b c)) = (cons ’a ’(b c)) = ’(a b c). You should test a
group of functions “bottom up.” That is, test max-depth-members be-
fore depth, since depth will certainly not work if max-depth-members
has a typo in it.

18.21 (d) Shadow lisp:copy-tree and define copy-tree to take a tree and
make a copy of it at all levels. No two corresponding nonatomic subtrees
of a tree and its copy, at whatever level, should be eql, but all should
be equal.

18.22 (d) Define subst. (subst new old tree) should return a copy of
tree with every subtree equal to old replaced by new. (First shadow
lisp:subst, which is like this subst, but tests with eql instead of with
equal.)

18.23 (i) Define flatten to take a tree and return a list of atoms that have the
same left-to-right order as the atoms in the original tree. For example,
(flatten ’(a ((b) (c d) e) (f ((g))))) should be (a b c d e f
g). (You might find typecase useful, especially since null is an official
Common Lisp type consisting only of the object nil.)

18.24 (d) What is the value of (flatten ’(a () b))? The two possible
answers are (A B) and (A NIL B). Whichever way your flatten works,
write flatten2 to work the other way. They should give the same
answers on all lists not containing the empty list as a sublist.

18.25 (p1) Revise the functions match and substitute in your match file so
that a pattern can be a list with sublists and a variable can occur at
any level of the pattern.

18.26 (p1) Let a rule be a list of two patterns, called the Left-Hand Side and
the Right-Hand Side. Define the type rule and the functions lhs and
rhs so that, when given a rule, they return the appropriate patterns.
Add them to your match file.

18.27 (p1) Define (apply-rule tree rule), where tree is an arbitrary tree
and rule is a rule. If (lhs rule) matches tree, apply-rule should
return

(substitute (rhs rule) (match (lhs rule) tree))

Otherwise, apply-rule should return tree itself. Test examples like

18: Recursion on Trees 125

(apply-rule ’(I am depressed)
’((I am ?x) (Why are you ?x ?)))

(apply-rule ’(Man Socrates)
’((Man ?x) (Mortal ?x)))

Add apply-rule to your match file.

18.28 (p2) In your calculator file, which you last modified for Exercise 17.36,
define the function prefix to take an infix arithmetic expression whose
only operators are +, -, *, and /, and return the expression in Cambridge
Prefix notation. Assume expressions that are atoms or lists of fewer than
three members needn’t be altered. (Hint: Use enclose-expression,
but make sure that every time it is called, the expression has had its
first term enclosed.)

18.29 (p2) Again revise the functions in your calculator file so that prefix
can take an arithmetic expression including any of the operators +, -,
*, /, or ^.

CHAPTER 19

THE EVALUATOR

I have said that a form is a Lisp object intended to be evaluated and that a
list form must begin with a function name. We have now had practice writing
functions that build and return lists. If the list returned by such a function
were a form, could we somehow evaluate it? What normally happens to such
a returned list? Either it is printed by the Lisp listener, or it is returned to
some function that passes it as an argument to some other function where it
is bound to a variable. If the Lisp listener prints a form, we can just type it
back as the next line. Since Lisp evaluates and prints the value of every form
we type in, this will cause Lisp to evaluate a form it has just built. What
if a variable inside a function is bound to a form? To evaluate it, we would
need to pass it to some evaluator. Lisp obviously has such an evaluator, and,
marvelously enough, it lets us use it.

I say “marvelously enough” because there is great power in programmers’
having the ability to use the evaluator of the programming language they are
using. Given that, and the ability to write programs that build source code of
that programming language, we can write a program that “writes” and “runs”
its own programs! Lisp programs (functions) can obviously build Lisp source
code (the source code just consists of Lisp lists), so Lisp programmers have
this power. We can use it, if we want, to extend Lisp into a completely
different programming language.

Lisp’s evaluator is the function eval, a function of one argument. It gets
its single argument evaluated, and it evaluates it one more time and returns
that value. For example:

> (eval 5)

127

128 II: PROGRAMMING IN PURE LISP

5
> (eval ’’a)
A
> (eval ’(car ’(a)))
A
> (eval ’(cons ’a ’(b c)))
(A B C)
> (eval (list (second ’(+ - * /)) 5 4 3))
-2

Normally, when we type a list to the Lisp listener or include one in a
function definition, we have a choice of two extremes: if we quote the list,
none of its members will be evaluated; if we don’t quote it, each of its members
except the first will be evaluated and the list itself will be evaluated. These
extremes are illustrated in the two interactions below:

> ’(cons pi (list "are" "squared"))
(CONS PI (LIST "are" "squared"))
> (cons pi (list "are" "squared"))
(3.1415926535897936d0 "are" "squared")

What if, however, we want some of the members of the list to be evaluated
and other members not to be? One way of doing this is to use list to
construct the list, quote the members we don’t want evaluated, and not quote
the members we do want evaluated. Another way is to quote all members,
but wrap a call to eval around those members we want evaluated. So, for
example:

> (list ’cons pi ’(list "are" "squared"))
(CONS 3.1415926535897936d0 (LIST "are" "squared"))
> (list ’cons (eval ’pi) ’(list "are" "squared"))
(CONS 3.1415926535897936d0 (LIST "are" "squared"))

A more convenient way of doing this is to use the Common Lisp
backquote character. This is the single quote character on your keyboard
other than the one you have been using for the quote character. In this text,
the backquote character will look like ‘, whereas the regular quote character
looks like ’. The backquote works just like the quote, except that if you
backquote a tree, any subtree, no matter how deep, that is preceded by a
comma is evaluated. For example:

> ‘(cons ,pi (list "are" "squared"))
(CONS 3.1415926535897936d0 (LIST "are" "squared"))
> ‘(cons pi ,(list "are" "squared"))
(CONS PI ("are" "squared"))
> ‘("me" ("and" ,(list "my" "shadow")))
("me" ("and" ("my" "shadow")))

19: The Evaluator 129

If the comma is followed by @, then what comes after must evaluate to a list,
and it is “spliced” into the outer list. For example:

> ‘(cons pi ,@(list "are" "squared"))
(CONS PI "are" "squared")
> ‘("me" ("and" ,@(list "my" "shadow")))
("me" ("and" "my" "shadow"))

We will be using the backquote in a function definition below.
To get an idea of how to use eval, we will look at how the equivalent of

infinite lists can be constructed using the technique known as lazy evaluation.
For example, say we want to have a list of all the natural numbers. Since that
is an infinite list, and we can’t really construct it, instead we will construct a
list containing a few natural numbers and a “promise” to construct the rest.
A promise will look like a list whose first member is the keyword :promise
(see page 102 if you’ve forgotten about keywords) and whose rest is a form
that will evaluate to some more of the list, again ending with a promise. For
example, the function natural-numbers-from will return an infinite list of
natural numbers, consisting of just one natural number and a promise of the
rest:

(defun natural-numbers-from (n)
"Returns an infinite list of the natural numbers
starting from N using the lazy evaluation technique."

(check-type n integer)
‘(,n :promise natural-numbers-from ,(1+ n)))

Some lists generated by this function are

> (natural-numbers-from 0)
(0 :PROMISE NATURAL-NUMBERS-FROM 1)
> (natural-numbers-from 5)
(5 :PROMISE NATURAL-NUMBERS-FROM 6)

To use these lists, we need to write the functions lazy-first and lazy-rest.
These functions will act like first and rest unless they bump into the key-
word :promise, in which case they will redeem the promise once before doing
their usual thing:

(defun lazy-first (list)
"Returns the first member of LIST,
redeeming a promise if necessary."

(check-type list list)
(if (eql (first list) :promise)

(first (eval (rest list)))
(first list)))

130 II: PROGRAMMING IN PURE LISP

(defun lazy-rest (list)
"Returns the rest of the LIST,
redeeming a promise if necessary."

(check-type list list)
(if (eql (first list) :promise)

(rest (eval (rest list)))
(rest list)))

A few examples may clarify this:

> (lazy-first (natural-numbers-from 0))
0
> (lazy-rest (lazy-rest (natural-numbers-from 0)))
(:PROMISE NATURAL-NUMBERS-FROM 2)
> (lazy-first

(lazy-rest (lazy-rest (natural-numbers-from 0))))
2

The name “lazy evaluation” comes from the fact that only those members of
the list that are actually accessed are computed.

For a final example of using eval, consider the function prefix you have
stored in the file named calculator. The value of

(prefix ’(7 + 12 / 4 - 2 * 3))

is (- (+ 7 (/ 12 4)) (* 2 3)). We could easily define the function compute
to compute arithmetic expressions written in normal syntax as follows:

(defun compute (expr)
"Returns the value of the arithmetic expression EXPR.
EXPR is to be a list containing an expression
in normal, infix notation."

(check-type expr list)
(eval (prefix expr)))

The value of (compute ’(7 + 12 / 4 - 2 * 3)) should then be 4.

Exercises

Do the exercises of this chapter in the package ch19 except where otherwise
instructed.

19.1 (d) Evaluate (cons ’first ’(’(a))). Then type the value back to
the Lisp listener exactly as it printed it to you.

19: The Evaluator 131

19.2 (r) Have LISP evaluate

a. (eval 5)

b. (eval a)

c. (eval ’a)

d. (eval ’’a)

e. (eval (first (a)))

f. (eval (first ’(a)))

g. (eval ’(first (a)))

h. (eval ’(first ’(a)))

i. (eval (cons ’first ’((a))))

j. (eval (cons ’first ’(’(a))))

19.3 (r) Try for yourself all the examples of using backquote shown in this
chapter.

19.4 (r) Define natural-numbers-from as shown in this chapter.
Check the values of

(natural-numbers-from 0)
and
(natural-numbers-from 5).

19.5 (r) Define lazy-first and lazy-rest as shown in this chapter. Check
the values of

(lazy-first (natural-numbers-from 0))
(lazy-rest (lazy-rest (natural-numbers-from 0)))
and
(lazy-first
(lazy-rest (lazy-rest (natural-numbers-from 0))))

19.6 (i) Define (lazy-nth n list) to return the nth member of the list,
redeeming promises where necessary. Compare this with nth (Exer-
cise 16.12). Check the value of

(lazy-nth 15 (natural-numbers-from 0))

To check that n is a positive integer, you can use

(check-type n (and integer (satisfies plusp)))

132 II: PROGRAMMING IN PURE LISP

19.7 (d) The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, . . . , where
each number after the first two is the sum of the previous two numbers.
A general Fibonacci sequence may be generated from any two numbers n
and m and is the sequence n, m, n+m, n+2m, 2n+3m, . . . , where again
each number after the first is the sum of the previous two. Define the
function (fibonacci-from n m) to return the infinite list of Fibonacci
numbers generated from n and m using the technique of lazy evaluation.
Using lazy-nth, check that the seventh Fibonacci number is 8 and that
the twentieth is 4,181.

19.8 (d) Define the function (relatively-prime n integers) where n is a
positive integer and integers is a list of positive integers, to return False
if (= (mod n i) 0) for any integer i in others and True otherwise. (
(mod n m) is the remainder after dividing n by m.)

19.9 (d) Using relatively-prime, define the function (primes-from n oth-
ers), where n is a positive integer and others is a list of all primes less
than n, to return an infinite list of prime numbers equal to or greater
than n, using the technique of lazy evaluation. (Hint: If (relatively-prime
n others), then n is the first prime on the desired list; otherwise the list
is generated by (primes-from (1+ n) others).)

19.10 (p2) Define compute as in this chapter, and store it on the file named
calculator. Check that

(compute ’(7 + 12 / 4 - 2 * 3))

evaluates to 4.

19.11 (p2) Modify the functions in your calculator file so that

(prefix ’(((5)))) = 5
(prefix ’((5 + 3) / 4)) = (/ (+ 5 3) 4)
(prefix ’(4 * (10 - 7))) = (* 4 (- 10 7))
(prefix ’(2 ^ (5 + 4) * 3)) = (* (^ 2 (+ 5 4)) 3)

19.12 (p2) Modify your prefix function so that

(compute ’(2 ^ 10 - 24))

evaluates to 1000.

19.13 (p2) Modify the functions in your calculator file to handle unary +
and unary -.

19: The Evaluator 133

19.14 (p2) The Common Lisp function (fboundp s) returns True if the sym-
bol s is the name of a defined function. Modify the functions in your
calculator file so that if the first member of the list given to prefix is
the name of a Lisp function or if the first member of any sublist of that
list is the name of a Lisp function, that list or sublist is not modified.

19.15 (d) Redo Exercise 4.17 using compute.

19.16 (p2) Redo Exercise 11.4 using compute. Store discrim and
quad-roots in the file calculator.

CHAPTER 20

FUNCTIONS WITH
ARBITRARY NUMBERS OF
ARGUMENTS

In Chapter 19, we defined compute so that we could use (compute ’(7 +
12 / 4 - 2 * 3)) instead of (- (+ 7 (/ 12 4))(* 2 3)). This is an im-
provement, but it would be even better if we could use the form (compute 7
+ 12 / 4 - 2 * 3). There are two problems here. First, this would require
compute to be a function with an arbitrary number of arguments. (As de-
fined in Chapter 19, compute is a function of one argument.) Although the
form shown here gives compute nine arguments (compute is the first element
of a ten-element list), we sometimes would want to evaluate something as
simple as (compute 7 + 3), where compute is given three arguments. All
the functions we have defined so far have a fixed number of arguments. The
second problem is that compute, as used here, must not have its arguments
evaluated. Although there is no problem evaluating 7 and 12 (they evaluate
to themselves), +, /, -, and * are also arguments, and they are not bound to
any values. Moreover, we don’t want to evaluate them; prefix must examine
them as is. Every function we’ve defined so far gets its arguments evaluated.

We will discuss how to solve the first of these two problems in this chapter.
We will discuss the second in Chapter 23. In this chapter, our goal for compute
will be to be able to use forms such as (compute 7 ’+ 12 ’/ 4 ’- 2 ’* 3)
and (compute 7 ’+ 3).

We have already discussed and used functions that have arbitrary numbers

135

136 II: PROGRAMMING IN PURE LISP

of arguments. They were all functions already provided in Common Lisp,
such as +, =, list, and, and cond. To define your own function to take
an arbitrary number of arguments, add to the end of the list of lambda
variables the lambda-list keyword &rest and follow it by another lambda
variable of your own choosing. This last lambda variable is referred to as a
rest parameter. After the previous lambda variables (if any) are bound to
their corresponding actual arguments, the rest parameter is bound to a list of
the remaining actual arguments. If there are no other lambda variables before
&rest, the rest parameter is bound to a list of all the actual arguments. Notice
this means that if there is only a rest parameter, the function may have zero
or any number of arguments, whereas if there are n regular lambda variables
and a rest parameter, the function may have n or more arguments.

The simplest example of a function with a rest parameter is the definition
of list:

(defun list (&rest objects)
"Returns a list of all its arguments
in the given order."

objects)

Here, objects is the rest parameter, and there are no other lambda variables.
So when list is called—for example, when (list ’a ’b ’c) is evaluated—
objects is bound to a list of the arguments (evaluated, of course). Since
objects is the form in the function definition, list returns what objects
is bound to—the list of arguments. Thus, this list behaves exactly like the
lisp:list you have been using.

Simple examples of functions that require one or more arguments, and that
therefore are defined with one regular lambda variable and a rest parameter,
are the arithmetic comparison functions <, <=, >, and >=. As an example,
we will define <=, which we defined on page 74 as a function of exactly two
arguments. There we assumed that < and = were already defined. Here we
will assume only that - and minusp are defined. (minusp n) is True if the
number n is less than zero and False if it isn’t. It is often convenient when
defining a function of an arbitrary number of arguments to first define a
version that takes two arguments. For <=, it’s convenient to first define a
two-argument greater-than function:

(defun greaterp (x y)
"Returns T if the number X is greater than the number Y;
NIL otherwise."

(check-type x number)
(check-type y number)
(minusp (- y x)))

We can now define <= as

20: Functions with Arbitrary Numbers of Arguments 137

(defun <= (x &rest numbers)
"Returns T if x is less than or equal to the first
number in the list NUMBERS, and each number in that
list is less than or equal to the next;
NIL otherwise."

(cond ((null numbers) t)
((greaterp x (first numbers)) nil)
(t (eval ‘(<= ,@numbers)))))

The definition of compute that I said was the goal of this chapter is

(defun compute (&rest expr)
"Returns the value of the arithmetic expression EXPR.
EXPR is to be a list containing an expression
in normal, infix notation,
except that operators must be quoted."

(check-type expr list)
(eval (prefix expr)))

Compare this definition with the one in Chapter 19.

Exercises

Do the exercises of this chapter in the package ch20 except where otherwise
instructed.

20.1 (r) Shadow lisp:list and define list as shown in this chapter. Test
it. How does it compare with lisp:list?

20.2 (r) Shadow lisp:<= and define greaterp and <= as shown in this chap-
ter. Test them and compare ch20::<= with lisp:<=.

20.3 (p2) Redefine the function compute in your calculator file as shown
in this chapter and test it.

20.4 (d) Redo Exercise 4.17 using the latest version of compute.

20.5 (p2) Redefine the functions discrim and quad-roots in your calculator
file to use the newest version of compute and test them. Remember that
every one of the arbitrary number of compute’s arguments will be eval-
uated.

CHAPTER 21

MAPPING FUNCTIONS

Occasionally, we want to write a function that takes a list and returns a list
just like the old one except that some operation has been performed on every
element. For example, consider using a list of numbers to represent a vector
and writing a function to add 1 to every element of the vector.1 We could do
this as follows:

(defun scalar-add1 (vector)
"VECTOR is a list of numbers.
Returns a list just like it,
except that each number in it is incremented by 1."

(check-type vector list)
(typecase vector
(null ’())
(cons (cons (1+ (first vector))

(scalar-add1 (rest vector))))))

The only trouble with this definition is that it is not clear that the same
operation is being performed on every element of the list with no possibility of
skipping an element or stopping early. It would be clearer if we could simply
say “add 1 to every element.” Assuming we had a function apply-to-each
that took a function and a list and returned a list of the results of applying
the function to each element of the list, we could define scalar-add1 as

1Common Lisp actually has an array data type, but using lists to represent
arrays provides nice examples for this chapter.

139

140 II: PROGRAMMING IN PURE LISP

(defun scalar-add1 (vector)
"VECTOR is a list of numbers.
Returns a list just like it,
except that each number in it is incremented by 1."

(check-type vector list)
(apply-to-each The function whose name is 1+ vector))

That is much clearer. However, we must discuss the Common Lisp version
of The function whose name is 1+.

In Common Lisp, functions form their own data type of objects. When
we evaluate a form like (defun fn ...), the effect is to create a new function
object and associate it with the symbol fn so that fn becomes the name of
the newly created function. The Common Lisp function symbol-function
takes a symbol that names a function and returns the function it names,
just as symbol-name returns the name of the symbol. So, one way to ex-
press The function whose name is 1+ is (symbol-function ’1+). However,
a more general technique is to use the special form function. function is a
special form (as is quote) that takes an unevaluated Lisp object and tries to
coerce it into a function object. If successful, it returns that function; other-
wise it produces an error. In particular, if its argument is a symbol that names
a function, function returns the function that the symbol names. Thus, an-
other way to express The function whose name is 1+ is (function 1+). Fi-
nally, just as (quote a) may be written as
’a, (function fn) may be written as #’fn. So the ultimate way,
and the way normally used by Common Lispers, to express
The function whose name is 1+ is #’1+.2 So our next version of
scalar-add1 is

(defun scalar-add1 (vector)
"VECTOR is a list of numbers.
Returns a list just like it,
except that each number in it is incremented by 1."

(check-type vector list)
(apply-to-each #’1+ vector))

Common Lisp already has a function like apply-to-each called mapcar.
The name is a concatenation of “map” and “car.” In mathematics, a map
of one set onto another is a correspondence between the elements of each
set. mapcar takes a function and a list, and produces another list such that
the function forms the correspondence between the elements of the two lists.
car is the original Lisp name for the first function, and, as you can see by

2This discussion follows the new Common Lisp standard. Current implementa-
tions may not be as strict about what a function object is, but they allow the use
of function and #’ as described, and Lispers should get used to using them.

21: Mapping Functions 141

looking at the first version of scalar-add1 above, mapcar replaces a recursion
in which the function is always applied to the first member (the car) of the
list. It is useful to think of mapcar as implementing a parallel control structure
in which each member of the argument list is mapped into a member of the
result list in parallel. Our final version of scalar-add1 is thus

(defun scalar-add1 (vector)
"VECTOR is a list of numbers.
Returns a list just like it,
except that each number in it is incremented by 1."

(check-type vector list)
(mapcar #’1+ vector))

What if the function we want to map down a list takes more than one
argument? We will consider two cases: the case where only one argument
varies and the case where all the arguments vary. As an example of the first
case, consider the function (subst* new old l) defined in Exercise 17.12.
We can rephrase what subst* does: apply to each element of l a function
that returns new if the element is eql to old but returns the element itself
otherwise. This function takes only one argument, but must use the values
of new and old. We can do this by using closures of lambda expressions.

A lambda expression is a list of the form (lambda lambda-list form), where
lambda-list is just like the list of lambda variables (possibly including a rest
parameter) provided to defun, and form is any Lisp object that can be eval-
uated. A lambda expression can be used as the first member of a list form,
and it acts just as if some function fn were defined as (defun fn lambda-list
form) and fn were the first member of the list form. For example:

> ((lambda (x y) (+ x y))
4 5)

9
> ((lambda (new old elt) (if (eql old elt) new elt))

’a ’x ’b)
B
> ((lambda (new old elt) (if (eql old elt) new elt))

’a ’x ’x)
A

A closure is a kind of function object in which a free variable is bound to
the value it was given in some outer environment. A closure can be created
by the function special form applied to a lambda expression. For example,
in the lambda expression

(lambda (elt) (if (eql old elt) new elt))

142 II: PROGRAMMING IN PURE LISP

the variables old and new are free. The function #’(lambda (elt) (if (eql
old elt) new elt)), is a closure in which old and new have the values
they were bound to in the environment surrounding the lambda expression.
Of course, if the closure is made at the top level, the free variables will be
unbound in the outer environment, but if the closure is made within a function
body, the free variables may have values, especially if they themselves are
lambda variables of the function. For example, subst* may be defined as

(defun subst* (new old l)
"Returns a list like L,
with every member EQL to OLD replaced by NEW."

(check-type l list)
(check-type new util:element)
(check-type old util:element)
(mapcar #’(lambda (elt)

(if (eql old elt) new
elt))

l))

The closure will actually be created each time subst* is called. In each case,
new and old will be bound to the first and second actual arguments of subst*.
Then the closure will be formed with new and old bound to those values, and
this closure will be applied to each member of the list l.

Common Lisp’s mapcar may be given one or any number of lists, as if it
were defined as

(defun mapcar (function list &rest more-lists) ...)

It must be given as many lists as the number of arguments the function takes.
The lists are taken to be a list of first arguments, a list of second arguments,
and so on. The function is applied to the first of each list, the second of each
list, and so on. For example:

> (mapcar #’cons ’(a c e g) ’((b) (d) (f) (h)))
((A B) (C D) (E F) (G H))

If the lists are of different lengths, the result list will be of the same length as
the shortest list. The remaining members of the longer lists will be ignored:

> (mapcar #’+ ’(1 2 3 4) ’(5 6 7) ’(8 9 10 11 12 13 14))
(14 17 20)

Exercises

Do the exercises of this chapter in the package ch21 except where otherwise
instructed.

21: Mapping Functions 143

21.1 (r) Define scalar-add1 according to the first version in this chapter.
Test it.

21.2 (r) Redefine scalar-add1 using mapcar. Test it.

21.3 (r) Check Lisp’s values of

((lambda (x y) (+ x y)) 4 5)
((lambda (new old elt) (if (eql old elt) new elt))
’a ’x ’b)

and

((lambda (new old elt) (if (eql old elt) new elt))
’a ’x ’x)

21.4 (r) Define subst* as in this chapter. Test it.

21.5 (d) Using mapcar, define (scalar-plus n vector) to return the results
of adding the number n to every element of the list vector.

21.6 (d) Using mapcar, define (scalar-times n vector) to return the results
of multiplying every element of the list vector by the number N.

21.7 (d) Define copy (see page 97) using mapcar. Make sure you check that
a copy of a list is equal to, but not eql to the original. (Hint: Consider
the identity function you learned about in Exercise 17.3.)

21.8 (d) If we consider vector1 to be a column of n elements and vector2
to be a row of m elements, the product of the two vectors is a matrix
of n rows and m columns whose ith row is each element of vector2
multiplied by the ith element of vector1. A matrix can be represented
as a list of rows, each of which is a list. For example, the product of the
column (1 2) and the row (3 4 5) would be the matrix ((3 4 5) (6
8 10)). Define (vector-product vector1 vector2) to be the product
of the column vector vector1 and the row vector vector2 as described
here.

21.9 (p2) Redefine the function prefix in your calculator file so that if the
first member of a list given to prefix is the name of a Lisp function,
the arguments of that function are converted from infix to Cambridge
Prefix form, if necessary. Remember that the first member of an infix
expression could be a unary + or -.

21.10 (p2) Redefine the function discrim in your calculator file to take
advantage of your revised prefix.

CHAPTER 22

THE APPLICATOR

In Chapter 19, we looked at eval. It is a function of one argument that gets
its argument evaluated and evaluates it again. eval is the heart of lisp, but
it is sometimes inconvenient to use.

Recall that on page 98, we defined (append l1 l2) to return the concate-
nation of the lists l1 and l2. That is, append returns a list consisting of the
members of l1 followed by the members of l2. The function lisp:append
actually takes an arbitrary number of list arguments and concatenates them
all together. Let’s see how we could define that version of append. As usual,
we will first define a two-argument append and use that in our definition of
our final append. Let’s call the append that takes two arguments append2
and define it as we defined append on page 98:

(defun append2 (l1 l2)
"Returns a list consisting of the members of L1
followed by the members of L2."

(check-type l1 list)
(check-type l2 list)
(if (null l1) l2

(cons (first l1) (append2 (rest l1) l2))))

To plan our definition of append, notice the following facts about how
lisp:appendworks: lisp:append of no arguments evaluates to (), lisp:append
of one argument evaluates to its argument unchanged, and lisp:append of
more than one argument copies all its argument lists but the last. So a plan
for writing append is as follows: let lists be a list of the argument lists; if

145

146 II: PROGRAMMING IN PURE LISP

lists is empty, return (); if lists has just one list in it, return that list;
otherwise, return the concatenation (using append2) of (first lists) with
the concatenation (using append) of all the lists in (rest lists). A first
attempt at defining append is

(defun append (&rest lists)
"Returns a list whose members are the concatenation of
the members of the lists in LISTS in the order given."

(cond ((null lists) ’())
((null (rest lists)) (first lists))
(t (append2 (first lists)

(append (rest lists))))))

That’s close, but wrong! The form (append (rest lists)) calls append
with one argument that is a list of lists, rather than with zero or more argu-
ments each of which is a list. We could, of course, define a help function that
takes one list of lists and returns the concatenation of them, but that would
be an overabundance of concatenators. What we really want is to evaluate
a form with append as its first member and the rest of the lists as its rest.
It would seem that we could do this by changing (append (rest lists))
to (eval ‘(append ,@(rest lists))). However, there is a slight problem.
(rest lists) is not a list of all but the first argument forms originally used
in the call to append, but a list of all but the first actual arguments. If the
original call were

(append ’(a b c) ’(d e) ’(f g h))

‘(append ,@(rest lists)) would be (append (d e) (f g h)),
and evaluating this would require evaluating (d e) which would involve a
call to the undefined function d. Instead, we must quote each element of
(rest lists). That is, we must produce a list just like (rest lists) but
in which each element list is replaced by ’list (which, remember, is actu-
ally the list (quote list)). We can do this by

(mapcar #’(lambda (l) (list ’quote l)) (rest lists))

So this version of append is

(defun append (&rest lists)
"Returns a list whose members are the concatenation of
the members of the lists in LISTS in the order given."

(cond ((null lists) ’())
((null (rest lists)) (first lists))
(t (append2

(first lists)
(eval

22: The Applicator 147

‘(append ,@(mapcar
#’(lambda (l) (list ’quote l))
(rest lists))))))))

This works, but Lisp has a much easier way. Instead of any form like

(eval ‘(fn ,@(mapcar #’(lambda (l) (list ’quote l))
arguments)))

we can use (apply fn arguments). apply is a function of two arguments.
The first must be a function object or a symbol that names a function. The
second must be (that is, must evaluate to) a list of arguments for the function.
apply applies the function to the arguments and returns the value. Back on
page 15, I said that the value of a list is the value obtained by applying the
function named by the first member of the list to the values of the other
members of the list. apply is the Lisp function that applies functions to
arguments. (+ 12 4) evaluates to 16, as does (apply #’+ ’(12 4)).

Our final version of append is

(defun append (&rest lists)
"Returns a list whose members are the concatenation of
the members of the lists in LISTS in the order given."

(cond ((null lists) ’())
((null (rest lists)) (first lists))
(t (append2 (first lists)

(apply #’append (rest lists))))))

apply is easy to use when you have a list of all the arguments. If you
have each argument separately, funcall is often easier to use. funcall takes
one or more arguments. The first must be a function object or a symbol
that names a function. The others are arguments for the function. funcall
applies the function to the arguments and returns the result. Compare:

> (apply #’cons ’(a (b)))
(A B)
> (funcall #’cons ’a ’(b))
(A B)

Of course, if you have the function and the arguments separately, why not
just use a normal form with the function as the first member of the list, such
as

> (cons ’a ’(b))
(A B)

The answer is that funcall allows you to compute the function,
whereas the first member of a list form must be a lambda expression or a
symbol that names a function. With funcall, you can do things like

148 II: PROGRAMMING IN PURE LISP

> (funcall (third ’(first rest cons)) ’a ’(b))
(A B)

In Common Lisp, apply is actually midway between funcall and apply
as we have so far described it. apply can take one or more arguments, not
just two. The first and last arguments are as we have described them so
far. However the intermediate arguments can be initial arguments for the
functions, as for funcall. For example:

> (funcall #’+ 1 2 3 4)
10
> (apply #’+ ’(1 2 3 4))
10
> (apply #’+ 1 ’(2 3 4))
10
> (apply #’+ 1 2 ’(3 4))
10
> (apply #’+ 1 2 3 ’(4))
10
> (apply #’+ 1 2 3 4 ’())
10

Let’s consider defining vector-sum to take an arbitrary number of vectors
and return their sum. All the vectors should be the same length, and the
ith element of the result should be the sum of the ith elements of all the
argument vectors. Notice that we can get the result we want by evaluating a
form like (mapcar #’+ vector1 . . . vectorn) but the vectors will be gathered
in the rest parameter of vector-sum as a list. The solution is

(defun vector-sum (&rest vectors)
"Returns a vector that is the sum of
all the argument vectors."

(apply #’mapcar #’+ vectors))

Notice that #’+ is the first argument of mapcar and that vectors is a list of
the rest.

Exercises

Do the exercises of this chapter in the package ch22 except where otherwise
instructed.

22.1 (r) Define append2 as shown in this chapter and test it.

22: The Applicator 149

22.2 (r) Verify that lisp:append of no arguments evaluates to (), lisp:append
of one argument evaluates to its argument
unchanged, and lisp:append of more than one argument copies all
its argument lists but the last.

22.3 (r) Shadow lisp:append and define ch22::append the way it is done
the first time in this chapter. Test it until you understand the error.

