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Abstract. This paper presents a historical overview of the work on Java
program verification at the University of Nijmegen (the Netherlands)
over the past six years (1997–2003). It describes the development and use
of the LOOP tool that is central in this work. Also, it gives a perspective
on the field.

1 Introduction

The LOOP project started out as an exploration of the semantics of object-
oriented languages in general, and Java in particular. It has evolved to become
what we believe is one of the largest attempts to date at formalising a real
programming and using this formalisation as a basis for program verification. It
is probably also one of the largest attempts to date at using mechanical theorem
provers. This paper attempts to give an overview of the whole project. It is
unavoidable that we have to resort to a high level of abstraction to do this in the
limited space here. Therefore, our main aim is to convey the general principles
and we will frequently refer to other papers for much more of the technical
details.

From the outset, a goal of the project has been to reason about a real pro-
gramming language, and not just a toy object-oriented language. Apart from
leaving out threads, all the complications of real Java are covered, incl.

– side-effects in expressions (something often omitted in the toy languages
studied in theoretical computer science),

– exceptions and all other forms of abrupt control flow (including the more
baroque constructs that Java offers, such as labelled breaks and continues),

– static and non-static field and methods,

– overloading,

– all the complications of Java’s inheritance mechanism, including late binding
for methods, early binding for fields, overriding of methods, and shadowing
(or hiding) of fields.

Apart from threads, the only major feature of Java not supported is inner classes.



The LOOP tool What we call the LOOP tool is effectively a compiler, written
in O‘Caml. Fig. 1 illustrates roughly how it is used. As input, the LOOP tool
takes sequential Java programs, and specifications written (as annotations in
the Java source files) in the Java Modeling Language JML [24]. Fig. 2 gives
an example of a Java class with a JML specification. As output, the LOOP
tool generates several files which, in the syntax of the theorem prover PVS [31],
describe the meaning of the Java program and its JML specification. These files
can be loaded into PVS, and then one can try to prove that the Java program
meets its JML specification.

In addition to the automatically generated PVS files, there are also several
hand-written PVS files, the so-called prelude. These files define the basic building
blocks for the Java and JML semantics, and define all the machinery needed, in
the form of PVS theories and lemmas, to support the actual work of program
verification.
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Fig. 1. The LOOP tool as pre-processor for PVS

Organisation of this paper The next section begins by giving an example of
a Java program with JML specification to illustrate the kind of program verifi-
cation we are doing. The organisation of the rest of this paper is then more or
less chronological, and follows the bottom-up approach that we have taken over
the years, starting at the detailed representation of the Java semantics at a low
level, on top of which further abstractions are built. The LOOP project started
with definition of a formal semantics for Java in higher-order logic, by giving
a so-called shallow embedding, and using coalgebras as a means of organising
the semantics of objects. This is described in Sect. 3. The project then evolved
to also provide a formal semantics of the Java specification language JML in
PVS, as discussed in Sect. 4, and to provide techniques for the verification Java
programs with JML specifications on the basis of these formal semantics, which
we discuss in Sect. 5. Sect. 6 compares the LOOP projects with other work on
providing theorem prover supported program verification for Java.



2 Specification and verification example

Fig. 2 gives an example of a simple Java method arrayCopy preceded by a
specification written in JML. It illustrates some of the complications that may
arise in actual specification and verification. Although the idea of copying part
of one array into another is quite simple, an accurate specification turns out to
be surprisingly subtle. The specification makes many possibilities explicit, and
serves as a precise documentation that can help a programmer who wants to use
this arrayCopy method.

class ArrayCopy {

/*@ requires src != null && dest != null &&

@ destOff+length >= 0; // no overflow

@

@ assignable dest[destOff..destOff+length-1];

@

@ ensures (length > 0 ==>

@ (srcOff >= 0 && srcOff+length <= src.length &&

@ srcOff+length >= 0 &&

@ destOff >= 0 && destOff+length <= dest.length))

@ &&

@ (\forall int i; 0 <= i && i < length ==>

@ dest[destOff+i] == \old(\old(src)[\old(srcOff)+i]));

@

@ signals (ArrayIndexOutOfBoundsException)

@ length > 0 &&

@ (srcOff < 0 || srcOff+length > src.length ||

@ srcOff+length < 0 // caused by overflow

@ || destOff < 0 || destOff+length > dest.length);

@*/

public static void arrayCopy(byte[] src, int srcOff,

byte[] dest, int destOff,

int length)

{ if (length <= 0) return;

if (srcOff > destOff) {

for (int i = 0; i < length; i++)

dest[destOff+i] = src[srcOff+i];

}

else {

for (int i = length-1; i >= 0 ; i--)

dest[destOff+i] = src[srcOff+i]; }

}

}

Fig. 2. Example JML specification, proven correct



This JML specification consists of

– a precondition, the requires clause;
– a so-called frame property, the assignable clause, that restricts the possible

side effects of the method;
– a postcondition, the ensures clause;
– an “exceptional” postcondition, the signals clause.

