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ABSTRACT
The relationship of comments to code, and in particular, the task
of generating useful comments given the code, has long been of
interest. The earliest approaches have been based on strong syntac-
tic theories of comment-structures, and relied on textual templates.
More recently, researchers have applied deep-learning methods
to this task—specifically, trainable generative translation models
which are known to work very well for Natural Language trans-
lation (e.g., from German to English). We carefully examine the
underlying assumption here: that the task of generating comments
sufficiently resembles the task of translating between natural lan-
guages, and so similar models and evaluation metrics could be used.
We analyze several recent code-comment datasets for this task:
CodeNN, DeepCom, FunCom, and DocString. We compare them
with WMT19, a standard dataset frequently used to train state-of-
the-art natural language translators. We found some interesting
differences between the code-comment data and the WMT19 natu-
ral language data. Next, we describe and conduct some studies to
calibrate BLEU (which is commonly used as a measure of comment
quality). using “affinity pairs" of methods, from different projects,
in the same project, in the same class, etc; Our study suggests that
the current performance on some datasets might need to be im-
proved substantially. We also argue that fairly naive information
retrieval (IR) methods do well enough at this task to be considered
a reasonable baseline. Finally, we make some suggestions on how
our findings might be used in future research in this area.
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1 INTRODUCTION
Programmers add comments to code to help comprehension. The
value of these comments is well understood and accepted. A wide
variety of comments exist [42] in code, including prefix comments
(standardized in frameworks like Javadocs [31]) which are inserted
before functions or methods or modules, to describe their function.
Given the value of comments, and the effort required to write
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Figure 1: Distribution of trigrams in English (blue) in the
WMT [10] German-English machine-translation dataset,
and in English comments from several previously published
Code-Comment datasets

them, there has been considerable interest in providing automated
assistance to help developers to produce comments, and a variety
of approaches have been proposed [38, 47, 48, 59].

1

Comments (especially prefix comments) are typically expected
to be a useful summary of the function of the accompanying code.
Comments could be viewed as a restatement of the semantics of
the code, in a different and more accessible natural language; thus,
it is possible to view comment generation as a kind of translation
task, translating from one (programming) language to a another
(natural) language. This view, together with the very large volumes
of code (with accompanying comments) available in open-source
projects, offers the very appealing possibility of leveraging decades
of research in statistical natural language translation (NLT). If it’s
possible to learn to translate from one language to another from
data, why not learn to synthesize comments from code? Several
recent papers [22, 26, 33, 61] have explored the idea of applying
Statistical Machine Translation (SMT) methods to learn to translate
code to an English comments. But are these tasks really similar?
We are interested to understand in more detail how similar the
task of generating comments from code is to the task of translating
between natural languages.

Comments form a domain-specific dialect, which is highly struc-
tured, with a lot of very repetitive templates. Comments often begin
with patterns like "returns the", "outputs the", and "calculates the".
Indeed, most of the earlier work (which wasn’t based on machine
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learning) on this problem has leveraged this highly templated na-
ture of comments [40, 48]. We can see this phenomenon clearly us-
ing Zipf plots. Figure 1 compares the trigram frequencies of the Eng-
lish language text in comments (from the datasets [22, 26, 33] that
have been used to train deep-learning models for code-comment
summarization) and English language text in the WMT German-
English translation dataset: the x-axis orders the trigrams frommost
to least frequent using a log-rank scale, and the y-axis is the log
relative frequency of the trigrams in the corpus. The English found
in WMT dataset is the magenta line at the bottom. The comments
from code show consistently higher slope in the (note, log-scaled)
y-axis of the Zipf plot, suggesting that comments are far more sat-
urated with repeating trigrams than is the English found in the
translation datasets. This observation motivates a closer examina-
tion of the differences between code-comment and WMT datasets,
and the implications of using machine translation approaches for
code-comment generation.

In this paper, we compare code-comment translation (CCT)
datasets used with DL models for the task of comment genera-
tion, with a popular natural translation (WMT) dataset used for
training DL models for natural language translation. These were
our results:

(1) We find that the desired outputs for the CCT task are much
more repetitive.

(2) We find that the repetitiveness has a very strong effect on
measured performance, much more so in the CCT datasets
than the WMT dataset.

(3) We find that the WMT translation dataset has a smoother,
more robust input-output dependency. Similar German in-
puts in WMT have a strong tendency to produce similar
English outputs. However, this does appear to hold in the
CCT datasets.

(4) We report that a naive Information retrieval approach can
meet or exceed reported numbers from neural models.

(5) We evaluate BLEU per se as a measure of generated comment
quality using groups of methods of varying "affinity"; this
offers new perspectives on the BLEU measure.

Our findings have several implications for the future work in the
area, in terms of technical approaches, ways of measurement, for
baselining, and for calibrating BLEU scores. We begin below by first
providing some background; we then describe the datasets used in
prior work. We then present an analysis of the datasets and and an
analysis of the evaluation metrics and baselines used. We conclude
after a detailed discussion of the implications of this work.
But first, a disclaimer: this work does not offer any new models for
or improvements on prior results on the CCT task. It is primar-
ily retrospective, viz, a critical review of materials & evaluations
used in prior work in CCT, offered in a collegial spirit, hoping to
advance the way our community views the task of code-comment
translation, and how we might together make further advances in
the measurement and evaluation of innovations that are addressed
in this task.

2 BACKGROUND & THEORY
The value of comments in code comprehension has been well-
established [51]. However, developers find it challenging to create

&maintain useful comments [17, 19]. This has sparked a long line of
research looking into the problem of comment generation. An early
line of work [11, 40, 48, 49] was rule-based, combining some form
analysis of the source code to extract specific information, which
could then be slotted into different types of templates to produce
comments. Another approach was to use code-clone identification
to produce comments for given code, using the comments asso-
ciated with a clone [59]. Other approaches used keywords which
programmers seem to attend to in eye-tracking studies [47]. Still
other approaches use topic analysis to organize descriptions of
code [37].