22.4 (r) Redefine append to use (eval ‘(append ,@(rest lists))). Test
it.

22.5 (r) Redefine append to use

(mapcar #’(lambda (l) (list ’quote l)) (rest lists))

Test this version.

22.6 (r) Finally, redefine append using apply and test this version.

22.7 (r) Try evaluating (+ 12 4), (eval (cons ’+ ’(12 4))), and (apply
’+ ’(12 4)).

22.8 (d) Define the function xprod of Exercise 17.28, using mapcar and
apply.

22.9 (d) Redefine depth from page 120 to use apply and mapcar. (Note
that lisp:max can take an arbitrary number of arguments.) Test it.
Compare it with the version on page 120.

22.10 (r) Check and compare Lisp’s value of

(apply #’cons ’(a (b)))
(funcall #’cons ’a ’(b))
(cons ’a ’(b))
((third ’(first rest cons)) ’a ’(b))
(funcall (third ’(first rest cons)) ’a ’(b))
(funcall #’+ 1 2 3 4)
(apply #’+ ’(1 2 3 4))
(apply #’+ 1 ’(2 3 4))
(apply #’+ 1 2 ’(3 4))
(apply #’+ 1 2 3 ’(4))
(apply #’+ 1 2 3 4 ’())

22.11 (r) Define vector-sum as in this chapter and test it.

150 II: PROGRAMMING IN PURE LISP

22.12 (u) In Common Lisp, if mapcar’s lists are of different lengths, mapcar
stops as soon as the shortest is exhausted. A different solution would
be to consider the shorter lists to be extended, by repetition of the last
member, until all lists have the same length as the longest. Call this
version mapcar-ext. Using mapcar-ext, scalar-plus of Exercise 21.5
could be defined as

(defun scalar-plus (n vector)
"Returns a copy of the vector VECTOR,
with every element incremented by N."
(mapcar-ext #’+ (list n) vector))

Define mapcar-ext as suggested here and add it, as an external symbol,
to your util file. (Hints: I used two help functions, of which one knows
the length of the longest list and the other is a special-purpose rest
function. In writing these three functions, I used mapcar, apply, max,
length, and some other functions.)

22.13 (d) Using your mapcar-ext define and test scalar-plus as shown
above.

CHAPTER 23

MACROS

At the beginning of Chapter 20, I identified two problems that keep us from
defining a better version of compute. One was the need to define a function
that takes an arbitrary number of arguments; that problem was solved in that
chapter. The other problem was the need to define a function that gets its
arguments unevaluated. We will learn how to do that in this chapter.

As you should know by now, the basic operation of Common Lisp is to
evaluate a form. The Common Lisp listener reads an S-expression, constructs
the form it expresses, evaluates the form, and prints a representation of the
value. Applying a function involves binding the formal parameters to the
actual arguments and evaluating the form that is the body of the function
definition. We have also seen that Common Lisp has functionlike objects
called special forms that act like functions but get their arguments unevalu-
ated. We have seen the two special forms quote and function, and actually
if is also a special form, although I have not previously mentioned that fact.
We cannot define our own special forms, but we can define macros, which are
another kind of functionlike object that get their arguments unevaluated.

Although a special form is different from a function in that it gets its
arguments unevaluated, it is like a function in that it returns a value. When
Common Lisp evaluates a list, if its first member is the name of a function
or of a special form, the value of the list is simply the value returned by the
function or the special form. Macros are like special forms in not getting their
arguments evaluated, but they are different from both special forms and from
functions in what they return. Instead of returning a simple value, a macro
returns a form that is automatically evaluated again by Common Lisp. That

151

152 II: PROGRAMMING IN PURE LISP

is, if Common Lisp goes to evaluate a list, and its first member is a symbol
that names a macro, Common Lisp “calls” the macro, the macro returns a
form, Common Lisp evaluates the form, and that value, finally, is the value
of the original list.

You can define a macro just as you define a function, except that you use
defmacro instead of defun. The two have the same syntax. Later we will
learn some facilities that defmacro has that defun doesn’t. So, for example,
let’s define a function and a macro that are almost identical:

> (defun pluslist-f (x y)
"Returns a list that represents
the sum of the numbers x and y."

(check-type x number)
(check-type y number)
‘(+ ,x ,y))

PLUSLIST-F
> (defmacro pluslist-m (x y)

"Returns the sum of the numbers x and y."
(check-type x number)
(check-type y number)
‘(+ ,x ,y))

PLUSLIST-M
> (pluslist-f 4 5)
(+ 4 5)
> (pluslist-m 4 5)
9

Notice that, whereas the value returned by the function is the value of the
form that calls the function, the value “returned” by the macro is evaluated
again before becoming the value of the form that called the macro. We say
that the macro returns a macro expansion, which is evaluated again by Com-
mon Lisp. A very significant point is that the macro expansion is evaluated
outside the environment of the macro definition. That is, when the expansion
of (pluslist-m 4 5) was being computed, x and y had values—namely, 4
and 5, respectively. However, when the expansion (+ 4 5) was being evalu-
ated, x and y no longer had values. The macro finishes when it returns its
expansion. Then the expansion is evaluated. To see the expansion returned
by a macro, give a form that calls a macro to the function macroexpand:

> (macroexpand ’(pluslist-m 4 5))
(+ 4 5)
T

The two lines following my call of macroexpand were the two values returned

23: Macros 153

by macroexpand.1 The first is the expansion of the argument form; the second
is True, indicating that the argument form was indeed a macro call. If the
argument form is not a macro call, the first value will be the form itself and
the second will be False:

> (macroexpand ’(pluslist-f 4 5))
(PLUSLIST-F 4 5)
NIL

Since the arguments of pluslist-m are numbers, it is not clear whether
pluslist-m is getting them evaluated or unevaluated. In fact, it is getting
them unevaluated, which will be clear in a definition of if that includes the
keywords then and else as dummies:

> (shadow ’if)
T
> (defmacro if

(condition then then-clause else else-clause)
"If CONDITION evaluates to True,
evaluates and returns THEN-CLAUSE,
otherwise evaluates and returns ELSE-CLAUSE."

‘(lisp:if ,condition ,then-clause ,else-clause))
IF
> (if t then ’yes else ’no)
YES
> (macroexpand ’(if t then ’yes else ’no))
(LISP:IF T (QUOTE YES) (QUOTE NO))
T

Notice that the five argument forms of if (including then and else) were not
evaluated. In particular, during the evaluation of the body of the definition
of if, then-clause was bound to the actual argument (quote yes) not to
the value of that form, which is yes.

The definition of if also illustrates the most common use of
macros—to define new Common Lisp forms as “syntactic sugar” for (vari-
ants of) old forms. In this way, we can eventually change the entire look of
Common Lisp itself. The use of macros merely as functions that get their
arguments unevaluated is actually a secondary use although this is the only
way a programmer can define such functions.

So, remembering that defmacro, like defun, can take rest parameters, we
can define the compute we desired in Chapter 20 as

1Common Lisp provides a facility that can be used to have a function return
more than one value, and several facilities for making use of such multiple values.
These facilities can safely be ignored by the novice Lisper, and we will not have a
chance to discuss them in this book.

154 II: PROGRAMMING IN PURE LISP

(defmacro compute (&rest expr)
"Returns the value of the arithmetic expression EXPR.
EXPR is to be a list containing an expression
in normal, infix notation."

(prefix expr))

A few final points about macros are important to remember:

• Macros are not functions and so cannot be used by mapcar, apply, or
funcall.

• Macro calls are expanded during compilation, so macro definitions must
precede their use in files, and if you redefine a macro, you must recompile
the functions that use it.

• Some implementations of Common Lisp expand macro calls
when source files are loaded. In these implementations, macros can-
not be traced, macro definitions must precede their use in files, and if
you redefine a macro, you must reload the functions that use it.

• Some implementations of Common Lisp replace a macro form by its
expansion in an interpreted (uncompiled) function the first time the
macro form is evaluated. In these implementations, a traced macro
will produce tracing output only when the macro is actually called,
not after its form has been replaced. If you redefine a macro in one
of these implementations, you must reload the functions that use it, if
you have already used those functions. Even if symbol-function shows
you function definitions, it may not be obvious that a replacement has
taken place because your Common Lisp may print the macro form even
though its been replaced.

Exercises

Do the exercises of this chapter in the package ch23 except where otherwise
instructed.

23.1 (r) Define pluslist-f and pluslist-m as shown in this chapter and
test them.

23.2 (r) Evaluate
(macroexpand ’(pluslist-m 4 5))
and
(macroexpand ’(pluslist-f 4 5)).

23.3 (i) Try evaluating (pluslist-m (+ 3 4) 5). Notice that, since a macro
gets its argument forms unevaluated, the check-type that we supplied
is too restrictive.

23: Macros 155

23.4 (i) Redefine pluslist-m without using any check-type, and try eval-
uating (pluslist-m (+ 3 4) 5) again. Also evaluate (macroexpand
’(pluslist-f (+ 3 4) 5)).

23.5 (r) Shadow lisp:if and define and test the if macro shown in this
chapter.

23.6 (p2) Redefine the function compute in your calculator file to be a
macro as shown in this chapter.

23.7 (d) Redo Exercise 4.17 using your latest version of compute.

23.8 (p2) Redefine the functions discrim and quad-roots in your calculator
file to use the newest version of compute, and test them.

23.9 (d) Shadow lisp:and and define your own ch23:and as a macro that
works exactly like lisp:and.

Part III

PROGRAMMING IN
IMPERATIVE LISP

CHAPTER 24

ASSIGNMENT

Up to now, everything we have done with Lisp has been done using what is
called “pure” Lisp. That is, with a few minor exceptions, we have used Lisp
as a pure applicative (or functional) programming language. In an applicative
programming language, the only thing one can do is apply functions to their
arguments and get back their values. Doing that does not change the environ-
ment of the programming system. After evaluating (cons ’a (rest ’(x b
c))), everything is the same as it would have been had we not done it. Some
ways we have seen for changing the environment have included defining a
function, turning tracing on or off, and changing packages with in-package.
Changing the environment is called side-effecting. Functions like defun and
in-package are used principally for their side effects rather than for their val-
ues. Although applicative programming has become more popular recently,
Lisp, or rather the pure subset of Lisp, was the first applicative programming
language.

Even though any program that can be written in any programming lan-
guage can be written in pure Lisp, Lispers often find the nonpure facilities of
Lisp helpful. These facilities are based on the facilities of imperative program-
ming languages. These languages have the statement as their basic structure,
instead of the form. Statements are orders to do something. That’s why these
languages are called imperative. The imperative features of Common Lisp
are the subject of Part III of this book.

The most basic imperative statement is the assignment statement, which
assigns a value to a variable. Lisp, of course, uses assignment functions rather
than assignment statements. Common Lisp has eight different assignment

159

160 III: PROGRAMMING IN IMPERATIVE LISP

functions: defconstant, defparameter, defvar, set, setq, psetq, setf,
and psetf.

(defconstant symbol value documentation) makes value the value of the
symbol and makes it illegal to give symbol any other value. documentation
is a string that describes what symbol is supposed to stand for; it is retriev-
able by (documentation symbol ’variable). defconstant is used to define
constants that never change and are, therefore, most often put into program
files before any macros or functions are defined. The symbol pi is a prede-
fined constant. If we wanted to define the constant e, the base of the natural
logarithms, we could do

> (defconstant e 2.6931471806d0
"The base of the natural logarithms")

E
> e
2.6931471806d0
> (documentation ’e ’variable)
"The base of the natural logarithms"

defparameter is like defconstant, except that trying to change the value
of the symbol does not cause an error. Presumably, however, parameters
remain unchanged during the run of a program and change only at the be-
ginning of a new run. defparameter forms typically appear in files after any
defconstant forms and before any macro or function definitions.

defvar is like defparameter, except that symbol ’s value is expected to
change during the run of the program; the value is only an initial value.
We refer to the symbol defined by defvar as a global variable because every
function in the same package can access it and change its value. defvar forms
typically appear in files after any defparameter forms and before any macro
or function definitions. A peculiar feature of defvar is that if the symbol
already has a value, defvar does not evaluate its value argument and does
not give the symbol a new value. This can lead to frustration: you load a file
with some defvar forms, test the program, which results in changes to the
values of the global variables, edit the program, and reload the file—the global
variables are not reinitialized to the values in the defvar forms, because they
already have values.

defconstant, defparameter, and defvar all are typically executed at
the top level of Lisp and are usually found in files, rather than being typed
interactively to the Lisp listener. The other five assignment functions set,
setq, psetq, setf, and psetf are most often found within function definitions
or are typed interactively to the Lisp listener. They should not be used as
top-level forms in files, except temporarily while debugging a file to avoid the
problems with defvar.

(set symbol value) evaluates both its arguments. The first argument
must evaluate to a symbol; the other can evaluate to any Lisp object. set

24: Assignment 161

returns the value of its second argument, but its main purpose is to bind the
symbol to that value.

> (set ’a ’b)
B
> a
B
> (set (third ’(a b c d)) (+ 5 3))
8
> c
8

set is actually not used very much.
(setq x y) is almost exactly equivalent to (set ’x y). The difference is

that set can be used to change the values of global variables and cannot be
used to change the values of lambda variables, whereas setq can be used to
change the value of any kind of variable.

setf is a macro. (setf x y) expands to (setq x y). However, setf is
a generalized setq that can be used in circumstances where setq cannot be
used. We will see some of these circumstances later. Older dialects of Lisp
did not have setf, and there is a controversy among users of Common Lisp.
Some believe that with setf available, setq should never be used again.
Others believe in using setq in all circumstances where setf would expand
into setq anyway. Although, as a longtime Lisper, I find myself using setq,
I basically agree with the first group and so will not use setq in this book
after this chapter. I recommend the same for you. If you never use setq, it
will not become a habit, and setf will seem perfectly natural.

setq and setf (but not set) can take an arbitrarily long sequence of
symbol value pairs. Each symbol is bound to the value that follows it, and
all the binding is done serially, so that the earlier symbols can be used in the
later value-forms. For example:

> (setq x0 1 x1 1 x2 (+ x1 x0) x3 (+ x2 x1) x4 (+ x3 x2))
5
> x3
3
> x4
5

A way to exchange the values of two variables is

> (setf temp x1 x1 x4 x4 temp)
1
> x1
5

162 III: PROGRAMMING IN IMPERATIVE LISP

> x4
1

psetq and psetf are exactly like setq and setf, respectively, except that
all the bindings are done in parallel. For example, another way to exchange
the values of two variables is

> (psetf x1 x4 x4 x1)
NIL
> x1
1
> x4
5

As we shall see, Common Lisp has a large and flexible enough set of
imperative constructs that none of the assignment functions need be used
very often, but understanding them provides a base for all the imperative
constructs.

Exercises

Do the exercises of this chapter in the package ch24 except where otherwise
instructed.

24.1 (r) Try typing the atom x to the Lisp listener. Does it have a value?

24.2 (r) Evaluate (set ’x (+ 5 3)). What value does set return? What
value does x have now?

24.3 (r) Evaluate (setq x ’y). What value does x have now?

24.4 (d) Evaluate (set x (+ 9 2)). What value does x have now? What
value does y have now?

24.5 (d) What is the value of (eval x)? Why?

24.6 (i) Do several parts of Exercise 8.7 again. Now do

(setq list ’(((a b) (c d) e) (f g) (h) i))

Now redo all of Exercise 8.7 by typing in forms such as

(first (first (first list)))

and

24: Assignment 163

(first (first (rest list)))

After each one, check that the top-level value of list hasn’t changed.

24.7 (r) Evaluate

(defconstant e 2.6931471806d0
"The base of the natural logarithms")

Then evaluate e. Now try to change e’s value with set or setf. You
shouldn’t be able to.

24.8 (p2) Modify your calculator file so that every occurrence of a quoted
operator or a quoted list of operators is replaced by an appropriately
named symbolic constant you define near the beginning of the file.

24.9 (p1) In your match file, define the function

(apply-rules tree rule-list)

to apply the first rule on the list RULE-LIST to TREE, the second rule
to the result of applying the first, and so on, and return the result of
applying the last rule to the results of the second-to-last.

24.10 (p1) In your match file, define the parameter *grammar-rules* to be
the following list:

(((john ?v ?n) ((n john) ?v ?n))
((?n1 loves ?n2) (?n1 (v loves) ?n2))
((?n ?v mary) (?n ?v (n mary)))
((?n1 (v ?v) (n ?n2)) (?n1 (vp (v ?v) (n ?n2))))
(((n ?n1) (vp ?v ?n2)) (s (n ?n1) (vp ?v ?n2))))

Test (apply-rules ’(John loves Mary) *grammar-rules*).
You have written a small, admittedly inflexible, parser of a tiny frag-
ment of English.

24.11 (r) Create a file named testvar in the test package. In it, define a
variable called count with an initial value of 0 and a function called
increment that, every time it is called, increments count by 1. Load
this file and test increment by calling it a few times; look at the value
of count after each call. Now reload the testvar file. Has count been
reinitialized? Get out of Lisp, back in, and load testvar again. What
is count now? You needn’t save testvar.

164 III: PROGRAMMING IN IMPERATIVE LISP

24.12 (r) Evaluate

(setf x0 1 x1 1 x2 (+ x1 x0)
x3 (+ x2 x1) x4 (+ x3 x2))

Check the value of each xi.

24.13 (r) Exchange the values of x1 and x4 with one call to setf.

24.14 (r) Exchange the values of x2 and x3 with one call to psetf and without
using a third variable.

CHAPTER 25

SCOPE AND EXTENT

Now that we have entered the world of imperative programming, we must
distinguish more carefully the notions of variables and symbols. Technically,
a variable is a complex object consisting of a name, a storage location, and
a value. In Common Lisp, symbols are used to name variables, just as they
are used to name functions. In the past, whenever we spoke of the “value
of a symbol,” we were just using a shorthand way of saying the “value of
the variable the symbol names.” As we shall see shortly, just as one symbol
can name both a function and a variable, a symbol can simultaneously name
several variables.

The scope of a variable is the spatiotemporal area of a program in which a
given variable has a given name. The extent of a variable is the spatiotemporal
area of a program in which a given variable has a given storage location.1 As
long as a variable has the same name and storage location, it is easy to change
its value; by using setf, for example.

What is meant by a Lisp program anyway? In standard programming
languages—such as Fortran, C, Pascal, Modula-2, and Basic—the notion of
a “program” is pretty easy to understand, but in Lisp, where one can spend
hours in the same Lisp run, loading various files and evaluating hundreds
of forms, it is easy to lose track of the concept. We should consider one
program to consist of everything that is done from the time one enters the
Common Lisp environment until the time one exits that environment. (If I
boot my Lisp Machine on a Monday and don’t turn it off or reboot it until

1“Storage location” should be taken abstractly. It does not necessarily mean a
particular addressable location in the computer’s random access memory.

165

166 III: PROGRAMMING IN IMPERATIVE LISP

a week and a half later, I have been running one program for all that week
and a half.) Textually, the “code” of that program consists of the entire
Common Lisp implementation, plus every file loaded in the course of the
run. The spatial area of a program is the text of the source code, beginning
with the Common Lisp implementation, continuing with everything you type
to the Lisp listener and including every file you load or that gets loaded
automatically. The temporal area of the program is the time from getting
into Lisp until getting out of it, and everything that happens in between, in
the order it happens. For example, if you type in the form (setf x 3), then
load some file, and then call some function defined in that file, the text of
the file is positioned spatially between the (setf x 3) form and the function
call form, and everything evaluated during the loading of the file happened
temporally after the setf and before the function call. (The load function
explicitly saves and restores the value of *package*, which is why, if you are
in one package and load a file that changes the package with in-package,
you are still in the original package after the file is loaded.)

Common Lisp uses lexical scope and dynamic extent. That is, only the
spatial dimension is relevant to issues of scope, and only the temporal dimen-
sion is relevant to issues of extent.

Variables are created by Common Lisp in several ways. One way is by
typing a symbol to the Lisp listener or by calling one of the assignment
functions at the top level. These create global variables—variables whose
scope and extent spread over the entire program (except for “holes” created
by shadowing; see below).

Another way a variable is created is by using a symbol in the lambda list
of a defun, defmacro, or lambda form. The scope of such a local variable is
the entire defun, defmacro, or lambda form (except where it is shadowed).
The extent of such a variable is from the time the function or macro is called
until the time that it returns. For example, consider the following spatial
section of a program:

(setf x 3)

(defun foo (x)
"Uses a local variable X."
x)

(defun bar ()
"Has no local variables."
x)

The global variable x occurs in the setf form and in the definition of bar. A
local variable x is created by being in the lambda list of the definition of foo.
This shadows the global x so that the x that occurs in foo’s body is the local
x. Although there are two variables, they are named by the same symbol.

25: Scope and Extent 167

If these three forms are evaluated (the order of evaluation doesn’t really
matter), the value 3 is stored in the storage location of the global x (we still
say that x is bound to 3), and the functions foo and bar are defined. We can
then call bar and see the value of the global x:

> (bar)
3

If we now call foo with an argument, 5 say, the local x will be given a storage
location, the value 5 will be stored there, and the body will be evaluated—
causing the value of the local x to be accessed and returned:

> (foo 5)
5

Now that foo has returned, there is no way to access the storage location
that was just used by the local x. If we call foo again, a new storage location
will be given to the local variable. One way to see this is by creating closures.
These are functions whose texts contain nonlocal variables, but that retain
the storage locations of those variables with particular values. For example,
we can create a series of functions similar to 1+, but that add different values:

> (defun x+function (x)
"Returns a function that will add X to its argument."
#’(lambda (n) (+ n x)))

X+FUNCTION

Notice that the n of the lambda form is local to that form (it is in its lambda
list), but the x there is nonlocal to it, although it is local to the defun form.
Every call of x+function will return a new function:

> (setf 2+ (x+function 2))
#<DTP-CLOSURE 13215132>

> (setf 5+ (x+function 5))
#<DTP-CLOSURE 13220200>

These two functions are the values of the global variables 2+ and 5+. There
are no symbols that name them, so we have to use funcall (or apply, but
funcall is easier) to call them:

> (funcall 2+ 5)
7
> (funcall 5+ 5)
10

168 III: PROGRAMMING IN IMPERATIVE LISP

Notice that the local variable x, whose scope is limited to the defun form
defining x+function, has bifurcated into two extents, one of which is in the
closure that is the value of 2+, the other of which is in the closure that is the
value of 5+, and both these extents are indefinite—they will last as long as
the closures last. Neither, however, is the same as that of the global x, which
remains as we left it:

> x
3

Exercises

Do the exercises of this chapter in the package ch25 except where otherwise
instructed.

25.1 (r) Try for yourself all the interactions of this chapter, noting the dif-
ferent global and local variables.

25.2 (r) Enter the definition

(defun testset (x)
(set ’x 5)
x)

Evaluate x, then (testset 7), and then x again. Notice that set
changed the value of the global x, not the local x.

25.3 (r) Redefine testset to be

(defun testset (x)
(setf x 7)
x)

Evaluate x, then (testset 9), and then x again. Notice that setf
changed the value of the local x, not the global x.

25.4 (i) Define the functions foo and bar as

(defun foo (x)
"Establishes a binding for X, and calls BAR."
(bar))

(defun bar ()
"Returns the value of the nonlocal X."
x)

25: Scope and Extent 169

Evaluate x and then evaluate (foo 11). Notice again that the x in
bar is the global x, not the local x created by foo’s lambda list. Older
versions of Lisp were dynamically scoped, so that if you called bar
directly from the listener, its x would be the global x, but if bar were
called from foo, as it was here, bar’s x would be foo’s.

25.5 (i) Create a file called test containing (setf x 3) as a top-level form,
along with the definitions of foo and bar as shown in Exercise 25.4.
Load the file and test it with the tests from Exercise 25.4.

25.6 (i) Compile the file test. (Review Chapter 12 if necessary.) Many
compilers will warn you that there may be something funny about the
xs in the definitions of foo and bar. You can explicitly tell the compiler
that you mean to do these strange things by adding declarations to the
function definitions right after the documentation strings. In this case,
we want to declare that we do not intend to use foo’s lambda variable
x in foo’s body. We can do this by changing the defun form to

(defun foo (x)
"Establishes a binding for X, and calls BAR."
(declare (ignore x))
(bar))

We also want to declare that we intend bar’s x to be nonlocal by chang-
ing its definition to

(defun bar ()
"Returns the value of the nonlocal X."
(declare (special x))
x)

Make these changes to your test file, compile it again, and test it again.
It should work as before, but this time the compiler shouldn’t complain.

25.7 (i) Change the declaration in the definition of foo in your test file to
(declare (special x)). Compile and test the file again. This time
you should find that the x in bar is the same as the x in foo. What you
did by declaring foo’s x to be special was to make it dynamically scoped.
Since bar’s x is also dynamically scoped, they are the same variable in
this circumstance. Now call bar directly from the listener. Now bar’s
x is dynamically made to be the same as the global x. You should use
special variables only when extraordinary circumstances demand it.

25.8 (i) Edit your test file to eliminate the declarations, change all occur-
rences of x to y, and change the setf form to a defvar. Load the file

170 III: PROGRAMMING IN IMPERATIVE LISP

and evaluate y and (foo 11). defvar proclaims its global variable to
be special. This is equivalent to declaring the variable to be special in
every function that uses the same symbol to name a variable.

CHAPTER 26

SEQUENCES

One way in which I have told less than the whole truth (for good pedagogical
reasons) in the discussion of Lisp so far concerns the topic of sequences of
forms. For example, in Chapter 10, I said that the function defun takes
four arguments—a function name, a list of variables, a documentation string,
and a form (and I have since added a declaration), and I said the same
about defmacro. In fact, that is not true. Actually, the body of a function
can be a sequence of one or more forms. When the function is called, after
binding the variables, the sequence of forms is evaluated one after the other in
order. The value of the last form in the sequence is the value returned by the
function call. The values of the previous forms in the sequence are ignored.
If the sequence consists of just one form, then what I have said before about
function evaluation still holds.

So let’s consider the general format of defun:

(defun fn varlist
doc-string declaration assertions
form1 . . . formn−1 formn)

When fn is called, the variables in varlist are given new storage locations
and are bound to the values of the actual arguments, form1 through formn

are evaluated, and the value of formn is returned. If the values of form1

through formn−1 are ignored, what good are they? If we are restricting
ourselves to pure, applicative Lisp, they are of no good, which is why I have
not mentioned this possibility until now. However, if form1 through formn−1

cause side effects, then these side effects will indeed occur.

171

172 III: PROGRAMMING IN IMPERATIVE LISP

The technique of lazy evaluation we looked at in Chapter 19 is very close to
the idea of generators. A generator is a closure that returns another element
of some computationally defined set each time it is called. A generator for
the natural numbers can be created by the function

(defun natural-numbers-from (n)
"Returns a generator function that will generate
all the natural numbers starting from N."

(check-type n integer)
(setf n (1- n))
#’(lambda ()

(setf n (1+ n))
n))

The first form in the body decrements n by 1 so that the generator will start
with the original n. The second form evaluates to a closure, which is returned.
That closure also has two forms in its body. The first increments n; the second
returns its new value. The variable n itself is retained from call to call of the
closure, as you have seen before. Let’s try this one out.

> (setf natnums (natural-numbers-from 0))
#<DTP-CLOSURE 2376060>

> (funcall natnums)
0
> (funcall natnums)
1
> (funcall natnums)
2

Another place where sequences are allowed is in cond. In Chapter 14, I
said that the form of a cond is (cond (p1 e1) ... (pn en)). Actually, each
ei can be a sequence of zero or more forms. That is, each cond “pair” is a
list of one or more forms. So let’s change terminology and say cond clause,
instead of cond pair. If the first form of a clause evaluates to NIL, the next
clause is considered. If the first form of a clause evaluates to any non-NIL
value, the rest of the forms of that clause are evaluated in order, and the
value of the last one is returned as the value of the cond. Values of earlier
forms in the clause are ignored; they are evaluated for effect only.

Early dialects of Lisp did not allow sequences as we have been discussing
them. To make up for it, they had a special form called progn. The form
of a progn is (progn form1 . . . formn). The formi’s are evaluated in order,
and the value of the last one is returned as the value of the progn. Common
Lisp retains progn, although the existence of sequences removes most need
of it.

26: Sequences 173

In general, a Lisp form returns the value of the last form actually evaluated
within it, but there are exceptions. For example, prog1 is like progn, but
after all the forms are evaluated, the value of the first one is returned. prog2
is also like progn except that the value of the second form is returned.

Exercises

Do the exercises of this chapter in the package ch26 except where otherwise
instructed.

26.1 (r) Define natural-numbers-from as shown in this chapter, and test
the generator it produces.

26.2 (d) Create and test a generator for the Fibonacci numbers. (See Exer-
cise 19.7.)

26.3 (d) Give x and y the top-level values of nil and origy, respectively,
and then evaluate

(cond ((null x))
((atom y) (setf y (list y)) ’done)
(y))

What was its value? Check the values of x and y. Now change x’s value
to origx and evaluate the cond form again. What is its value now?
What are the values of x and y now? Evaluate the same cond again.
What is its value now?

26.4 (d) Shadow progn and define your own version as a function. [Hint:
Use last (see page 62).] Test it by evaluating

(progn (setf x ’a) (setf y ’b) (setf z ’c))

and seeing what values x, y, and z have afterward.

26.5 (d) Shadow prog1 and prog2, and define your own versions. Test them
with the forms

(prog1 (setf x ’d) (setf y ’e) (setf z ’f))

and

(prog2 (setf x ’g) (setf y ’h) (setf z ’i))

Check the values of x, y, and z after evaluating each form.

174 III: PROGRAMMING IN IMPERATIVE LISP

26.6 (i) Using defvar, give the variable *stack* the initial value (). Then
define three side-effecting functions (push e), (top), and (pop). (push
e) should cons the value of e onto the front of *stack* and return
the new value of *stack*. (top) should return the first element
of *stack*. (pop) should return the first element of *stack* and
change *stack* to be its rest. Be sure push doesn’t cause e to be eval-
uated more than once. The table below should clarify what is wanted.

Form Value of form Value of *stack*
()

(push 23) (23) (23)
(push 40) (40 23) (40 23)
(top) 40 (40 23)
(pop) 40 (23)
(top) 23 (23)
(pop) 23 ()

26.7 (i) The body of a function can include defun forms, in which case
calling the function will result in the definition of other functions. If
the embedded defuns all have a lambda variable of the outer defun
as a free, nonlocal variable, then they can each access that variable,
but nothing outside that group of functions can access that variable.
Use this technique to redo Exercise 26.6. Specifically, define the func-
tion (make-stack stack) that establishes a stack with initial value
the value of stack and that defines the functions (push e), (top), and
(pop) to act on this stack.

26.8 (p1) One reason that the parsing rules you used in Exercise 24.10 were so
inflexible is that variables can match only a single object. But suppose
we had a different class of variables, which could match sequences of
zero or more objects. If $x and $y were such variables, the pattern ($x
loves $y) would match all the lists (john loves mary), (john loves
the girl who lives down
the street from him), and (john loves). In each case, x would
be paired with the sequence (john), but y would be paired with the se-
quences, (mary), (the girl who lives down the
street from him), and (). Let us call such variables sequence vari-
ables. Add to your match file the function (svariablep s), that re-
turns True if s is a sequence variable and False if it is not. Consider
any symbol whose first character is #\$ to be a sequence variable.

