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Abstract—Software performance is critical for how users
perceive the quality of software products. Performance
bugs—programming errors that cause significant performance
degradation—lead to poor user experience and low system
throughput. Designing effective techniques to address perfor-
mance bugs requires a deep understanding of how performance
bugs are discovered, reported, and fixed.

In this paper, we study how performance bugs are discovered,
reported to developers, and fixed by developers, and compare
the results with those for non-performance bugs. We study
performance and non-performance bugs from three popular code
bases: Eclipse JDT, Eclipse SWT, and Mozilla. First, we find
little evidence that fixing performance bugs has a higher chance
to introduce new functional bugs than fixing non-performance
bugs, which implies that developers may not need to be over-
concerned about fixing performance bugs. Second, although
fixing performance bugs is about as error-prone as fixing non-
performance bugs, fixing performance bugs is more difficult
than fixing non-performance bugs, indicating that developers
need better tool support for fixing performance bugs and testing
performance bug patches. Third, unlike many non-performance
bugs, a large percentage of performance bugs are discovered
through code reasoning, not through users observing the negative
effects of the bugs (e.g., performance degradation) or through
profiling. The result suggests that techniques to help developers
reason about performance, better test oracles, and better profiling
techniques are needed for discovering performance bugs.

I. INTRODUCTION

Software performance is important to the overall success
of a software project. Performance bugs—programming er-
rors that create significant performance degradation [1]—hurt
software performance and quality. They lead to poor user
experience, degrade application responsiveness, lower system
throughput, and waste computational resources [2], [3]. Even
expert programmers introduce performance bugs, which have
already caused serious problems [4]–[7]. Well tested commer-
cial products such as Internet Explorer, Microsoft SQLServer,
and Visual Studio are also affected by performance bugs [8].
Therefore, both industry and the research community have

spent great effort on addressing performance bugs. For ex-
ample, many projects have performance tests, bug tracking
systems have special labels for performance bugs [9], and
operating systems such as Windows 7 provide built-in support
for tracking operating system performance [10]. In addition,
many techniques are proposed recently to detect various types
of performance bugs [11]–[23].
To understand the effectiveness of these techniques and de-

sign new effective techniques for addressing performance bugs
requires a deep understanding of performance bugs. A few

recent papers [24]–[26] study various aspects of performance
bugs, such as the root causes, bug types, and bug sources,
which provides guidance and inspiration for researchers and
practitioners. However, several research questions have not
been studied at all or in depth, and answers to these questions
can guide the design of techniques and tools for addressing
performance bugs in the following ways:
• Based on maxims such as “premature optimization is the
root of all evil” [27], it is widely believed that performance
bugs greatly differ from non-performance bugs, and that
patching performance bugs carries a much greater risk of
introducing new functional bugs. A natural question to ask
is compared to fixing non-performance bugs, whether fixing
performance bugs is indeed more likely to introduce new
functional bugs. If fixing performance bugs is not more error-
prone than fixing non-performance bugs, then developers
may not need to be over-concerned about fixing performance

• Different from most non-performance bugs, whose un-
expected behaviors are clearly defined, e.g., crashes, the
definition of performance bugs is vague, e.g., how slow is
qualified as a performance bug.
Therefore, are performance bugs more difficult to fix than

non-performance bugs? For example, are performance bug
patches bigger? Do performance bugs take longer to fix? Do
more developers and users discuss how to fix a performance
bug in a bug report? Many techniques are proposed to help
developers fix bugs [28]–[31], typically with a focus on non-
performance bugs. If performance bugs are more difficult to
fix, we may need more support to help developers fix them.