Most of the pioneeering approaches above relied on specific fea-
tures and rules hand-engineered for the task of comment generation.
The advent of large open-source repositories with large volumes of
source-code offered a novel, general, statistically rigorous, possi-
bility: that these large datasets be mined for code-comment pairs,
which could then be used to train a model to produce comments
from code. The success of classic statistical machine translation [30]
offered a tempting preview of this: using large amounts of aligned
pairs of utterances in languages A & B, it was possible to learn a
conditional distribution of the form pt (b | a), where a ∈ A, and
b ∈ B; given an utterance β ∈ B, one could produce a possible
translation α ∈ A by simply setting

α = argmax
a

pt (a | β)

Statistical natural language translation approaches, which were al-
ready highly performant, were further enhanced by deep-learning
(DL). Rather than relying on specific inductive biases like phrase-
structures in the case of classical SMT, DL held the promise that
the features relevant to translation could themselves be learned
from large volumes of data. DL approaches have led to phenomenal
improvements in translation quality [29, 52]. Several recent pa-
pers [24, 26, 33] have explored using these powerful DL approaches
to the code-comment task.

Iyer et al. [26] first applied DL to this task, using code-English
pairs mined from Stack Overflow—using simple attention over
input code, and an LSTM to generate outputs. Many other papers
followed, which are discussed below in section 3.2. We analyze the
published literature, starting with the question of whether there
are notable distributional differences between the code-comment
translation (CCT) and the statistical machine translation (WMT)
data. Our studies examine the distributions of the input and output
data, and the dependence of the output on the input.

RQ1.What are the differences between the translation (WMT)
data, and code-comment (CCT) data?

Next, we examine whether these differences actually affect the
performance of translation models. In earlier work, Allamanis [3]
pointed out the effects of data duplication on machine learning
applications in software engineering. We study the effects of data
duplication, as well as the effects of distributional differences on
deep learning models. One important aspect of SMT datasets is
input-ouput dependence. In translation e.g. from German (DE) to
English (EN), similar input DE sentences will to produce similar
output EN sentences, and less similar DE sentences will tend to
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produce less similar EN sentences. This same correlation might not
apply in CCT datasets.

RQ2. How the distributional differences in the SMT & CCT
datasets affect the measured performance?

There’s another important difference between code and natural
language. Small differences, such as substituting ∗ for + and a 1 for
a 0, can make the difference between a sum and a factorial func-
tion; likewise changing one function identifier (mean, rather than
variance). These small changes should result in a large change in
the associated comment. Likewise, there are many different ways
to write a sort function, all of which might entail the same com-
ment. Intuitively, this would appear to be less of an issue in natural
languages; since as they have evolved for consequential communi-
cation in noisy environments, meaning should be robust to small
changes. Thus on the whole, we might expect that small changes
in German should in general result in only small changes in the
English translation. Code, on the other hand, being a fiat language,
might not be in general as robust, and so small changes in code
may result in unpredictable changes in the associated comment.
Why does this matter? In general, modern machine translation
methods use the generalized function-approximation capability of
deep-learning models. If natural language translation (WMT) has a
more functional dependency, and CCT doesn’t, there is a suggestion
that deep-learning models would find CCT a greater challenge.

RQ3.Do similar inputs produce similar outputs in bothWMT
and CCT datasets?

Prior work in natural language generation has shown that infor-
mation retrieval (IR) methods can be effective ways of producing
suitable outputs. These methods match a new input with semanti-
cally similar inputs in the training data, and return the associated
output. These approaches can sometimes perform quite well [21]
and has been previously applied successfully to the task of comment
generation [14, 62]. Our goal here is to ask whether IR methods
could be a relevant, useful baseline for CCT tasks.

RQ4.Howdo the performance of naive InformationRetrieval
(IR) methods compare across WMT & CCT datasets?

Finally, we critically evaluate the use of BLEU scores in this task.
Given the differences we found between datasets used for training
SMT translators and the code-comment datasets, we felt it would be
important to understand how BLEU is used in this task, and develop
some empirical baselines to calibrate the observed BLEU values in
prior work. How good are the best-in-class BLEU scores (associated
with the best current methods for generating comments given the
source of a method)? Are they only as good as simply retrieving a
comment associated with a random method in a different project?
Hopefully they’re much better. How about the comment associated
with a random method from the same project? With a random
method in the same class? With a method that could reasonably be
assumed quite similar?

RQ5. How has BLEU been used in prior work for the code-
comment task, and how should we view the measured per-
formance?

In the next section, we review the datasets that we use in our
study.

3 DATASETS USED
We examine the characteristics of four CCT data sets, namely Co-
deNN, DeepCom, FunCom, & DocString and one standard, widely-
used machine-translation dataset, the WMT dataset. We begin with
a description of each dataset. Within some of the CCT datasets,
we observe that the more popular ones can include several dif-
ferent variations: this is because follow-on work has sometimes
gathered, processed, and partitioned (training/validation/test) the
dataset differently.
CodeNN Iyer et al [26] was an early CCT dataset, collected from
StackOverflow, with code-comment pairs for C# and SQL. Stack-
overflow posts consist of a title, a question, and a set of answers
which may contain code snippets. Each pair consists of the title
and code snippet from answers. Iyer et al gathered around a million
pairs each for C# and SQL; from these, focusing on just snippets
in accepted answers, they filtered down to 145,841 pairs for C#
and 41,340 pairs for SQL. From these, they used a trained model
(trained using a hand-labeled set) to filter out uninformative titles
(e.g., “How can make this complicated query simpler") to 66,015
higher-quality pairs for C# and 33,237 for SQL. In our analysis, we
used only the C# data. StackOverflow has a well-known community
norm to avoid redundant Q&A; repeated questions are typically
referred to the earlier post. As a result, this dataset has significantly
less duplication. The other CCT datasets are different.
DeepCom Hu et al. [22] generate a CCT dataset by mining 9,714
Java projects. From this dataset, they filter out methods that have
Javadoc comments, and select only those that have at least one-word
descriptions. They also exclude getters, setters, constructors and
test methods. This leaves them with 69,708 method-comment pairs.
In this dataset, the methods (code) are represented as serialized
ASTs after parsing by Eclipse JDT.