The meaning of the specification is that if the precondition is met, then either the
method terminates normally making the postcondition true, or the method ter-
minates abnormally by throwing an ArrayIndexOutOfBoundsException making
the associated exceptional postcondition true, and the method will not change
any fields other than those listed the assignable clause.

The use of \old in the postcondition allows us to refer to the value of an
expression in the pre-state of the method invocation. We need to use \old here
in the postcondition to allow for the possibility that the two arrays src and
dest are aliases. This possibility is also reason for the case distinction in the
implementation. Omitting \old in the postcondition is an easy mistake to make,
as is not making the case distinction in the implementation. Either mistake, or
both at the same time, would make it impossible to verify correctness of the
implementation wrt. the specification.

A subtle point that has to be taken into account is overflow of the additions
that are used. If destOff+length yields an overflow, the resulting value becomes
negative. This is excluded in the precondition (and is needed for the assignable
clause to make sense). However, the addition srcOff+length may also cause
an overflow. This possibility is not excluded in the precondition, but handled
explicitly in the (normal and exceptional) postconditions.

Fig. 2 gives only one possible spec for arrayCopy, but many variations are
possible. Eg., we could strengthen the precondition to exclude the possibility of
an ArrayIndexOutOfBoundsException, or we could weaken the precondition to
include the possibility of a NullPointerException.

We have used the LOOP tool and PVS to prove that the Java code in Fig. 2
satisfies the JML specification given there. This verification can be done both
with Hoare logic, and with weakest precondition reasoning, see Section 4. In
both cases it requires the specification of the loop invariants for the two for-
loops, which we have omitted from Fig. 2 to save space.

Similar verification challenges may be found in [19].

3 Semantical phase

This first phase of the project concentrated on the semantical set-up for the se-
quential part of Java. This grew out of earlier work on so-called coalgebraic spec-
ification. Important issues at this stage were the underlying memory model [1]
and the semantics of inheritance [14]. This semantics is fairly stable since about
2000, and has undergone only relatively minor, modular changes such as the move
from unbounded to bounded semantics for integral types [17], see Sect. 3.5.



We shall briefly review the main points. A more detailed description of the
material presented in this section can be found in Chapter 2 of [13].

3.1 Coalgebraic origins

During the mid-nineties Horst Reichel [33] was the first who clearly described
the view that the semantics of objects and classes can be phrased in terms of
coalgebras, soon followed by others [16, 25]. Coalgebras are the formal duals of
algebras. Algebras describe data, but coalgebras describe dynamical systems.
Coalgebras consist of a set S together a function acting on S. The elements
of S are usually called states, and therefore S is often referred to as the state
space. The function acting on S is typically of the form S → · · · and gives
more information about states. For instance, it may involve a map of the form
S → int which represents an integer-valued field. In each state it tells the value
of the field. But also the function may involve a transition function S → S, or
S → {⊥} ∪ S, or S → P(S) describing ways to move to successor states. Hence
the result type · · · tells us what kind of functions we have on our state space
S1.

A class in an object-oriented programming language (like Java) combines
data (in its fields) with associated operations (in its methods). The key point is
that such a class may be considered as a coalgebra, and an object of the class
as a state of this coalgebra (i.e. as an element of the state space). Given such
an object/state o, field access o.i yields the value of the field function i in the
state (referred to by) o. Similarly, a method invocation o.m yields a successor
state resulting from the application of the function m to the state o.

Suppose a method in Java is declared as boolean m(int j){...}. Such a
method usually terminates normally, producing an integer result value, and im-
plicitly, a new state. But also it may hang, if it gets into an infinite loop or
recursion. There is a third option, since it may throw an exception of some sort,
caused for instance by a division by zero. Semantically, we shall interpret such
a method m as a function [[m]] of the coalgebraic form:

S
[[m]]

//
(
{⊥} + (S × boolean) + (S × Exception)

)int
(1)

where + describes disjoint union. This says that m takes a state/object x ∈ S

and an integer j ∈ int and produces a result [[m]] (x)(j) which is either:

– ⊥, in case [[m]] (x)(j) hangs;
– (s′, b) in case [[m]] (x)(j) terminates normally with successor state x′ and

boolean result value b;
– (x′, e) in case [[m]] (x)(j) terminates abruptly because of exception e, with

successor state x′.