• Since the definitions of expected and unexpected behaviors
for performance bugs are vague compared to those of non-
performance bugs, are performance bugs less likely to be
discovered through the observation of unexpected behaviors
than non-performance bugs? Are performance bugs discov-
ered dominantly through profiling because many profiling
tools are available and used [32]–[34]? If performance bugs
are less likely to be discovered through the observation of
unexpected behaviors compared to non-performance bugs,
or performance bugs are rarely discovered through profiling,
then it is important for researchers and tool builders to
understand the reasons behind the limited utilization of these
techniques and address the relevant issues. If developers
resort to other approaches to discover performance bugs, we
may want to provide more support for those approaches to
help developers detect performance bugs.
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To answer these and related questions, we conduct a compre-
hensive study to compare performance and non-performance
bugs regarding how they are discovered, reported, and fixed.
Specifically, we manually inspect and compare 210 perfor-
mance bugs and 210 non-performance bugs from three mature
code bases: Eclipse Java Development Tools (JDT), Eclipse
Standard Widget Toolkit (SWT), and the Mozilla project. For
questions where our analysis can be automated, we study an
additional 13,840 non-performance bugs. However, identifying
performance bugs requires manual inspection even when the
analysis of the bug report and patches can be automated.
Therefore, we do not increase the number of performance bugs
for the automated experiments. The manual effort needed to
study more performance bugs is an inherent limitation of our
and any similar study (details in Section II-A). Nonetheless,
the lessons learned from comparing these bugs should provide
a good initial comparison between performance and non-
performance bugs on discovering, reporting, and fixing them.
This paper answers the following research questions (RQ):

• RQ1: Which is more likely to introduce new functional
bugs: fixing performance bugs or fixing non-performance

bugs? It often takes multiple patches to completely fix
a bug [35], [36], because (1) the initial patch may not
completely fix the bug, (2) a patch may introduce a new
functional bug (i.e., a bug that affects program’s correct
behavior) that requires additional patches to fix [36], and
(3) the initial patch may need cosmetic changes or to be
back-ported to other software releases. We refer to the first
patch as the initial patch, and all subsequent patches for
the same bug as supplementary patches following the terms
used by Park et al. [35].

Since it is commonly believed that patching performance
bugs carries a greater risk of introducing new functional
bugs, we want to identify the percentage of performance
bugs whose patches introduce new functional bugs, and
compare it against the percentage of non-performance bugs
whose patches introduce new functional bugs. Therefore, we
are only concerned with (2). Our results show that patching
only 3.4–16.7% of performance bugs introduces new func-
tional bugs, while patching 3.4–8.2% of non-performance
bugs introduces new functional bugs. The differences are
small and mostly statistically insignificant, which suggests
that fixing performance bugs is about as error-prone as fixing
non-performance bugs, indicating that developers may not
need to be over-concerned about fixing performance bugs.

• RQ2: Is fixing performance bugs more difficult than fix-
ing non-performance bugs? Compared to non-performance
bugs, performance bugs consistently need more time fix,
more fix attempts, more developers involved, and more time
from the first to the last fix attempt. In addition, both the
initial patches and the supplementary patches are consid-
erably larger for performance bugs than non-performance
bugs. Furthermore, supplementary patches are less likely to
be clones of an initial patch for fixing performance bugs,
suggesting it is less likely that developers can use clone
detection tools to find similar buggy locations to completely

fix the bugs. These results show that performance bugs are
probably more difficult to fix than non-performance bugs.
While the current effort on helping developers fix bugs
focuses on fixing non-performance bugs [28]–[31], more
support to help developers fix performance bugs is needed.

• RQ3: How are performance bugs discovered and re-
ported in comparison to non-performance bugs? While
the majority (84.5–94.5%) of non-performance bugs are
discovered because users or developers observed their unex-
pected behaviors, e.g., system crashes, a much smaller per-
centage of performance bugs (30.2–49.2%) are discovered
through the observation of unexpected program behaviors.
Instead, a large percentage of performance bugs (33.9–
57.3%) are discovered through reasoning about code. In
addition, using a performance profiler amounts to only 5.5–
10.4% of reported performance bugs. Since developers resort
to code reasoning to discover performance bugs, we may
want to provide more support to help developers perform
code reasoning for discovering performance bugs. In addi-
tion, it is beneficial to have better profiling techniques, and
better test oracles to help developers discover performance
bugs through the observation of unexpected behaviors.