26.9 (p1) I assume you have in your match file a recursive function like
(match1 pat tree pairs) that does all the work. Add in the appro-
priate place the cond clause

26: Sequences 175

((svariablep (first pat))
(backtrack-match (first pat)

(rest pat) tree ’() pairs))

and define the function

(defun backtrack-match (v pat tree sqce pairs)
(cond
((null pat)
(cons (list v (append sqce tree)) pairs))
((match1 pat tree (cons (list v sqce) pairs)))
((null tree) nil)
(t (backtrack-match v pat (rest tree)

(append sqce (list (first tree)))
pairs))))

The call of backtrack-match from match1 tries to match the sequence
variable with () and the rest of the pat with the rest of the tree.
backtrack-match is a backtracking function whose four cond clauses do
the following:

1. If there is no more pattern, the sequence variable matches the se-
quence built up so far appended to the rest of the tree.

2. If, assuming the sequence variable matches the sequence built up so
far, the rest of the pattern matches the rest of the tree, that match
is the match to be returned. Notice the use of a single form in the
cond clause.

3. Otherwise, if there is no more tree, there is no match.

4. But if there is more tree, given that the current sequence didn’t work
out, try extending the sequence one more subtree.

backtrack-match is called a backtracking function because if the cur-
rently proposed sequence doesn’t work out in the second cond clause,
we backtrack to this recursive level and try a different sequence. Give
backtrack-match an appropriate documentation string.

26.10 (p1) Trace backtrack-match while evaluating
(match ’($x c) ’(a b c))

26.11 (p1) Try:

(match ’($x loves $y) ’(John loves Mary))
(match ’($x loves $y)

176 III: PROGRAMMING IN IMPERATIVE LISP

’(John loves the girl
who lives down the street from him))

and
(match ’($x loves $y) ’(John loves))

26.12 (p1) Redefine the version of substitute on your match file so that it
can use sequence variables.

26.13 (p1) Make sure that (match ’($x b $x) ’(a b c b a b c)) works
and pairs $x with the sequence (a b c). If it doesn’t, edit your match
file so that it does.

26.14 (p1) Redo Exercise 24.10 with the following set of rules:

’((($x John $y) ($x (n John) $y))
(($x loves $y) ($x (v loves) $y))
(($x Mary $y) ($x (n Mary) $y))
(($x (v $y) (n $z)) ($x (vp (v $y) (n $z))))
(($x (v $y)) ($x (vp (v $y))))
(((n $x) (vp $y)) (s (n $x) (vp $y))))

Also try

(apply-rules ’(Mary loves John) *grammar-rules*)

and

(apply-rules ’(John loves) *grammar-rules*)

Make sure all your modifications to your match file are stored for later
use.

CHAPTER 27

LOCAL VARIABLES

So far, we have seen variables in several positions. We have seen global
variables established by defparameter, defvar, setf, and so on, evaluated
at the top level; we have seen local variables established by being listed in
a lambda list; and we have seen variables established by a lambda list and
then used nonlocally by closures or by one or several defined functions. What
we have not yet seen is a way to introduce one or more new local, lexically
scoped variables that will be used only within the body of a single function.
Common Lisp does have a way of doing this—the special form let.

The format of a let form is

(let variables declarations forms)

where variables is a list of new local variables whose scope is the let form,
declarations—for example to declare one or more of the new variables to be
special—are optional, and forms is zero or more forms. When a let form is
evaluated, the new local variables are established and given initial values of
nil, the forms are evaluated in order, and the value of the last form becomes
the value of the let form.

As an example of using let, let’s write a version of quicksort. The basic
idea of the quicksort algorithm is to choose a number from the list of numbers
to be sorted and divide the list into a list of those numbers less than the chosen
number, a list of those equal to the chosen number, and a list of those greater
than the chosen number. Then the first and third lists are themselves sorted,
and the three lists are appended back together. The standard way of choosing
the “chosen” number is to choose the one in the middle of the list.

177

178 III: PROGRAMMING IN IMPERATIVE LISP

(defun quicksort (list)
"Sorts the LIST of numbers, using quicksort."
(if (< (length list) 2) list

(let (split less-list equal-list greater-list)
(setf split

(nth (truncate (/ (length list) 2)) list))
(mapcar
#’(lambda (x)

(cond
((< x split)
(setf less-list (cons x less-list)))

((= x split)
(setf equal-list (cons x equal-list)))

(t (setf greater-list
(cons x greater-list)))))

list)
(append (quicksort less-list)

equal-list
(quicksort greater-list)))))

(truncate converts a ratio to an integer by dropping any fractional amount.)
Instead of appearing by itself, any variable in let’s variable list may appear

as (variable initial-value); in which case, instead of being initialized to nil,
the variable is initialized to initial-value; all the initializations are done in
parallel, as if by psetf. We can use this facility for our quicksort, but also
notice that in the above version (length list) is evaluated twice (except
when the list is fewer than two members long). let variables are a good way
to avoid such extra evaluation. So a better version of quicksort is

(defun quicksort (list)
"Sorts the LIST of numbers, using quicksort."
(let ((length (length list)))
(if (< length 2) list

(let ((split (nth (truncate (/ length 2)) list))
less-list
equal-list
greater-list)

(mapcar
#’(lambda (x)

(cond
((< x split)
(setf less-list (cons x less-list)))
((= x split)
(setf equal-list (cons x equal-list)))

27: Local Variables 179

(t (setf greater-list
(cons x greater-list)))))

list)
(append (quicksort less-list)

equal-list
(quicksort greater-list))))))

Notice that the optional initial value feature of let replaces an occurrence
of setf. As we shall see, almost all uses of setf can be replaced by other
features of Common Lisp.

Exercises

Do the exercises of this chapter in the package ch27 except where otherwise
instructed.

27.1 (r) Make the top-level value of x be (a b c) and the top-level value of
y be (d e f). Evaluate

(let (x y)
(setf x ’(g h i) y (first x))
(list x y))

Is the setf done in sequence or in parallel? Have the top-level values
of x and y been changed?

27.2 (r) Now evaluate

(let ((x ’(g h i)) (y (first x)))
(list x y))

Is the assignment in let done in sequence or in parallel?

27.3 (i) The special form let* is exactly like let, but it does the initial-
izations in sequence (as setf does) instead of in parallel. To see this,
evaluate

(let* ((x ’(g h i)) (y (first x)))
(list x y))

Is the assignment in let* done in sequence or in parallel? Have the
top-level values of x and y been changed?

27.4 (r) As mentioned in the text, truncate converts a ratio to an integer
by dropping any fractional amount. Test this by evaluating

180 III: PROGRAMMING IN IMPERATIVE LISP

(truncate 2)
(truncate 2.4)
(truncate 2.6)
(truncate -2.4)

and
(truncate -2.6)

Also test (/ 5 2) and (truncate (/ 5 2)). Notice that
truncate returns two values. We have seen this before, on
page 153, but will not be able to discuss it in detail.

27.5 (i) Other functions to convert from ratios to integers are round, floor,
and ceiling. Try all the tests of Exercise 27.4, but with these functions
instead of with truncate. (For less typing, use mapcar in your tests.)

27.6 (r) Define quicksort as the first version of this chapter, and test it.

27.7 (r) Define quicksort as the second version of this chapter, and test it.

27.8 (i) Recall that mapcar produces a list of the results of applying its
function argument to each element of its list argument, and notice that
this list is being ignored in the body of quicksort. mapc is a function
just like mapcar, but it doesn’t form an answer list; it is used only
for the effect of applying its function. Revise your current version of
quicksort to use mapc instead of mapcar.

27.9 (i) See what the Common Lisp macro push does by evaluating (macroexpand ’(push ’a x))
and studying the result. Revise your current version of quicksort to
use push. There should be no more occurrences of setf in the definition
of quicksort.

CHAPTER 28

ITERATION

In Chapter 15, we introduced recursion as one method for repeating a com-
putation over and over until some condition is found. Another such method
is iteration. Although recursion is more in the spirit of Lisp, since it is an
applicative notion, iteration is the traditional imperative way of repeating
computations, and iterative constructs have been included in Common Lisp
for those programmers who prefer them. There are even cases, as we shall
see, where iteration is preferable to recursion.

As a good example to begin our discussion of iteration, let’s again consider
the function reverse1 of Chapter 17. reverse1 takes one list as its argument
and returns a copy of that list with its top elements reversed. The definition
of reverse1 is

(defun reverse1 (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(reverse2 l ’()))

reverse1 actually does nothing by itself, but calls its help function reverse2,
a recursive function that takes two lists as arguments and returns the reverse
of its first list appended to its second list. The definition of reverse2 is

(defun reverse2 (l1 l2)
"Returns a list consisting of
the members of L1 in reverse order

181

182 III: PROGRAMMING IN IMPERATIVE LISP

followed by the members of L2 in original order."
(check-type l1 list)
(check-type l2 list)
(if (null l1) l2

(reverse2 (rest l1)
(cons (first l1) l2))))

We could express reverse2 in English as

If l1 is empty, then return l2.
Otherwise,

return the reverse2 of (rest l1)
and (cons (first l1) l2).

This is an appropriate recursive way to think of this operation. An iterative
way to think of the operation performed by reverse2 would be

1. If l1 is empty, then terminate and return l2.

2. Push (first l1) onto l2.

3. Pop (first l1) off l1.

4. Go to Step 1.

The most general iteration construction in Common Lisp is
loop-return. loop and return are two macros that, used together, can
form any needed iterative structure. The format for loop is

(loop statements)

That is, loop takes zero or more statements, where a statement is a nonatomic
form (a list to be evaluated).1 loop evaluates each statement in its body in
order, then begins at the beginning again and evaluates them in order again,
and repeats this forever. The way to get out of a loop is with return. The
format for return is

(return form)

1Atoms are reserved for go labels and for keywords of the loop facility of the
new Common Lisp standard. I will not discuss go, since it has been proved that go
is not needed, and I will not discuss the new loop facility because it is extremely
complicated. Everything I do say about loop, however, will be true of the new loop

facility.

28: Iteration 183

The form is evaluated, the innermost loop is terminated, and the value of the
form becomes the value of the loop. The form is optional; if it is omitted, the
returned results will be nil. You should notice two things about loop-return
immediately:

1. return will always appear within some conditional form, which will
control the number of iterations.

2. loop provides no local variables, so it will often appear immediately
inside a let.

The conditional within which return tends to appear will usually be a
one-branched conditional: if some condition is True or if some condition is
False, return (otherwise, don’t). Common Lisp has two such one-branched
conditionals, when and unless:

(when condition forms)
(unless condition forms)

In both cases, there may be zero or more forms, and condition is evaluated
first. If when finds its condition to be nil, it evaluates to nil; otherwise, it
evaluates all the forms, and the value of the last one becomes the value of
the when. If unless finds its condition to be nil, it evaluates all the forms,
and the value of the last one becomes the value of the unless; otherwise, its
value is the value of the condition.

For those used to other imperative languages, the while loop

while C do S

may be simulated by

(loop (unless C (return)) S)

and the until loop

repeat S until C

may be simulated by

(loop S (when C (return)))

Before returning to our iterative version of reverse2, it will be useful to
introduce one more macro, pop, which is the opposite of push, which you
learned about in Exercise 27.9. (pop list) is equivalent to (prog1 (first
list) (setf list (rest list))). (Also review Exercise 26.6.)

Let’s now return to our iterative version of reverse2. Using
loop-return, we can define it as

184 III: PROGRAMMING IN IMPERATIVE LISP

(defun reverse2 (l1 l2)
"Returns a list consisting of
the members of L1 in reverse order
followed by the members of L2 in original order."

(check-type l1 list)
(check-type l2 list)
(loop
(when (null l1) (return l2))
(push (pop l1) l2)))

Note that this version of reverse2 does just what the iterative English version
does. However, the original reverse2 was introduced as a help function for
only two reasons: we needed an extra variable to hold the reverse of the
initial part of the original list, and the recursion had to be done on the two-
argument help function rather than on the one-argument main function. This
version doesn’t use recursion at all, and since we can use let to introduce
the auxiliary variable, we no longer need a help function.

We will call this iterative reverse function reverse3:

(defun reverse3 (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(let (l2)
(loop

(when (null l) (return l2))
(push (pop l) l2))))

Notice that this loop processes every element of the list l in order. We
have already seen another way to do this, with mapc, in Exercise 27.8. For
comparison, let’s look at a reverse4 that is like reverse3, but uses mapc:

(defun reverse4 (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(let (l2)
(mapc #’(lambda (e) (push e l2))

l)
l2)))

This use of mapc is an interesting mix of applicative and imperative styles,
but Common Lisp has a special-purpose iterator specifically for doing things
with every element of a list. It is a macro called dolist, and its format is

(dolist (variable listform result) declarations statements)

28: Iteration 185

listform must evaluate to a list. The variable takes on successive members of
this list as its values, and with each one, all the forms are evaluated. After
the last form has been evaluated with variable taking as its value the last
member of the value of listform, result is evaluated, and its value becomes
the value of the dolist. result is optional; if it is missing, the value of the
dolist will be nil. (If a return form is evaluated within the statements, it
will determine the value of the dolist.) Notice that variable is established
by the dolist, and its scope is the dolist form, but listform and result must
be defined outside the scope of the dolist. Therefore, it is common for result
to be a let variable of a let immediately surrounding the dolist. Using
dolist, reverse5 is

(defun reverse5 (l)
"Returns a copy of the list L
with the order of members reversed."

(check-type l list)
(let (l2)
(dolist (e l l2)

(push e l2))))

It is instructive to see how dolist might be defined, since it is a prime
example of the use of Lisp to enhance the Lisp language itself. We will define
dolist as a macro that expands into a call of loop. Because loop does not
provide a place for declarations, we will ignore the declarations of dolist.
Real Common Lisp expands dolist into a more primitive looping construct
than loop, which does allow declarations. The basic loop that dolist should
expand into is:

(loop
(unless listform (return result))
(setf variable (pop listform))
statements)

However, variable should have its scope restricted to the dolist expansion
form, and we should not side-effect the value of listform, so we need to enclose
the loop in a let form:

(let (variable (lv listform))
(loop

(unless lv (return result))
(setf variable (pop lv))
statements))

186 III: PROGRAMMING IN IMPERATIVE LISP

If we assume that variable, listform, result, and statements are all variables of
the macro definition, this let form can be constructed using the backquote
conventions as:

‘(let (,variable (lv ,listform))
(loop
(unless lv (return ,result))
(setf ,variable (pop lv))
,@statements))

Now all we have to do is construct the lambda-list of the dolist macro
definition. If a call of dolist looked like (dolist variable listform result
statements), it would be easy, and the entire definition would look like

(defmacro dolist
(variable listform result &rest statements)
‘(let (,variable (lv ,listform))

(loop
(unless lv (return ,result))
(setf ,variable (pop lv))
,@statements)))

However, that is not the case, and the reason is that result is to be optional.
Common Lisp allows functions and macros to be defined as having optional
arguments by placing the keyword &optional before the lambda variables
that are to be bound to the optional arguments. If the optional arguments
are missing in a particular form, the lambda variables are bound to nil. For
example, the function defined as

(defun fn (v1 &optional v2 v3)
"Returns a list of its arguments."
(list v1 v2 v3))

can have one, two, or three arguments, and the effect is shown by:

> (fn ’a)
(A NIL NIL)
> (fn ’a ’b)
(A B NIL)
> (fn ’a ’b ’c)
(A B C)

If a function is defined with both &optional and &rest parameters (the &rest
parameter must come last), extra arguments are bound to the &optional
parameters preferentially:

28: Iteration 187

> (defun fnr (v1 &optional v2 &rest v3)
"Returns a list of its arguments,
with all but the first two
collected into a sublist."

(list v1 v2 v3))
FNR
> (fnr ’a ’b ’c ’d)
(A B (C D))

So, the problem is that we want to be able to leave out a result form without
the first statement being taken as the result form. Therefore, the format of a
dolist form is (dolist (variable listform result) statements). So this gives
us a definition of dolist like:

188 III: PROGRAMMING IN IMPERATIVE LISP

(defmacro dolist (var-lis-res &rest statements)
(let ((variable (first var-lis-res))

(listform (second var-lis-res))
(result (or (third var-lis-res) nil)))

‘(let (,variable (lv ,listform))
(loop
(unless lv (return ,result))
(setf ,variable (pop lv))
,@statements))))

To make this sort of thing easier, Common Lisp allows an atomic lambda-
list parameter to be replaced by an embedded lambda-list in the definition of
macros only (not functions). The corresponding actual argument must be a
list, and the variables in the embedded lambda-list are bound to the elements
of that list the same way top-level lambda variables would be bound to top-
level arguments. This is called destructuring. Here is an example:

> (defmacro mcr (v1 (v2 v3) v4)
"Returns a list of its arguments."
‘(list ’,v1 ’,v2 ’,v3 ’,v4))

MCR
> (mcr (a b) (c d) (e f))
((A B) C D (E F))

So now we can define dolist as:

(defmacro dolist ((variable listform &optional result)
&rest statements)

‘(let (,variable (lv ,listform))
(loop
(unless lv (return ,result))
(setf ,variable (pop lv))
,@statements)))

There is only one remaining problem. The let variable lv was chosen arbi-
trarily to hold the list being traversed, and the value of result is a form to
be evaluated within the let form. What if the value of result happens to
contain (or be) lv? Whenever the result form is evaluated, the value of lv
will be nil instead of whatever it is outside the dolist form. An example,
comparing the above definition of dolist with list:dolist is:

> (let ((lv ’foo)) (dolist (e () lv)))
NIL
>(let ((lv ’foo)) (lisp:dolist (e () lv)))
FOO

28: Iteration 189

The only way we can be absolutely sure that this cannot happen is to pick
a let variable that no one else could possibly use. Fortunately, Common
Lisp has a function, gensym, that takes no arguments and returns made-up
symbols guaranteed to be unique—they are not even interned in any package.
We can use gensym to create a unique symbol for use in the let form. Our
final definition of dolist is:

(defmacro dolist ((variable listform &optional result)
&body statements)

"Executes STATEMENTS repeatedly,
with VARIABLE taking on each of the members
of the list which is the value of LISTFORM.
Then the value of RESULT is returned,
or NIL if RESULT is missing."

(let ((lv (gensym)))
‘(let (,variable (,lv ,listform))

(loop
(unless ,lv (return ,result))
(setf ,variable (pop ,lv))
,@statements))))

Notice the substitution of &body for &rest. They are exactly the same, except
that using &body tells pretty-printing routines not to indent the statements
as much as they would otherwise do.

dolist is a prime example of a macro that constructs a program, complete
with variables and expressions. It is an example of the ability Lisp program-
mers have to almost completely redefine the look of Lisp programs. Few, if
any, other programming languages have this capability.

The main point of this chapter was to introduce some of the iterative
constructs of Common Lisp. In particular, you saw three ways of iterating
down the members of a list—loop-return, mapc, and dolist. You should use
loop-return for general iteration. Use mapc to iterate down lists whenever
the function to be mapped is already defined or whenever it is useful enough to
deserve a separate definition. Usually, if you need to do something to or with
every element of a list and you feel that iteration is preferred to recursion,
use dolist.

It is usually thought that iteration is faster and takes less space to run
than recursion. The reasoning is that since function calls take a relatively
long time (for example, to establish lambda variables), iterative loops are
faster than recursive loops. Moreover, since recursion requires saving multiple
environments, recursive loops require more space than iterative loops (where
they can be used). It doesn’t always work out that way, however. Since
Lisp is basically a recursive language, most implementations of Common
Lisp perform recursion very efficiently. In some cases, an interpreted Lisp

190 III: PROGRAMMING IN IMPERATIVE LISP

recursive function will even be faster than an interpreted iterative version of
the same function, although when the functions are compiled, the reverse may
be true. Interpreted recursive functions will generally take more space than
the interpreted iterative version, but some compilers can automatically change
some occurrences of recursion (those cases known as “tail recursion”) into
iteration. For example, the recursive version of reverse2 might be compiled
into exactly the same code as the iterative version of reverse2. In any case,
some recursive functions cannot be expressed iteratively (without simulating
recursion), such as the function depth of Chapter 18. The best advice is to let
the problem determine your approach. Some problems just “feel” recursive,
while others “feel” iterative, but to develop this feel requires extensive practice
in both styles.

Exercises

Do the exercises of this chapter in the package ch28 except where otherwise
instructed.

28.1 (d) Define a recursive function build-list that will return a list of the
first 100 integers (either ascending or descending). Make the top-level
value of longlist this list.

28.2 (r) Define reverse1 and the recursive version of reverse2. Test them
on some short lists, and then test them by evaluating
(reverse1 longlist).

28.3 (r) Define the iterative functions reverse3, reverse4, and
reverse5. Test them on some short lists, and on longlist.

28.4 (i) Common Lisp has a function (time form) that prints how long it
takes to evaluate the form and some other statistics. Compare the run-
ning times of (reverse1 longlist), (reverse3 longlist), (reverse4
longlist), (reverse5 longlist),
and (lisp:reverse longlist).

28.5 (d) Give to the top-level variable reverses a value of a list of the five
reverse functions tested in Exercise 28.4. Perform the test again by
typing an appropriate dolist form to the Lisp listener.

28.6 (i) Compile your four reverse functions and reverse2 by mapping the
function compile over a list of them.

28.7 (i) Evaluate the dolist form from Exercise 28.5 again. Compare the
times of the compiled reverses with each other and with their own in-
terpreted versions.

28: Iteration 191

28.8 (d) If necessary, change build-list so that it takes one integer n as an
argument and returns a list of the first n integers.

28.9 (d) Write an iterative version of build-list. Call it
ibuild-list.

28.10 (i) Compare the running times of build-list and ibuild-list when
building lists long enough to show a difference.

28.11 (i) Try to find an n such that (build-list n) runs out of space,
but (ibuild-list n) doesn’t. If you succeed, find the largest n for
which you can compare the running times of (build-list n) and
(ibuild-list n), and do so. Compile the two functions, and com-
pare them again.

28.12 (i) Perform the timing studies for
(reverse1 (ibuild-list n))
(reverse3 (ibuild-list n))
(reverse4 (ibuild-list n))
(reverse5 (ibuild-list n))
and
(reverse (ibuild-list n))

28.13 (r) Define the function fn as shown in this chapter and test it as shown.

28.14 (r) Define the function fnr as shown in this chapter and test it as shown.

28.15 (r) Define the macro mcr as shown in this chapter and test it as shown.

28.16 (r) Define dolist as:

(defmacro dolist ((variable listform
&optional result)

&rest statements)
‘(let (,variable (lv ,listform))

(loop
(unless lv (return ,result))
(setf ,variable (pop lv))
,@statements)))

Be sure to shadow lisp:dolist first. Check and compare the values
of (let ((lv ’foo)) (dolist (e () lv)))
and (let ((lv ’foo)) (lisp:dolist (e () lv))).

28.17 (r) Evaluate (setf s (gensym)). See if you can fill in the blank in the
form (eql s) with anything that makes the form True. (Don’t
waste too much time.)

192 III: PROGRAMMING IN IMPERATIVE LISP

28.18 (i) gensym actually can optionally take a single argument—either a
positive integer or a string. Try both of these, and in each case, eval-
uate (gensym) with no argument a few times after each call with one
argument.

28.19 (r) Define dolist according to the last version in this chapter, and test
it.

28.20 (d) Write an iterative version of member.

28.21 (u) In your set file, which you used for Exercise 17.27, define the macro
(do (variable setform result) declarations statements) to act exactly
like dolist, but iterate over elements of a set rather than over members
of a list. Be sure to shadow lisp:do in your set file. Export set::do.
(Hint: make do forms expand into dolist forms.)

28.22 (d) In the ch28 package, define an iterative version of xprod (see Exer-
cise 17.28). Use set:do.

CHAPTER 29

INPUT/OUTPUT

In Chapter 25, we discussed the concept of a Lisp program, and defined it as
all the interaction you do while you are in a run of Lisp, all the functions you
define, and all the files you load during that run. In this definition, you are a
combination programmer and user. Let’s now divide this view and consider
you separately as programmer for some other user and as user of the program
called the Common Lisp listener.

The only programs you have prepared so far have consisted of a main func-
tion and a collection of auxiliary and help functions. To use your program,
a user must get into Lisp, load the functions, and evaluate a form consist-
ing of the name of the main function and the appropriate data as argument
forms. The main function will then return the output as the value of the form.
This is precisely the attitude of the applicative programmer—a program is a
function for transforming input into output.

Many programs that are actually written, however, have a different or-
ganization. The typical interactive program prints information out to the
user, accepts input data typed by the user, and prints output data to the
user. Some of the information typed to the user is in the form of prompts, or
requests for information, sometimes with directions on what information is
desired and how it is to be typed. Notice that the Lisp listener itself is such
an interactive program. In this chapter, we will see how to simulate the Lisp
listener. Notice also that these typical programs we are discussing have an
iterative, imperative style. That is why I waited until now to discuss them.

If we are to write one of these typical programs, we need two abilities: the
ability to input data from the user and the ability to output information to

193

194 III: PROGRAMMING IN IMPERATIVE LISP

the user. Common Lisp has many functions to do these jobs in various ways.
We will look at just a few.

The basic input function is read. Its format is simply (read); it is a
function of no arguments. It inputs the next S-expression in the input buffer,
constructs the Lisp object that S-expression represents, and returns that
object. read also has a side effect, which is to consume that S-expression, so
that the next read doesn’t read it again. On some systems, read also causes
a prompt character to be issued.

Notice that I said that read reads an S-expression. Whether the S-
expression is an atom or a list, and no matter over how many lines it ex-
tends, read always reads and consumes an entire S-expression. By the next
S-expression in the input buffer, I mean the next S-expression the user has
typed or will type. (On some systems, the user can type ahead—even before
the read has been executed; on others, the user must wait for a prompt.)

The basic output function comes in four versions:

(prin1 object)
(princ object)
(print object)
(pprint object)

where object is any Lisp object. prin1 outputs a printed representation
of object, using escape characters where necessary and putting quote marks
around strings. princ is like prin1, but omits escape characters and quote
marks. The output of prin1 is designed to be read by read. The output of
princ is designed to be read by a human. print is like prin1, but precedes
its output by #\newline and follows it by #\space. pprint is like print
but omits the final #\space. It also prints long lists in an indented, “pretty”
format. Each of prin1, princ, and print also returns object as its value,
besides printing it. pprint does not return a value! (This Common Lisp
ability is related to the ability of a function to return multiple values.) A
common mistake is forgetting that these functions take only one argument.
We will see how to overcome this limitation below. Here are some examples
of print and princ:

> (print 1024)
1024
1024
> (print 8/12)
2/3
2/3
> (print 0.000575e0)
5.75e-4
5.75e-4
> (print ’f\rank)

29: Input/Output 195

|FrANK|
|FrANK|
> (print "Frank")
"Frank"
"Frank"

> (princ ’f\rank)FrANK
|FrANK|
> (princ "Frank")Frank
"Frank"

Notice that the first symbol after each form is what was printed by the form;
the second is the value of the form. The value is obviously printed by print.
By the way, what is printed by princ immediately follows the closing paren-
thesis because the Common Lisp I am using doesn’t bother to wait for a
carriage return after the closing parenthesis of a list-form.

We can now write our Lisp listener simulator. Remember, the top-level
listener cycles through the operations: reads an S-expression and constructs
the object it represents; evaluates the object; and prints a representation of
the value. Let’s call our Lisp simulator lisp.

(defun lisp ()
"Simulates the LISP Listener read-eval-print cycle."
(print (eval (read)))
(lisp))

It’s that simple! print is a function, so it gets its argument evaluated. Its
argument is a call to eval. eval is also a function, so it gets its argument
evaluated. Its argument is a call to read. read has no argument. It reads
the next S-expression in the input buffer and returns the object it represents.
eval then gets that object, evaluates it, and returns its value. Then, print
outputs a representation of that value to the terminal. From the user’s point
of view, the user has typed in a form, and lisp has typed out its value.
Finally, the second form in the body of lisp is evaluated. This is a recursive
call to lisp itself, so the cycle continues. The only ways out are to make an
error or press the interrupt key. That’s one reason this lisp function is only
a simulator.

One problem with this definition of lisp is that it is recursive. As you
found out in the last chapter, if a recursive function calls itself enough times,
it may eventually run out of space. It just doesn’t make sense that the
longer you interact with the top-level Lisp listener, the more space you take
up and the less you have available for useful work. As I said above, an
interactive program is essentially an iterative one, and the lisp read-eval-
print loop should also be an iterative loop. In fact, every interactive program
is essentially a read-eval-print iterative loop. This is precisely what I had

196 III: PROGRAMMING IN IMPERATIVE LISP

in mind at the beginning of Chapter 28, when I said that there are cases where
iteration is preferable to recursion. I will leave the iterative Lisp simulator
for you to write as an exercise.

In our Lisp simulator, the fact that print takes only one argument didn’t
bother us, but what if we want to print a long message? For example, we may
want to print “Enter a sentence.” Notice that
(print Enter a sentence) is incorrect because it gives print three argu-
ments. (It is also incorrect because print gets its argument evaluated.) There
are three solutions:

1. We may enclose our message in a list:
(print ’(Enter a sentence)).

2. We may use the escape character to turn our message into a long atom:
(print ’Enter\ a\ sentence).

3. We may use a string: (print "Enter a sentence").

The best solution is to use a string.
What if, however, you want to print a message that mixes a canned mes-

sage with a computed message. For example, after issuing the "Enter a
sentence" prompt, we might want to read the sentence and echo out “I
heard you say sentence”, where the actual typed sentence appears instead of
sentence? Let’s assume the sentence is bound to the atom sentence. There
are three possibilities:

1. We can print a list:
(print ‘(I heard you say ,sentence)).

2. We can write our own print function.

3. We can use Common Lisp’s formatted print function format.

Let’s do the last.
The format of format is

(format destination control-string arguments)

destination is either t or nil.1 If it is t, then format will produce output
on the terminal screen and will return nil. If destination is nil, format will
produce no output and will return what it would have printed as a string.
arguments is a sequence of zero or more forms whose values are to be printed.
control-string is a string containing the canned part of the output, plus direc-
tives that indicate how the arguments are to be printed. There are at least
32 different directives; this makes format so complicated that some people

1There are other possibilities, but we will not discuss them.

29: Input/Output 197

refuse to even consider using it. Here I will show only the simplest, most
useful directives, and you will probably find yourself using format a lot.

First, there are some directives that don’t pertain to the arguments. Rather,
they give generally useful directions about how the output should appear. The
following table shows what gets printed in each case at the point where the
directive appears.

Directive Output
~% #\newline
~& #\newline unless already at the beginning of a line
~~ ~
~#\newline Nothing

The last entry requires some explanation. If the control-string itself is too
long to fit on one line, you may type a ~ and then continue the control-string
on the next line, even preceding it with some spaces; the #\newline and the
succeeding spaces will be ignored.

These are enough directives for some examples:

> (format t "~&Enter a sentence:")
Enter a sentence:
NIL
> (format nil "~&Enter a sentence:")
"Enter a sentence:"
> (format t "~&Enter a sentence~%:")
Enter a sentence
:
NIL
> (format t "~&Enter a sentence~~")
Enter a sentence~
NIL
> (format t "~&Enter a sentence

:")
Enter a sentence

:
NIL
> (format t "~&Enter a sentence~

:")
Enter a sentence:
NIL

Notice that the NIL printed in every case but one was the value of the format
form. The one exception was where the destination was nil.

Each of the other format directives directs how an argument is to be
printed and also “consumes” one argument. The following table shows, for

198 III: PROGRAMMING IN IMPERATIVE LISP

a few of these directives, how its corresponding argument is interpreted and
printed. (Characters in the directives may appear in upper- or lowercase; it
doesn’t matter.)