1 Formally, in categorical terminology, this box is an endofunctor acting on a suitable
category of state spaces, see [21].



The modeling of a void method is similar. The normal termination case (the
second one) is then without result value, and the abrupt termination case (the
third one) involves besides exceptions also a possible return, break or continue.

The semantics of a Java method is defined by induction over the structure
of the methods body. To do this we define the semantics of all Java statements
and expression, by induction over their structure, which amounts to defining the
semantics of all of Java’s language constructs for statements and expressions.
For example, [[s1; s2]] is defined as [[s1]] ; [[s2]], where ; is the function that maps
functions s1 and s2 of type S → ({⊥} + S + (S × Exception)) to the function

λx : S.





⊥, if s1(x) = in1(⊥) ie. if s1(x) hangs,
s2(x

′) if s1(x) = in2(x
′) if s1(x) terminates normally

in state x′,

in3(x
′, e), if s1(x) = in3(x

′, e), ie. if s1(x) terminates abruptly by
throwing exception e in state x′

of the same type.

The main point is that a class with fields f1:A1, . . . , fn:An, and methods
m1, . . . ,mk is interpreted as a single coalgebra of the form:

S
c // A1 × · · ·An × M1(S) × · · ·Mk(S) (2)

where Mj is the result type corresponding to method mj , like in (1). Hence
c combines data and operations in a single function. The individual fields and
methods can be reconstructed from c via appropriate projections2.

In work on coalgebraic specification [16, 12, 11, 34, 35] coalgebras are studied
together with certain assertions that constrain the possible behaviour. A format
has been defined, in a language called CCSL for Coalgebraic Class Specifica-
tion Language, in which such specifications could be written. A special compiler
translates these specifications to the language of the theorem prover PVS [31].
The compiler is called LOOP, for Logic of Object-Oriented Programs. Coalge-
braic notions like invariance, bisimilarity and refinements can then be used to
reason about models of class specifications.

Soon after the start of this work on coalgebraic class specifications it was
realised that the assertions could also be used to bind method names to method
bodies (implementations) and fields to particular access functions. This led to an
extension of the LOOP compiler that works on Java programs and also produces
output for PVS.

For some time the LOOP compiler was developed jointly for CCSL and for
Java. Internally, a representation of an abstract formulation of higher-order logic
is used. A pretty printer is available for PVS, and also one for Isabelle/HOL [29].
For various practical and organisational reasons the two translations of the tools
(for CCSL and for Java) were split. The version for CCSL is now publicly avail-
able3. It is maintained in Dresden and still supports output for both PVS and

2 For reasons of simplicity, we have omitted constructors. But they can be understood
as special methods.

3 At wwwtcs.inf.tu-dresden.de/~tews/ccsl/.



Isabelle, see [35]. The version of the LOOP tool for Java is maintained in Nij-
megen. A comparison between its performance in PVS and Isabelle is given
in [10, 13]. But currently, the translation to Isabelle is no longer supported.

When we talk about the LOOP tool in the remainder of this paper we refer
to the one that translates Java (and JML) to PVS. It is described in [2].

The theory of coalgebras has gone through rapid development during the
last few years. However, coalgebras are only used as convenient representational
device for classes in the LOOP translation from Java to PVS. The associated
theory is not really used in any depth, and is not needed to understand the
translation.

3.2 Memory model

The discussion above mentions a state space S that methods act on, without
going into detail of what this state space consists of. The coalgebraic represen-
tation of classes (2) takes a functional view in which each class has its own state
space and in which there is no object identity. Clearly, this does not work at all
for an imperative language such as Java. Here the state space that programs act
on is the entire memory of the computer, i.e. the heap and the stack. The heap
records all the objects in existence, their states, ie. values of all fields, and their
run-time types. The representation of all this in PVS is what we call the memory
model or object memory. For a more detailed description of the memory model
we refer to [1]. Here we just explain the main idea.