II. EXPERIMENTAL METHODS

A. Collection of Bugs and Patches

We choose three large, mature, and popular projects as
subjects to study: Eclipse Java Development Tools (JDT),
Eclipse Standard Widget Toolkit (SWT), and Mozilla.
We reuse the bugs studied by Park et al. [35], because an-

swering some of our research questions requires distinguishing
between bugs that were fixed correctly on the first attempt and
bugs that involve several attempts to be fully fixed, which was
studied by that work. However, that work does not distinguish
performance bugs from non-performance bugs, and therefore
does not answer the research questions addressed in this
paper. To identify bug-fixing commits and their corresponding
supplementary patches, Park et al. search commit logs for bug
report IDs from bug databases. If a bug report ID was found in
a commit log, they consider the commit a bug-fixing commit
for the bug report. If multiple commits contain the same bug
report ID, then the first commit is the initial commit, and all
subsequent commits are supplementary patches for the bug
report. While this approach can miss some patches that are
related to the bug (if the commit messages for these patches
do not have the bug ID), the approach still provides a highly
useful dataset that helped Park et al. answer the questions in
their study and also allows us to answer our research questions.
Following Park et al. [35], we study bugs reported between

2004–2006 for JDT and SWT, and 2003–2005 for Mozilla, but
still include patches for these bugs beyond the time periods
above (until 2009, 2010, 2011 for JDT, SWT, and Mozilla, re-
spectively), to ensure the studied bugs are completely resolved
and no additional supplementary patches for these bugs are
likely to appear in the future.
Table I summarizes the characteristics of the studied sub-

jects: time period between the first and last commits in the
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TABLE I
CHARACTERISTICS OF THE STUDY SUBJECTS.

JDT SWT Mozilla Sum

First/Last Commit 2001–2009 2001–2010 1998–2011 /

Bug Study Period 2004–2006 2004–2006 2003–2005 /

Lines of Code 262,332 266,870 913,130 /

Number of Authors 18 27 754 /

Number of Commits 17,009 21,530 261,630 /

I-Perf (Perf. bugs
55 59 96 210

inspected manually)

I-NonPerf (Non-perf. bugs
79 73 58 210

inspected manually)

A-NonPerf (Non-perf. bugs
1,781 1,223 11,046 14,050

processed automatically)

repository, time period in which the studied bugs were reported
(as described above), lines of code and number of authors at
the end of the studied period, and the total number of commits.
Three Bug Sets: The last three rows in Table I give the

number of performance and non-performance bugs studied in
this paper. We divide the bugs in three different bug sets—
I-Perf, I-NonPerf, and A-NonPerf—and use the appropriate
bug sets depending on the research questions we answer.
Bug set I-Perf contains 210 bugs that we manually identified
to be performance bugs (Section II-B describes our manual
inspection process). Bug set I-NonPerf contains 210 bugs that
we manually identified to be non-performance bugs, which
we use only in experiments that need manual inspection.
Otherwise, we use bug set A-NonPerf, which contains all the
bugs except the bugs in I-Perf (i.e., A-NonPerf includes also
bugs that do not contain any of the keywords that are used
to search for performance bugs). We consider these bugs to
be all the non-performance bugs in our study. These bugs are
not identified through manual inspection. The vast majority
of these bugs are non-performance bugs, although a few of
them may be performance bugs (details in Section IV). Note
that unlike A-NonPerf for non-performance bugs, we do not
have an A-Perf category for performance bugs. The reason is
that only a small percentage of bugs are performance bugs,
and identifying them requires manual inspection. Therefore,
we still use I-Perf for experiments that can be automated. We
explain why and how we collect the three sets in Section II-B
and discuss the threats to this method in Section IV.