Directive Argument How argument is printed
~A Any object Without escape characters
~S Any object With escape characters
~{dir ~} A list Each member according to dir

With format, we may evaluate

(format t "~&I heard you say ~A." sentence)

Our only problem now is how to read the user’s sentence. The difficulty
is that read reads one S-expression, but a sentence is a sequence of words.
Again, there are two solutions. We could ask the user to type the sentence
enclosed in a set of parentheses; this will be read as a single list. Or we
could ask the user to terminate the sentence with some termination symbol.
Assuming that the function (terminatorp symb) returns True if symb is a
terminator we have chosen and False otherwise, the function readasentence
could be defined as follows:

(defun readasentence ()
"Reads a sequence of S-expressions until a terminator is
encountered.
Returns a list of the expressions without the
terminator."

(let (backwards)
(loop

(push (read) backwards)
(when (terminatorp (first backwards))
(return (reverse (rest backwards)))))))

Exercises

Do the exercises of this chapter in the package ch29 except where otherwise
instructed.

29.1 (i) Type (read)foo on one line. Is foo read and returned?

29.2 (i) Type (read) on one line and foo on the next. Do you have to wait
for a prompt?

29.3 (i) Try giving read an S-expression that extends over more than one
line (using carriage returns). Do you have to wait for a prompt on each
line?

29: Input/Output 199

29.4 (i) Can you read more than one S-expression on one line? To find out,
evaluate (progn (list (read) (read))).

29.5 (r) Try for yourself all the interactions shown in the chapter involving
calls to print and princ. Try each object printed there with each of
the four printing functions.

29.6 (d) Give the variable list as its value a list whose members are lists of
about 10 members each. Give list enough sublists so that list cannot
fit on one line of your screen. Print list with each of the four print
functions. Note especially the difference between print and pprint.

29.7 (r) To see more clearly what is printed before and after the argument
to the printing functions, evaluate

(progn (print ’foo) (print ’bar))

and see what appears between the FOO and the BAR. Remember to
differentiate what happened after FOO was printed from what happened
before the BAR was printed. Do this with the other three print functions
replacing print.

29.8 (i) The function terpri prints a #\newline, and the function
fresh-line prints a #\newline unless it can tell that it is already
at the beginning of a new line. Experiment with these two functions.

29.9 (r) Try evaluating (print Enter a sentence). You should get an
error message.

29.10 (r) Evaluate (print ’(Enter a sentence)). Notice how the output
looks.

29.11 (r) Evaluate (print ’Enter\ a\ sentence). Replace print
with a print function that doesn’t print the escape bars.

29.12 (r) Evaluate (print "Enter a sentence"). Replace print
with a print function that doesn’t print the quote marks.

29.13 (i) The form (values) may be evaluated, but it returns no value. Com-
pare (pprint ’foo) with

(progn (print ’foo) (values))

29.14 (d) Devise a form that, when evaluated, just prints a single space. How
can you tell whether it really works?

200 III: PROGRAMMING IN IMPERATIVE LISP

29.15 (r) Evaluate (mapc #’print ’(Enter a sentence)). Try it
with the other three printing functions.

29.16 (d) Define a function, prinb, of one argument that prints its argument
followed by a space. (It doesn’t matter what your prinb returns.) Eval-
uate (mapc ’prinb ’(Enter a sentence)).

29.17 (r) Try for yourself all the interactions of this chapter that use format.

29.18 (r) Compare the ~A and the ~S directives on arguments for which prin1
and princ would print differently.

29.19 (r) Give sentence the top-level value of |Hello|, and type a format
form whose effect is to print “I heard you say Hello” on one line,
with nothing else on the line before or after it. Don’t worry about the
value of the form, which may also get printed, as long as it’s on another
line. Your form must include the variable sentence.

29.20 (i) Give sentence the top-level value

(The moon in June makes me spoon)

and evaluate

(format t "~&I heard you say ~{~A~}" sentence)

In the ~{dir ~} directive, the dir can actually be any control string (without
the quote marks). It can even consume several members of the list-
argument. If it doesn’t consume all the members of the list-argument
the first time, it is used again and again until the list is used up. Revise
the format form so that each symbol in sentence is followed by a blank.

29.21 (i) Try to end your sentence with a period by adding a period to the
control string you used for Exercise 29.20. Chances are you will end up
with a space between spoon and the period.

29.22 (i) The format directive ~#[str1~:;str2~] will use the control string
str1 if there is no argument left or the control string str2 if there is any
argument left. If this directive is embedded in the ~{dir ~} directive, the
notion of “argument” is replaced by “member” of the list. Using this
directive, do Exercise 29.21 again.

29.23 (r) Define and test the Lisp simulator shown in the text. Is there any
difference between the read you are using and the one the top-level
listener uses?

29: Input/Output 201

29.24 (d) Redefine the Lisp simulator as an iterative function.

29.25 (d) Revise your Lisp simulator so that it prints a prompt of > followed
by a blank space before each “user input.”

29.26 (d) In the days before Common Lisp, there were two styles of Lisp
listener. The one that worked like the Common Lisp listener was called
eval Lisp, because of its read-eval-print loop. The other style was
called evalquote Lisp. It would read two S-expressions at a time. The
first had to be the name of a function or a lambda expression. The
second had to be a list of the actual arguments being passed to the
function. The value of the function applied to the list of arguments was
then printed. For example, one set of interactions with evalquote Lisp
might have been

> first ((a b c))
A
> cons (a (b c))
(A B C)

Edit your Lisp simulator so that it is an evalquote Lisp simulator.

29.27 (d) Choose one or more sentence termination symbols, and define (terminatorp
symb) so that it returns True if symb is a terminator and False otherwise.

29.28 (r) Define and test readasentence as shown in this chapter.

29.29 (d) Define an iterative read-eval-print loop that prompts the user for
a sentence, reads it, and then echoes it preceded by
“I heard you say”.

29.30 (i) If you have not already done this, try to use the period as the
terminator symbol for Exercise 29.29. The problem is that if you try to
attach it to the last word, it stays attached as part of the symbol, but
if you separate it, you will get an error. You can get it to work if you
separate it, but precede it with an escape character. However, this is
ugly.

29.31 (d) Redo Exercise 29.29 recognizing as a terminator symbol any symbol
whose last character is a period. Be sure to include this symbol in the
sentence you echo.

29.32 (p1) In your match file, make apply-rules an external symbol. Then
create a file named eliza, in the package eliza. Have eliza use the
match package (by including match as an argument to use-package),
so that apply-rules will be available in eliza. In eliza, define the

202 III: PROGRAMMING IN IMPERATIVE LISP

function eliza to be an iterative read-eval-print loop that reads a
sentence and prints the result of transforming it with apply-rules.
Define a parameter with rules like

(($x thinks I am $y) (Do you think you are $y))

and

((I think I am $x) (How long have you been $x))

You have now written a miniature version of the famous ELIZA pro-
gram, written by Joseph Weizenbaum in the early 1960s.2 Add addi-
tional rules to make an interesting conversation. The idea is for the
user to enter statements, and for the program to make responses that
just keep the user talking. To make the loading of the match file auto-
matic when you load eliza, put the form (provide ’match) in your
match file right before the in-package form and put the form (require
’match path-name), where path-name is the full name of your match
file, in your eliza file right before the use-package form.

29.33 (p2) In your calculator file, define a read-eval-print loop that reads
an arithmetic expression in normal infix notation and prints its value.
Under the control of this read-eval-print loop, redo Exercise 4.17.
You have now written an interactive desk calculator.

2J. Weizenbaum, “ELIZA—A computer program for the study of natural lan-
guage communication between man and machine,” Communications of the ACM 9,
1 (January 1966), 36–45.

CHAPTER 30

DESTRUCTIVE LIST
MANIPULATION

Throughout this book, so far, I have been warning you against using any
destructive list manipulation functions. The time has come to discuss them,
but the warning still holds: do not use these functions unless you really
understand what you are doing. A mistake can lead to strange errors that
are extremely difficult to find.

First, we have to understand how Lisp represents lists. Whenever Lisp
evaluates a call to cons, it gets some computer memory from a place called
the available space list, or simply free space. It configures this memory as a
cons cell. A cons cell may be thought of as a record with two fields. The two
fields are called the car and the cdr. This comes from terminology of the
IBM 704, the machine on which Lisp was first implemented. car stood for
“Contents of the Address part of Register x,” and cdr stood for “Contents of
the Decrement part of Register x.” car and cdr are actually Common Lisp
functions that, given a cons cell, return the contents of the appropriate field.
car is synonymous with first, and cdr is synonymous with rest. We have
been using first and rest instead of car and cdr because their meanings
are more obvious, but in this chapter, where we are dealing with low-level
details, we will use car and cdr.

Each field of the cons cell—the car field and the cdr field—contains a
pointer to the representation of a Lisp object. If that object is a list, the
pointer will point to another cons cell which represents that list.

We can draw cons cells in a graphical style known as box notation. A cons

203

204 III: PROGRAMMING IN IMPERATIVE LISP

cell looks like a rectangle, divided in two halves. The left half is the car, and
the right half is the cdr. If a field holds a pointer to an atom, we will just
show a printed representation of that atom in its field. So, the picture of the
value of (cons ’car ’cdr) is

CAR CDR

This is the box notation for the dotted pair (CAR . CDR).
If a cdr field contains a pointer to nil, we will just show a diagonal line

through that field. So, the box notation for the value of (cons ’a nil),
which is the dotted pair (A . NIL), and also the list (A), is

A
�

�
�

However, we will show the box notation of the value of (cons nil nil),
which is the dotted pair (NIL . NIL), and the list (NIL), as

NIL
�

�
�

If a field contains a pointer to another cons cell, we will show it as an arrow
from the field to the cell. So, the box notation for the list
(A B C) is

A 	 B 	 C
�

�
�

Remember, in dotted pair notation, this is (A . (B . (C . NIL))).
A car might also contain a pointer to a cons cell. The box notation for

the list (A (B C) D) is

A 	 	 D
�

�
�

B 	 C

�
�

�

When you define a function, a form is stored in a special place accessible
from the function name by the function symbol-function. Different imple-
mentations of Common Lisp differ in the precise format of the form stored

30: Destructive List Manipulation 205

there, but they all include a list of the forms that constitute the body of the
function definition. The simplest such format is a lambda expression. For
example, we might want to define the function (hopeful l), which simply
appends (I HOPE) to its argument list. After doing

(defun hopeful (l)
(append l ’(i hope)))

the value of (symbol-function ’hopeful) might be the lambda expression

(lambda (l)
(append l ’(i hope)))

In box notation, this lambda expression is

LAMBDA 	 	
�

�
�

L

�
�

�

APPEND 	 L 	
�

�
�

QUOTE 	

�
�

�

I 	 HOPE

�
�

�

When you give a symbol a value, that value is often stored as a pointer to
the object that the symbol is bound to. We can picture the result of (setf
x ’(a b c)) as

X 	 A 	 B 	 C
�

�
�

If we now do (setf y (cdr x)) (or, equivalently, (setf y (rest x))),
a copy of the actual pointer in the cdr field of the cons cell to which X points
is placed in the value cell of Y. This gives:

206 III: PROGRAMMING IN IMPERATIVE LISP

X 	 A 	

Y

B 	 C

�
�

�

The fussiest equality test in Common Lisp is eq, which just compares its
two arguments, as pointers, for equality. In the above example, (eq y (cdr
x)) would return T because Y and the cdr field of X point to the same cons
cell. However, (eq y ’(b c)) would evaluate to NIL, because two new cons
cells would be used to construct the list (B C) in that case.

If this view of Lisp lists is now understood, we are ready to talk about
destructive list manipulation. The two basic destructive list manipulation
functions are (rplaca c o) and (rplacd c o). They stand for RePLACe
CAr and RePLACe CDr, respectively. In the case of each of these functions,
the value of the first argument must be a cons cell. (rplaca c o) changes
the car field of c so that it points to o. (rplacd c o) changes the cdr field
c so that it points to o. Each returns the newly changed cons cell.

Neither rplaca nor rplcad is used much anymore, because they can both
be replaced by setf. setf treats its first argument as a generalized variable.
As long as its first argument form is a form it recognizes as identifying a place,
setf replaces the value of that place with the value of its second argument. As
always, setf returns the value of its second argument. Instead of (rplaca c
o), modern Common Lispers use (setf (car c) o), and instead of (rplacd
c o), modern Common Lispers use (setf (cdr c) o).

If X and Y have the values shown in the above diagram, after evaluating
(setf (car y) ’d), the situation would look like

X 	 A 	

Y

D 	 C

�
�

�

The cons cell Y points to now represents the list (D C). Therefore, the value
of Y is now (D C). Y seems to have a new value, although it really doesn’t.
Y still points to the same cons cell it pointed to before; it is the contents of
that cons cell that has changed. Moreover, X has also been changed! It is now
(A D C), even though the form (setf (car y) ’d) didn’t mention X. That
is why destructive list manipulation is so dangerous. By changing one thing,
you can change something else that apparently has nothing to do with it.

If we now did (setf (cdr y) ’(e f)), the picture would change to

30: Destructive List Manipulation 207

X 	 A 	

Y

D 	 E 	 F

�
��

and X would have the value (A D E F).
Earlier we looked at append, and noted that append makes a copy of its

first argument, but reuses its second argument. If X were (A B), Y were (C D),
and we did (setf z (append x y)), we would get the following situation:

X 	 A 	 B
�

��
Y 	 C 	 D

�
��

Z 	 A 	 B

�

(eq x z) would be NIL, but (eq y (cddr z))1 would be T. If we now did
(setf (car y) ’e), Z would change to (A B E D).

There is also a destructive version of append, which is called nconc. (nconc
list1 list2) cdrs down list1 until it finds the last cons cell, then does a
rplacd on that cell, changing its cdr to point to list2. Again, if X were (A
B), Y were (C D), and we did (setf z (nconc x y)), we would get

X 	
Z 	 A 	 B

Y 	
	 C 	 D

�
��

X and Z would now be eq, as well as equal.
What if X were (A B) and we did (nconc x x)? The picture would be

X 	 A 	 B

�

The second cons cell of X would have its cdr pointing to the first cons cell of
X. This is an infinite list: (A B A B A B ...). The only way to get infinite
lists in Lisp is with destructive list manipulation.

We could get another kind of infinite list by starting with X as
(A B) and doing (setf (cadr x) x). We would then get

1Compositions of up to four uses of car and cdr are defined as separate functions
whose names are found by throwing out intermediate occurrences of c and r, so
(cddr z) is the same as (cdr (cdr z)).

208 III: PROGRAMMING IN IMPERATIVE LISP

X 	 A 	
�

�
�

�

Here X is a sublist of itself: (A (A (A ...))).
The possibility of accidentally making an infinite list is another danger of

destructive list manipulation.
Destructive list manipulation is not all bad. There are some good uses

for it—if you are careful. One benefit of it is the saving of time and space.
If you never use destructive list manipulation, you will use many new cons
cells from free space. Most of these will be used for only a short time and
then be discarded. We call such discarded cons cells garbage. Eventually,
all free space will have been used. Then, if we want some more, a special
Lisp function called the garbage collector will automatically be executed, and
will look through the computer memory we are using to find and collect the
garbage and reconstitute free space. The garbage collector takes a while to
operate and slows down our program. (Some implementations of Common
Lisp now spread garbage collection into little pieces done over otherwise idle
times, so it’s not as noticeable as it used to be.) Nevertheless, automatic
garbage collection is one of the major features of Lisp. Other languages make
the programmers keep track of their own garbage and recycle it themselves.
Use of destructive list manipulation, in appropriate places, will generate less
garbage and require the garbage collector less often. However, when in doubt,
don’t use it!

One useful destructive list manipulation function is a mapping function
called mapcan. It is like mapcar (see Chapter 21), but nconcs all the results
together before returning. Notice that if we nconc the elements of the list
((a b) (c) () (d e)), we get (a b c d e). In particular, empty lists dis-
appear. We can use this for writing a “filter” function that takes a predicate
and a list and returns a list containing only those elements of the original list
for which the predicate is True. Common Lisp calls it remove-if-not:

(defun remove-if-not (p l)
"Returns a list of those members of the list L
for which the predicate function P returns True."

(check-type p function)
(check-type l list)
(mapcan #’(lambda (e) (when (funcall p e) (list e)))

l))

One interesting use of remove-if-not is the quicksort function. Several
versions of quicksort were presented in Chapter 27, and you wrote some
more versions for the Exercises of that chapter. Compare this version, which
uses remove-if-not and nconc, to those in Chapter 27.

30: Destructive List Manipulation 209

(defun quicksort (list)
"Sorts the LIST of numbers, using quicksort."
(let ((length (length list)))
(if (< length 2) list

(let ((split (nth (truncate (/ length 2)) list)))
(nconc
(quicksort
(remove-if-not #’(lambda (n) (< n split))

list))
(remove-if-not #’(lambda (n) (= n split))

list)
(quicksort
(remove-if-not #’(lambda (n) (> n split))

list)))))))

Destructive list manipulation is also useful when you are maintaining some
large data structure in a global variable and want to change sections without
copying large parts unnecessarily.

Exercises

Do the exercises of this chapter in the package ch30 except where otherwise
instructed.

30.1 (r) Set x to (a b c) and y to (cdr x). What is the value of
(eq y (cdr x))? What is the value of (eq y ’(b c))?

30.2 (r) Do (rplaca y ’d). What is the value of y now? What is the value
of x?

30.3 (r) Do (rplacd y ’(e f)). What is the value of y now? What is the
value of x?

30.4 (r) Do (setf (car y) ’g). What is the value of y now? What is the
value of x?

30.5 (r) Do (setf (cdr y) ’(h i)). What is the value of y now? What is
the value of x?

30.6 (r) Set x to (a b), y to (c d), and z to (append x y). What is the
value of x now? What is the value of (eq y (cddr z))?

30.7 (r) Set x to (a b), y to (c d), and z to (nconc x y). What is the
value of x now? What is the value of (eq y (cddr z))? What is the
value of (eq x z)?

210 III: PROGRAMMING IN IMPERATIVE LISP

30.8 (r) Make sure you remember your Lisp’s interrupt key. Then set x to
(a b). Then do (nconc x x).

30.9 (i) See what the value of the global variable

lisp:*print-circle*

is. If it is not T, set it to be T. When this variable is not NIL, infinite lists
will be printed using a technique that shows shared list structure. Type
the symbol x to the Lisp listener. It should print #1=(A B . #1#).
This means that the value of x is a list temporarily called #1#, whose
car is A, whose cadr is B, and whose cddr is #1#, itself.

30.10 (r) Set x back to (a b). Then do (setf (cadr x) x).

30.11 (i) Define hopeful by evaluating the following forms:

(setf h ’(I hope))
(eval ‘(defun hopeful (l)

(append l ’,h)))

Check that your definition of hopeful agrees with the one in this chapter
by doing (symbol-function ’hopeful)
and/or (describe ’hopeful)
and by evaluating (hopeful ’(I did that correctly)).
Also check the value of h.

30.12 (i) Define (emphatic l) to nconc the list (very much) onto the end
of its argument list.

30.13 (i) Set the top-level value of s to (I am a good lisper), and then
do (setf ss (emphatic (hopeful s))). Look at your definition of
hopeful again. What happened? What is the value of h now? This
is another danger of destructive list manipulation: function definitions
can be changed.

30.14 (i) Now evaluate

(setf sss
(emphatic (hopeful ’(I know what I am doing))))

Make sure you know what happened and why.

30.15 (i) Redefine hopeful and emphatic as

30: Destructive List Manipulation 211

(defun hopeful (l)
(append l (list ’I ’hope)))

(defun emphatic (l)
(nconc l (list ’very ’much)))

and do Exercises 30.13 and 30.14 again. You now know the safe way to
define functions like these.

30.16 (i) Common Lisp implementations generally allow you to force a garbage
collection whenever you want. You may want to do this during inter-
action with the user, when the time the garbage collector takes won’t
be noticed, and start a moderately long calculation with as much free
space as possible. The function to start an immediate garbage collec-
tion may be (gc-immediately). What is it in the implementation you
use?
Write it here: and in Appendix B.2.

30.17 (i) In many Common Lisp implementations, you can get the garbage
collector to print something to the terminal when it finishes, so you
know it has been called. How do you do this in the implementation you
use? Write it here: and in Appendix B.2. Do it.
Then call the garbage collector to make sure the reporting works.

30.18 (i) Define the following infinitely looping function, whose sole purpose
is to consume free space and generate garbage quickly.

(defun eat ()
(let ((n 0) (l ’()))
(loop
(setf n (1+ n)

l (append l (list n)))
(print n))))

Call the garbage collector once more, then evaluate (eat), keeping your
finger on the interrupt key. Interrupt as soon as the garbage collector
is called. How far did the loop get? Now edit eat, changing append to
nconc, and try this again. Did you get further?

30.19 (r) Define remove-if-not as in this chapter and test it. First shadow
lisp:remove-if-not. A good test is (remove-if-not ’numberp ’(a
1 s 2 d)).

30.20 (r) Define quicksort as in this chapter and test it. Make sure that one
of your tests is with a list in which some number appears more than
once.

212 III: PROGRAMMING IN IMPERATIVE LISP

30.21 (u) You put the function bstree:insert in your bstree file for Exer-
cise 18.14. Now add to that file a destructive version of bstree:insert,
which you should call bstree:insertd. When inserting into the empty
or elemental tree, a new tree will have to be built. Otherwise, inserting
a new element into a tree should require exactly one destructive call to
setf. For example, to insert a into (TREE NIL USEFUL), change the
second of the tree, so that the tree is now (TREE A USEFUL), and to
insert search into (TREE (A NIL (IS BINARY NIL)) USEFUL), change
the third of (IS BINARY NIL) so that the entire tree becomes (TREE
(A NIL (IS BINARY SEARCH)) USEFUL).

30.22 (u) Look at the definition of build-from-list in your bstree file.
Should it use insert or insertd? Why? If it should use insertd,
change it accordingly.

CHAPTER 31

PROPERTY LISTS

We have seen that every symbol can have several pieces of information as-
sociated with it—a name, home package, value, and function. The name,
home package, and function of a symbol are associated with it globally; the
symbol can have only one of each at any time. The value of a symbol can
be associated with it either globally or locally. The functions symbol-name,
symbol-package, and symbol-function retrieve the indicated data items
from the symbol. Similarly, the function symbol-value retrieves the global
value of a symbol, if it has one.

An additional item associated globally with every symbol is a data struc-
ture called the property list. Property lists are one of the unique features of
Lisp and have been a part of Lisp since the beginning. The property list of a
symbol may be retrieved by the function
symbol-plist, but, as we will see below, other functions are generally used
to operate on property lists.

Conceptually, a property list is a collection of properties. Each property is
a pair consisting of an indicator and a value. Some people call the indicator
the “property,” and speak of “property-value” lists. Others call the value
the “property,” and speak of “indicator-property” lists. None of these have a
name for the pairs. We will stick with the terms “indicator” and “value” for
the elements of the pairs and “property” for the pairs themselves.

The indicators are typically symbols (eq is used for comparison). The
values can be any Lisp objects. The property list, itself, is a list with an even
number of members, the odd members being indicators and the even ones
being values.

213

214 III: PROGRAMMING IN IMPERATIVE LISP

The main function for dealing with property lists is get. (get symbol
indicator) returns the value associated with the indicator on symbol’s property
list. A get form also is recognized by setf as indicating a generalized variable,
so the way to place a property on some symbol’s property list is (setf (get
symbol indicator) value). For example, we might have a data base of people,
each represented by the symbol that is his or her first name. If we wanted to
store John’s age as 24, we could do

> (setf (get ’john ’age) 24)
24

and we could later retreive it by

> (get ’john ’age)
24

What if you try to get a property value and it isn’t there? For example,
what if we had not yet stored Mary’s age and tried (get ’mary ’age)? Let’s
try it:

> (get ’mary ’age)
NIL

Again, Lisp’s overuse of NIL appears (NIL is a symbol, the empty list, and
Lisp’s representation of False). I said that a property value could be any Lisp
object, but if you try storing NIL as the value of some property, that will be
indistinguishable from not having stored any value with that property:

> (setf (get ’mary ’phone) nil)
NIL
> (get ’mary ’phone)
NIL
> (get ’john ’phone)
NIL
> (symbol-plist ’john)
(AGE 24)
> (symbol-plist ’mary)
(PHONE NIL)

To remove a property from a symbol’s property list, you can evaluate
(remprop symbol indicator).

> (remprop ’john ’age)
(24)
> (symbol-plist ’john)
NIL

31: Property Lists 215

If a symbol s already has a property with the indicator p and you do (setf
(get s p) v), the old value won’t be modified; it will be discarded, and v
put in its place. So if you are keeping a list of people’s friends under the
friends property, you should add Mary as John’s new friend by doing

(setf (get ’john ’friends)
(cons ’mary (get ’john ’friends)))}

not by (setf (get ’john ’friends) ’mary), because then John will lose
his old friends when he takes up with Mary.

Exercises

Do the exercises of this chapter in the package ch31 except where otherwise
instructed.

31.1 (r) Define x as (defun x (y) (print y) (print y)). Define y as
(defun y (x) (x x)). Evaluate (y ’foo). Notice that the function
a symbol names is associated with it globally.

31.2 (r) Define the function

(defun fdef (x)
(defun yousay (s) (format t "~&You say ~a~%" s))
(yousay x))

Evaluate (yousay ’first-time).
Then, evaluate (fdef ’second-time).
Then, (yousay ’third-time).
Notice that a function you define in one environment is available in
others.

31.3 (r) Using symbol-name, symbol-package, and symbol-function look
at the names, home packages, and function definitions of the symbols
you have given function definitions so far in the exercises of this chapter.
Also look at the name, home package, and function definition of the
symbol cons.

31.4 (r) Give x the top-level value of tlv, and define the function

(defun foo (x)
(symbol-value ’x))

Now evaluate (foo ’bar). Notice that symbol-value retrieves the
global value of its argument symbol.

216 III: PROGRAMMING IN IMPERATIVE LISP

31.5 (i) Use symbol-plist to look at the property lists of the symbols
you examined for Exercise 31.3. Different implementations of Com-
mon Lisp use property lists to varying extents to store information
about symbols. Be careful never to wipe out a symbol’s property list
completely in case your Common Lisp is keeping valuable information
there.

31.6 (i) Load your util file, and look at the property list of
util:element. Some implementations of Common Lisp put on the
property list of a symbol the path name of the file where that symbol is
given a function definition. In these Common Lisp’s, (ed symbol) will
put you into the editor ready to edit symbol’s definition. Try evaluating
(ed ’util:element).

31.7 (r) Record that John’s age is 24 using john’s property list.

31.8 (r) Retrieve John’s age using get.

31.9 (r) See what you get if you now try to retrieve Mary’s age.

31.10 (r) Give Mary a phone number of nil. Compare (get ’mary ’phone)
with (get ’john ’phone). Use symbol-plist to compare Mary’s and
John’s property lists.

31.11 (r) Use remprop to remove Mary’s phone property. Check her property
list again.

31.12 (d) Give John the two friends Joe and Sam. Now do (setf (get ’john
’friend) ’mary). Has John lost his old friends?

31.13 (d) Give John his two old friends back. Add Mary as a new friend
correctly.

31.14 (i) Try using push to make Betty John’s fourth friend.

31.15 (i) Make John Harry’s only friend. Then add Mary as Harry’s second
friend. Look closely at Harry’s friends to make sure that they are rep-
resented as a list of people, rather than as a dotted list. If you have a
dotted list, use remprop, and then try this exercise again. What should
(get ’harry ’friend) be when Harry has one friend?

31.16 (d) Define a function (add-friend person friend) so that
whenever a is b’s friend, b is also a’s friend. Use it to give John, Mary,
Jane, and Bill some friends. Now look at a friend list with get. Is the
property list a globally available structure?

31: Property Lists 217

31.17 (i) Build a data base of 5 to 10 people. Store the list of people as the
value of the indicator list under the symbol people. Give each person
an age, some friends, and an occupation such as student, teacher,
programmer, and so on. Writing functions as necessary, retrieve some
information such as: all people who have an older friend, all people
who are the youngest among their friends, all programmers under 15,
and all teachers under 30 who have at least one friend who is a student
over 40. You may find the function (pushnew element list) useful. It
pushes element onto the list unless it already is a member of the list.
You might also find min useful. (min i1 . . . in) returns the minimum
number among its arguments.

CHAPTER 32

HASH TABLES

In Chapter 31, we discussed the use of property lists to store information
about symbols or about the entities the symbols represent (for example, about
the people represented by the symbols john, mary, and so on). There are three
problems with using property lists: As we saw in the exercises of Chapter 31,
property lists may be used by the Common Lisp environment, and we might
unintentionally clobber some of that information. Property lists are global,
so their use by one subsystem of functions might interfere with their use by
another subsystem of functions (though this problem should be ameliorated
by the proper use of packages). Only symbols have property lists; in particu-
lar, lists can’t have property lists. All these problems may be solved by using
hash tables instead of property lists.

Hash tables are a type of Common Lisp object that are used for asso-
ciating arbitrary pieces of information with each of a set of Common Lisp
objects. The latter objects are called keys, and the information associated
with a key in a hash table is called a value. Together, a key and its associated
value are referred to as an entry of the hash table. Any number of separate
hash tables may be created by a program, each of which may use different
keys or may have the same keys associated with different values. For exam-
ple, a hash table might be used as a private property listlike structure, with
symbols as the keys and property listlike lists as the values. Since the values
can be any Lisp objects, they can even be hash tables in which indicators are
the keys and property listlike values are the values.

The basic theoretical foundation for hash tables is the following idea.
Imagine a random access array indexed by integers, and a function (called

219

220 III: PROGRAMMING IN IMPERATIVE LISP

a hash function) that, given any object as argument, produces an integer as
value. Further imagine that the hash function has been so designed that no
two different objects give the same integer. If we want to store information
about some object o in the array, we just apply the hash function h to the
object and store the information in the array at position h(o). Later on, if
we want to look up the information about object o, we just look in the array
at position h(o), and if it’s there, we’re sure to find it. Hash tables are such
arrays. The only problem is that we can’t, in general, guarantee that the
hash function will produce a different value for each different object without
knowing all the objects in advance of designing the hash function. Therefore,
the object itself (actually, a pointer to it) is stored in the hash table along
with the value. To store or retrieve a value associated with the key k in a
hash table, the entry in h(k) is examined to make sure that the key stored
there is k. If some other key is stored there, this is called a collision, and the
entry for k must be stored somewhere else. Sometimes this is done by finding
the next available space; sometimes by trying a secondary hash function; and
sometimes by storing all colliding entries in a list at the hash table location.
In any case, hash tables generally have more space than is needed to store
all the entries, in order to reduce collisions, and this use of space is the one
negative aspect of using hash tables.

The basic hash function of Common Lisp is sxhash. (sxhash object)
returns a nonnegative fixnum that is guaranteed to be the same for any two
Lisp objects that are equal. Of course, it might also be the same for un-
equal objects and produce a collision. Since hash tables can have different
sizes, it is obvious that the value of sxhash is not used directly to index hash
tables. This is a second source of collisions.