Later, Hu et al. [23] updated their dataset and model, to a size
of 588,108 examples. We refer to the former as DeepCom1 and
obtain a copy online from followup work2. We refer to the latter
as DeepCom2 and obtain a copy online3. In addition DeepCom2 is
distributed with a 10-fold split in the cross-project setting (examples
in the test set are from different projects). In Hu et al. [23] this is
referred to the "RQ-4 split", but to avoid confusion with our research
questions, we refer to it as DeepCom2f.
Funcom LeClair et al. [33] started with the Sourcerer [7] repo, with
over 51M methods from 50K projects. From this, they filtered out
methods with Javadoc comments in English, and then also the com-
ments that were auto-generated. This leaves about 2.1M methods
with patched Javadoc comments. The source code was parsed into
an AST. They created two datasets, the standard, which retained the
original identifiers, and challenge, wherein the identifiers (except
for Java API class names) were replaced with a standardized token.
They also made sure no data from the same project was duplicated
across training and/or validation and/or test. Notably, the FunCom

2https://github.com/wasiahmad/NeuralCodeSum/tree/d563e58/data
3https://github.com/xing-hu/EMSE-DeepCom/tree/98bd6a
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dataset only considers the first sentence of the comment. Addition-
ally, code longer than 100 words and comments longer 13 words
were truncated.

Like for DeepCom, there are several versions of this dataset.
We consider a version from LeClair et al. [33] as FunCom1 and
the version from LeClair and McMillan [34] as FunCom2. These
datasets are nearly identical, but FunCom2 has about 800 fewer
examples and the two versions have reshuffled train/test/val splits.
The Funcom14 and Funcom25 datasets are available online.
Docstring Barone and Sennrich [8] collect Python methods and
prefix comment "docstrings" by scraping GitHub. Tokenization
was done using subword tokenization. They filtered the data for
duplications, and also removed excessively long examples (greater
than 400 tokens). However, unlike other datasets, Barone et al. do
not limit to only the first sentence of the comments. This can result
in relatively long desired outputs.

The dataset contains approximately 100k examples, but after
filtering out very long samples, as per Barone et al preprocessing
script6, this is reduced to 74,860 examples. We refer to this version
as DocString1.

We also consider a processed version obtained from Ahmad et al.
[2] source2 which was attributed to Wei et al. [58]. We refer to this
version as DocString2. Due to the processing choices, the examples
in DocString2 are significantly shorter than DocString1.
WMT19 News Dataset To benchmark the comment data with nat-
ural language, we used data from the Fourth Conference of Machine
Translation (WMT19). In particular, we used the news dataset [9].
After manual inspection, we determined this dataset offers a good
balance of formal language that is somewhat domain specific to
more loose language common in everyday speech. In benchmark-
ing comment data with natural language, we wanted to ensure
variety in the words and expressions used to avoid biasing results.
We used the English-German translation dataset, and compared
English in this dataset to comments in the other datasets (which
were all in English) to ensure differences in metrics were not a
result of differences in language.
Other CCT DatasetsWe tried to capture most of the code-comment
datasets that are used in the context of translation. However, there
are some recent datasets which could be used in this context, but
we did not explore [1, 25]. While doing our work we noticed that
some prior works provide the raw collection of code-comments for
download, but not the exact processing and evaluations used [39].
Other works use published datasets like DocString, but processing
and evaluation techniques are not now readily available [56, 57].
As we will discuss, unless the precise processing and evaluation
code is available, the results may be difficult to compare.

3.1 Evaluation Scores Used
A common metric used in evaluating text generation is BLEU score
[43]. When comparing translations of natural language, BLEU score
has been shown to correlate well with human judgements of trans-
lation quality [16]. In all the datasets we analyzed, the associated

4http://leclair.tech/data/funcom/
5https://s3.us-east-2.amazonaws.com/icse2018/index.html
6https://bit.ly/2yDnHcS

papers used BLEU to evaluate the quality of the comment genera-
tion. However, there are rather subtle differences in the way the
BLEUs were calculated, which makes the results rather difficult to
compare. We begin this discussion with a brief explanation of the
BLEU score.

BLEU (as do related measures) indicates the closeness of a candi-
date translation output to a “golden" reference result. BLEU per se
measures the precision (as opposed to recall) of a candidate, relative
to the reference, using constituent n-grams. BLEU typically uses
unigrams through 4-grams to measure the precision of the system
output. If we define :

pn =
number of n-grams in both reference and candidate

number of n-grams in the candidate

BLEU combines the precision of each n-gram using the geometric
mean, exp( 1

N
∑N
n=1 logpn ). With just this formulation, single word

outputs or outputs that repeat common n-grams could potentially
have high precision. Thus, a “brevity penalty” is used to scale the
final score; furthermore each n-gram in the reference can be used
in the calculation just once. [18] These calculations are generally
standard in all BLEU implementations, but several variations may
arise.
Smoothing: One variation arises when deciding how to deal with
cases when pn = 0, i.e., an n-gram in the candidate string is not in
the reference string [12]. With no adjustment, one has an undefined
log 0. One can add a small epsilon to pn which removes undefined
expressions. However, because BLEU is a geometric mean of pn,n ∈

{1, 2, 3, 4} if p4 is only epsilon above zero, it will result in a mean
which is near zero. Thus, some implementations opt to smooth the
pn in varying ways. To compare competing tools for the same task,
it would be preferable to use a standard measure.
Corpus vs. Sentence BLEU: When evaluating a translation system,
one typically measures BLEU (candidate vs reference) across all
the samples in the held-out test set. Thus another source of imple-
mentation variation is when deciding how to combine the results
between all of the test set scores. One option, which was proposed
originally in Papineni et al. [43], is a "corpus BLEU", sometimes
referred to as C-BLEU. In this case the numerator and denominator
of pn are accumulated across every example in the test corpus. This
means as long as at least one example has a 4-gram overlap, p4
will not be zero, and thus the geometric mean will not be zero An
alternative option for combining across the test corpus is referred
to as "Sentence BLEU" or S-BLEU. In this setting BLEU score for
the test set is calculated by simply taking the arithmetic mean the
BLEU score calculated on each sentence in the set.
Tokenization Choices: A final source of variation comes not from
how the metric is calculated, but from the inputs it is given. Because
the precision counts are at a token level, it has been noted that
BLEU is highly sensitive to tokenization [44]. This means that when
comparing to prior work on a dataset, one must be careful not only
to use the same BLEU calculation, but also the same tokenization
and filtering. When calculating scores on the datasets, we use the
tokenization provided with the dataset.