B. Manual Inspection of Bugs and Patches

Identifying Performance Bugs: To assign a bug to I-Perf,
we use an approach similar to other studies of concurrency,
security, and performance bugs [24], [25], [37], [38]. We first
identify the bug reports that contains a performance-related
keyword (“performance”, “slow” , “speed”, “latency”, and
“throughput”) in the bug description, bug summary, or the
discussion developers had while solving the bug. For JDT,
SWT, and Mozilla, this step finds 135, 108, and 1,101 bugs,
respectively. We manually inspect all the 135 and 108 bugs
for JDT and SWT, and we randomly sample 450 of the 1,101
bugs for Mozilla. During this manual inspection, we read the
bug description and the discussion developers had while fixing
the bug, and decide if the inspected bug is a performance bug

or not. To ensure the correctness of our results, this manual
inspection step is performed independently by two authors. For
the bugs where the results from the two inspections differ, the
authors discuss to reach a consensus. In this way, we identified
a total of 210 performance bugs—55, 59, and 96 in JDT, SWT,
and Mozilla, respectively.
Identifying Non-Performance Bugs: To assign a bug to I-

NonPerf, we randomly select bugs from A-NonPerf, manually
inspect them, and keep in I-NonPerf only bugs that we
manually verify as non-performance bugs.
Classifying Supplementary Patches By Purposes: To

answer RQ1, we need to know which supplementary patches
fix new functional bugs that were introduced by other patches.
We manually inspect the supplementary patches in our data
sets I-Perf and I-NonPerf to classify the supplementary patches
into five categories based on their purposes, i.e., fixing new
functional bugs introduced by other patches, improving the
performance or completing the initial patch, a combination of
these two purposes, making only a code formatting change,
or only applying the initial patch or its variant to a different
branch. To do so, we manually examine the supplementary
patches, the commit logs for these patches, and the bug reports.
Identifying Mechanisms to Detect Bugs and Information

Provided With a Bug Report: To answer RQ3, we manually
examine bug reports to classify bug reports according to
how the bugs are discovered into four categories: discovered
through code reasoning, through observation of unexpected
behaviors, through the failure of regression tests, or through
using a profiler. In addition, we classify bug reports in a
different dimension based on what information is provided to
help reproduce and fix bugs into three categories: inputs are
provided, steps to reproduce are provided but inputs are not
provided, or neither inputs nor steps to reproduce are provided.

C. Statistical Tests

We work with the statistical consulting service provided by
the University of Waterloo to use the proper statistical tests to
understand whether there is a statistically significant difference
between two values that we want to compare.
We report statistical measures when applicable. For exam-

ple, to answer part of our RQ1, we compare the proportion of
performance bugs that require supplementary patches to the
proportion of non-performance bugs that require supplemen-
tary patches. Since Mozilla has many bugs, we randomly sam-
ple some bugs to be manually inspected (I-Perf and I-NonPerf).
We want to understand whether the proportions we obtain from
the sample are likely under the null hypothesis. We set the
null hypothesis to be “the probability of a performance bug
causing supplementary patches is the same as the probability
of a non-performance bug causing supplementary patches”.
We model the experiment as a coin-flip experiment. For

example, given a bug, it can be either a performance bug
(head) or a non-performance bug (tail). We choose to use the
Fisher’s exact test in this situation because the Fisher’s exact
test does not require the data to follow a normal distribution,
and is appropriate even if the sample size is small. For other
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experiments whose data are ordinal, such as the number of
supplementary patches, we apply Mann-Whitney U-test. We
choose U-test over t-test because the t-test assumes a normal
distribution while the U-test does not. At a 95% confidence
level, we reject the null hypothesis if the p-value is smaller
than 0.05. A p-value greater than 0.05 indicates that we do
not find strong enough evidence to reject the null hypothesis.
For experiments on JDT’s and SWT’s I-Perf and A-NonPerf