The memory model is represented in PVS as a complicated type called OM,
for Object Memory. It consists of three infinite series of memory cells, one for
the heap, one for the stack, and one for static data. Each cell can store the data
of an arbitrary object (including its run-time type, represented as a string). An
object is represented as either the null-reference, or a reference to a particular cell
on the heap. This reference consists simply of a natural number n, pointing to
the n-th cell. Associated with the memory are various put and get operations.
The LOOP compiler binds these to the variables occurring in the programs
that are translated. For instance, for integer fields i,j, the translation of an
assignment i=5 involves the put operation associated with i. It is a functional
operation which maps the memory x:OM before the assignment to an entirely
new memory x′ = put(x, “position of i”, 5):OM after the assignment. The value
of j is obtained via its get operation. There are obvious put-get rules ensuring
that the value of j in x′ is the same as in x. During verifications these rules are
loaded in PVS as so-called auto-rewrite rules and applied automatically. Hence
the reader does not have to worry about these low-level memory issues, including
references and aliasing.

One difficulty in defining a suitable type OM in PVS is the constraints im-
posed by the PVS type system. Intuitively, the state of an individual object can
be seen as a record value—eg, the state of an object with a field x of type int

and a field b of type boolean would be a record value of a record type {x:int,
b:boolean}—and the heap can be regarded as a list of such record values. How-
ever, dealing with Java’s hiding (or shadowing) of superclass fields will require



some additional machinery in such an approach. Also, such a representation is
not that convenient in PVS: it would require a heterogeneous list of record val-
ues, since objects on the heap have different types, and PVS doesn’t support
such heterogeneous lists. A way around this would be to have separate heap for
each class, but then interpreting subtyping causes complications.

Despite the absence of the horrible pointer arithmetic à la C(++), references
remain the main complication in reasoning about Java programs, as the basic
“pointer spaghetti” difficulties associated with references, like aliasing and leak-
age of references, remain. One would really like Java to offer some notion of
encapsulation or confinement and alias control, such as the universes [28], which
could then be reflected in the memory model.

3.3 Inheritance

The way that inheritance is handled by the LOOP tool is fairly complicated—
because inheritance itself is fairly complicated. Here we shall only describe the
main ideas, and we refer to [14] for the details.

When Java class B inherits from class A, all the methods and field from A

are in principle accessible in B. If the current object this belongs to class B,
then (super)this belongs to A, and allows access to the fields and methods
of A. Class B may thus add extra fields and methods to those of its superclass
A. This is unproblematic. But B may also re-introduce methods and fields that
already occur in A. In that case one speaks of hiding of fields and of overriding of
methods. The terminology differs for fields and methods because the underlying
mechanisms differ. Field selection o.i is based on the compile-time type of the
the receiving object o, whereas method invocation o.m() uses the run-time type
of o.

The basis for our handling of inheritance can be explained in terms of the
coalgebraic representation. Suppose the class A is represented as a coalgebra
S → Â(S), like in (2). The representation of class B is then of the form S →

[· · ·]× Â(S), where the part [· · ·] corresponds to the fields and methods of B. In
this the operations from A are accessible in B: the super operation involves a
projection.

But there is also a second (semantical) mapping possible from B to A, namely

the one which replaces in Â those methods that are overridden in B. These
two different mappings allow us to model the difference between hiding and
overriding.

The LOOP tool inserts the appropriate mapping from subclasses to super-
classes. As a result, the selection of appropriate get and put operations for fields,
and of the appropriate method body for methods is not a concern for the user.
It is handled automatically.

3.4 Executability of the semantics

Although our Java semantics is denotational rather than operational, it is still
executable in PVS to a degree, in the sense that PVS can try to rewrite [[s]] to



some normal form using a given set of equalities. PVS will not always produce a
readable result, or, indeed, any result at all, as the attempted evaluation might
not terminate (notably, if the program diverges), but in many cases PVS can
symbolically execute programs in this way.

In fact, one could use the LOOP tool as a normal Java compiler, which
produces binaries that can be executed inside PVS instead of class files which
can be executed on a virtual machine. Of course, this is not very practical,
because such executions are extremely slow and use huge amounts of memory,
and because we do not have an implementation of the entire Java API in PVS.

This possibility of symbolic execution has been extremely useful in testing
and debugging our formal semantics. By comparing the results of the normal
execution of a Java program, i.e. the result of executing its bytecode on a Java
VM, and the symbolically execution of its semantics in PVS, we can check if
there are no mistakes in our semantics.

It is somewhat ironic that we have to rely on the down-to-earth method
of testing to ensure the correctness of our formal semantics, when this formal
semantics is used as the basis for the more advanced method of program ver-
ification. But given there is nothing that we can formally verify our semantics
against—this would presuppose another formal semantics—such testing is the
only way to to ensure the absence of mistakes in our semantics, apart from care-
ful, but informal, verification against the official Java Language Specification [9].