Tokenization can be very significant for the resulting score. As
a toy example, suppose a reference contained the string “calls
function foo()” and an hypothesis contained the string “uses

http://leclair.tech/data/funcom/
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function foo()”. If one chooses to tokenize by spaces, one has
tokens [calls, function, foo()] and [uses, function, foo()]. This
tokenization yields only one bigram overlap and no trigram or
4-gram overlaps. However, if one instead chooses to tokenize this
as [calls, function, foo, (, )] and [uses, function, foo, (, )] we sud-
denly have three overlapping bigrams, two overlapping trigrams,
and one overlapping 4-gram. This results in a swing of more than
15 BLEU-M2 points or nearly 40 BLEU-DC points (BLEU-M2 and
BLEU-DC described below).

We now go through BLEU variants used by each of the datasets
and assign a name to them. The name is not intended to be pre-
scriptive or standard, but instead just for later reference in this
document. All scores are the "aggregate" measures, which consider
up to 4-grams.
BLEU-CN This is a Sentence BLEU metric. It applies a Laplace-like
smoothing by adding 1 to both the numerator and denominator of
pn for n ≥ 2. The CodeNN authors’ implementation was used 7.
BLEU-DC This is also a Sentence BLEU metric. The authors’ imple-
mentation is based off NLTK [36] using its "method 4" smoothing.
This smoothing is more complex. It only applies when pn is zero,
and sets pn = 1/((n − 1) + 5/log lh ) where lh is the length of the
hypothesis. See the authors’ implementation for complete details8.
BLEU-FC This is an unsmoothed corpus BLEU metric based on
NLTK’s implementation. Details are omitted for brevity, and can
be found in the authors’ source9.
BLEU-Moses The Docstring dataset uses a BLEU implementation
by the Moses project10. It is also an unsmoothed corpus BLEU. This
is very similar to BLEU-FC (though note that due to differences in
tokenization, scores presented by the two datasets are not directly
comparable).
BLEU-ncs This is a sentence BLEU used in the implementation11
of Ahmad et al. [2]. Like BLEU-CN, it uses an add-one Laplace
smoothing. However, it is subtly different than BLEU-CN as the
add-one applies even for unigrams.
SacreBLEU The SacreBLEU implementation was created by Post
[44] in an effort to help provide a standard BLEU implementation
for evaluating on NL translation. We use the default settings which
is a corpus BLEU metric with an exponential smoothing.
BLEU-M2 This is a Sentence BLEUmetric based on nltk "method 2"
smoothing. Like BLEU-CN it uses a laplace-like add-one smoothing.
This BLEU is later presented in plots for this paper.

We conclude by noting that the wide variety of BLEU measures
used in prior work in code-comment translation carry some risks.
We discuss further below. table 3 provide some evidence suggesting
that the variation is high enough to raise some concern about the
true interpretation of claimed advances; as we argue below, the
field can benefit from further standardization.

7https://github.com/sriniiyer/codenn/blob/0f7fbb8b298a8/src/utils/bleu.py
8https://github.com/xing-hu/EMSE-DeepCom/blob/98bd6aac/scripts/evaluation.py
9https://github.com/mcmillco/funcom/blob/41c737903/bleu.py#L17
10https://bit.ly/2YF0hye
11https://github.com/wasiahmad/NeuralCodeSum/blob/b2652e2/main/test.py#L324

3.2 Models & Techniques
In this section, we outline the various deep learning approaches
that have been applied to this code-comment task. We note that
our goal in this paper is not to critique or improve upon the spe-
cific technical methods, but to analyze the data per se to gain some
insights on the distributions therein, and also to understand the
most comment metric (BLEU) that is used, and the implications of
using this metric. However, for completeness, we list the different
approaches, and provide just a very brief overview of each tech-
nical approach. All the datasets used below are described above
in section 3.

Iyer et al [26] was an early attempt at this task, using a fairly stan-
dard seq2seq RNN model, enhanced with attention. Hu et al [22]
also used a similar RNN-based seq2seqmodel, but introduced a “tree-
like" preprocessing of the input source code. Rather than simply
streaming in the raw tokens, they first parse it, and then serialize the
resulting AST into a token stream that is fed into the seq2seq model.
A related approach [5] digests a fixed-size random sample of paths
through the AST of the input code (using LSTMs) and produces
code summaries. LeClair et al [33] proposed an approach that com-
bines both structural and sequential representations of code; they
have also suggested the use of graph neural networks [32]. Wan et
al [54] use a similar approach, but advocate using reinforcement
learning to enhance the generation element. More recently, the use
of function context [20] has been reported to improve comment
synthesis. Source-code vocabulary proliferation is a well-known
problem [28]; previously unseen identifier or method names in
input code or output comments can diminish performance. New
work by Moore et al [39] approaches this problem by using convo-
lutions over individual letters in the input and using subtokens (by
camel-case splitting) on the output. Very recently Zhang et al. [62]
have reported that combining sophisticated IR methods with deep-
learning leads to further gains in the CCT task. For our purposes
(showing that IR methods constitute a reasonable baseline) we use
a very simple, vanilla, out-of-box Lucene IR implementation, which
already achieves nearly SOTA performance in many cases.

There are tasks related to generating comments from code: for
example, synthesizing a commit log given a code change [15, 27, 35],
or generating method names from the code [4, 5]. Since these are
somewhat different tasks, with different data characteristics, we
don’t discuss them further. In addition code synthesis [1, 60] also
uses matched pairs of natural language and code; however, these
datasets have not been used for generating English from code, and
are not used in prior work for this task; so we don’t discuss them
further here.