A hash table is created by evaluating (make-hash-table). A new hash
table is returned as the value of this form. To use the hash table, you must
immediately bind it to some variable; for example,

32: Hash Tables 221

> (setf people (make-hash-table))
#<EQL-HASH-TABLE 1163145>

To allow for hash tables of different sizes and with different kinds of keys,
the make-hash-table function has several optional keyword arguments, two
of which we will discuss. To adjust the size of the new hash table, you use
the :size keyword argument to declare the approximate number of entries
you expect to store in the hash table. The actual hash table will be bigger
than the size you specify, to allow for collisions, but accurate advice will, in
general, allow your Common Lisp system to save space. For example, if you
expect to store 15 entries in the hash table, you would create it by evaluating
(make-hash-table :size 15). Notice that you provide a keyword argument
by listing the keyword and following it by the actual argument. If you later
try to store more than 15 entries in your hash table, it’s size will be increased
automatically; you don’t need to worry about it.

As we saw above, storing an entry in a hash table or retrieving one from a
hash table often involves comparing the key with a key already stored in the
table. You can improve efficiency by using the most fussy equality test neces-
sary. You specify this with the :test keyword argument, which must be either
#’eq, #’eql, or #’equal.1 If you don’t specify which, #’eql will be used.
Clearly, if the keys will be symbols, you can use #’eq, and if the keys will be
lists, you must specify #’equal. For example, to create a hash table that will
hold about 100 entries keyed by lists, you would evaluate (make-hash-table
:test #’equal :size 100). The order of the keyword arguments doesn’t
matter. Evaluating (make-hash-table :size 100 :test #’equal) would
do exactly the same thing. For example, to create a hash table for the kind
of use we made of property lists in Chapter 31, we might do

> (defconstant people
(make-hash-table :test #’eq :size 15))

PEOPLE

To retrieve an entry from a hash table, use

(gethash key hash-table)

which is a form recognizable as a generalized variable by setf, so it is also
used to store entries.

> (setf (gethash ’john people) ’(age 24))
(AGE 24)
> (gethash ’john people)
(AGE 24)
T

1The new Common Lisp standard will also permit #’equalp.

222 III: PROGRAMMING IN IMPERATIVE LISP

gethash actually returns two values: the entry or nil if none was found; T
or NIL, indicating whether or not an entry was found.

> (setf (gethash ’sally people) nil)
NIL
> (gethash ’sally people)
NIL
T
> (gethash ’mary people)
NIL
NIL

Notice that people was not quoted. That is because people is a variable
whose value is the hash table that we are using, and the second argument of
gethash must be a hash table.

The function (getf list indicator) acts just like (get symbol indicator),
except that list is treated like a property list (it must have an even number
of members, which might be zero). Using this, we can do things like

> (setf (getf (gethash ’mary people) ’phone) "555-1234")
"555-1234"
> (getf (gethash ’mary people) ’phone)
"555-1234"
> (push ’harry (getf (gethash ’john people) ’friends))
(HARRY)
> (push ’mary (getf (gethash ’john people) ’friends))
(MARY HARRY)
> (getf (gethash ’john people) ’friends)
(MARY HARRY)

remf is to getf what remprop is to get.
(hash-table-count hash-table) returns the number of entries in the hash-

table.

> (hash-table-count people)
3

To operate on every entry of a hash table, use (maphash function hash-
table), where function is a function of two arguments—the key and the value.

> (maphash
#’(lambda (key value)

(format t
"~&The key ~a has value ~a.~%"
key value))

people)

32: Hash Tables 223

The key SALLY has value NIL.
The key JOHN has value (FRIENDS (MARY HARRY) AGE 24).
The key MARY has value (PHONE 555-1234).
#<EQ-HASH-TABLE 4607232>

There are two functions for removing entries from hash tables.

(remhash key hash-table)

removes the entry for key.

(clrhash hash-table)

removes all entries from the hash-table.
Many Common Lisp functions other than make-hash-table take keyword

arguments. In particular, member takes a :test keyword argument whose
value can be any predicate function of two arguments. (member object list
:test test) returns the tail of list starting with the first member x that
satisfies (test object x), or NIL if there is no such member. member’s test
defaults to eql if you don’t specify another; this is the way we have always
used member previously. Some example uses of member with nondefault tests
are

> (member 3 ’(1 2 5 2 3 8 6) :test #’<)
(5 2 3 8 6)

> (member "now"
’("I" "am" "now" "going" "to" "the" "store")
:test #’string=)

("now" "going" "to" "the" "store")

You may define your own functions to have keyword parameters by includ-
ing &key in your lambda list followed by the keyword parameters. (This is to
be done after the required parameters, if any, and before the rest parameter, if
any.) These parameters are not to be in the keyword package; that is just the
way the keyword arguments are passed to the function. Keyword arguments
that are not supplied default to nil. For example,

> (defun consem (head &key tail)
(cons head tail))

CONSEM
> (consem ’a)
(A)
> (consem ’a :tail ’(b c))
(A B C)

224 III: PROGRAMMING IN IMPERATIVE LISP

If you want the default keyword argument to be something other than nil,
you can specify it by enclosing the keyword parameter and the default in a
pair of parentheses:

> (defun div (&key (numerator 1) (denominator 100.0))
(/ numerator denominator))

DIV
> (div)
0.01
> (div :numerator 2)
0.02
> (div :denominator 10)
1/10
> (div :numerator 50 :denominator 75.0)
0.6666667

Exercises

Do the exercises of this chapter in the package ch32 except where otherwise
instructed.

32.1 (r) Try applying the function sxhash to various Lisp objects. Does it
return the same number for two different but equal objects? Can you
find two unequal objects for which it returns the same number? (Mine
did for b and "b".)

32.2 (r) Evaluate (setf people (make-hash-table)). What is the type of
a hash table? (Use type-of.)

32.3 (i) Test the function hash-table-p, which should return True if and
only if its argument is a hash table.

32.4 (i) What is the home package of :size and :test?

32.5 (i) What is the value of :size and of :test? All symbols in the keyword
package evaluate to themselves.

32.6 (r) Set the value of people to be a hash table that will hold about 15
entries, keyed by symbols.

32.7 (r) Try for yourself the interactions shown in this chapter dealing with
the people hash table.

32.8 (d) Redo Exercise 31.17, but using a hash table instead of property lists.

32.9 (d) Using memberwith a nondefault test, experiment with finding whether
a list equal to a given list is a member of another list.

32: Hash Tables 225

32.10 (r) Define consem as shown in this chapter, and test it.

32.11 (r) Define div as shown in this chapter, and test it.

32.12 (u) Modify the functions in your bstree file so that you can have binary
search trees of different types of objects. Wherever eql is used as the
equality test on elements of the tree, replace it by a :test keyword
parameter that defaults to eql, and wherever string< is used, replace
it by a :lessp keyword parameter that defaults to string<.

32.13 (d) Using bstree:build-from-list, bstree:inorder, your
modified bstree functions, and any other help functions you need, de-
fine the function sort-names to take a list of names and sort them into
order. Assume that a name is represented by a list of at least two mem-
bers, the first of which is the given name, the last of which is the family
name, and the intermediate ones are the middle name(s) if the person
has them. Use the same ordering principle as does the telephone di-
rectory; for example, (Adam Smith) will come after (Ben Adams), but
before (Adam B. Smith). You may find the function (butlast list
&optional n) useful. It returns a list exactly like list but without its
last n members. n defaults to 1.

Part IV

OBJECT-ORIENTED
PROGRAMMING

CHAPTER 33

METHODS

Object-oriented programming is a relatively new style of programming, at
least as compared with functional programming and imperative program-
ming. Actually, object-oriented programming differs from the earlier styles
in a way that is orthogonal to the difference between them. That is, stan-
dard functional programming style (the subject of Part II of this book) and
standard imperative programming style (the subject of Part III of this book)
have something in common which contrasts with the object-oriented pro-
gramming style. One can actually do object-oriented programming either in
a functional style or in an imperative style. In this part of the book, we
will examine object-oriented programming using the mix of functional and
imperative programming styles that we have used in Part III.

We have become familiar with the notion that Common Lisp objects are
classified into types. Previously, when we have written a function, we have
written it for arguments of particular types. If we wanted to perform the
same operation on objects of different types, we had the following choices:

• Write the function in such a way that the difference doesn’t matter. For
example, cons will put any object on the front of a list, regardless of
the type of the object.

• Write separately named functions for each of the several types. For
example, to tell if one object is to be sorted before another, Common
Lisp has < for numbers, char< for characters, and string< for strings
and symbols.

229

230 IV: OBJECT-ORIENTED PROGRAMMING

• Write one function, but test the arguments, for example with typecase,
and use separate code for each different type.

• Write one function, but make the caller provide the appropriate type-dependent
routine. For example, Common Lisp has one member function, but the
caller must pass the correct type-dependent equality test as a keyword
argument.

The commonality among all these techniques, which is the commonality
shared by standard functional and imperative styles, is what I will call being
procedure-oriented. Being procedure-oriented is concentrating on the opera-
tion, routine, or procedure to be carried out or on the function to be applied.
Types enter procedure-oriented programming mainly as a matter of quality
control. When you think of a procedure, it makes sense only for certain types
of data. Programming languages allow you to declare the types of the argu-
ments, for example with check-type, so that error messages can communicate
clearly.

Object-oriented programming involves “inside-out” thinking relative to
procedure-oriented programming. Instead of thinking of the procedure, think
of the object or of the type of object and think of the sorts of operations that
can be performed on that type of object and how those operations are to be
carried out, independently of how those same, or similar, operations would
be carried out on other types of objects. For example, when thinking about
numbers, we might decide that numbers are often compared and implement a
< function on numbers. Later, we might be worrying about characters, decide
that characters may be compared, and implement a < function for characters.
Later, we might implement a < for strings, for symbols, and even for lists.
Since these are all the same operation, it makes sense to use the same symbol
to name them, but there will be five different definitions, and they will each
be grouped with other operations on the same types of objects.

In Common Lisp, object-oriented programming is provided via a pack-
age of routines called the Common Lisp Object System, or CLOS (pronounced
“see-loss” by some and “claus” by others) for short.
CLOS is part of the new, forthcoming Common Lisp standard, but it is
already commonly enough available that we have decided to discuss it in this
book. Nevertheless, I will only provide an overview and basic introduction to
CLOS. All the details can get very complicated.

The CLOS functions may be in a separate package. In the Common
Lisp I am using, they are all in a package named clos, some of them have
the package named ticlos as their home package, and some, but not all, of
them are in the lisp package, from where they are inherited into user-defined
packages.

In CLOS terminology, a type of data object is called a class and an object
in a certain class is called an instance of that class. Just as the Common Lisp

33: Methods 231

types are organized into a hierarchy, so are the CLOS classes, and, in fact,
many of the predefined Common Lisp types are also CLOS classes. Unlike
normal hierarchies, where each element has exactly one element one level
higher than it, a CLOS class may have several immediate “parents.” (Such
a hierarchy is sometimes called a tangled hierarchy.) In particular, Common
Lisp considers null to be both a type and a class whose only instance is nil
and whose immediate superclasses are both the symbol class and the list
class. The tree below shows the hierarchy of CLOS classes that correspond
to Common Lisp types that we have discussed:

character

function

hash-table

package

float

integernumber

ratiot

symbol

null

list

cons

string

An object-oriented function is called a generic function. Generic functions
are Common Lisp objects of type function (and so are also instances of
the CLOS function class). However a generic function only has a name, a
lambda-list of parameters, a documentation string, some parts that we won’t
discuss, and a set of methods. A generic function does not have a sequence
of forms to be evaluated when it is called. Instead, when a generic function
is called, the appropriate, class-specific method is invoked. Which method of
a generic function is invoked depends on the classes of the actual arguments.
For example, consider applying a generic function to an integer. If the generic
function has a method for integers, that method will be invoked. Otherwise, if
it has a method for numbers, that method will be invoked. Otherwise, if it has
a method for t (the class of all CLOS instances), that method will be invoked.
Otherwise, an error will be signaled. In other words, the most specific method,
according to the above hierarchy, is the one that will be invoked. That rule is
unambiguous except in the case of nil. If a generic function has one method
for symbols and another for lists, and we give it nil as its argument, which
method will be invoked? CLOS has a rule for linearizing all the superclasses
of any class into what is called the class precedence list. The method invoked

232 IV: OBJECT-ORIENTED PROGRAMMING

will always be the one for the earliest class on the class precedence list of its
argument. The class precedence list for each class in the above tree except
for null is found simply by reading up the tree. For example, the class
precedence list for integer is (integer number t), and for cons is (cons
list t). The class precedence list for null happens to be (null symbol
list t). In this book, we will assume that if a generic function has more
than one argument, the method identified by considering the class precedence
list of every argument will be the same.

Although most of the Common Lisp types we have discussed in this book
are also CLOS classes, none of the functions we have discussed are CLOS
generic functions. This means that we cannot take a function we already
know about and add new methods to it for classes that it does not already
handle. If we want to define any method, we need to define its generic function
as well. Defining a method implicitly defines a generic function, but it is a
good idea to define the generic function before defining the first method to
provide it with a documentation string. The format we will use for defining
a generic function is:

(clos:defgeneric function-name lambda-list
(:documentation doc-string))

where function-name will be the name of the new generic function, lambda-
list is like the lambda-list of defun, and doc-string will be the documentation
string of the generic function. defgeneric actually has several more optional
parts, but we will not discuss them.

For example, let’s define the < generic function we talked about at the
beginning of this chapter. First of all, < is already the name of a Common
Lisp function, and since that is not a generic function, we must shadow < in
order to use it for our own purposes.

> (in-package ’ch33)
#<Package CH33 6372362>
> (shadow ’<)
T
> (clos:defgeneric < (x y)

(:documentation
"Returns True if the first argument sorts
before the second argument;
NIL otherwise."))

#<DTP-FUNCTION < 12640044>
> (documentation ’< ’function)
"Returns True if the first argument sorts

before the second argument;
NIL otherwise."

33: Methods 233

Notice that the value of defgeneric is something funny; it is a generic func-
tion object, and your Common Lisp will most probably have a different way
of printing it than mine does.

To define a method, use the CLOS function defmethod, whose format is

(defmethod function-name method-qualifiers method-lambda-list
declarations forms)

method-qualifiers may be omitted; this is what we will do for awhile. The dec-
larations and forms are what you are used to from the definition of Common
Lisp functions. The method-lambda-list is also the same as the lambda-lists
you use for defining Common Lisp functions except that any required pa-
rameters may be replaced by the two-member list (parameter class), which
is the way to say what classes this method is good for. The value returned
by defmethod is a method object.

Now, let’s define a < method for numbers.

> (defmethod < ((x number) (y number))
(lisp:< x y))

#<method (TICLOS:METHOD < (NUMBER NUMBER))>
> (< 3 5)
T
> (< 5 3)
NIL

We now have a generic method named < and one method for it, which com-
pares two numbers. Similarly, we can define < methods for the other classes
mentioned above:

> (defmethod < ((x character) (y character))
(char< x y))

#<method (TICLOS:METHOD < (CHARACTER CHARACTER))>
> (< #\a #\e)
T
> (< #\e #\a)
NIL
> (defmethod < ((s1 string) (s2 string))

(string< s1 s2))
#<method (TICLOS:METHOD < (STRING STRING))>
> (< "store" "straw")
2
> (< "straw" "store")
NIL
> (defmethod < ((s1 symbol) (s2 symbol))

(string< s1 s2))

234 IV: OBJECT-ORIENTED PROGRAMMING

#<method (TICLOS:METHOD < (SYMBOL SYMBOL))>
> (< ’frank ’harry)
0
> (< ’harry ’frank)
NIL

Notice that the names of the parameters do not have to be the same for every
method of the same generic function, as long as they have the same number
of parameters.

Now that we have < defined for numbers, characters, strings, and symbols,
let’s define it for lists of these types of objects. We’ll say that one list is <
another if, at the first member where they differ, the member of the first is <
the member of the second and that a shorter list is < a longer one whose first
members are the same as the members of the shorter list:

> (defmethod < ((l1 list) (l2 list))
(cond ((null l1) (not (null l2)))

((null l2) nil)
((equal (first l1) (first l2))
(< (rest l1) (rest l2)))
(t (< (first l1) (first l2)))))

#<method (TICLOS:METHOD < (LIST LIST))>
> (< ’(1 #\b "c" ’d) ’(1 #\b "dog" ’a))
0
> (< ’(1 #\b "dog" ’a) ’(1 #\b "c" ’d))
NIL

Notice the elegance of this! Given that < is the name of a generic function, we
can use < in the definitions of other functions (or in the definitions of <’s own
methods) without worrying about the types of its arguments; the appropriate
method will be called automatically.

Exercises

Do the exercises of this chapter in the package ch33 except where otherwise
instructed.

33.1 (r) Shadow lisp:<, and define < as a generic function with a documen-
tation string, as shown in this chapter.

33.2 (r) Define the < methods for numbers, characters, strings, and symbols
as shown in this chapter. Test them.

33.3 (i) What happens if you give < arguments of different classes from the
ones you have defined methods for?

33: Methods 235

33.4 (i) What happens if you ask < to compare a string with a symbol?

33.5 (d) Define a method for < when both arguments are of the class t.
Use check-type to make sure that each argument is either a character,
number, symbol, or string. Assuming that the arguments are of different
classes (Why is this assumption valid?), make characters sort before
numbers, numbers before symbols, and symbols before strings. (HINT:
Use type-of and member.)

33.6 (r) Define a < method for comparing two lists as shown in this chapter.
Test it.

33.7 (d) Redefine the < method you wrote for Exercise 33.5 so that charac-
ters, numbers, symbols, and strings all sort before conses.

33.8 (d) Test your < on two lists that don’t have all corresponding members
of the same class.

33.9 (d) Test your < on lists with sublists.

33.10 (d) Test your < on dotted lists and dotted pairs. Does it work? Should
it work? Why?

33.11 (u) Redo Exercise 32.12 using the techniques of this chapter. You may
use equal as the equality test throughout, but make lessp a generic
function.

CHAPTER 34

CLASSES

In Chapter 33, we learned about CLOS methods and classes. However, the
only classes we looked at were those that correspond to Common Lisp types.
Most Common Lisp implementations implement these classes as built-in
classes, which are rather restricted. In particular, you cannot define any
new subclasses of built-in classes. CLOS’s notion of standard classes is very
flexible and involved. In this chapter, we will look at the basics of standard
classes.

Briefly, a CLOS standard class (from now on, I will just say “class”) is
similar to a Pascal or Modula-2 record, a Cobol or PL/I structure, or what
is called a frame in Artificial Intelligence, in that every instance of a class
has a number of slots, each of which has a value. The number of slots, their
names, and how they can be used are determined when the class is defined.
Classes form a tangled hierarchy and can inherit their slots and how they
are named and used from their superclasses. They can also add new slots
and techniques that get inherited by their subclasses. An instance of a class
has the structure determined by its class and all its superclasses. Besides the
structure determined in this way, these classes can be used to define methods
of generic functions. The whole thing can get very complicated, so in this
chapter, I will just introduce some of the most basic class notions via an
example.

The example I will use is a computerized version of a game of solitaire
named Klondike, usually played with a regular deck of 52 playing cards.1

1I have taken the description of this game and its rules from A. H. Morehead and
G. Mott-Smith, eds., Hoyles Rules of Games (New York: New American Library,

237

238 IV: OBJECT-ORIENTED PROGRAMMING

One starts the game by dealing twenty-eight cards into seven piles, called
tableau piles, one to the first pile, two to the second, . . . , and seven to the
seventh. Actually, this is done crosswise according to the following algorithm:

To deal:
for i from 1 to 7 do

for j from i to 7 do
deal a card to tableau pile No. j

The cards are dealt facedown. Then, the top card of each pile is turned over,
so that seven cards are visible, each hiding a pile of zero to six facedown
cards. The remainder of the deck becomes the stock and is placed on the
table facedown. There are five more piles, each of which is faceup, but begins
with no cards in it. Four foundation piles are placed above the tableau, and
one waste pile is placed next to the stock, below the tableau. The program
we will develop will print the state of the game before each move; accept a
move from the user; if the move is legal, make the move; and display the new
game. Right after the deal, the game layout might look like this:

__ __ __ __
F1 F2 F3 F4

T1: AS
T2: QS
T3: 6H
T4: 4H
T5: 9H
T6: AC
T7: 2D

XX __
STOCK WASTE

Empty piles appear as “__”, upside-down piles appear as “XX,” and a pile
whose top card is faceup, appears as an abbreviation of the rank and suit of
the card. Each pile is labelled. The four foundation piles are labelled F1–F4,
the seven tableau piles are labelled T1–T7, and the stock and waste piles are
labelled STOCK and WASTE, respectively.

During the course of the game, the following moves are legal:

• You may turn over the top card of the stock and place it faceup on top
of the waste pile.

1963), pp. 181–182.

34: Classes 239

• You may place the top card of the waste pile on top of a tableau pile,
but only if it is one lower in rank and the opposite color of the card
that currently is on the top. When you do this, overlap the cards so
that all faceup cards in the tableau are visible.

• You may move all the faceup cards from one tableau pile onto the top of
another tableau pile, but only if the bottommost
highest-ranking card of the pile being moved is one lower in rank and
the opposite color of the card that currently is on the top of the tableau
pile the cards are being moved to.

• If the top card of a tableau pile or the top card of the waste pile is an
ace, you may move it to an empty foundation pile.

• If the top card of a tableau pile or the top card of the waste pile is the
card of the next-highest rank and of the same suit as the top card of any
foundation pile, you may move the card to the top of that foundation
pile.

• Whenever all the faceup cards of a tableau pile are removed from that
pile, the topmost facedown card of that pile (if there is one) is turned
over. This does not count as a move and is not optional.

• When a tableau pile is completely empty, you may put a king there, as
soon as you uncover one. This may be from the top of the waste pile,
or you may move a faceup king, along with all the faceup cards on top
of it, from another tableau pile.

• If you ever get all 52 cards onto the foundation piles, you win.

• If you exhaust the stock, have no legal moves left, and do not have all
the cards on the foundation piles, you lose.

To give you a better idea of the program to be written, here are some
moves from a typical game. We start the game by executing (play), then
move a card from one tableau pile to another.

> (play)

__ __ __ __
F1 F2 F3 F4

T1: 9D
T2: JD
T3: 4H
T4: KH

240 IV: OBJECT-ORIENTED PROGRAMMING

T5: 2S
T6: 8C
T7: QS

XX __
STOCK WASTE

> move t2 t7

__ __ __ __
F1 F2 F3 F4

T1: 9D
T2: 5C
T3: 4H
T4: KH
T5: 2S
T6: 8C
T7: QS JD

XX __
STOCK WASTE

A few moves later, we get to move a tableau pile of more than one card
onto another.)

34: Classes 241

__ __ __ __
F1 F2 F3 F4

T1: 9D 8C
T2: 5C 4H
T3: KC
T4: KH
T5: 2S
T6: 8H
T7: QS JD

XX __
STOCK WASTE

> move t7 t4

__ __ __ __
F1 F2 F3 F4

T1: 9D 8C
T2: 5C 4H
T3: KC
T4: KH QS JD
T5: 2S
T6: 8H
T7: 10H

XX __
STOCK WASTE

With no more moves among the tableaus, we next turn over a stock card.

> move stock waste

__ __ __ __
F1 F2 F3 F4

242 IV: OBJECT-ORIENTED PROGRAMMING

T1: 9D 8C
T2: 5C 4H
T3: KC
T4: KH QS JD
T5: 2S
T6: 8H
T7: 10H

XX JS
STOCK WASTE

I allowed the user to type s and w instead of stock and waste, respectively.

> move s w

__ __ __ __
F1 F2 F3 F4

T1: 9D 8C
T2: 5C 4H
T3: KC
T4: KH QS JD
T5: 2S
T6: 8H
T7: 10H

XX 7D
STOCK WASTE

> move w t1

__ __ __ __
F1 F2 F3 F4

T1: 9D 8C 7D
T2: 5C 4H
T3: KC
T4: KH QS JD
T5: 2S
T6: 8H
T7: 10H

XX JS

34: Classes 243

STOCK WASTE

Later, a tableau pile becomes empty, and a king is put on it.

__ __ __ __
F1 F2 F3 F4

T1: 9D 8C 7D
T2: 5C 4H 3S
T3: KC QD
T4: KH QS JD 10S
T5: 2S
T6: 8H
T7: 10H

XX QH
STOCK WASTE

> move t1 t4

__ __ __ __
F1 F2 F3 F4

T1: __
T2: 5C 4H 3S
T3: KC QD
T4: KH QS JD 10S 9D 8C 7D
T5: 2S
T6: 8H
T7: 10H

XX QH
STOCK WASTE
> move t4 t1

__ __ __ __
F1 F2 F3 F4

T1: KH QS JD 10S 9D 8C 7D
T2: 5C 4H 3S
T3: KC QD
T4: 9H
T5: 2S
T6: 8H

244 IV: OBJECT-ORIENTED PROGRAMMING

T7: 10H

XX QH
STOCK WASTE

Still later, an ace finally turns up and gets put on a foundation pile, followed
by its 2, and another ace on another foundation pile.

__ __ __ __
F1 F2 F3 F4

T1: KH QS JD 10S 9D 8C 7D 6C 5H
T2: 5C 4H 3S
T3: KC QD
T4: 9H
T5: 2S
T6: 8H
T7: 10H

XX AS
STOCK WASTE

> move w f1

AS __ __ __
F1 F2 F3 F4

T1: KH QS JD 10S 9D 8C 7D 6C 5H

T2: 5C 4H 3S
T3: KC QD
T4: 9H
T5: 2S
T6: 8H
T7: 10H

XX 10C
STOCK WASTE

> move t5 f1

2S __ __ __
F1 F2 F3 F4

34: Classes 245

T1: KH QS JD 10S 9D 8C 7D 6C 5H
T2: 5C 4H 3S
T3: KC QD
T4: 9H
T5: AD
T6: 8H
T7: 10H

XX 10C
STOCK WASTE

> move t5 f2

2S AD __ __
F1 F2 F3 F4

T1: KH QS JD 10S 9D 8C 7D 6C 5H
T2: 5C 4H 3S
T3: KC QD
T4: 9H
T5: QC
T6: 8H
T7: 10H
XX 10C

STOCK WASTE

Eventually, however, the stock is exhausted, and the game is lost.

3S AD 2H __
F1 F2 F3 F4

T1: KH QS JD 10S 9D 8C 7D 6C 5H 4S 3H 2C
T2: KD
T3: __
T4: 9C 8D 7S
T5: QC JH 10C 9H 8S 7H 6S
T6: KC QD JC 10H 9S 8H 7C 6H 5C 4H 3C
T7: 4C

__ 5S
STOCK WASTE

> quit
Sorry, you lose.

246 IV: OBJECT-ORIENTED PROGRAMMING

We will implement this game in the klondike package. I will show you
some of the implementation in the text. The rest will be left for the exercises.
The first thing we will do is define a class of cards. A card has a rank and
a suit. It seems reasonable to represent the ranks and the suits by symbols
and to have constants that are lists of the ranks and the suits. For example,

> (defconstant *ranks*
’(ace 2 3 4 5 6 7 8 9 10 jack queen king)

"A list of the 13 ranks in a deck of playing cards.")
RANKS

I will leave the definition of *suits* for you to do.
A class is defined by a call to the defclass function, whose format is

(defclass class-name (superclass-names)
(slot-specifiers)
class-options)

class-name is any symbol you chose to name the class. superclass-names are
the names of zero or more superclasses for this class. In this chapter, we will
never have more than one superclass per class. slot-specifiers specify the slots
that instances of this class will have. I will discuss them below. class-options
are a sequence of options for the class, the only one of which we will use is
(:documentation doc-string).

A slot-specifier may be just a symbol used to name the slot, but more often
there are further things to say about the slot, and so the specifier appears as
(slot-name slot-options). One slot-option is :documentation doc-string. I will
explain the others as I use them in the examples.

We want to define a class of cards whose instances will each have a rank
and a suit. No other class is a superclass of the class of cards.

> (clos:defclass card ()
((rank :initarg :rank :reader rank

:documentation "The rank of the card")
(suit :initarg :suit :reader suit

:documentation "The suit of the card"))
(:documentation "The class of playing cards"))

#<STANDARD-CLASS CARD>

As you can see, the name of this class is card, it has no superclasses, its
documentation string is "The class of playing cards", and it has two
slots named rank and suit. Each slot has three slot options given: the
:initarg slot option, the :reader slot option, and the :documentation
slot option. The :initarg slot option specifies the keyword argument to be

34: Classes 247

used to initialize the slot when an instance is created. Instances are created
with the function make-instance, which takes the class name as a required
argument, and then a sequence of zero or more :initarg keyword arguments.
To create the Jack of Clubs, we evaluate

> (setf jc (make-instance ’card :rank ’jack :suit ’clubs))
#<CARD 12476644>

The printed representation used for a card is not very informative, but the
:reader slot option specifies a function that can be used to access the slot’s
value:

248 IV: OBJECT-ORIENTED PROGRAMMING

> (rank jc)
JACK
> (suit jc)
CLUBS

Nevertheless, it would be nicer if the printed representation of the Jack of
Clubs were JC. We can get this to happen by specifying appropriate methods
for the generic function print-object. This is a function of two arguments—
an object and a stream. All the output functions we discussed in Chapter 29
use print-object, so specifying print-object for a class of objects will
affect how its instances are printed everywhere. A stream is what was called
a destination on page 196. It can specify what file is to receive the output.
However, we still don’t have to worry about it, since we can just pass it along
as the first argument to format or as a second, optional argument to the
other output functions. First, let’s provide a print-object method for the
symbol JACK and specify that it is to appear simply as J.

> (defmethod clos:print-object ((obj (eql ’jack)) stream)
(princ ’J stream))

#<method (TICLOS:METHOD TICLOS:PRINT-OBJECT ((EQL J) T))>

Notice that this method-lambda-list has two members. The second is stream.
The first is (obj (eql ’jack)), which says that this method is applicable
whenever the first argument to print-object is eql to ’jack. Each mem-
ber of a method-lambda-list must either be a simple symbol/variable, a list
(symbol class), or a list (symbol (eql object)).

Now that this print-object method has been defined, the printed repre-
sentation Common Lisp uses for jack will always be J.

> ’jack
J
> (rank jc)
J

Similarly, we can specify that the printed representations of ACE, QUEEN, and
KING will be A, Q, and K, respectively.

Next, we can specify that the symbol CLUBS should be printed as just C.

34: Classes 249

> (defmethod clos:print-object ((o (eql ’clubs)) stream)
(princ ’C stream))

#<method (TICLOS:METHOD TICLOS:PRINT-OBJECT ((EQL C) T))>
> (suit jc)
C

We can make similar methods for DIAMONDS, HEARTS, and SPADES.
Finally, we can specify that to print a card, just print its rank followed by

its suit:

> (defmethod clos:print-object ((c card) stream)
(format stream "~a~a" (rank c) (suit c)))

#<method (TICLOS:METHOD TICLOS:PRINT-OBJECT (CARD T))>
> jc
JC

I will assume that we have a constant *deck*, which is a list of the 52 cards
in a standard deck. Defining this constant is left as an exercise.

In playing Klondike, the color of a card matters. We could have given
each card a color slot, but that would have been redundant, since the color is
determined by the suit. Instead, we can define a color function. Since color
is only applicable to cards, we could do this by defining a regular Common
Lisp function and using check-type to make sure its argument is a card,
but it is more in the spirit of CLOS to use a generic function, whose only
method applies to cards. I’ll do this, using an option of defgeneric I haven’t
mentioned yet, in which we can define methods with the generic function:

> (clos:defgeneric color (c)
(:documentation "Returns the color of a card.")
(:method ((c card))

(case (suit c)
((diamonds hearts) ’red)
((clubs spades) ’black))))

#<DTP-FUNCTION COLOR 4300312>
> (color jc)
BLACK

This is the first time you’ve seen Common Lisp’s case function. Look up its
definition in the Common Lisp Manual in Appendix B of this book.