Symbolic execution is also extremely useful in the verification of Java pro-
grams as discussed later in Sect. 5: for relatively simple fragments of code, and
relatively simple specifications, PVS can often fully automatically decide cor-
rectness by symbolic execution of the code.

3.5 Java arithmetic

Initially, the Java semantics simply interpreted all of Java’s numeric types—byte

(8 bits), short (16 bits), int (32 bits) and long (64 bits)—as PVS integers.
This was just done to keep things simple; our main interest was the semantics
of Java features such as object-orientation, inheritance, exceptions, etc., and
interpretation of the base types is orthogonal to the semantics of these. Later,
when this became relevant for the Java Card smart card programs we wanted
to verify, a correct formalisation of the semantics of Java numeric types, with
all the peculiarities of the potential overflow during arithmetic operations, was
included [17]. It is used in the verification example in Section 2.

4 Specification phase

The semantics of sequential Java described in the previous section was developed
with the aim to do program verification. This requires specification of properties
that we want to verify. One option is to specify such properties directly in PVS,
i.e. at the semantical level. This approach was used initially, e.g. in [22]. How-
ever, this approach quickly becomes impractical, as specifications become very
complicated and hard to read.



This is why we decided to adopt JML as our specification language, and
extended the LOOP tool to provide not just a formal semantics of Java, but also
a formal semantics of JML. The fact that JML is a relatively small extension
of Java has the pleasant consequence that much of our Java semantics could be
re-used—or extended—to provide a semantics for JML.

The LOOP tool provides the semantics of a JML specification for an individ-
ual method as a proof obligation in PVS. Taking some liberties with the syntax,
and ignoring the exceptional postconditions expressed by signals clauses, the
proof obligation corresponding with a JML specification of the form

/*@ requires Pre;

@ assignable Assign;

@ ensures Post;

@*/

public void m() ...

is of the following form

∀x : OM. [[Pre]] (x) ⇒ [[Post]] (x, [[m]] (x))
∧ ∀l 6∈ [[Assign]] . x.l = [[m]] (x).l

(3)

Here [[m]] is the semantics of the method involved, [[Pre]] the semantics of its
precondition, a predicate on OM, [[Post]] the semantics of its postcondition, a
relation on OM, and [[Assign]] the meaning of the assignable clause, a subset of
OM. Just like the LOOP tool generates PVS file defining [[m]], it generates PVS
files defining [[Pre]], [[Post]] and [[Assign]].

To produce such proof obligations, the LOOP tool translates any assignable

clause to a set [[A]] of locations in the object memory OM, and translates any
pre- and postconditions to a PVS predicates or relations on the object memory
OM.

JML’s syntax for preconditions, postconditions, and invariants extends Java’s
boolean expressions, for example with a logical operator for implication, ==>, as
well as universal and existential quantification, \forall and \exists. So, to
provide a formal semantics for JML, the LOOP semantics for Java had to be
extended to support these additional operations.

One complicating factor here is that Java boolean expression may not ter-
minate, or throw an exception, but we want our interpretations of pre- and
postconditions to be proper two-valued PVS booleans. This is a drawback of
using Java syntax in a specification language, as is discussed in [23]. We deal
with this by interpreting any Java boolean expression that does not denote true
or false by an unspecified boolean value in PVS.

Some PVS definitions are used to express the proof obligations in a more
convenient form, which is closer to the original JML format and closer to the



conventional notion of Hoare triple:

∀z:OM. SB · ( requires = λx:OM. [[Pre]] (x) ∧ x = z,

statement = [[m]] ,
ensures = λx:OM. [[Postnorm]] (x, z)

∧ ∀l 6∈ [[Assign]] . x.l = z.l,

signals = λx:OM. [[Postexcp]] (x, z)
∧ ∀l 6∈ [[Assign]] . x.l = z.l )

(4)

Here SB, an abbreviation of statement behaviour, is a function acting on a
labelled record with four fields. A so-called logical variable z is used to relate
pre- and post-state and to give a meaning to uses of \old in postconditions.

If we omit the signals clause, we effectively have a traditional Hoare triple,
consisting of a precondition, a statement, and a postcondition. But note that
unlike in conventional Hoare logics, [[m]] is not a statement in Java syntax, but
rather its denotation, so we have a Hoare logic at the semantic rather than the
syntactic level. However, given that the semantics is compositional, [[m]] has the
same structure as m in Java syntax, and reasoning with these ‘semantic’ Hoare
tuples is essentially the same as reasoning with conventional ‘syntactic’ Hoare
tuples.