4 METHODS & FINDINGS
In the following section, we present our methods and results for
each of the RQs presented in § 2. In each case, we present some
illustrative plots and (when applicable) the results of relevant sta-
tistical tests. All p-values have been corrected using family-wise
(Benjamini-Hochberg) correction. To examine the characteristics
of each dataset, we constructed two types of plots: zipf plots and
bivariate BLEU plots.

https://github.com/sriniiyer/codenn/blob/0f7fbb8b298a8/src/utils/bleu.py
https://github.com/xing-hu/EMSE-DeepCom/blob/98bd6aac/scripts/evaluation.py
https://github.com/mcmillco/funcom/blob/41c737903/bleu.py##L17
https://bit.ly/2YF0hye
https://github.com/wasiahmad/NeuralCodeSum/blob/b2652e2/main/test.py##L324
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Figure 2: Unigram (Vocabulary) distribution. Zipf plot for all
datasets look similar. Difference from trigram Zipf plot in
Fig 1 suggests greater repetitiveness in code comments.

4.1 Differences between CCT and WMT data
The Zipf plots are a useful way to visualize the skewness of tex-
tual data, where (in natural text) a few tokens (or ngrams) account
for a large portion of the text. Each plot point is a (rank, relative-
frequency) pair, both log-scaled. We use the plot to compare the
relative skewness of the (English) comment data in the CCT data
and the desired English outputs in the WMT NLT data. Examining
the unigram Zipf plot above, it can be seen in both code comments
and natural English, a few vocabulary words do dominate. However,
when we turn back to the trigram Zipf plots in Figure 1, we can see
the difference. One is left with the clear suggestion that: while the
vocabulary distributions across the different datasets aren’t that dif-
ferent, the ways in which these vocabulary words are combined into
trigrams are much more stylistic and templated in code comments.

Result 1: Code comments are far more repetitive than the Eng-
lish found in Natural Language Translation datasets

Given this relatively greater repetitive structure in code com-
ments, we can expect that the performance of translation tools
will be strongly influenced by repeating (and/or very frequent) tri-
grams. If a few frequent n-grams account for most of the desired
output in a corpus, it would seem that these trigrams would play
a substantial, perhaps misleading role in measured performance.
Figure 3 supports this analysis. The right-hand side plot shows the
effect on BLEU-4 of replacing single words (unigrams) with random
tokens in the “Golden" (desired) output in the various datasets. The
left-hand plot shows the effect of replacing trigrams. The index (1
to 100) on the x-axis shows the number of most frequent n-grams
replaced with random tokens. The y-axis shows the decrease in
measured BLEU-4 as the code is increasingly randomized.

The Unigrams plot suggests that the effect on the desired Natural
language ("nl") output, as measured by BLEU is relatively greater
when compared to most of the comment datasets. This effect is
reversed for Trigrams; the "nl" dataset is not affected as much by
the removal of frequent Trigrams as the comment datasets. This
analysis suggests that a tool that got the top few most frequent

trigrams wrong in the code-comment generation task would suf-
fer a larger performance penalty than a tool that got the top-few
n-grams wrong in a natural language translation task. This visual
evidence is strongly confirmed by rigorous statistical modeling,
please see supplementary materials, bleu-cc.Rmd for the R code.
Frequent trigrams that have a big effect on the code comment BLEU
include e.g., “factory method for”, “delegates to the”, and “method
for instantiating”. To put it another way, one could boost the per-
formance of a code-comment translation tool, perhaps misleadingly,
by getting a few such n-grams right.

Result 2: Frequent n-grams could wield a much stronger effect
on the measured BLEU performance on code-comment transla-
tion tasks than on natural language translation

4.2 Input-Output Similarity (RQ3)
An important property of natural language translation is that there
is a general dependence of input on output. Thus, similar German
sentences should translate to similar English sentences. For ex-
ample two German sentences with similar grammatical structure
and vocabulary should in general result in two English sentences
whose grammatical structure and vocabulary resemble each other;
likewise, in general, the more different two German sentences are
in vocabulary and grammar, the more difference we expect in their
English translations. Exceptions are possible, since some similar
constructions have different meanings: (kicking the ball vs. kicking
the bucket12 ). However, on average in large datasets, we should
expect that more similar sentences give more similar translations.

When training a translation engine with a high-dimensional non-
linear function approximator like an encoder-decoder model using
deep learning, this monotonic dependence property is arguably
useful. We would expect similar input sentences to be encode into
similar points in vector space, thus yielding more similar output
sentences. How do natural language translation (German-English)
and code-comment datasets fare in this regard? To gauge this phe-
nomenon, we sampled 10,000 random pairs of input fragments from
each of our datasets, and measured their similarity using BLEU-M2,
as well as the similarity of the corresponding Golden (desired) out-
put fragments. We then plot the input BLEU-M2 similarity for each
sampled pair on the x-axis, and the BLEU-M2 similarity of the cor-
responding pair of outputs on the y-axis. We use a kernel-smoothed
2-d histogram rather than a scatter plot, to make the frequencies
more visible, along with (we expect) an indication suggesting that
similar inputs yield similar outputs. Certainly, most inputs and
outputs are different, so we expect to find a large number of highly
dissimilar pairs where input and output pair BLEUs are virtually
zero. So we considered our random samples, with and without input
and output similarities bigger than ϵ = 10−5. The highly dissimilar
input-output pairs are omitted in the plot. However, as an additional
quantitative test of correlation, we also considered Spearman’s ρ.
both with and without the dissimilar pairs.

The bivariate plots are shown in Fig 4 and the Spearmans ρ
in table 2. We have split the 10,000 random samples into two cases:

12The latter idiom indicates death; Some automated translation engines (e.g. Bing)
seem to know the difference when translating from English
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Figure 3: The effect ofmost frequent unigrams (left) and trigrams (right) onmeasured (smoothed) BLEU-4 performance. BLEU-
4 was calculated after successive removals of of most frequent unigrams (right) and trigrams (left). The effect of removing
frequent Unigrams is by and large greater on the natural language dataset ("nl"). However, the effect of removing frequent tri-
grams, on the comment datasets is generally stronger than on the "nl" dataset due to high degree of repetition in the comment
datasets. These apparent visual differences are decisively confirmed by more rigorous statistical modeling.