Now that we have defined cards, it is time to work on the Klondike game
layout. This consists of thirteen piles: four foundation piles, seven tableau
piles, a stock pile, and a waste pile. Since all of these are piles and contain
ordered sequences of cards, it is convenient to define a class of piles:

> (clos:defclass pile ()

250 IV: OBJECT-ORIENTED PROGRAMMING

((cards :initform ’() :accessor cards
:documentation
"A list of the cards in the pile"))

(:documentation "A pile of cards"))
#<STANDARD-CLASS PILE>

Here a pile has just one slot, named cards. That slot is specified with two
slot-options we haven’t seen before. The :initform slot-option provides a
form that is evaluated every time a new pile instance is created. The value of
the form becomes the value of the slot. Here, the cards of a pile are always
initialized to be the empty list. The :accessor slot-option is like the :reader
slot-option, except that the :accessor function creates a generalized variable
that is recognized by setf, and so can be used to change the slot’s value, as
well as to read it. Let’s make a pile and put three cards into it.

> (setf p (make-instance ’pile))
#<PILE 13222277>
> (cards p)
NIL
> (setf (cards p)

(list
jc
(make-instance ’card :rank 5 :suit ’hearts)))

(JC 5H)
> (push (make-instance ’card :suit ’spades :rank ’ace)

(cards p))
(AS JC 5H)
> (color (second (cards p)))
BLACK

I will leave as exercises the definitions of methods to make the top of a
pile the first card in its list of cards, the size of a pile the length of its list
of cards, and empty a predicate that is True of a pile when and only when it
has no cards in it.

We can divide the thirteen piles of Klondike into five faceup piles (the four
foundation piles and the waste pile), one facedown pile (the stock), and seven
two-way piles (the tableau piles). This categorization will mainly be so that
we can print these different kinds of piles in different ways. For example, the
class of faceup piles can be defined as

>(clos:defclass face-up-pile (pile)
()
(:documentation "A pile of face-up cards"))

#<STANDARD-CLASS FACE-UP-PILE>

34: Classes 251

Notice that the face-up-pile class is declared to be a subclass of the pile
class and that there is an empty list of slots because a face-up-pile has no
slots other than the one it has by being a pile.

We want to print a face-up-pile by printing its top card if it has one.
We want to print an empty face-up-pile as __.

> (defmethod clos:print-object ((p face-up-pile) stream)
(if (cards p)

(princ (top p) stream)
(princ ’__ stream)))

#<method (TICLOS:METHOD TICLOS:PRINT-OBJECT
(FACE-UP-PILE T))>

I’ll leave facedown piles for the exercises.
The tableau piles have zero or more faceup cards on top of zero or more

facedown cards. We can define them as instances of the two-way-pile, which
is a subclass of pile, but with an extra slot—upcards.

> (clos:defclass two-way-pile (pile)
((upcards :initform ’() :accessor upcards

:documentation "A second list of cards"))
(:documentation

"A pile with some face-up cards
on top of some face-down cards"))

#<STANDARD-CLASS TWO-WAY-PILE>

Since either the facedown part or the faceup part of a two-way-pile can be
empty independently of the other, we need a predicate to tell whether the
faceup part is empty. (We already have empty for the facedown part.)

> (clos:defgeneric emptyup (p)
(:documentation

"Returns T
if the two-way-pile has no face-up cards")

(:method ((p two-way-pile))
(null (upcards p))))

#<DTP-FUNCTION EMPTYUP 4540320>

If a two-way-pile has any upcards, we want to print the pile by printing
all the upcards, topmost on the right. If the two-way-pile has no upcards,
we would want to print its cards as if it were a face-down-pile. Therefore
the method for printing a two-way-pile is

> (defmethod clos:print-object ((p two-way-pile) stream)
(cond ((upcards p) (prin-rev (upcards p) stream))

((cards p) (princ ’XX stream))

252 IV: OBJECT-ORIENTED PROGRAMMING

(t (princ ’__))))
#<method (TICLOS:METHOD TICLOS:PRINT-OBJECT

(TWO-WAY-PILE T))>

I will leave the function print-rev for you to write as an exercise. I will also
leave as exercises the method (turnover pile), which is used to turn over
the top facedown card of a two-way-pile when the upcards are empty, and
a specialized top method for two-way-piles, which is used to return the first
member of upcards instead of the first member of cards.

Now that we have the notions of face-up-pile, face-down-pile, and
two-way-pile, it is time to get more specific to Klondike, and define foundation-pile,
tableau-pile, stock, and waste. These class definitions are left as exercises.

Finally, we will define the class layout. A layoutwill have four foundation-piles,
seven tableau-piles, one stock, and one waste pile. Since we will want to
refer to piles such as the third foundation pile and the fifth tableau pile, it is
convenient to use Common Lisp’s arrays for the set of foundation piles and
for the set of tableau piles. We will not use the full flexibility of Common
Lisp arrays, so our needs will be satisfied by the following three functions:

• (make-array n) returns an array of n elements, where n is a positive
integer. Each element can be any Common Lisp object.

• (aref array n) returns the nth element of the array array.
Counting is zero based, so if a2 were created by (make-array 2), its
elements would be accessed by (aref a2 0) and (aref a2 1). aref
also creates a form recognizable by setf as being a generalized variable,
so the way to make the first element of a2 the symbol foo is to evaluate
(setf (aref a2 0) ’foo).

• (dotimes (var n) forms) executes the series of forms n times, with
var taking on the values 0, 1, . . . , n − 1.

The definition of the layout class is

> (clos:defclass layout ()
((foundations

:accessor foundations
:initform (let ((a (make-array 4)))

(dotimes (i 4)
(setf (aref a i)

(make-instance
’foundation-pile)))

a))
(tableau
:accessor tableau

34: Classes 253

:initform (let ((a (make-array 7)))
(dotimes (i 7)
(setf (aref a i)

(make-instance ’tableau-pile)))
a))

(stock :accessor stock
:initform (make-instance ’stock))

(waste :accessor waste
:initform (make-instance ’waste)))

(:documentation "The layout of a Klondike game."))
#<STANDARD-CLASS LAYOUT>

Remember that the :initform slot-option is evaluated whenever a new layout
is created, so that each new layout will have new, empty piles. I will leave as
an exercise defining a print-option for layouts.

Let’s now look at the function play:

> (defun play ()
(setf *layout* (make-instance ’layout))
(shuffle)
(deal)
(let (move)

(loop
(print *layout*)
(setf move (read))
(when (eq move ’quit) (return))
(moveto (translate (read)) (translate (read)))))

(if (= 52 (+ (size (aref (foundations *layout*) 0))
(size (aref (foundations *layout*) 1))
(size (aref (foundations *layout*) 2))
(size (aref (foundations *layout*) 3))))

(princ "You Win!!!")
(princ "Sorry, you lose."))

(values))
PLAY

This assumes that *layout* has been declared as a global variable. The
functions we have left to write are shuffle, deal, moveto, and translate.

A good way to shuffle a deck of cards is to go through the entire deck and
exchange each card with a randomly chosen card. This is easy to do using
the Common Lisp function (random n), which returns a random integer
between 0 and n − 1, inclusively, and using psetf to exchange two values.
The definition of shuffle is left as an exercise.

The deal function should first set the stock to be the *deck* and then
deal from the stock to the tableau piles as discussed above. This is also an

254 IV: OBJECT-ORIENTED PROGRAMMING

exercise.
The moveto function is an excellent example of a generic function, be-

cause, as you can see by reviewing the legal moves outlined above, a move
is completely defined by the class of pile the card is being moved from and
the class of pile the card is being moved to. These possibilities are outlined
below:

• A card may be moved from the stock to the waste pile.

• A card may be moved from the waste pile to a tableau pile.

• A card may be moved from the waste pile to a foundation pile.

• A card may be moved from a tableau pile to a foundation pile.

• The set of upcards may be moved from one tableau pile to another
tableau pile.

Obviously, for each possibility, we will define a moveto method.
Some moveto methods need to check for the legality of the proposed move

before doing it. It is also convenient to define a legal generic function,
because the legality check subdivides the cases as follows:

• It is legal to put a card on a foundation-pile only if the
foundation-pile is empty and the card is an ace or if the card is
the next highest in rank of the same suit as the current top of the
foundation-pile.

• It is legal to put a card on a tableau-pile only if the
tableau-pile is empty and the card is a king or if the card is next
lower in rank and the opposite color of the current top card of the
tableau-pile.

• It is legal to put a list of cards on a tableau-pile only if the tableau-pile
is empty and the last card of the list is a king or
if the last card of the list could legally be put onto the
tableau-pile by itself.

• Any other of the kinds of moves is always legal.

I will define the most complicated of the moveto and legal methods and
leave the rest to you.

> (clos:defgeneric moveto (p1 p2)
(:documentation

"Moves the appropriate card(s)
from pile P1 to pile P2."))

#<DTP-FUNCTION MOVETO 13400000>

34: Classes 255

> (defmethod moveto ((tp1 tableau-pile)
(tp2 tableau-pile))

(if (legal (upcards tp1) tp2)
(setf (upcards tp2)

(append (upcards tp1) (upcards tp2))
(upcards tp1) ’())

(format t
"~%It is not legal to put a ~A on a ~A.~%"
(head tp1) (top tp2))))

#<method (TICLOS:METHOD MOVETO
(TABLEAU-PILE TABLEAU-PILE))>

> (clos:defgeneric legal (c p)
(:documentation

"Returns T if putting C on P is legal;
NIL otherwise."))

#<DTP-FUNCTION LEGAL 10640000>
> (defmethod legal ((lc list) (tp tableau-pile))

(cond ((emptyup tp)
(and (empty tp)

(eq (rank (first (last lc))) ’king)))
(t (legal (first (last lc)) tp))))

#<method (TICLOS:METHOD LEGAL (LIST TABLEAU-PILE))>

Finally, whenever the upcards of a tableau pile become empty, the top
facedown card is supposed to be turned over. This can happen as a result of
either moveto method whose first argument is a tableau-pile. CLOS pro-
vides special kinds of methods for such cleanup tasks following other meth-
ods. The methods we have seen so far are called primary methods. There
are also :before methods and :after methods, which are declared just like
other methods, but using one of the two method-qualifiers :before or :after.
When a generic function is called: all applicable :before methods are exe-
cuted for side effect, most specific first; the most specific primary method
is executed, and its value becomes the value of the generic function; all ap-
plicable :after methods are executed, least specific first. This might sound
confusing, but clears up when it is applied. We will just define one :after
method:

> (defmethod moveto :after ((tp tableau-pile) (p pile))
(when (and (emptyup tp) (not (empty tp)))

(turnover tp)))
#<method (TICLOS:METHOD MOVETO :AFTER

(TABLEAU-PILE PILE))>

That pretty much finishes the implementation of the Klondike game. The
rest of the details are left to you.

256 IV: OBJECT-ORIENTED PROGRAMMING

Exercises

Do the exercises of this chapter in a file named klondike and in the klondike
package, except where otherwise instructed.

34.1 (d) Implement the computerized Klondike game classes, methods, and
so on, shown in this chapter.

34.2 (d) Define the constant *suits* to be a list of the 4 suits.

34.3 (d) Define print-object methods to specify that the printed repre-
sentations of the symbols QUEEN, KING, and ACE will be Q, K, and A
respectively.

34.4 (d) Define print-object methods to specify that the printed represen-
tations of the symbols DIAMONDS, HEARTS, and SPADES will be D, H, and
S, respectively.

34.5 (d) Add to your klondike file the form

(defconstant *deck*
"A standard deck of 52 cards")

where the blank is filled by a form that evaluates to a list of the 52
standard cards—4 suits, each of 13 different ranks.

34.6 (d) Define the method (top p) to return the first card in the list of
cards of the pile p.

34.7 (d) Define the method (size p) to return the length of the list of cards
of the pile p.

34.8 (d) Define the method (empty p) to return True if the pile p has no
cards in it; False otherwise.

34.9 (d) Define the class of facedown piles, and a print-object
method for them that prints an empty face-down-pile as __, and
a nonempty face-down-pile as XX.

34.10 (d) Define the function (prin-rev list stream) to print the members
of the list to the stream in reverse order.

34.11 (d) Define the method (turnover pile), so it can be used to turn over
the top facedown card of a two-way-pile when the upcards are empty.

34.12 (d) Define a specialized top method for two-way-piles to return the
first member of upcards.

34: Classes 257

34.13 (d) Define foundation-pile and waste to be subclasses of
face-up-pile, stock to be a subclass of face-down-pile, and tableau-pile
to be a subclass of two-way-pile.

34.14 (d) Define a print-object method for the layout class, so that they
are printed as shown in the sample game in this chapter.

34.15 (d) Define shuffle as indicated in this chapter. shuffle should side
effect the global constant *deck* by changing the order of its 52 cards.

34.16 (d) Define deal as indicated in this chapter.

34.17 (d) Define (translate symbol) to return the pile of *layout* denoted
by the symbol. Assume the naming conventions used in the sample play
of this chapter.

34.18 (d) Finish the implementation of the computerized Klondike
game.

34.19 (d) It is unfortunate that, looking at the *layout*, we cannot tell if
a particular tableau-pile has any facedown cards in it. Change the
print-object methods so that the facedown cards of a tableau-pile
print either as XX or __ just to the left of the upcards.

34.20 (d) We might have defined a two-way-pile as something that consists of
two subpiles, a face-down-pile and a
fanned-face-up-pile. But then, we would want pile not to have any
slots, but two subclasses—single-pile and
double-pile. face-up-pile and face-down-pile would be
subclasses of single-pile, and two-way-pile would be a
subclass of double-pile. Write another version of the Klondike game
organized this way.

Part V

APPENDICES

APPENDIX A

SOLUTIONS TO SELECTED
EXERCISES

Chapter 1 Getting Started

The answers to Exercises 1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 1.11, and 1.12 depend
on the operating system or Common Lisp implementation you are using. You
must find the answers by consulting your manual, your teacher, a consultant,
or a friend. After finding the answers, write them in the book in the spaces
provided in the exercises and in Appendix B.2 for later reference.

Chapter 2 Numbers

2.6 Your Lisp should interpret 3. as an integer and 3.0 as a floating-point
number.

2.13 Also write the answer in Appendix B.2 for later reference.

2.14 Also write the answer in Appendix B.2 for later reference.

261

262 V: APPENDICES

Chapter 3 Lists

The exercises of this chapter are intended to make you comfortably familiar
with the formats you can use to type lists to the Common Lisp listener and
with the error messages that result from some common mistakes.

Chapter 4 Arithmetic

4.8 > (+)
0
> (*)
1

The other two cause error messages.

Chapter 5 Strings and Characters

5.19 By typing it twice, such as "a\\b".

Chapter 6 Symbols

6.26 By typing an escape symbol before the space, such as

> ’I\ did\ it
|I DID IT|

Chapter 7 Packages

7.4 By evaluating (describe ’lisp:pi).

Chapter 8 Basic List Processing

8.7 The first three of the nine forms are:

(first (first (first *)))
(first (rest (first (first *))))
(first (first (rest (first *))))

Chapter 9 The Special form quote

The exercises of this chapter are designed to have you study the equivalence
between the quote mark and the quote special form.

A: Solutions to Selected Exercises 263

Chapter 10 Defining Your Own Functions

10.9 (defun list2 (o1 o2)
"Returns a list of its two arguments in order."
(cons o1 (list1 o2)))

10.14 (defun sqr (n)
"Returns the square of the numeric argument."
(* n n))

Chapter 11 Defining Functions in Packages

11.4 (defun quad-roots (a b c)
"Returns a list of the two roots
of the quadratic equation, ax^2+bx+c."
(list (/ (+ (- b) (discrim a b c)) (* 2 a))

(/ (- (- b) (discrim a b c)) (* 2 a))))

Chapter 12 Saving for Another Day

12.2 (defun variablep (s)
"Returns T if the first character of the symbol S
is #\?; NIL otherwise."
(char= (char (symbol-name s) 0) #\?))

Chapter 13 Predicate Functions

13.5 (defun string-or-list-over-5 (o)
"Returns T if O is
a string containing more than 5 characters
or a list containing more than 5 elements;
NIL otherwise."
(and (or (stringp o) (listp o))

(> (length o) 5)))

13.7 (shadow ’lisp:null)

(defun null (o)
"Returns T if O is ’NIL; NIL otherwise."
(eql o ’nil))

13.13 (defun match-element (e1 e2)
"Returns T if E1 and E2 are eql,
or if either is a variable; NIL otherwise."
(or (eql e1 e2) (variablep e1) (variablep e2)))

264 V: APPENDICES

Chapter 14 Conditional Expressions

14.7 (defun dont-care (s)
"Returns T if the argument is a question mark;
NIL otherwise."
(and (symbolp s) (string= (symbol-name s) "?")))

Chapter 15 Recursion

15.13 (defun product (n1 n2)
"Returns the product of two nonnegative integers."
(assert
(and (integerp n1) (>= n1 0))
(n1)

"N1 must be a nonnegative integer, instead it’s ~S."
n1)

(assert
(integerp n2)
(n2)
"N2 must be an integer, instead it’s ~S."
n2)

(if (zerop n1) 0
(sum n2 (product (1- n1) n2))))

Chapter 16 Recursion on Lists, Part 1—Analysis

16.6 (defun before (e1 e2 l)
"Returns True if the first element occurs before
the second element in the list that is the third
argument."
(check-type e1 (satisfies util:elementp))
(check-type e2 (satisfies util:elementp))
(check-type l list)
(member e2 (member e1 l)))

16.11 (defun equal-lelt (l1 l2)
"Returns T if the corresponding elements
of L1 and L2 are EQL; NIL otherwise."
(check-type l1 list)
(check-type l2 list)
(cond ((null l1) (null l2))

((null l2) nil)
((eql (first l1) (first l2))
(equal-lelt (rest l1) (rest l2)))

A: Solutions to Selected Exercises 265

(t nil)))

16.14 (defun assoc (e al)
"Returns the first element of AL,
all of which must, themselves, be lists,
whose first element is EQL to the element E."
(check-type e (satisfies util:elementp))
(check-type al list)
(assert
(or (null al) (listp (first al)))
(al)

"All AL’s elements should be lists, but AL is ~S."
al)

(cond ((null al) nil)
((eql (first (first al)) e) (first al))
(t (assoc e (rest al)))))

Chapter 17 Recursion on Lists, Part 2—Synthesis

17.5 (defun firstn (n l)
"Returns a list of
the first N members of the list L."
(check-type n integer)
(check-type l list)
(if (zerop n) ’()

(cons (first l) (firstn (1- n) (rest l)))))

17.21 (export ’(set makeset union first rest insert))
...
(defun insert (e s)
"Returns a set just like S,
but with E added as a new element."
(check-type s set)
(if (member e (lisp:rest s)) s

(cons :set (cons e (lisp:rest s)))))

17.27 (shadow ’(set union first rest intersection subsetp
equal))

...
(export ’(set makeset union first rest insert empty

intersection complement subsetp equal))
...
(defun equal (s1 s2)
"Returns T if S1 and S2 contain the same elements;

266 V: APPENDICES

NIL otherwise."
(check-type s1 set)
(check-type s2 set)
(unlabelled-equal (lisp:rest s1) (lisp:rest s2)))

(defun unlabelled-equal (l1 l2)
"Returns T if S1 and S2 contain the same elements,
regardless of the order;
NIL otherwise."
(and (unlabelled-subsetp l1 l2)

(unlabelled-subsetp l2 l1)))

17.30 (defun bound-to (v subs)
"Returns the term that the variable V is bound to
in the substitution SUBS; NIL if it’s unbound."
(check-type v (satisfies variablep))
(check-type subs list)
(second (assoc v subs)))

17.34 (defun enclose-expression (expr)
"EXPR is a list representing an arithmetic
expression (using only the operators + and -)
in normal infix notation.
Returns a list whose one member is EXPR
transformed into Cambridge Prefix Notation."
(check-type expr list)
(cond ((< (length expr) 3) expr)

(t (combine-expr
(second expr) (first expr)
(enclose-expression (nthcdr 2 expr))))))

Chapter 18 Recursion on Trees

18.2 (defun atom-equal (a1 a2)
"Returns T if A1 and A2 are equal atoms
of the same type;
NIL otherwise."
(typecase a1
(util:element (eql a1 a2))
(string (and (stringp a2) (string= a1 a2)))))

\item[18.18]\index{{\tt inorder}}
\begin{verbatim}
(export ’(bstree bstreep insert root left right

A: Solutions to Selected Exercises 267

member build-from-list inorder))
...
(defun inorder (bstree)
"Returns a list of the members of BSTREE
in sorted order."
(check-type bstree bstree)
(cond ((null bstree) ’())

((atom bstree) (list bstree))
(t (append

(inorder (left bstree))
(cons (root bstree)

(inorder (right bstree)))))))

18.21 (shadow ’copy-tree)

(defun copy-tree (tree)
"Returns a copy of the tree TREE,
copying at all levels."
(typecase tree
(atom tree)
(cons (cons (copy-tree (first tree))

(copy-tree (rest tree))))))

18.26 (defun rulep (o)
"A rule is a list of two trees."
(and (listp o) (= (length o) 2)))

(deftype rule ()
"A rule is a list of two patterns,
the Left-Hand Side, and the Right-Hand Side."
’(satisfies rulep))

(defun lhs (rule)
"Returns the right-hand side of the RULE."
(check-type rule rule)
(first rule))

(defun rhs (rule)
"Returns the right-hand side of the RULE."
(check-type rule rule)
(second rule))

18.28 (defun enclose-expression (expr)
"EXPR is a list representing an arithmetic

268 V: APPENDICES

expression (using only the operators + and -)
in normal infix notation.
Returns a list whose one member is EXPR
transformed into Cambridge Prefix Notation."
(check-type expr list)
(cond ((< (length expr) 3) expr)

(t (combine-expr
(second expr)
(first expr)
(enclose-expression
(enclose-term (nthcdr 2 expr)))))))

(defun prefix (expr)
"Returns the arithmetic expression EXPR
containing the operators +, -, *, and /.
transformed into Cambridge Prefix notation."
(cond ((atom expr) expr)

((< (length expr) 3) expr)
(t (first

(enclose-expression
(enclose-term expr))))))

Chapter 19 The Evaluator

19.6 (defun lazy-nth (n list)
"Returns the Nth member of the LIST,
redeeming promises where necessary."
(check-type n (and integer (satisfies plusp)))
(check-type list cons)
(if (= n 1) (lazy-first list)

(lazy-nth (1- n) (lazy-rest list))))

19.9 (defun primes-from (n others)
"Returns a list of all prime numbers >= N,
assuming that OTHERS is a list of all primes < N."
(check-type n integer)
(check-type others list)
(if (relatively-prime n others)

‘(,n :promise primes-from ,(1+ n)
’(,@others ,n))

(primes-from (1+ n) others)))

19.12 (defun enclose-factor (expr)
"EXPR is a list representing an arithmetic

A: Solutions to Selected Exercises 269

expression (using the operators +, -, *, /, and ^)
in normal infix notation.
Returns a list like EXPR,
but with its first factor collected as its first
member, and expressed in Cambridge Prefix
Notation."
(check-type expr list)
(cond ((< (length expr) 3) expr)

((member (second expr) ’(+ - * /)) expr)
((eql (second expr) ’^)
(combine-expr ’expt

(first expr)
(enclose-factor
(prefix-first
(nthcdr 2 expr)))))

(t expr)))

19.16 (defun discrim (a b c)
"Returns the square root of the discriminant
of the equation ax^2 + bx + c."
(check-type a number)
(check-type b number)
(check-type c number)
(sqrt (compute ‘(,b * ,b - 4 * ,a * ,c))))

(defun quad-roots (a b c)
"Returns a list of the two roots of the equation
ax^2 + bx + c."
(check-type a number)
(check-type b number)
(check-type c number)
(list (compute

‘((- ,b + (discrim ,a ,b ,c)) / (2 * ,a)))
(compute
‘((- ,b - (discrim ,a ,b ,c))

/ (2 * ,a)))))

Chapter 20 Functions with Arbitrary Numbers
of Arguments

20.5 (defun discrim (a b c)
"Returns the square root of the discriminant
of the equation ax^2 + bx + c."
(check-type a number)

270 V: APPENDICES

(check-type b number)
(check-type c number)
(sqrt (compute b ’* b ’- 4 ’* a ’* c)))

(defun quad-roots (a b c)
"Returns a list of the two roots of the equation
ax^2 + bx + c."
(check-type a number)
(check-type b number)
(check-type c number)
(list
(compute
‘(- ,b + (discrim ,a ,b ,c)) ’/ ‘(2 * ,a))

(compute
‘(- ,b - (discrim ,a ,b ,c)) ’/ ‘(2 * ,a))))

Chapter 21 Mapping Functions

21.5 (defun scalar-plus (n vector)
"Returns a list like VECTOR,
but with each of its members added to N."
(check-type n number)
(check-type vector list)
(mapcar #’(lambda (x) (+ x n)) vector))

21.10 (defun discrim (a b c)
"Returns the square root of the discriminant
of the equation ax^2 + bx + c."
(check-type a number)
(check-type b number)
(check-type c number)
(compute ‘(sqrt (,b * ,b - 4 * ,a * ,c))))

Chapter 22 The Applicator

22.9 (defun depth (tree)
"Returns the depth of the argument TREE."
(if (atom tree) 0

(1+ (apply #’max (mapcar #’depth tree)))))

Chapter 23 Macros

23.9 (shadow ’and)

A: Solutions to Selected Exercises 271

(defmacro and (&rest forms)
"Return True if every FORM evaluates to True;
NIL otherwise.
As soon as one form evaluates to NIL,
doesn’t evaluate the rest."
(cond ((null forms) t)

((null (rest forms)) (first forms))
(t ‘(if ,(first forms) (and ,@(rest forms))

NIL))))

Chapter 24 Assignment

24.9 (defun apply-rules (tree rule-list)
"Applies the first rule in RULE-LIST to tree,
and each successive rule to the results of
applying the previous list."
(if (null rule-list) tree

(apply-rules
(apply-rule tree (first rule-list))
(rest rule-list))))

24.14 (psetf x2 x3 x3 x2)

Chapter 25 Scope and Extent

25.5 The file test may look like:

(setf x 3)

(defun foo (x)
"Establishes a binding for X, and calls BAR."
(bar))

(defun bar ()
"Returns the value of the non-local X."
x)

Chapter 26 Sequences

26.4 (shadow ’progn)

(defun progn (&rest forms)
"Gets all the FORMs evaluated,
and returns the value of the last form."

272 V: APPENDICES

(first (last forms)))

26.6 (shadow ’(push pop))

(defvar *stack* ’() "A global stack")

(defun push (e)
"Pushes the object E onto *STACK*."
(setf *stack* (cons e *stack*)))

(defun top ()
"Returns the top element of *STACK*."
(first *stack*))

(defun pop ()
"Pops the top element off *STACK*,
and returns it."
(prog1 (first *stack*)

(setf *stack* (rest *stack*))))

26.8 (defun svariablep (s)
"Returns T if S is a sequence variable;
NIL otherwise."
(and (symbolp s)

(char= (char (symbol-name s) 0) #\$)))

26.12 (defun boundp (v subs)
"Returns T if variable V is bound to anything
in the substitution SUBS; NIL otherwise."
(check-type v (or (satisfies variablep)

(satisfies svariablep)))
(check-type subs list)
(assoc v subs))

(defun bound-to (v subs)
"Returns the term that the variable V is bound to
in the substitution SUBS; NIL if it’s unbound."
(check-type v (or (satisfies variablep)

(satisfies svariablep)))
(check-type subs list)
(second (assoc v subs)))

(defun substitute (pat subs)
"Returns a tree like PAT,

A: Solutions to Selected Exercises 273

but with every variable that is bound in
the substitution SUBS
replaced by the term it is bound to."
(check-type subs list)
(cond ((atom pat)

(if (and (variablep pat) (boundp pat subs))
(bound-to pat subs)
pat))

((and (svariablep (first pat))
(boundp (first pat) subs))

(append (bound-to (first pat) subs)
(substitute (rest pat) subs)))

(t (cons (substitute (first pat) subs)
(substitute (rest pat) subs)))))

Chapter 27 Local Variables

27.8 (defun quicksort (list)
"Sorts the LIST of numbers, using quicksort."
(let ((length (length list)))
(if (< length 2) list

(let ((split
(nth (truncate (/ length 2)) list))

less-list
equal-list
greater-list)

(mapc
#’(lambda (x)

(cond
((< x split)
(setf less-list

(cons x less-list)))
((= x split)
(setf equal-list

(cons x equal-list)))
(t (setf greater-list

(cons x greater-list)))))
list)

(append (quicksort less-list)
equal-list
(quicksort greater-list))))))

274 V: APPENDICES

Chapter 28 Iteration

28.9 (defun ibuild-list (n)
"Returns a list of the first n integers."
(let (lst)
(loop
(when (zerop n) (return lst))
(push n lst)
(setf n (1- n)))))

28.21 In the file set:

(shadow ’(set union first rest intersection
subsetp equal do))

(export
’(set makeset union first rest insert empty

intersection complement subsetp equal do))

(defmacro do ((variable setform
&optional (result nil))

&body statements)
"Executes STATEMENTS repeatedly,
with VARIABLE taking on each of the members
of the set which is the value of SETFORM.
Then the value of RESULT is returned,
or NIL if RESULT is missing."
‘(dolist (,variable (lisp:rest ,setform) ,result)

,@statements))

Chapter 29 Input/Output

29.14 (princ #\space)will just print one space, but its value will be printed
by print. That is acceptable, but if you want a form that does nothing
but print a space, (progn (princ #\space) (values)) will do.

To prove it works, evaluate

(progn (princ ’x) (princ ’y)
(princ ’x) (princ #\space) (princ ’y)
(values))

29.20 (format t "~&I heard you say ~{~A ~}" sentence)

A: Solutions to Selected Exercises 275

29.24 (defun lisp ()
"Simulates the LISP Listener
read-eval-print cycle."
(loop
(fresh-line)
(print (eval (read)))
(terpri)))

29.26 (defun lisp ()
"Simulates the LISP Listener
read-eval-print cycle."
(let (f largs)
(loop
(fresh-line)
(princ "> ")
(setf f (read) largs (read))
(print (apply f largs))
(terpri))))

29.31 (defun terminatorp (symb)
"Returns T if SYMB is a sentence terminator;
NIL otherwise."
(check-type symb symbol)
(let ((symbstr (symbol-name symb)))
(char= (char symbstr (1- (length symbstr)))

#\.)))