We have omitted some further complications in the discussion above. Firstly,
rather than having Hoare 4-tuples as in (4), giving a precondition, statement,
postcondition, and exceptional postcondition, we actually have Hoare 8-tuples,
to cope with the other forms of abrupt control flow in Java, by return, break,
and continue statements, and to specify whether or not the statement is allowed
to diverge, allowing us to specify both total and partial correctness. Secondly,
in addition to have Hoare n-tuples for statements, we also have them for expres-
sions.

The format for our proof obligations in (4) is convenient for several reasons.
It is more readable, as it closely resembles the original JML specification. More-
over, it allows the formulation of suitable PVS theories, i.e. collections of PVS
theorems, that can be used to prove proof obligations of this forms in a conve-
nient way. How we go about proving these Hoare n-tuples is the subject of the
next section.

5 Verification phase

Using the semantics of Java and JML discussed in the previous sections, the
LOOP tool translates JML-annotated Java code to proof obligations in PVS.
This is by no means the end of the story. A lot of PVS infrastructure, in the
form of theories and PVS proof strategies, is needed to make proving these proof
obligations feasible.

This section describes the three different techniques that we have developed
for this. Each of these techniques involves a collection of PVS lemmas, in the
hand-written prelude or the PVS theories generated by the LOOP tool, and
associated PVS strategies, which can automate large parts of proofs.



5.1 Semantical proofs by symbolic execution

In the early, semantical phase of the LOOP project—described in Sect. 3—
the proofs were “semantical”. What this means is that these proofs worked by
using the underlying semantics: the method bodies involved are expanded (in a
controlled fashion) until nothing remains but a series of put and get operations
on the memory model, for which the required properties are established.

These semantical proofs can be very efficient, but they only work well for very
small programs, without complicated control structures like (while or for) loops.
To verify the correctness of larger programs we use the program logics described
in the next sections, which provide Hoare logics and weakest precondition calculi
for Java. These logics are used to break complicated method bodies iteratively
to simple parts, for which semantical reasoning can be used. Hence semantical
proofs are not abolished, but are postponed to the very end, namely to the leafs
of the proof trees.

5.2 Hoare logic

As we already emphasised, Java programs have various termination modes: they
can hang, terminate normally, or terminate abruptly (typically because of an
exception). An adaptation of Hoare logic for Java with different termination
modes has been developed in [15]. It involves separate rules for the different
termination modes. Although this logic has been used successfully for several
examples, it is not very convenient to use because of the enormous number of
rules involved.

With the establishment of JML as specification language, it became clear that
the most efficient logic would not use Hoare triples, but the “JML n-tuples” al-
ready discussed Sect. 4. The proof obligation resulting for a JML specification for
a Java method is expressed as a Hoare n-tuple, and for these n-tuples we we can
formulate and prove deduction rules like those used in conventional Hoare logic,
one for every programming language construct. For example, for composition we
have the deduction rule

SB · ( requires = Pre,

statement = m1,

ensures = Q,

signals = Postexcp )

SB · ( requires = Q,

statement = m2,

ensures = Postnorm,

signals = Postexcp )

SB · ( requires = Pre,

statement = m1;m2,

ensures = Postnorm,

signals = Postexcp )

NB. the rule above can be proved as a lemma inside PVS, ie. we have proved
that this rule is sound our Java semantics. All the deduction rules have been
proved correct in this way, establishing soundness of the Hoare logic. Because
we have a shallow embedding rather than a deep embedding of Java in PVS,



proving completeness of the rules is not really possible. For more details about
this Hoare logic for for Java and JML, see [18].

The bottleneck in doing Hoare logic proofs is, as usual, providing the inter-
mediate assertions, such as Q in the proof rule for composition above. This is
aggravated by the fact that our Hoare logic works at the semantical level, which
means that these intermediate assertions have to be expressed at semantical
level and are therefore less readable that they would be in a Hoare logic at the
syntactic level. One way to alleviate this is to specify intermediate assertions in
the Java program; JML provides the assert keyword to do this, and the LOOP
tool could parse these assertions to provide the (less readable) semantical coun-
terparts, which can then serve as the intermediate predicate in the Hoare logic
proof. Another way, discussed in the next subsection, is the use of a weakest
precondition calculus.

5.3 Weakest precondition

The latest stage in the development of PVS infrastructure for easing the job
of verifying Java programs has been the development of a weakest precondition
(wp) calculus. Here we just discuss the main ideas; for more details see [18].