Figure 4: Bivariate plots showing dependency of input-similarity to output-similarity. Pairs with similarity (BLEU-4) less
than 10−5 are omitted. The natural language translation data have the strongest dependency: similar inputs have the strongest
tendency to provide similar outputs

one in which we do no further processing and one where both
input/output BLEU similarities are both > 10−5. Spearman’s ρ,
significance, and sample sizes are shown for non-zeroes in the
columns (the numbers within the parentheses include the highly

dissimilar ones). From the table (last column) we see that about
25-96% of the pairs have some similarity on both inputs and outputs,
depending on the dataset. The table also shows the Spearman’s ρ
(first column) and significance (second column). Each subplot in
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Dataset Spearman’s ρ Significance Number of
Correlation p-value pairs with
ρ, BLEU > ϵ p-value, BLEU > ϵ BLEU > ϵ
(ρ,all) (p-value, all)

NL 0.70 (0.02) 0.0 (0.055) 2568

Deepcom1 0.056 (0.057) 1.0e-6 (2.2e-8) 7811

Deepcom2 0.036 (0.045) 1.5e-3 (1.1e-5) 7966

Docstring1 0.147 (0.16) 6.7e-42 (4.6e-59) 8585

Docstring2 0.041 (0.047) 9.5e-5 (3.7e-6) 9585

Funcom1 0.124 (0.083) 1.30e-18 (3.4e-16) 5026

Funcom2 0.122 (0.079) 3.03e-18 (6.7e-15) 5082

Codenn 0.012 (0.0012) 0.409 (0.904) 2532
Table 1: Correlation values (Spearman’s ρ, and significance,
p-value, for the plots in Figure 4. Values outside paranthe-
sis are calculated with only the pairs having pairwise BLEU
> 10−5; values in paranthesis include all pairs. p-values are
adjusted with Benjamini-Hochberg familywise correction.
In all cases, we chose 10,000 random pairs

Fig 4 shows one dataset, where x-axis is the BLEU similarity of a
pair’s inputs, and y-axis is that of outputs. The plot is a binned 2D
histogram, using colored hexagons to represent counts in that bin.
A representative variant of each dataset is plotted (as applicable);
the omitted ones are visually very similar.

We can clearly see a stronger relationship between input and out-
put BLEUs in the natural language setting. Particularly for natural
language data, this is further evidenced by the rather high Spearman
correlation for the non-zero BLEU pairs (0.70!!), and the evident vi-
sual dependence between input-input similarity and output-output
similarity is note worthy; this indicates that there is strong, fairly
monotonic relationship in natural language translation: the more
similar the source, the more similar the translation!

This analysis suggests that natural language data has a stronger,
more specific input-output dependence; this also suggests that trans-
lation between languages is more amenable to learnable function-
approximators like deep learners; this appears to be substantially
less true for code-comment data. This gives us the following con-
clusion with reference to RQ3.

Result 3: The natural language translation (WMT) shows a
stronger input-output dependence than the CCT datasets in that
similar inputs are more likely to produce similar outputs.

4.3 Information Retrieval Baselines
As can be see in fig. 4 and table 2, datasets for the natural language
translation task show a smoother andmoremonotonic input-output
dependence; by contrast, code-comment datasets seem to have little
or no input-output dependence. This finding casts some doubt on
the existence of a general sequence-to-sequence code → comment
function that can be learned using a universal function approxi-
mator like a deep neural network. However it leaves open the pos-
sibility that a more data-driven approach, that simply memorizes

the training data in some fashion, rather than trying to generalize
from it, might also work. Thus, given a code input, perhaps we can
just try to find similar code in the training dataset, and retrieve
the comment associated with the similar code. This is a simple and
naive information-retrieval (IR) approach. We then compare this to
the IR performance on NL translation.

4.3.1 Method. We use Apache Solr Version 8.3.113 to implement a
straightforward IR approach. Apache Solr is a open source docu-
ment search engine based on Apache Lucene. We simply construct
an index of over the code parts of the relevant datasets; given a code
input, we use that as a “query" over the index, find the closest match,
and return the comment associated with the closest matching code
as the “generated comment".

We used the default parameters of Solr without tuning. This
includes the default BM25 scoring function [46]. For each dataset,
we use always the same tokenization procedure used by authors. In
addition, we perform some additional pre-processing on the code,
that is typically required for IR approaches. For example, we remove
highly frequent stop words from the code. Additionally, for datasets
do not provide a tokenization phase that actually splits cammel-
CaseWords or snake_case_words, we include terms for indexing
and searching which includes the split form of these words. How-
ever, we note that the processing of stop words and word splitting
only effects a minor change in performance.

4.3.2 IR Results. We find that on most datasets the simple IR base-
line approaches the neural models, and exceeds it for DeepCom1,
DocString1, and DocString2. However, IR does poorly on the WMT
translation dataset, and also on CodeNN. In both cases, we specu-
late that this may reflect the relative level of redundancy in these
datasets. CodeNN is drawn from StackOverflow, which tends to
have fewer duplicated questions; in the case of WMT, which is
hand-curated, we expect there would be fewer duplications.

Prior work [14, 62] has used very sophisticated IR methods.
We cannot claim to supersede these contributions; but will point
out that a very naive IR method does quite well, in some cases
better than very recently published methods on datasets/dataset-
variations which currently lack IR baselines. We therefore view IR
baselines as important calibration on model performance; by trying
such a simple baseline first one can help find pathologies in the
model or dataset which require further exploration.

We also note that there is variation results. In DeepCom2f, which
includes 10 cross-project folds, we observe a wide range results
ranging from a BLEU-DC of 20.6 to 48.4! This level of variation
across folds is a cause for concern...this suggests depending on the
split, a model with higher capacity to memorize the training data
might do better or worse, potentially muddling the results if only
doing one split. Similarly we notice that between different versions
of FunCom scores vary quite a bit; this variation may confound
measurement of actual differences due to technical improvements.