(defun readasentence ()
"Reads a sequence of S-expressions until a
terminator is encountered.
Returns a list of the expressions without the
terminator. "
(let (backwards)
(loop
(push (read) backwards)
(when (terminatorp (first backwards))
(return (reverse backwards))))))

(defun sentence-echoer ()
"Infinite loop that prompts the user for a
sentence, and then echoes it."
(loop
(format t "~&Enter a sentence: ")
(format t "~&I heard you say ~{~A~#[~:; ~]~}"

276 V: APPENDICES

(readasentence))))

Chapter 30. Destructive List Manipulation

30.21 (export ’(bstree bstreep insert insertd root left
right member build-from-list
inorder))

(defun insertd (elt tree)
"Returns the binary search tree TREE
with the element ELT destructively inserted into
the proper place."
(check-type elt util:element)
(check-type tree bstree)
(cond
((atom tree) (insert-into-atomic-tree elt tree))
((eql elt (root tree)) tree)
((string< elt (root tree))
(if (atom (left tree))

(setf (second tree)
(insert-into-atomic-tree elt

(left tree)))
(insertd elt (left tree)))

tree)
(t (if (atom (right tree))

(setf (third tree)
(insert-into-atomic-tree
elt
(right tree)))

(insertd elt (right tree)))
tree)))

(defun insert-into-atomic-tree (elt tree)
"Returns the binary search tree TREE
with the element ELT inserted in
the proper place.
TREE must have at most 1 element in it."
(check-type elt util:element)
(check-type tree atom)
(cond ((null tree) elt)

((eql elt tree) tree)
((string< elt tree) (list tree elt ’()))
(t (list tree ’() elt))))

A: Solutions to Selected Exercises 277

Chapter 31 Property Lists

31.16 (defun add-friend (person friend)
"Using property lists,
adds PERSON as FRIEND’s friend
and adds FRIEND as PERSON’s friend."
(check-type person symbol)
(check-type friend symbol)
(unless (member friend (get person ’friends))
(push friend (get person ’friends))
(push person (get friend ’friends))))

Chapter 32 Hash Tables

32.8 For example,

(defun people-with-older-friends ()
"Returns a list of all people in the database
who have an older friend."
(let (results)
(maphash
#’(lambda (person plist)

(let ((age (getf plist ’age)))
(dolist (friend (getf plist ’friends))
(when (> (getf (gethash friend people)

’age)
age)

(pushnew person results)))))
people)

results))

(defun people-youngest-among-their-friends ()
"Returns a list of all people in the database
who are the youngest among their friends."
(let (results)
(maphash
#’(lambda (person plist)

(when
(< (getf plist ’age)

(apply #’min
(mapcar

#’(lambda (f)
(getf (gethash f people)

’age))

278 V: APPENDICES

(getf plist ’friends))))
(pushnew person results)))

people)
results))

Chapter 33 Methods

33.5 (defmethod < ((x t) (y t))
(check-type x (or character number symbol string))
(check-type x (or character number symbol string))
(member (type-of y)

(member
(type-of x)
’(character number symbol string))))

Chapter 34 Classes

34.5 (defconstant
deck
(let ((list ’()))
(dolist (suit *suits*)
(dolist (rank *ranks*)
(push
(make-instance ’card :rank rank :suit suit)
list)))

list)
"A standard deck of 52 cards")

34.8 (clos:defgeneric empty (p)
(:documentation
"Returns T if the pile is empty; NIL otherwise")

(:method ((p pile))
(null (cards p))))

34.11 (clos:defgeneric turnover (p)
(:documentation
"Turn over the top face-down card
in a two-way-pile.")

(:method ((p two-way-pile))
(push (pop (cards p))

(upcards p))))

34.15 (defun shuffle ()
"Shuffles the *deck*."

A: Solutions to Selected Exercises 279

(dotimes (i 52)
(let ((j (random 52)))
(psetf (nth i *deck*) (nth j *deck*)

(nth j *deck*) (nth i *deck*)))))

34.17 (defun translate (pile)
"Returns the pile denoted by the symbol PILE."
(case pile
((stock s) (stock *layout*))
((waste w) (waste *layout*))
(f1 (aref (foundations *layout*) 0))
(f2 (aref (foundations *layout*) 1))
(f3 (aref (foundations *layout*) 2))
(f4 (aref (foundations *layout*) 3))
(t1 (aref (tableau *layout*) 0))
(t2 (aref (tableau *layout*) 1))
(t3 (aref (tableau *layout*) 2))
(t4 (aref (tableau *layout*) 3))
(t5 (aref (tableau *layout*) 4))
(t6 (aref (tableau *layout*) 5))
(t7 (aref (tableau *layout*) 6))
(t (format t

"~%I don’t understand ~A~
as the name of a pile.~%"

pile))))

34.19 (defmethod clos:print-object ((p two-way-pile)
stream)

(if (cards p)
(princ ’|XX | stream)
(princ ’|__ | stream))

(when (upcards p) (prin-rev (upcards p) stream)))

APPENDIX B

COMMON LISP REFERENCE
MANUAL

B.1 Organization

This manual documents all the Common Lisp functions, macros, and special
forms introduced in the text. Although these are enough for the novice to
journeyman Lisper, they do not exhaust the features of Common Lisp. For
a complete presentation of the features of standard Common Lisp, see Guy
L. Steele, Jr.’s COMMON LISP: The Language, Second Edition (Bedford,
MA: Digital Press, 1990).

Appendix B.2 contains a list of the implementation-dependent
features mentioned in the text. Since I cannot give the specific details of
whatever implementation you are using, you should write them into the book
for your later reference. For a complete presentation of the Common Lisp
features specific to the Common Lisp implementation you are using, see the
manual for that implementation.

The rest of this appendix is a list of functions, macros, and special forms.
Some of these were introduced several times in the text, first in a simplified
form, and later in a more complete form. The manual gives the most com-
plete form possible without showing features that weren’t discussed at all in
the text. Before finishing the book, you should ignore features you don’t un-
derstand. After finishing the book, you should be able to use all the features
shown. For more advanced features, see Steele’s book, cited above.

Appendix B.3 lists macros and special forms that are used to control the

281

282 V: APPENDICES

flow of execution. Appendix B.4 lists utility functions such as those used for
debugging and type checking. Appendix B.5 lists input and output functions.
Appendix B.6 lists functions and macros specific to the Common Lisp Object
system. The rest of the appendix is organized alphabetically by the data type
of Common Lisp objects. Within each data type, the functions are listed
under the following topics:

Constructors: functions that return objects of the data type from compo-
nent objects, possibly of other types

Selectors: functions that take objects of the data type as arguments, and
return their component objects

Predicates: functions from objects of the data type to {True, False}
Attributes: functions from objects of the data type to objects of some other

data type that serve as attributes of the original objects

Operators: functions from objects of the data type to other objects of the
data type or functions that perform miscellaneous operations on the
objects

Each macro, function, and special form is shown as a typical calling form.
Material in this font is required exactly as shown. Material in this font
is to be replaced by actual argument forms. I have tried to choose these
terms so that they indicate the proper types of the arguments. If the term is
singular, it means that one argument form is required. If the term is plural,
it means that a sequence of one or more argument forms is allowed. Material
enclosed in square brackets [. . .] is optional, so a plural term enclosed in
square brackets means that zero or more argument forms are allowed. If a
list is followed by an asterisk *, it means that the list may be repeated zero or
more times. If a sequence of terms is enclosed in brackets {...} and followed
by an asterisk, it means that the sequence may be repeated zero or more
times. Terms separated by a vertical line | are alternatives. After the form,
I show whether it is a function, a macro, or a special form. Functions get their
arguments evaluated, macros and special forms control the evaluation of their
own argument forms.

B.2 System-Dependent Operations

This information is system dependent, so you should gather it at the appro-
priate point in reading this book or when doing the appropriate exercise. The
exercise is shown in parentheses.

Computer system used:

B: COMMON LISP Reference Manual 283

Operating system used:

Version of Common Lisp used:

How to log on:

How to run Lisp (1.1):

How to exit Lisp (1.2):

Common Lisp top-level prompt (1.3):

Debugger top-level prompt (1.7):

Debugger deeper-level prompt (1.9):

To find values of arguments of a broken function (10.3):

Interrupt key at top-level listener (1.6):

Interrupt key during a computation (15.7):

How to go up one debugger level (1.11):

How to go up all debugger levels (1.12):

To leave the debugger and abort a computation (15.7):

To leave the debugger and resume a computation (15.7):

Backspace character (2.13):

Line erase character (2.14):

Delete current list sequence (3.6):

To start an immediate garbage collection (30.16):

Turn on garbage collection reporting (30.17):

B.3 Control Functions

B.3.1 Variable Environments

(let ({symbol | (symbol form)}*) special form
[(declare (special variables))]
forms)
Establishes each symbol as the name of a variable. The scope of each
of these variables is limited to the let form, unless it is named in the

284 V: APPENDICES

declaration, in which case that variable has dynamic scope. If a form is
given with a symbol, the value of the form becomes the initial value of
the variable named by the symbol. These forms are evaluated in order,
but the assignment of their values to their variables is done in parallel.
A variable without an initialization form is initialized to NIL. Variables
named in the declaration that are not established by this let form are
special variables established elsewhere that will be used in the forms of
this let. After the establishment and initialization of all the variables,
the forms are evaluated in order, and the value of the last one becomes
the value of the let form.

(let* ({symbol | (symbol form)}*) special form
[(declare (special variables))]
forms)
Exactly like let except that the assigning of initial values to the vari-
ables is done in order so that one variable may be used in the initializa-
tion form of a later variable.

B.3.2 Assignment

(psetf {place form}*) macro
Just like setf, except evaluates all the forms first, then assigns the
values to the corresponding places in parallel. Returns NIL.

(psetq {symbol form}*) macro
Just like setq, except evaluates all the forms first, then assigns the
values to the corresponding variables in parallel. Returns NIL.

(set symbol form) function
Binds the special (dynamic) variable named symbol to the value of form.

(setf {place form}*) macro
Evaluates the first form and stores its value in the generalized variable
specified by the first place, then goes on to the next place form pair,
and so on. Returns the value of the last form.

(setq {symbol form}*) special form
Evaluates the first form and stores its value in the variable named by the
first symbol (which is not evaluated), then goes on to the next symbol
form pair, and so on. Returns the value of the last form.

B.3.3 Sequences

(prog1 forms) macro
The forms are evaluated in order and the value of the first is returned.

B: COMMON LISP Reference Manual 285

(prog2 forms) macro
The forms are evaluated in order and the value of the second is returned.

(progn [forms]) special form
The forms are evaluated in order and the value of the last is returned.

B.3.4 Exits

(return [form]) macro
form is evaluated and exit is made from the lexically innermost dolist,
dotimes, or loop form. The value of form is returned by that form. If
form is omitted, NIL is returned.

B.3.5 Conditionals

(case form macro
((objects1) forms1)
...
((objectsn) formsn))
form is evaluated. If its value is among the objectsi, then the formsi are
evaluated and the value of the last formsi is returned as the value of the
call to case. The objectsi are not evaluated. If the value of form is not
among any of the objectsi, NIL is returned unless either t or otherwise
appears instead of (objectsn), in which case the formsn are evaluated
and the value of the last formsn is returned. If objectsi consists of only
one object, that object may appear without the surrounding parentheses
as long as it is not nil, t, otherwise, or a cons. It is an error for one
object to appear among more than one objectsi.

(cond (test1 [forms1]) ... (testn [formsn])) special form
Evaluates the testi in order until one of them, testj say, evaluates to
True. Then evaluates formsj and returns the value of the last one. If
there are no formsj, the value of testj is returned. If no testi evaluates
to True, NIL is returned.

(if test then [else]) special form
If test evaluates to True, evaluates and returns the value of then; other-
wise, if else is present, evaluates and returns the value of else; otherwise,
returns NIL.

(typecase form (type1 forms1) ... (typen formsn)) macro
form is evaluated. formsi are evaluated for the lowest i for which the
value of form is of type typei and the value of the last formsi is returned
as the value of the call to typecase. The typei are not evaluated. If
the value of form is not any of the typei, NIL is returned unless either

286 V: APPENDICES

t or otherwise appears instead of (typen), in which case the formsn
are evaluated and the value of the last formsn is returned.

(unless test forms) macro
Evaluates test. If the value is NIL, evaluates the forms in order and
returns the value of the last one. Otherwise, does not evaluate the
forms and returns NIL.

(when test forms) macro
Evaluates test. If the value is NIL, does not evaluate the forms and
returns NIL. Otherwise, evaluates the forms in order and returns the
value of the last one.

B: COMMON LISP Reference Manual 287

B.3.6 Iteration

In these three macros, a statement is a non-atomic (that is, a list) form.

(dolist (symbol list-form [result-form]) statements) macro
Evaluates statements repeatedly with symbol successively bound to the
members of the value of list-form (which must evaluate to a list). Then
evaluates result-form, and returns that value. If result-form is omit-
ted, dolist returns NIL. Premature exit may be made with an explicit
return form.

(dotimes (symbol form resultform) statements) macro
Evaluates statements repeatedly with symbol successively bound to the
integers zero, 1, and so on, up to, but not including, the value of form,
which should evaluate to an integer. Then resultform is evaluated and
its value is returned. If form evaluates to zero or to a negative integer,
the statements are not evaluated at all. Premature exit may be made
with an explicit return form.

(loop statements) macro
The statements are evaluated in order repeatedly forever. The only way
to exit a loop is to evaluate a return that is lexically within the loop
form.

B.3.7 Mapping Functions

(mapc function lists) function
There must be the same number of lists as the number of arguments
function takes. function is applied to the first member of each of the
lists, the second member, and so on, until the shortest list is exhausted.
The first of the lists is returned.

(mapcan function lists) function
function must return a list, and there must be the same number of lists
as the number of arguments function takes. function is applied to the
first member of each of the lists, the second member, and so on, until
the shortest list is exhausted. The nconc of the values is returned.

(mapcar function lists) function
There must be the same number of lists as the number of arguments
function takes. function is applied to the first member of each of the
lists, the second member, and so on, until the shortest list is exhausted.
A list of the values is returned.

288 V: APPENDICES

B.4 Utility Functions

(assert assertion [(variables1) [string variables2]]) macro
If the form assertion evaluates to True, returns NIL. Otherwise, an
error is forced and Lisp prints an error message and gives the user the
choice of aborting the computation or replacing the current values of
the variables listed as variables1. If the user chooses to replace the
current values, the assert form is retried with the new values. The
error message is formed, in part, by applying format to string and
variables2.

(check-type variable type-specifier) macro
If the variable is of the type specified by the type-specifier, returns NIL.
Otherwise, an error is forced and Lisp prints an error message and gives
the user the choice of aborting the computation or replacing the current
value of variable. If the user chooses the latter, the check-type form
is retried with the new value.

(deftype symbol () doc-string ’(satisfies function)) macro
Defines symbol to be the name of Common Lisp type consisting of
all those objects that satisfy the predicate function, which must be
a function of one argument. doc-string is retrievable from symbol by
documentation. The form (satisfies function) may be replaced by
any type-specifier that might be used in check-type (see above), in
which case the type named by symbol is the type specified by type-
specifier.

(time form) macro
Evaluates form and prints how long it took to do the evaluation. Re-
turns the value of form.

(trace [function-names]) macro
Turns on tracing of the specified functions (function-names are not eval-
uated.) With no arguments, returns a list of all functions being traced.

(untrace [function-names]) macro
Turns off tracing of the specified functions (function-names are not eval-
uated.) With no arguments, turns off all tracing.

B.5 Input/Output

(format stream control-string arguments) function
Produces a printed representation of its arguments, as specified by the
control-string. If stream is nil, this printed representation is returned
as a string. If stream is t, the printed representation is printed to the

B: COMMON LISP Reference Manual 289

standard output file (usually the terminal). control-string is a string
of characters that get printed as they appear in the string, intermixed
with format directives. Some format directives consume arguments and
specify how these arguments are printed. Other format directives do
not consume arguments, but control the printing in other ways. Non-
consuming directives include

~% Causes a newline to be printed.
~& Causes a newline to be printed unless printing is already at the

beginning of a new line
~~ Causes the character ~ to be printed.
~#\newline A ~ appearing in the control-string right before the end

of a line causes the end-of-line and all subsequent blanks to be
ignored. It is a way of splitting a long control-string over several
lines.

Some consuming format directives are

~a or ~A Consumes one argument and prints it without escape char-
acters, as princ would

~s or ~S Consumes one argument and prints it with escape characters,
as prin1 would

~{str~} Consumes one argument, which must be a list, and prints the
members of the list according to the control string str as if they
were arguments to an embedded call of format. If str doesn’t
consume all the members of the list, it is used again on the next
group, and so on.

~#[str1~:;str2~] Uses the control string str1 if there is no argument
left or the control string str2 if there is any argument left. If
this directive is embedded in the ~{str~} directive, the notion of
“argument” is replaced by “member” of the list.

(fresh-line [stream]) function
Outputs a newline to stream, which defaults to standard output and
returns T, but only if output is not already positioned at the beginning
of a new line. In that case, it does nothing and returns NIL.

(pprint object [stream]) function
Prints a newline and then prints the object using escape characters
as appropriate and in a “pretty” indented format. Returns no value.
Printing is done into stream, which defaults to the standard output.

(prin1 object [stream]) function
Prints the object using escape characters as appropriate. Returns object.
Printing is done into stream, which defaults to the standard output.

290 V: APPENDICES

(princ object [stream]) function
Prints the object without using escape characters. Returns object. Print-
ing is done into stream, which defaults to the standard output.

(print object [stream]) function
Prints the object using escape characters as appropriate, preceded by
a newline and followed by a space. Returns object. Printing is done
into stream, which defaults to the standard output.

(read [stream]) function
Reads one S-expression from the input stream, which defaults to stan-
dard input, and returns the object represented by that S-expression.

(terpri [stream]) function
Outputs a newline to stream, which defaults to standard output and
returns NIL.

B.6 CLOS

The names of these functions and macros may have a special home package
(such as clos), and might not be inherited by the user (or common-lisp-user)
package automatically.

(defclass class-name (superclass-names) macro
((slot-name [:initarg initarg-name]

[:initform init-form]
[:accessor accessor-name]
[:reader reader-name]
[:documentation doc-string1])*)

(:documentation doc-string2))
All terms ending in -name must be symbols. class-name is declared
to be the name of a new CLOS class, whose superclasses are those
named by superclass-names. doc-string2 is retrievable from class-name
by the documentation function. Besides the slots this class inherits
from its superclasses, each object of this class will have a set of slots
each named by a slot-name. The slot named by slot-name will have each
of the following attributes if the corresponding slot option is included
in the class definition:

• initarg-name will be usable as a keyword parameter in calls of
make-instance that create objects of this class. The value of the
argument form paired with that keyword will become the initial
value of this slot of the object so created. If the keyword is used
when the object is created, it will override any init-form declared

B: COMMON LISP Reference Manual 291

on this slot. initarg-name may be any symbol, but it is most
convenient if it is a symbol in the keyword package.

• init-form will be evaluated each time an object of this class is
created, and that value of init-form will become the initial value
of this slot of that object.

• accessor-name will be the name of a method which, given an ob-
ject of class class-name as argument, will return the value of its
slot named slot-name. In addition, a form whose first member is
accessor-name will be recognized by setf as a generalized variable,
so that a value can be stored in this slot.

• reader-name will be the name of a method which, given an object
of class class-name as argument, will return the value of its slot
named slot-name.

• doc-string1 documents the use of this slot. It is to be read in
the source code of this definition. It is not retrievable by the
documentation function.

(defgeneric symbol (variables1 macro
[&optional variables2]
[&rest variable]
[&key variables3])

[(:documentation doc-string)]
[(declare [(ignore ignored-variables)]

[(special special-variables)])]
[(:method defmethod-material)]*)
Defines symbol to be the name of a generic function with required param-
eters variables1, optional parameters variables2, rest parameter vari-
able, keyword parameters variables3, documentation string doc-string,
and at least the given methods. For the meaning and use of required, op-
tional, rest, and keyword parameters, see defun on page 308. defmethod-
material consists of all the arguments of defmethod except for the name
of the generic function. See defmethod for an explanation of this ma-
terial. defgeneric returns the generic function object it creates.

(defmethod symbol [:before | :after] macro
(variable | (variable parameter-specializer)

[&optional variables2]
[&rest variable]
[&key variables3])

[(declare [(ignore ignored-variables)]
[(special special-variables)])]

forms)
Defines a method for the generic function named symbol. If the generic

292 V: APPENDICES

function already exists, the lambda-list of the method must agree with
that of the generic function. If the generic function does not already
exist, it is created with the given lambda-list. This method applies
to those calls of the generic function whose required actual arguments
agree with whatever parameter-specializers are supplied in the lambda-
list of this defmethod. A parameter-specializer is either the name of a
CLOS class or a form of the format (eql form). An actual argument
agrees with the former parameter-specializer if it is of the given class.
An actual argument agrees with the latter parameter-specializer if it is
eql to the value of the given form. For the meaning and use of the rest
of the material, see defun on page 308. defmethod returns the method
object it creates.

(make-instance symbol [initarg-name form]*) generic function
Creates an instance of the class named symbol and initializes the slot
with each initarg-name to have as its value the value of the correspond-
ing form.

(print-object object stream) generic function
Prints the object to stream, which defaults to standard output. print-object
is called by all other printing functions, and can call them recursively
to specify the printing of different CLOS classes.

B.7 Arrays

B.7.1 Constructors

(make-array n) function
Creates and returns an array of n elements, indexed from 0 to n − 1.
Each element can be any Common Lisp object.

B.7.2 Selectors

(aref array i) function
Returns the ith element of array. i must be a nonnegative integer less
than the number of elements of array. Indexing is zero-based. That is,
the first element of array is retrieved with (aref array 0). Forms a
generalized variable recognizable by setf.

B.8 Boolean Operators

(and [forms]) macro
Takes an arbitrary number of argument forms and evaluates them one
at a time left to right. As soon as one of them evaluates to NIL, returns
NIL. If none of them evaluates to NIL, returns the value of the last one.

B: COMMON LISP Reference Manual 293

(not object) function
Returns T if object is NIL; NIL otherwise.

(or [forms]) macro
Takes an arbitrary number of argument forms and evaluates them one
at a time left to right. As soon as one of them evaluates to anything
other than NIL, returns that value. If all of them evaluate to NIL,
returns NIL.

B.9 Character Predicates

(char= characters) function
Returns T if all the characters are the same; NIL otherwise.

B.10 File Operators

(compile-file filename) function
Compiles the file whose name is given by the string filename and cre-
ates a compiled file with the same path name, but with the standard
compiled file extension.

(load filename) function
Reads the file whose name is given by the string filename and executes
all the top-level forms in it. If filename contains an extension, that
file will be read. Otherwise, load will either read the file whose name
is given by filename and whose extension is the standard Lisp source
extension, or it will read the file whose name is given by filename and
whose extension is the standard Lisp compiled file extension, whichever
is more recent.

B.11 Functions

B.11.1 Constructors

(function fn) special form
If fn is a symbol, returns the function named by that symbol. If fn is
a lambda expression, returns the functional closure of that expression.
An alternate printed representation of (function fn) is #’fn.

B.11.2 Operators

(apply function [forms1] ([forms2])) function
A list of forms1 is appended to the list of forms2, and the function is
applied to that list of argument forms. If a symbol is given instead of a
function, the function the symbol names is used.

294 V: APPENDICES

(funcall function [forms]) function
Applies the function to the argument forms. function may only be a
function; it can’t be a macro or a special form.

B.12 Hash Tables

B.12.1 Constructors

(make-hash-table [:test function] [:size integer]) function
Creates and returns a hash table big enough to hold approximately inte-
ger entries, whose keys can be compared for equality with the predicate
function, which must be one of #’eq, #’eql, or #’equal (or #’equalp,
under the new Common Lisp standard). If function is omitted #’eql
is used. If integer is omitted, some implementation-dependent size is
used. The hash table is automatically enlarged if necessary.

B.12.2 Selectors

(gethash key hash-table) function
Returns the value associated with key in the hash-table. gethash forms
a generalized variable recognized by setf.

B.12.3 Attributes

(hash-table-count hash-table) function
Returns the number of entries stored in the hash-table.

B.12.4 Operators

(clrhash hash-table) function
Removes all the entries from hash-table. Returns hash-table.

(maphash function hash-table) function
For each entry in the hash-table, the function is applied to two argu-
ments: the key and the value. maphash returns NIL.

(remhash key hash-table) function
Removes the entry in the hash-table keyed by key. Returns T if there
was such an entry; NIL otherwise.

B.13 Lists and Conses

B.13.1 Constructors

(cons object list) function
Returns a list whose first element is object and whose other elements

B: COMMON LISP Reference Manual 295

are the elements of list in the same order. Equivalently, cons returns a
cons cell whose car field is object and whose cdr field is list, which may
be any type of object.

(copy-list list) function
Returns a list that is equal to, but not eq to list. Only the top level
of cons cells are copied, so if some member of list is a sublist, the
corresponding member of the new list will be eq to that sublist.

(list [objects]) function
Returns a list whose members are the objects in the given order.

(push object place) macro
The place form should be a recognizable by setf as a generalized vari-
able. object is consed onto the value of place, and the resulting object
is destructively stored into place and returned.

(pushnew object place [:test function]) macro
The place form should be a recognizable by setf as a generalized vari-
able containing a list. Unless object is already a member of that list,
using function as the equality function, object is consed onto the value
of place, and the resulting object is destructively stored into place and
returned. If function is omitted, #’eql is used. If object is already a
member of the value of place, that value is returned unchanged.

B.13.2 Selectors

(car cons) function
Returns the contents of the car field of the cons. If () is given instead
of a cons, returns (). car is equivalent to first. Forms a generalized
variable recognizable by setf.

(cdr cons) function
Returns the contents of the cdr field of the cons. If () is given instead
of a cons, returns (). cdr is equivalent to rest. Forms a generalized
variable recognizable by setf.

(caar cons) function
Equivalent to (car (car cons)). Forms a generalized variable recog-
nizable by setf.

(cadr cons) function
Equivalent to (car (cdr cons)). Forms a generalized variable recog-
nizable by setf.

296 V: APPENDICES

(cdar cons) function
Equivalent to (cdr (car cons)). Forms a generalized variable recog-
nizable by setf.

(cddr cons) function
Equivalent to (cdr (cdr cons)). Forms a generalized variable recog-
nizable by setf.

(first list) function
Returns the first element of the list; NIL if it is empty. Forms a gener-
alized variable recognizable by setf.

(second list) function
Returns the second element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(third list) function
Returns the third element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(fourth list) function
Returns the fourth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(fifth list) function
Returns the fifth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(sixth list) function
Returns the sixth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(seventh list) function
Returns the seventh element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(eighth list) function
Returns the eighth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(ninth list) function
Returns the ninth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

(tenth list) function
Returns the tenth element of the list; NIL if it doesn’t have that many.
Forms a generalized variable recognizable by setf.

B: COMMON LISP Reference Manual 297

(assoc object alist [:test function]) function
alist must be a list of conses. assoc returns the first element of the
alist whose car is equal to object according to the predicate function.
If function is absent, #’eql is used.

(butlast list [n]) function
Returns a list with all the members of list except for the last n. If n is
omitted, 1 is used.

(getf list indicator) function
list must have an even number of members. The odd members are
treated as indicators and the even members as values, making the en-
tire list look like a property list. getf returns the value paired with
(coming immediately after) the indicator on the list. getf returns NIL
if indicator is not an indicator on list. getf forms a generalized variable
recognized by setf.

(last list) function
Returns the last cons cell of the list. Equivalent to the last non-empty
tail of list formed by repeatedly applying rest.

(nth n list) function
Returns the nth element of the list, where n is a nonnegative integer;
NIL if it doesn’t have that many. The first element of list is returned
by (nth 0 list). Forms a generalized variable recognizable by setf.

(nthcdr n list) function
Returns a list with all the members of list except for the first n.

(pop place) macro
The place form should be recognizable by setf as a generalized variable,
and its value must be a cons. The car of the cons is returned and place
is destructively changed to be its cdr.

(rest list) function
Returns the list beginning with the second element. Forms a generalized
variable recognizable by setf.

B.13.3 Predicates

(member object list [:test function]) function
If object is equal to any member of list according to the predicate func-
tion, returns the tail of list beginning at the first such element; other-
wise, returns NIL. If function is missing, #’eql is used.

298 V: APPENDICES

(subsetp list1 list2 [:test test]) function
Returns T if every member of list1 is also a member of list2 according
to the predicate function, which defaults to #’eql; otherwise, returns
NIL.

B.13.4 Operators

(append [lists]) function
Returns a single list that is the concatenation of the argument lists.

(intersection list1 list2 [:test function]) function
Creates and returns a list containing all the objects that are members of
both list1 and list2. Uses function as the equality function. If function
is not specified, uses #’eql.

(nconc [lists]) function
Returns a single list that is the concatenation of all the argument lists.
Destructively changes all the lists but the last.

(union list1 list2 [:test function]) function
Creates and returns a list containing all the objects that are members of
either list1 or list2. Uses function as the equality function. If function
is not specified, uses #’eql.

(remf list indicator) macro
Destructively removes the indicator-value pair from the property list
(see getf on page 297), if one is there and returns some True value. If
indicator is not an indicator on list, remf does nothing and returns NIL.

(reverse list) function
Returns a list like list but with the order of its members in the opposite
order.

(rplaca cons object) function
Destructively changes the car of the cons to object, and returns the
modified cons.

(rplacd cons object) function
Destructively changes the cdr of the cons to object, and returns the
modified cons.

B.14 Numbers

B.14.1 Constructors

(random n) function
Returns a number x of the same type as n, either integer or floating

B: COMMON LISP Reference Manual 299

point, such that 0 ≤ x < n.

300 V: APPENDICES

(sxhash object) function
Returns a nonnegative fixnum which constitutes a hash code for object.
sxhash will produce the same number for two objects that are equal.

B.14.2 Predicates

(= [numbers]) function
Returns T if the numbers are all equal; NIL otherwise.

(/= [numbers]) function
Returns T if no two numbers are equal; NIL otherwise.

(< numbers) function
Returns T if each number is less than the next; NIL otherwise.

(<= numbers) function
Returns T if each number is less than or equal to the next; NIL otherwise.

(> numbers) function
Returns T if each number is greater than the next; NIL otherwise.

(>= numbers) function
Returns T if each number is greater than or equal to the next; NIL
otherwise.

(minusp number) function
Returns T if number is less than zero, NIL otherwise.

(zerop number) function
Returns T if number is zero; NIL otherwise.

B.14.3 Operators

(+ [numbers]) function
Returns the sum of the numbers.

(- numbers) function
If given one number, returns the negative of it; otherwise, successively
subtracts all the rest from the first number and returns the result.

(* [numbers]) function
Returns the product of all the numbers.

(/ numbers) function
If given one number, returns its reciprocal; otherwise successively di-
vides the first number by the rest and returns the result. It is an error
for any number except the first to be zero.

B: COMMON LISP Reference Manual 301

(1+ number) function
Equivalent to (+ number 1).

(1- number) function
Equivalent to (- number 1).

(ceiling number) function
Returns the smallest integer greater than or equal to number.

(expt x y) function
Returns xy, where x and y are any numbers.

(floor number) function
Returns the largest integer less than or equal to number.

(max numbers) function
Returns the maximum of all the numbers.

(min numbers) function
Returns the minimum of all the numbers.

(mod x y) function
Returns the integer remainder from dividing x by y.

(round number) function
Returns the closest integer to number. If number is halfway between
two integers, returns the one divisible by 2.

(sqrt x) function
Returns

√
x, where x is any number.

(truncate number) function
Returns the integer part of number, discarding the fractional part.

B.15 Objects

Objects include all Common Lisp objects.

B.15.1 Constructors

(copy-tree object) function
If object is not a cons, it is returned. Otherwise,

(cons (copy-tree (car object)) (copy-tree (cdr object)))

is returned. Circular substructures and other substructure sharing is
not preserved.

302 V: APPENDICES

(values) function
Returns no value.