The fact that JML distinguishes normal and exceptional postconditions means
a wp-calculus for Java and JML is slightly different than usual. Where normally
the wp function acts on a statement s and a postcondition Post to provide the
weakest precondition wp(s, Post), our wp function will act on a statement s

and a pair of postconditions (Postnorm, Postexcp), the postcondition for normal
termination and exceptional termination, respectively4.

We can actually define the weakest precondition function inside PVS, as
follows:

wp(s, Postnorm, Postexcp)
def
= λx. ∃P. P (x) ∧ SB · ( requires = P,

statement = m,

ensures = Postnorm,

signals = Postexcp )

(5)

The definition above is not useful in the sense that we can ask PVS to compute
it. Instead, we prove suitable lemmas about the wp function as defined above,
one for every language construct, and then use these lemmas as rewrite rules in
PVS to compute the weakest preconditions. Eg., for the composition we prove
that

wp(m1;m2, Postnorm, Postexcp)
= wp(m1,wp(m2, Postnorm, Postexcp), Postexcp)

and we can use this lemma as a rewriting rule in PVS to compute (or rather, to
let PVS compute) the weakest precondition.

4 As before, we oversimplify here; instead of 2 postconditions, our wp function actually
works on 5 postconditions, to cope not just with normal termination and exceptions,
but also with (labelled) breaks and continues and with return statements.



The definition of wp(, i)n terms of the notion of Hoare n-tuple above in (5)
allows us to prove the correctness of these lemma in PVS, thus establishing the
correctness of our wp-calculus wrt. our Java semantics. So as for soundness of
our Hoare logic, for correctness of our wp-calculus wrt. the Java semantics we
have a completely formal proof, inside PVS.

It turns out that there are several ways to go about computing weakest
preconditions. The traditional, ‘backward’, approach is to peel of statements at
the back,

wp(m1;m2; . . . ;mn, Postnorm, Postexcp)
= wp(m1; . . . ;mn−1,wp(mn, Postnorm, Postexcp), Postexcp)

and then evaluate the inner call to wp, ie. wp(mn, Postnorm, Postexcp), before
peeling of the next statement mn−1. But an alternative, ‘forward’, approach is
to begin by peeling of statements at the front

wp(m1;m2; . . . ;mn, Postnorm, Postexcp)
= wp(m1,wp(m2; . . . ;mn, Postnorm, Postexcp), Postexcp)

and then to evaluate the outer call to wp. Of course, the approaches are logically
equivalent, and will ultimately produce the same result. But computationally the
approaches are different, and the costs of letting PVS compute the wp-function,
measured in the time and memory PVS needs for the computation, turn out to
be very different for the two approaches.

Two strategies for letting PVS computing weakest preconditions have been
implemented in PVS, in a forward or backward style sketched above. Each of
these implementation relies on its own collection of lemmas serving as rewrite
rules and relies on a a different PVS proof tactic. For a discussion of these
strategies we refer to [18].

Using the wp-calculi, program verification can be completely automated in
PVS. However, there are limitations to the size of program fragment that one
can verify using the wp-calculi. PVS can run for hours without completing the
proof, or it can crash because the proof state becomes too big. The most effective
approach for larger programs seems to a combination of Hoare logic to break up
proof obligation for a large program into chunks that are small enough to handle
with the wp-calculus.

6 Related Work

There are quite a number of groups working on the tool-supported verification
of Java programs that use theorem provers, such as ESC/Java [8], Bali [30],
JACK [5], Krakatoa [26], Jive [27], and Key [7]. With more of such tools now
appearing, comparing them and understanding their fundamental differences and
similarities becomes more important.

In a way, ESC/Java is the odd one out in the list above, in that its developers
have deliberately chosen an approach that is unsound and incomplete, as their



aim was to maximise the number of (potential) bugs that the tool can spot bugs
fully automatically. Still, ESC/Java does use a theorem prover and a wp-calculus
to find these potential bugs, and it probably the most impressive tool to date
when it comes to showing the potential of program verification.

Of the tools listed above, ESC/Java, JACK, Krakatoa, and LOOP use JML
as specification language. Jive will also start supporting JML in the near future.
The KeY system uses OCL as specification language. The fact that several tools
support JML has its advantages of course: it makes it easy to compare tools, to
work on common case studies, to reuse each other’s specifications (especially for
APIs), or to use different tools on different parts of the same program.

The tools differ a lot in the fragment of Java that they support, and how
complicated a specification language they support. Currently, the LOOP tool
and ESC/Java probably cover the largest subset of Java, and the LOOP tool
probably supports the most complicated specification language.

One distinguishing feature of the LOOP project is that it uses a shallow
embedding of Java in PVS. This has both advantages and disadvantages.