Recommendation: Since even naive IR methods provide
competitive performance in many CCT datasets, they can be

13https://lucene.apache.org/solr/
14Value is for 2019 Model but on the 2018 test split
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Dataset Method Used Score Score Method
DeepCom2f IR-Baseline 32.7 BLEU-DC
- DeepCom (SBT) [22] 38.2 -
- Seq2Seq [50] 34.9 [22] -

DeepCom1 IR-Baseline 45.6 BLEU-ncs
- Transformer [2, 53] 44.6 -

FunCom1 IR-Baseline 18.1 BLEU-FC
- astattend-gru [33] 19.6 -

FunCom2 IR-Baseline 18.2 BLEU-FC
- astattend-gru [33] 18.7 [32] -
- code2seq [6] 18.8 [32] -
- code+gnn+BiLSTM[32] 19.9 -

CodeNN IR-Baseline 7.6 BLEU-CN
- IR Iyer et al. 13.7 [26] -
- CodeNN [26] 20.4 -

DocString2 IR-Baseline 32.6 BLEU-ncs
- Transformer [2, 53] 32.5 [2] -

DocString1 IR-Baseline 27.7 BLEU-Moses
- Seq2Seq 14.0 [8] -

NL de-en IR-Baseline 2.2 SacreBLEU
- FAIR Transformer[41] 42.714 -

Table 2: Measurements of a simple information retrieval
baseline compared to various neural machine translation
based methods. The scoring method we use mirrors the one
used on the dataset (see Section 3.1).

an important part for checking for issues in the new collection
and new processing of CCT datasets.

4.4 Calibrating BLEU Scores
We now return our last research question, RQ 5. How should we
interpret the BLEU results reported in prior work, and also the
information retrieval BLEU numbers that we found (which are in
the same range, see table 1)?

To calibrate these reported BLEU scores, we conducted an obser-
vational study, using affinity groups (AGs) of methods that model
different levels of expected similarity between the methods. For
example, consider a random pair of methods, so that both elements
of the pair are methods from a different project. This is our lowest-
affinity group; we would expect the comments to have very little
in common, apart from both being utterances that describe code.
The next higher affinity group is a random pair of methods from
the same project. We would expect these to be a bit more similar,
since they are both concerned with the same application domain
or function. The next higher level would methods in the same class
which presumably are closer, although they would be describing
different functions. By taking a large number random pairs from
each of these affinity groups, and measuring the BLEU for pairs in
each group, we can get an estimate of BLEU for each group. For

our experiment, we picked the 1000 largest projects from Github,
and then chose 5000 random pairs from each of the affinity groups.
For each pair, we randomly picked one as the “reference" output,
and the other as the “candidate” output, and the BLEU-M2 score.
We report the results in two different ways, in fig. 5 and in table 3.
For intraclass, we do not take more than six random pairs from a
single class. In all AGs, we removed all but one of the overloaded
methods, and all getters and setters before our analysis. Without
this filtering we see a difference of around 1-3 points.

Figure 5: The distribution of BLEU scores between affin-
ity groups. Red lines represent the means (i.e. the Sentence
BLEU), and the dashed lines represent quartiles.

First we describe fig. 5 which shows the distribution of the BLEU
scores in the 3 AGs. As might be expected, the inter-project AG
shows a fairly low mean, around 3. The intra-project AG is a few
BLEU points higher. Most notably, the intraclass AG has a BLEU
score around 22, which is close to the best-in-class values reported
in prior work for some (but not all) datasets.

Note with the implemented experiment we cannot exactly com-
pare these numbers, as each dataset is drawn from a different dis-
tribution. Most CCT datasets provide the data in the traditional
translation format of (source, target) pairs, making it difficult to
recover the other affinity group pairs of a given dataset example.
This is why created our own new sampling based off of 1000 large
Github repos. While not exactly comparable to existing datasets,
new creations of CCT data could start with this simple affinity
group baseline to calibrate the reported results.

Another, stronger, affinity grouping would be methods that are
semantically equivalent. Rather than trying to identify such an
affinity group ourselves by hand (which might be subject to confir-
mation bias) we selected matched API calls from a recent project,
SimilarAPI 15 by Chen [13] which used machine learning methods
to match methods in different, but equivalent APIs (e.g., Junit vs.
testNG). We extracted the descriptions of 40 matched pairs of high
scoring matches from different APIs and computed their BLEU. We
found that these BLEU scores are on average about 8 points higher,
with a mean around 32. This number should be taken with cau-
tion, however, since comments in this AG sample are substantially
shorter than in the other groups.

15http://similarapi.appspot.com/

http://similarapi.appspot.com/
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Recommendation: Testing affinity groups can provide a
baseline for calibrating BLEU results on a CCT dataset, as
the simple trick of generating comments for a given method
simply by retrieving the comments of a random other method
in the same class possibly can approach SOTA techniques.

Postscript: (BLEU Variability) We noted earlier in Section 4.3.2,
page 8, that there was considerable intrinsic variation within a
dataset, simply across different folds; we reported that measured
BLEU-DC in DeepCom2f ranged from 20.6 to 48.4; similar results
were noted in the different variants of FunCom. This above affinity
group experiment with IR provided an opportunity to calibrate
another BLEU variability, across different ways of calculating BLEU.

Function intraclass

BLEU-FC 24.81
BLUE-CN 21.34
BLEU-DC 23.5
SacreBLEU 24.81
BLEU-Moses 24.6
BLEU-ncs 21.49
BLEU-M2 21.22

Table 3: The scores of samples of Java methods from the
same class.

We took the 5000-pair sample from the intraclass sample, and
measured the sentence BLEU for these pairs using the BLEU imple-
mentation variations used in the literature. The results are shown
in table 3. The values range from around 21.2 to around 24.8; this
range is actually rather high, compared to the gains reported in
recently published papers. This finding clarifies the need to have a
standardized measurement of performance.

Observation: Measurements show substantial variation.
The version of BLEU chosen, and sometimes even the folds in
the training/test split, can cause substantial variation in the
measured performance, that may confound the ability to claim
clear advances over prior work.

5 DISCUSSION
We summarize our main findings and their implications.
Comment Repetitiveness Our findings presented in Figure 1
show that comments in CCT datasets are far more repetitive than
the English found in theWMTdataset; figure 2 suggests that this not
merely a matter of greater vocabulary in distribution in comments,
but rather a function of how words are combined in comments. The
highly-prevalent patterns in comment have a substantially greater
impact on the measured BLEU performance of models trained with
this CCT data, as shown in Figure 3. A closer look at the CCT
datasets shows that trigrams such as creates a new, returns true

if, constructor delegates to, factory method for are very frequent.
Getting these right (or wrong) has a huge influence on performance.