B.15.2 Predicates

(atom object) function
Returns T if the object is not a cons; NIL otherwise.

(characterp object) function
Returns T if the object is a character; NIL otherwise.

(consp object) function
Returns T if the object is a cons; NIL otherwise.

(eq object object) function
Returns T if the two objects are identically the same (the same as point-
ers); NIL otherwise.

(eql object object) function
Returns T if the two objects are eq, if they are numbers of the same
type and value, or if they are char=; NIL otherwise.

(equal object object) function
Returns T if the two objects are structurally the same, and their corre-
sponding components also are (recursively); NIL otherwise. Two arrays
are equal only if they are eq, unless they are strings, in which case
they are equal if they have the same length and their corresponding
characters are char=.

(equalp object object) function
Returns T if the two objects are equal, if they are characters or strings
and would be equal if case were ignored, if they are numbers of the
same value ignoring type, or if they are arrays of the same length whose
corresponding components are equalp; NIL otherwise.

(floatp object) function
Returns T if the object is a floating-point number; NIL otherwise.

(hash-table-p object) function
Returns T if the object is a hash table; NIL otherwise.

(integerp object) function
Returns T if the object is an integer; NIL otherwise.

(listp object) function
Returns T if the object is a list, including the empty list (); NIL other-
wise.

B: COMMON LISP Reference Manual 303

(numberp object) function
Returns T if the object is a number; NIL otherwise.

(null object) function
Returns T if the object is NIL; NIL otherwise.

(packagep object) function
Returns T if the object is a package; NIL otherwise.

(stringp object) function
Returns T if the object is a string; NIL otherwise.

(symbolp object) function
Returns T if the object is a symbol; NIL otherwise.

(tree-equal tree1 tree2 [:test function]) function
Returns T if tree1 and tree2 are equal according to the predicate func-
tion, which defaults to #’eql, or if they are both conses with tree-equal
car parts and tree-equal cdr parts. Otherwise, returns NIL.

(typep object type) function
Returns T if the object is of the given type; NIL otherwise.

B.15.3 Attributes

(type-of object) function
Returns a symbol that names the type of the object.

B.15.4 Operators

(eval form) function
The form is evaluated and its value is returned. Notice that there is a
double evaluation here: eval gets its argument evaluated because it is
a function; and eval evaluates that result.

(identity object) function
Returns object.

(macroexpand form) function
If form is a cons and its first member is the name of a macro, the
macro form is expanded, and this process continues until the result is
no longer a macro form. Then this form is returned. If form is not a
macro form, it is returned unchanged. macroexpand returns a second
value that is T if the original form was a macro form and NIL if it wasn’t.

304 V: APPENDICES

(quote object) special form
Returns the object unevaluated. Lisp reads ’object as being the same
as (quote object).

(subst new-object old-object tree [:test function]) function
Makes and returns a copy of tree with every leaf or subtree that is equal
to old-object according to the predicate function, that defaults to #’eql,
replaced by new-object.

B.16 Packages

B.16.1 Constructors

(defpackage package-name macro
[(:shadow symbol-names)]
[(:shadowing-import-from package-name symbol-names)]*
[(:use package-names)]
[(:import-from package-name symbol-names)]*
[(:export symbol-names)])
Proposed macro for the new Common Lisp standard. Creates a new
package named package-name with the indicated relations to symbols
and other packages.

(find-package string) function
Returns the package named string if it exists; otherwise, returns NIL.
If a symbol is given instead of string, the symbol’s name is used.

(in-package string) macro
Changes the current package to the one named string; first creates the
package if it does not already exist. If a symbol is given instead of
string, the symbol’s name is used.

(make-package string) function
Creates a package named string. If a package already exists with that
name, raises an error. If a symbol is given instead of string, the symbol’s
name is used.

B.16.2 Selectors

(package-name package) function
Returns the string that forms the name of the package.

B.16.3 Operators

(provide module-name) function
Adds the module named module-name to the global variable

B: COMMON LISP Reference Manual 305

modules to indicate that the module has been loaded. module-name
can be a string or a symbol. If it is a symbol, the symbol’s name is used.
This function may be omitted from the new Common Lisp standard.

(require module-name (pathnames)) function
If the module named module-name has not already been loaded, as in-
dicated by its presence on the global variable *modules*, loads the files
named pathnames in order. If there is only one

306 V: APPENDICES

pathname, the enclosing parentheses may be omitted. module-name can
be a string or a symbol. If it is a symbol, the symbol’s name is used.
This function may be omitted from the new Common Lisp standard.

(use-package (packages)) function
All external symbols in packages are made accessible as internal symbols
in the current package. packages must be packages or package names
(if a symbol is given, its name is used). If there is only one package, the
enclosing parentheses may be omitted. It is an error to try to use the
keyword package. Returns T.

B.17 Sequences

Sequences include lists, strings, and arrays.

B.17.1 Selectors

(remove-if-not predicate sequence) function
Returns a sequence exactly like sequence but containing only those ele-
ments that satisfy the predicate function.

B.17.2 Attributes

(count object sequence [:test function]) function
Returns the number of members of the sequence equal to object accord-
ing to the predicate function. If function is missing, #’eql is used.

(length sequence) function
Returns the number of members of the sequence.

B.17.3 Operators

(substitute objectn objecto sequence [:test function]) function
Makes and returns a copy of sequence with every element that is equal
to objecto according to the predicate function, that defaults to #’eql,
replaced by objectn.

B: COMMON LISP Reference Manual 307

B.18 Strings

B.18.1 Selectors

(char string integer) function
The integer must be a nonnegative integer less than the length of the
string. Returns the character at position integer of the string, where
the first character of the string is a position 0. Forms a generalized
variable recognizable by setf as long as the new value is a character.

B.18.2 Predicates

(string= string string) function
Returns T if the corresponding characters of the two strings are the
same (according to char=); NIL otherwise.

(string< string1 string2) function
If string1 is lexicographically less than string2, returns the index of the
first place where they differ; otherwise, returns NIL.

B.19 Symbols

B.19.1 Constructors

(defconstant symbol form doc-string) macro
A global variable is created with symbol as its name and the value of
form as its value. doc-string is retrievable from symbol by documentation.
The value of this variable cannot be changed after this initialization.

(defmacro symbol (variables1 macro
[&optional variables2]
[{&rest | &body} variable]
[&key variables3])

doc-string
[(declare [(ignore ignored-variables)]

[(special special-variables)])]
assertions
forms)
Defines symbol to be the name of a macro. For the meaning and use of
the arguments, see defun below. The only difference between &body and
&rest is that &body tells certain printing functions that the remainder
of the form should be indented like the body of a function. defmacro
allows one additional feature in its lambda-list, known as destructuring.
Wherever a normal lambda-list allows a symbol and does not allow a
list, you may put a lambda-list. The actual argument corresponding to

308 V: APPENDICES

that lambda-list is then treated as a list of arguments to be bound to
the parameters of the lambda-list.

(defparameter symbol form doc-string) macro
A global, special variable is created with symbol as its name and the
value of form as its value. doc-string is retrievable from symbol by
documentation.

(defun symbol (variables1 macro
[&optional variables2]
[&rest variable]
[&key variables3])

doc-string
[(declare [(ignore ignored-variables)]

[(special special-variables)])]
assertions
forms)
Defines symbol to be the name of a function with required parameters
variables1, optional parameters variables2, rest parameter variable, key-
word parameters variables3, documentation string doc-string, declara-
tions, assertion forms assertions, and body
forms. The function must be called with at least as many actual ar-
gument forms as there are required parameters. When the function is
called the parameters are bound as follows:

• The ith required parameter is bound to the value of the ith argu-
ment form.

• If there are any optional parameters, each is handled as follows. If
there is a remaining actual argument form, the optional parameter
is bound to the value of the argument form. Otherwise, it is bound
to NIL.

• If there is a rest parameter, it is bound to a list of the values of
the remaining actual argument forms.

• If there are any keyword parameters, they are bound to the ar-
guments that follow the optional arguments. There must be an
even number of argument forms. The odd argument forms are
interpreted as keywords. Each keyword must be a symbol in the
keyword package with the same name as one of the keyword pa-
rameters. That keyword parameter is bound to the value of the
following argument form.

After the parameters are bound, the assertions are evaluated for type
checking or for other validity checking of the actual arguments. Then
the forms are evaluated. The value of the function call is the value of

B: COMMON LISP Reference Manual 309

the last form. ignored-variables are parameters that are not used in the
body of the function. Declaring them as ignored serves as a reminder
that they were not omitted by accident, may prevent a compiler warning
message that they have not been used, may cause a compiler message if
they are used, and may result in some compiler optimizations. special-
variables are dynamically scoped variables that either are included in
this lambda-list and will be used by other functions or were created
elsewhere and will be used in the body of this function.

defun returns symbol.

(defvar symbol form doc-string) macro
If a global variable with the name symbol already is bound to a value,
does nothing. Otherwise, a global, special variable is created with sym-
bol as its name and the value of form as its value. doc-string is retrievable
from symbol by documentation.

(gensym [string | integer]) function
Returns a new, uninterned symbol. The symbol’s name will consist of a
prefix and an integer. If the string argument is provided, the prefix will
be that string for this call and subsequent calls of gensym until changed.
If a nonnegative integer argument is provided, that will be the integer
for this symbol. After each call to gensym the integer to be used for
future calls is incremented by 1.

B.19.2 Selectors

(get symbol indicator) function
Returns the value associated with indicator on symbol’s property list.
Returns NIL if indicator is not on symbol’s property list. get forms a
generalized variable recognized by setf.

(symbol-function symbol) function
Returns the function, macro, or special form named by symbol. Pro-
duces an error if symbol is not the name of a function. Forms a gener-
alized variable recognizable by setf.

(symbol-name symbol) function
Returns the string that forms the name of the symbol.

(symbol-package symbol) function
Returns the home package of symbol.

(symbol-plist symbol) function
Returns the property list of symbol. Forms a generalized variable rec-
ognizable by setf.

310 V: APPENDICES

(symbol-value symbol) function
Returns the value of the dynamic (special) variable named by symbol.
Produces an error if symbol has no such value. Forms a generalized
variable recognizable by setf.

B.19.3 Predicates

(boundp symbol) function
Returns T if the dynamically scoped (special or global) variable named
by symbol is bound to a value; NIL otherwise.

(fboundp symbol) function
Returns T if symbol is the name of a function, macro, or special form.
Otherwise, returns NIL.

B.19.4 Attributes

(describe symbol) function
Prints useful information about the symbol including its home package
and value.

(documentation symbol doc-type) function
Returns the documentation string of type doc-type for the symbol; NIL
if there is no appropriate documentation. The table below shows con-
structs that can associate a documentation string with a symbol, and for
each, the proper doc-type to use to retrieve that documentation string.

Construct Doc-type
defvar ’variable
defparameter ’variable
defconstant ’variable
defun ’function
defmacro ’function
defgeneric ’function
deftype ’type
defclass ’type

B.19.5 Operators

(compile symbol) function
Compiles the function whose name is symbol.

(export ’(symbols)) function
Makes symbols external symbols in the current package. If there is only
one symbol, it need not be enclosed in a list.

B: COMMON LISP Reference Manual 311

(import ’(symbols)) function
Makes symbols internal symbols in the current package. If there is only
one symbol, it need not be enclosed in a list.

(remprop symbol indicator) function
Destructively removes the indicator-value pair from symbol’s
property list if one is there and returns some True value. If indica-
tor is not an indicator on symbol’s property list, remprop does nothing
and returns NIL.

(shadow ’(symbols)) function
Makes internal symbols in the current package with the same names as
symbols. If there is only one symbol, it need not be enclosed in a list.

(shadowing-import ’(symbols)) function
Imports symbols, shadowing any other symbols with the same names
that are already accessible in the package.

(ed [symbol]) function
Invokes the editor. If symbol is included, tries to let you edit the function
named symbol, which might involve loading the file where it is defined
into the editor. This function might not be implemented.

Index

Common Lisp, exitting, 5
Common Lisp, logging on, 3, 5
Lisp, environment, xiv
Lisp, implementations of, xiv
Lisp data structures, xvi
Lisp identities, 47
Lisp machine, 3
Lisp programs, xvi
, \30
&optional parameters, 186
&rest parameters, 186
rest parameters, 136
break, 5
carriage return, 3, 25
clear input key, 14
ctrl-c, 5
ctrl-d, 5
del, 5
rub, 5
car, 46
cdr, 46
common-lisp-userpackage, 36, 62
common-lisp package, 36, 62
eq, 29
’, 12, 51, 128
(), 46, 97
**, 50

deck, 249, 278
grammar-rules, 163
package, 27, 33, 35, 166
print-base, 27
print-circle, 210
ranks, 246
read-base, 27
*, 15, 50, 300
+, 15, 300
,, 128
-, 15, 300
., 23
/=, 300
/, 15, 300
1+, 81, 301
1-, 81, 301
::, 37
:accessor, 250
:a, 5
:initarg, 246
:initform, 250, 253
:method, 249
:promise, 129
:q, 5
:reader, 247
:set, 102
:size, 221

313

314 INDEX

:test, xviii, 221, 223
:vv, 59
:, 38
;;;, 69
;;, 69
;, 10, 23, 69
<=, 74, 75, 136, 300
<, 74, 136, 232–234, 278, 300
=, 17, 74, 300
>=, 136, 300
>>, 5
>, 5, 136
NIL, 12, 17, 28, 73, 214
T, 17, 28, 73
#’, 140
&body, 189
&key, 223
&optional, 186
&rest, 136
~{dir ~}, 198, 200
‘, 12, 128
absval, 77
add-friend, 277
and, 74, 270, 292
append2, 145
append, 98, 145–147, 207, 298
apply-rules, 163, 201, 271
apply-rule, 124
apply, 147, 148, 293
aref, 252, 292
assert, xviii, 84, 288
assoc, 95, 265, 297
atom-equal, 266
atom, 76, 302
backtrack-match, 175
bag defined type, 105
before, 264
bound-to, 107, 266, 273
boundp, 107, 272, 310
bstree-insert, 117, 122
bstree-left, 118, 122
bstree-member, 118, 122
bstree-right, 118, 122

bstree-root, 117, 122
bstree:insertd, 212
bstreep, 117, 122
bstree defined type, 116, 122
bstree file, 122, 123, 212, 225
build-from-list, 123
butlast, 225, 297
bye, 5
caar, 295
cadr, 295
calculator file, 71, 108, 109, 125,

132, 133, 137, 143, 155,
163, 202

card class, 246
car, xviii, 140, 203, 295
case, 249, 285
cdar, 296
cddr, 207, 296
cdr, xviii, 203, 295
ceiling, 180, 301
char=, 23, 293
characterp, 73, 302
char, 22, 307
check-type, xvii, 93, 288
clos package, 230
clrhash, 223, 294
cl, 3
color, 249
combine-expr, 71, 108
compile-file, 71, 293
compile, 310
complement, 106
compute, 130, 132, 135, 137, 153,

155
cond, 78, 285
cond clauses, 172
cond pairs, 78
cond, and sequences, 172
consp, 76, 302
cons, 45, 97, 203, 294
copy-list, 98, 295
copy-tree, 267, 301
copy, 97

Index 315

count, 306
declare, 169
defclass, 246, 290
defconstant, 160, 307
defgeneric, 232, 291
defmacro, 152, 166, 171, 307
defmethod, 233, 291
defpackage, 70, 304
defparameter, 160, 308
deftype, 100, 288
defun, 55, 140, 166, 171, 308
defvar, 160, 309
depth, 119, 120, 270
describe, 36, 310
discrim, 65, 137, 143, 155, 269,

270
documentation, 56, 100, 160, 310
dolist, 184–186, 188, 189, 191, 287
dont-care, 79, 264
dotimes, 252, 287
double-float, 8
do, 274
d (exponent marker), 8
eat, 211
ed, 216
eh-arg, 59
eighth, 296
elementp, 76
element defined type, 100, 115
eliza file, 201
emptyup, 251
empty, 106, 278
enclose-expression, 108, 266, 267
enclose-factor, 109, 268
enclose-term, 108
eql, xviii, 29, 103, 302
equal-elt, 264
equalp, 121, 302
equal, 48, 103, 265, 302
eq, xviii, 206, 213, 302
eval, 127, 145, 303
exit, 5
export, 38, 70, 310

expt, 17, 301
e (exponent marker), 8
face-up-pile class, 250
fboundp, 133, 310
fifth, 296
find-package, 41, 42, 304
firstn, 265
first, xviii, 46, 111, 203, 296
floatp, 73, 302
floor, 180, 301
format, 196, 288
format directives, 197, 198
fourth, 296
fresh-line, 289
funcall, 147, 294
function, 140, 141, 293
f (exponent marker), 8
gc-immediately, 211
gensym, 189, 192, 309
getf, 222, 297
gethash, 221, 294
get, 214, 309
greaterp, 136
hash-table-count, 222, 294
hash-table-p, 224, 302
hopeful, 205
ibuild-list, 274
identity, 103, 303
if-then-else statements, 79
if, 77, 151, 153, 285
import, 39, 70, 311
in-package, 36, 39, 42, 69, 304
inorder, 123
insert-into-atomic-tree, 276
insertd, 276
insert, 106, 265
integerp, 73, 302
intersection, 106, 298
isqmark, 64
keyword package, xv, 102, 224
lambda, 55, 166
last, 62, 297
layout class, 252

316 INDEX

lazy-first, 129
lazy-nth, 268
lazy-rest, 129
legal, 255
length, 22, 48, 74, 89, 306
let*, 179, 284
let, 177, 283
let variables, initialization of, 178
lhs, 124, 267
lisp, 3, 195, 275
lisp package, xv, 36, 62
list2, 57, 263
list3, 55
listp, 73, 302
list, 60, 136, 295
load, 68, 293
long-float, 8
loop-return, 182, 189
loop, 182, 287
l (exponent marker), 8
macroexpand, 152, 303
make-array, 252, 292
make-hash-table, 220, 221, 294
make-instance, 247, 292
make-package, 42, 304
make-unlabelled-set, 102
makeset, 101, 102, 105
mapcan, 208, 287
mapcar-ext, 150
mapcar, 140, 142, 287
mapc, 180, 184, 189, 287
maphash, 222, 294
match-element, 76, 79, 263
match1, 174
matchlelt, 95
match, 107, 124
match file, 70, 71, 76, 79, 95, 107,

108, 124, 125, 163, 174,
176, 201

max-depth-members, 120
max, 120, 301
member, 90, 94, 223, 297
minusp, 136, 300

min, 217, 301
mod, 301
moveto, 254, 255
natural-numbers-from, 129, 172
nconc, 207, 298
nil, 28, 46
ninth, 296
not, 76, 293
nthcdr, 95, 297
nth, 94, 297
null, 75, 89, 263, 303
number-listp, 91, 92
numberp, 73, 303
or, 74, 293
package-name, 40, 304
packagep, 73, 303
people-with-older-friends, 277
people-youngest-among-their-friends,

277
pile class, 249
pi, 27
play, 253
pluslist-f, 152
pluslist-m, 152
pop, 183, 272, 297
pprint, 194, 289
prefix, 125, 132, 143, 268
primes-from, 268
prin1, 194, 289
princ, 194, 290
print-object, 248, 249, 251, 279,

292
print, 194, 290
product, 264
prog1, 173, 284
prog2, 173, 285
progn, 172, 271, 285
provide, 202, 304
psetf, 160, 162, 284
psetq, 160, 162, 284
pushnew, 217, 295
push, 180, 272, 295

Index 317

quad-roots, 65, 137, 155, 263, 269,
270

quicksort, 177, 178, 180, 208, 273
quote, 51, 304
random, 253, 298
readasentence, 198, 275
read, 194, 290
read-eval-print loop, xvi, 4, 7,

195
remf, 222, 298
remhash, 223, 294
remove-if-not, 208, 306
remprop, 214, 311
repeat loop, 183
require, 202, 305
rest, xviii, 46, 111, 203, 297
return, 182, 285
reverse1, 99, 181
reverse2, 98, 182, 183
reverse3, 184
reverse4, 184
reverse5, 185
reverse, 98, 298
rhs, 124, 267
round, 180, 301
rplaca, 206, 298
rplacd, 206, 298
rulep, 267
rule, 124, 267
same-length2, 92
same-length, 92
satisfies, 94
scalar-add1, 139–141
scalar-plus, 270
second, 57, 296
sentence-echoer, 275
set:do, 192
set:equal, 106
set:first, 105
set:rest, 105
set:union, 106
setf, xviii, 160, 161, 205, 206, 214,

221, 250, 252, 284

setp, 102, 105
setq, xviii, 160, 161, 284
set, 160, 161, 284
set defined type, 105
set file, 105, 106, 192
seventh, 296
shadowing-import, 43, 69, 311
shadow, 43, 69, 311
short-float, 8, 9
shuffle, 278
sign, 78
single-float, 8
sixth, 296
special, 169
sqrt, 17, 301
sqr, 60, 263
string-or-list-over-5, 263
string<, 116, 307
string=, 22, 307
stringp, 73, 303
sub-first, 99, 101
subsetp, 106, 298
subst*, 142
substitute, 108, 124, 176, 273,

306
subst, 304
sum2, 86, 98
sum, 82, 85
svariablep, 174, 272
switch, 57
sxhash, 220, 300
symbol-function, 140, 204, 213,

309
symbol-name, 29, 213, 309
symbol-package, 213, 309
symbol-plist, 213, 309
symbol-value, 213, 310
symbolp, 73, 303
s (exponent marker), 8
tenth, 296
terminatorp, 275
terpri, 290
third, 60, 296

318 INDEX

time, 94, 190, 288
top, 272
trace, 59, 288
translate, 279
tree-equal, 113, 303
truncate, 178, 179, 301
turnover, 278
two-way-pile class, 251
type-of, 31, 303
typecase, 120, 285
typep, 117, 303
t, 28
union-unlabelled-sets, 106
union, 102, 105, 298
unlabelled-equal, 265
unless, 183, 286
untrace, 59, 288
use-package, 70, 306
user package, xv, 36, 62
util file, 76, 105, 150
values, 199, 302
variablep, 70, 76, 263
vector-sum, 148
when, 183, 286
while loop, 183
x+function, 167
zerop, 81, 300
0.0, 9

Ada, xv
arithmetic, 15
arrays, 21, 252
Artificial Intelligence, 237
artificial intelligence, xiii, xiv
assignment functions, 159, 162
assignment statements, 159
atoms, xvii, 111
atoms, literal, xvii
attributes, 282

backquote, 12, 128
backslash character, 25
backspace, xiv, 10
backtracking, 175

bags, 101
bash, 25
Basic, 165
bignums, 31
blank, 7
blanks, initial, 9
box notation, 203
break loop, 4
break package, 4

C, 165
Cambridge Prefix notation, 15, 16
carriage return, in lists, 12
case, conversion of lowercase let-

ters, 28
case, lower vs. upper, 29, 42
character set, xiv
characters, xvi, 21
characters, evaluation of, 22
characters, printed representations

of, 22
Church, Alonzo, 55
class hierarchy, 231
class precedence list, 231
classes, 230
classes, built-in, 237
classes, inheritance, 237
classes, standard, 237
CLOS, xvii, xviii, 230, 237
closures, 141, 167, 172
CLtL-2, xiii, xvi, xix, 281
CLU, xvii
Cobol, 237
comma, 7, 10, 128
comment character, 10, 69
comments, 69
Common Lisp Object System, 230
conditional, xiv
conditional expressions, 77
conditionals, one-branched, 183
cons cells, 203
conses, 49, 111
constants, 160
constructors, 282

Index 319

cross product, 106
cursor, 13

data structures, xiii
debugger, xiv, 4, 6, 58, 86
debugging, 68
decimal point, 8
delete current list sequence, 14
delete key, xiv
desk calculator mode, 18
destructive list manipulation, 206–

209
destructuring, 188
documentation string, xviii, 56, 100
dotted lists, 49, 114
dotted pairs, 49, 114, 204

elemental objects, 76
ELIZA program, 202
Emacs, 67
entries of hash tables, 219
environment, 13, 68, 165
equality, for lists, 48
equality, for numbers, 17
equality, for pointers, 206
equality, for sets, 106
equality, for symbols, 29
equality, for trees, 113
error messages, xiv
errors, xxii
errors, typing, xiv
escape brackets, xvii, 30
escape character, 25, 30, 34
evaluation, xxii, 4
evaluator, xiv, 127
exercises, xiv, xvi, xviii, xxi
exercises, solutions, xxii
experimentation, xiv, xxi, xxii
exponent markers, 8, 9
exporting symbols, 35, 38
expressions, xxii
expressions, nested, 17
extensibility, xiv
extent, 165

extent, dynamic, 166

False, 73
False, printed representation of, 17
Fibonacci numbers, 132
file names, 67
file names, extensions, 67
files, 67
files, compiling, 68
files, loading, 67, 68
files, style, 69
fixnums, 31
forms, xiv–xvii, 4, 7, 49, 127
forms, evaluation of, xvi, 7, 127
forms, sequences of, 171
Fortran, xvii, 165
frames, 237
Free Software Foundation, 67
function definition, 55
function names, 21, 31
function names, qualified, 61
functions, xiv, xxii, 15
functions, arithmetic, types of re-

sults, 16
functions, as data types, 140
functions, destructive, 114, 203
functions, generic, 231, 232
functions, helper, 99
functions, recursive, 81
functions, recursive, standard pat-

tern, 82

garbage, 208
garbage collection, 208, 211
generalized variables, 214, 221, 250,

252
generators, 172
GNU Emacs, 67

hash functions, 220
hash tables, 219
hash tables, theory, 219
home package, 35

imperative statements, xiv, xxii

320 INDEX

implementation-dependent features,
xiii, xxii, 3, 8, 33, 282

importing symbols, 35, 39
importing, automatic, 40
indicator values, 213
indicators, 213
infix notation, 16
input, 194
inspector, xiv
instances, 230
integers, 7
integers, allowed size of, 8
integers, negative, 7
integers, positive, 8
integers, printed representations of,

7
integers, value of, 8
interactive languages, xiv
interrupt key, 5, 6, 14, 82, 86
iteration, 181
iteration vs. recursion, 189, 196

key values, 219
keys, 219
keyword arguments, 221, 223
keyword parameters, 223
keyword parameters, default val-

ues, 224
Klondike, 237

Lambda Calculus, 55
lambda expressions, 141, 205
lambda variables, 55, 57, 136
lambda variables, value of, 58
lambda-list keywords, 136
law of laziness, 83
lazy evaluation, 129
line erase character, 10
Lisp machine, 14
listener, xiv, xxii, 3, 4, 7, 193
lists, xvii, 11
lists, as data objects, 45
lists, as trees, 114
lists, association, 95

lists, constructing, 45
lists, definition of, 11, 46
lists, empty, 97
lists, evaluation of, 15, 49, 56
lists, infinite, 129, 207, 208
lists, infinite, printing, 210
lists, mixed, 115
lists, printed representations of, 11,

12
lists, quoted, 12
lists, spacing, 12
lists, strict, 114
lists, the empty list, 11
lists, top-level, 13
logging off, 5
logical operators, 74

M.I.T., 15
macro expansion, 152
macros, 151, 154
McCarthy, John, 15
methods, 231
methods, primary, 255
methods, :after, 255
methods, :before, 255
minus sign, 7
minus sign, binary, 16
minus sign, unary, 16
mistakes, xviii, 4, 82
Modula-2, 165, 237
multiple values, 152, 194

numbers, xvii, 7
numbers, evaluation of, 4
numbers, floating-point, 7, 8
numbers, printed representation, 8
numbers, printed representations of,

4
numbers, value of floating point, 8
numerals, arabic, 7

object-oriented languages, xvii, 7
objects, xvi, xvii, xxii, 7
objects, composite, xvii

Index 321

objects, evaluation of, xvi, xxii, 4
objects, printed representations of,

30
operations, xvii
operators, 282
output, 194
output, formatted, 196

packages, xv, xvi, 35, 61
packages, and file loading, 166
packages, and symbol recognizers,

63
packages, as data type, 40
packages, defining functions in, 62
packages, names, 40
packages, printed representations of,

41
parentheses, 11
parentheses, and blanks, 12
parentheses, counting, 13
parentheses, miscounting, 13
Pascal, xv, xvii, 165, 237
paths, 68
PL/I, 237
places, 206
plus sign, 8
pointers, 203, 205
predicate functions, 73
predicate functions, equality, 73
predicate functions, numeric, 74
predicate functions, type-checking,

73
predicates, xvii, 282
prime numbers, 132
printed representation, 4
printed representations, xvi–xviii,

4, 7
programmer teams, 35, 61
programming languages, xiii, xiv,

xxii, 7
programming team, xv
programming, applicative, xiv, 159
programming, functional, xiv
programming, imperative, 159, 165

programming, object-oriented, xviii,
xxii, 229, 230

programming, procedure-oriented,
230

programs, xxii, 55, 127, 193
programs, development, 68
programs, interactive, 193, 195
programs, testing, 57
prompt, 3, 4, 6
prompt, and current package, 39
prompt, debugger, 5, 6
property lists, 213
property lists, problems, 219

qualified names, xv, 37
quote, 12
quote character, 128
quote mark, 12, 51
quoted S-expressions, value of, 51

ratios, 16
ratios, printed representations of,

17
recursion, xiv, 81
recursion, infinite, 82
recursion, on lists, 89, 97
recursion, on trees, 111
recursion, vs. iteration, 189, 196
recursive functions, xviii
rules, 124

S-expressions, xiv–xvii, xxii, 3, 4,
7, 28

S-expressions, evaluation of, xvi
S-expressions, lists, 11
S-expressions, read by top-level, 9
scientific notation, 8
scope, 165
scope, dynamic, 169
scope, lexical, 166
scoping, dynamic, xv
scoping, lexical, xv
selectors, 282
semicolon, 10

322 INDEX

sequence variables, 174
sequences, 171
sets, 101
side-effecting, 159
slot values, 237
slot-specifiers, 246
slots, 237
special forms, 51, 151
Steele, Guy L., Jr., xiii, 281
streams, 248
strings, xvii, 21
strings, allowed characters in, 22
strings, allowed length, 22
strings, evaluation of, 21
strings, index of first character, 22
strings, printed representations of,

21
substitution, 107
symbol name, xvii, 21, 29
symbol name, allowed characters

in, 30
symbol name, allowed length, 30
symbol names, xviii
symbol values, 205
symbolic algebra, xiv
symbolic expressions, xvi, xxii
symbols, xvi, xviii, 21, 27, 165, 213
symbols, as function names, 31
symbols, as type names, 31
symbols, evaluation of, 27
symbols, external, 38
symbols, function, 213
symbols, home package, 213
symbols, interned, 40
symbols, name, 213
symbols, printed representations of,

21, 27, 29
symbols, quoted, 28
symbols, use of, 27
symbols, value, 213
symbols, value of, 27
symbols, values of, 57
syntactic sugar, 153

testing, 68
top level, 3
trace package, 59
tracing, xiv
trees, 111
trees, binary search, 115
trees, definition of, 114
True, 73
True, printed representation of, 17
True, representations of, 94
type hierarchy, 8, 13, 23, 31, 42,

115, 231
typed objects, 7
types, xv, xvii, xxii, 31, 229
types, and CLOS classes, 231

uninterning, 42

variables, 21, 27, 165
variables, creating, 166
variables, free, 141
variables, generalized, 206
variables, global, 160, 166, 177
variables, local, 166, 177
variables, sequence, 174

Weizenbaum, Joseph, 202