An advantage is that is has allowed us to give a completely formal proof of
the soundness of all the programming logic we use, inside the theorem prover
PVS. Of the projects listed above, only in Bali and LOOP has the soundness of
the programming logic been formally proved using a theorem prover. In fact, in
the Bali project, where a deep embedding is used, completeness has also been
proved, which is hard for a shallow embedding.

A disadvantage of the use of a shallow embedding is that much of the reason-
ing takes places at the semantic level, rather than the syntactical level, which
means that during the proof we have an uglier and, at least initially, less familiar
syntax to deal with. Using the LOOP tool and PVS to verify programs requires
a high level of expertise in the use of PVS, and an understanding of the way the
semantics of Java and JML has been defined.

A difference between LOOP and many of the others approaches (with the
possible exception of Bali, we suspect) is in the size of the proof obligations that
are produced as input to the theorem prover. The LOOP tool produces a single,
big, proof obligation in PVS for every method, and then relies on the capabilities
of PVS to reduce this proof obligation into ever smaller ones which we can
ultimately prove. Most of the other tools already split up the proof obligation
for a single method into smaller chunks (verification conditions) before feeding
them to the theorem prover, for instance by using wp-calculi. A drawback of the
LOOP approach in that the capabilities of theorem prover become a bottleneck
sooner than in the other approaches. After all, there is a limit to the size of
proofs that PVS—or any other theorem prover for that matter—can handle
before becoming painfully slow or simply crashing. Note that this is in a way a
consequence of the use of a shallow embedding, and of formalising and proving
the correctness of the entire programming logic inside the theorem prover.



7 Perspective

Most of the case studies for which the LOOP tool has been used are so-called
Java Card programs designed to run on smart cards. Java Card programs are
an excellent target for trying out formal methods, because they are small, their
correctness is of crucial importance, and they use only a very limited API (for
much of which we have developed a formal specification in JML [32]). Many
of the groups working on formal verification for Java are targeting Java Card.
Indeed, the JACK tool discussed above has been developed by a commercial
smartcard manufacturer.

For examples of such case studies see [3] or [20]. The largest case study to date
that has been successfully verified using the LOOP tool and PVS is a Java Card
applet of about several hundred lines of code provided by one of the industrial
partners in the EU-sponsored VerifiCard project (www.verificard.com). What
is interesting about this case study is that it is a real commercial application (so
it might be running on your credit card . . . ), and that verification has revealed
bugs, albeit bugs that do not compromise the security.

Even if program verification for small programs such as smart card applets
is becoming technically possible, this does not mean that it will become feasible
to do it an industrial practice. Any industrial use of formal methods will have
to be economically justified, by comparing the costs (the extra time and effort
spent, not just for verification, but also for developing formal specifications)
against the benefits (improvements in quality, number of bugs found). Here one
of the benefits of JML as a specification language is that there is a range of
tools that support JML that can be used to develop and check specifications.
For example, the JML runtime assertion checker [6] tests whether programs meet
specifications. This clearly provides less assurance than program verification, but
requires a lot less effort, and may provide a very cost-effective way of debugging of
code and formal specifications. Similarly, ESC/Java can be used to automatically
check for bugs in code and annotations. We believe that having a range of tools,
providing different levels of assurance at different costs, is important if one really
wants to apply formal methods in practice. For an overview of the different tools
for JML, see [4].

Despite the progress in the use of theorem-provers for program verification in
the past years, there are still some deep, fundamental, open research problems in
the field of program verification for Java or object-oriented programs in general.

Firstly, as already mentioned in Sect. 3.2, the problems caused by references,
such as aliasing and the leakage of references, remains a bottleneck in formal ver-
ification. One would hope that these problems can be mitigated by introducing
suitable notions of ownership or encapsulation.

Another, and somewhat related issue, is how to deal with class invariants. In
the paper we have only mentioned pre- and postconditions, and we have ignored
the notion of class invariant that JML provides. Class invariants are properties
that have to be preserved by all the methods; in other words, all class invariants
are implicitly included in the pre- and postcondition of every method. However,



there is a lot more to class invariants than this, and class invariants are not

just a useful abbreviation mechanism. For instance, for more complex object
structures, ruling out that that methods disturb invariants of other objects is a
serious challenge.

Finally, even though security-sensitive smart cards programs provide an in-
teresting application area for program verification, it is usually far from clear
what it really means for an application to be ‘secure’, let alone how to specify
this formally. How to specify relevant security properties in a language like JML
remains to a largely open research question.
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