Implications: These findings suggest that getting just a few common
patterns of comments right might deceptively affect measured per-
formance. So the actual performance of comment generation might
deviate a lot from measured values, much more so relative to natu-
ral language translation. Repetition in comments might also mean
that fill-in-the-blanks approaches [49] might be revisited, with a
more data-driven approach; classify code first, to find the right
template, and then fill-in-the-blanks, perhaps using an attention-
or copy-mechanism.
Input/Output DependenceWhen translating from one language
to another, one would expect that more similar inputs produce more
similar outputs, and that this dependence is relatively smooth and
monotonic. Our findings in figure 4 and table 1, indicate that this
property is indeed very strongly true for general natural language
outputs, but not as much for the comments.
Implications: Deep-learning models are universal high-dimensional
continuous function approximators. Functions exhibiting a smooth
input-output dependency, could be reasonably expected to be easier
to model. BLEU is a measure of lexical (token sequence) similarit);
the rather non-functional nature of the dependency suggested by
figure 4 and table 1 indicate that token-sequence models that work
well for Natural language translation may be less performant for
code; it may be that other, non-sequential models of code, such as
tree-based or graph-based, are worth exploring further [32, 56]
Baselining with IR Our experience suggests that simple IR ap-
proach provides BLEU performance that is comparable to current
state of the art.
Implications Our findings suggest that a simple, standard, basic IR
approach would be a useful baseline for approaches to the CCT task.
Especially considering the range of different BLEU and tokenization
approaches, this would be a useful strawman baseline.
Interpreting BLEU Scores BLEU, METEOR, ROGUE etc are mea-
sures that have been developed for different task in natural language
processing, such as translation & summarization, often after exten-
sive, carefully designed, human subject studies. Since BLEU is most
commonly used in code-comment translation, we took an obser-
vational approach calibrate the BLEU score. Our results, reported
in fig. 5 and table 3 indicate that the reported BLEU scores are not
that high.
Implications:The best reported BLEU scores for the German-English
translation tasks are currently are in the low 40’s. Our affinity
group calibration suggests that on some datasets, the performance
of models are comparable on average to retrieving the comment of
a random method from the same class. While this conclusion can’t
be explicitly drawn for a specific dataset without using the exact
examples and processing from that specific dataset, but comparing
results at an affinity group level can provide insight into minimum
expected numbers for a new CCT datset.
Learning From NLP DatasetsWe find that the current landscape
of CCT datasets to be rather messy. There are often several different
versions of the same dataset with different preprocessing, splits,
and evaluation functions which all seem equivalent in name, but
unless extra care is taken, might not be comparable.



Code to Comment “Translation”:
Data, Metrics, Baselining & Evaluation ASE ’20, Sept 2020, Melbourne, Australia

However, some tasks in NLP do not seem to observe such vari-
ance within a task. We postulate this could be due to several reasons.
For one, with the popularity of large open source repositories, it
has become cheap easy for a software engineering researcher to
collect a large number of pairs of code and comments. This does
not require hiring a human to label properties of text, and thus less
effort might be taken on quality control. Because researchers are
domain experts in the datasets, they might be also more willing to
apply their own version of preprocessing.

In addition, there are a wider array of tools to enforce consis-
tency on various NLP tasks. For example the WMT conference on
translation, a competition is ran with held out data and human eval-
uation. Other tasks, such as SQuAD[45] for reading comprehension
and GLUE[55] for multitask evaluation allow for uploading code
to a server which runs the proposed model on held out data. This
ensure consistency in evaluation metrics and data.

We view adapting some these techniques as an interesting av-
enue for future work.

6 THREATS TO VALIDITY
Our paper is a retrospective, and doesn’t propose any new tools,
metrics,etc, still some potential threats exist to our findings.
Fold Variance With the exception of DeepCom2f we did not run
measures over multiple folds or samples of the data. This makes it
possible that there is variance in some of our reported numbers.
The Affinity Benchmarks When collecting affinity groups, we col-
lect full methods and process them using a set of filters. This means
that when comparing these numbers, they might not be dirrectly
comparable to a specific dataset. The numbers are presented only
as estimate of similarity of the affinity groups.
Replication ThreatWhenever we had to , we did our best to replicate,
and measure the quantities we reported using the same code as
the previous work. Still, it is possible that we failed to comprehend
some subtleties in the provided code, and this may be a threat to
our findings.
Generalizability We covered all the commonly used datasets and
literature we could find. However, it may be that we have missed
some where cases our findings don’t hold.

7 CONCLUSION
In this paper, we described a retrospective analysis of several re-
search efforts which used machine learning approaches, originally
designed for the task of natural language translation, for the task
of generating comments from code. We examined the datasets,
the evaluation metrics, and the calibration thereof. Our analysis
pointed out some key differences between general natural language
corpora and comments: comments are a lot more repetitive. We
also found that a widely used natural language translation dataset
shows a stronger, smoother input-output relationships than natu-
ral language. Turning then to a popular evaluation metric (BLEU
score) we found considerable variation based on the way it’s calcu-
lated; in some cases this variation exceeded claimed improvements.
Looking at calibration of the reported BLEU scores, first, we found
that simple off-the-shelf information retrieval offers performance
comparable to that reported previously. Second, we found that the

simple trick of retrieving a comment associated with a method
in the same class as a given method achieves an average perfor-
mance comparable to current state-of-the-art. Our work suggests
that future work in the area would benefit from a) other kinds of
translation models besides sequence-to-sequence encoder-decorder
models b) more standardized measurement of performance and c)
baselining against Information Retrieval, and against some very
coarse foils (like retrieving a comment from a random other method
in the same class).

Funding for this research was provided by National Science
Foundation, under grant NSF 1414172, SHF: Large: Collaborative
Research: Exploiting the Naturalness of Software.

Source code and data will be made available at https://bit.ly/
3lBDegY
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