data sets, no statistical test is needed to extend the results from
the sample to the entire population because we examined the
entire population of bugs in the given period of time. Any
difference is a factual difference on the studied population.
In the tables in the rest of this paper, we do not show the
p-value column for those cases or use “/” to denote the
irrelevant cells. Since we use keyword search first to find our
studied population (similar to prior work [24], [25], [37], [38]),
which is not a random sample, statistical measures such as t-
test, U-test, and p-values (which all assume random samples)
do not directly generalize our results beyond the studied
population. Given the small percentage of performance bugs,
it is prohibitively expensive to randomly sample bug reports
and still find enough performance bugs for a representative
study. Keyword search is our best effort, as commonly done
in previous related studies. Similar to prior studies [35], [37],
[39], the studied time period and projects are not randomly
selected. We discuss these threats further in Section IV.
Due to the space constraints, we only explain one null

hypothesis in detail. For part of RQ1, we want to check
if the proportion of performance bugs that are multi-patch
are the same as the proportion of non-performance bugs that
are multi-patch. Here multi-patch bugs are bugs that require
supplementary fixes. A naive approach is to formulate the null
hypothesis about the conditional probabilities of these types of
bugs as P(Multi-Patch|Per f ) = P(Multi-Patch|NPer f ). How-
ever, directly evaluating those two probabilities requires a good
estimate of the number of performance and non-performance
bugs. Since we sample bugs to determine performance and
non-performance bugs, we do not know their precise numbers,
which could introduce errors. Fortunately, we can avoid such
errors by rewriting this hypothesis into a different form:
P(Per f |Multi-Patch)=P(Per f |Uni-Patch). This form has two
desired properties. First, this form is mathematically equivalent
to the original hypothesis. The proof follows from the basic
axioms of probability. Second, this form avoids the errors
described above because we know the exact number of Uni-
Patch and Multi-Patch bugs in the dataset.

III. RESULTS

A. RQ1: Which is more likely to introduce new functional bugs:

fixing performance bugs or fixing non-performance bugs?

To answer our RQ1, we first (1) determine whether fixing
a bug requires supplementary patches, and then (2) manually
inspect whether the supplementary patches fix new functional
bugs (i.e., new functional bugs that were introduced by the
bug’s patches). These steps allow us to compare the percentage
of performance bugs whose patches introduce new functional

bugs against the percentage of non-performance bugs whose
patches introduce new functional bugs.
For step (1), we split performance bugs and non-

performance bugs in two categories: uni-patch bugs, which
are fixed with only one patch, and multi-patch bugs, which are
fixed with two or more patches, i.e., bugs that developers did
not fix correctly or fully in the first attempt. This method was
used by Park et al. [35] to identify bug patches that introduce
new bugs. The intuition is that the existence of supplementary
patches indicates that the initial patch was either incomplete
(it did not fully fix the bug) or incorrect (it introduced new
bugs that needed to be fixed).
For step (2), we classify the multi-patch bugs into the

following five disjoint categories according to the goals of their
supplementary patches. When developers fix a bug (referred
to as the original bug for clarity), if they introduce a new

functional bug during this process, and the supplementary
patches fix the new functional bug introduced, then the original
bug belongs to the category FixNewFunc. Since developers
may use multiple patches to completely fix the original bug,
we consider new functional bugs introduced by all these
patches that fix the original bug. These patches are relevant to
RQ1 because we want to study how likely it is to introduce
new functional bugs when fixing the original (performance
or non-performance) bugs. FixOld&Perf represents the bugs
whose supplementary patches complete the fix in the initial
patch or improve performance on top of the performance
gain from the initial patch. This category only includes bugs
whose supplementary patches do not fix new functional bugs.
Since a bug can have multiple patches, some of which fix a
new functional bug, and some of which complete the initial
fix or improve performance, we use Both to denote these
bugs. Format represents the bugs whose patches perform
only cosmetic changes, such as adding comments. To Branch

represents the bugs whose patches only apply a fix similar to
the initial patch, but to a different branch.
To answer RQ1, we take the multi-patch performance

bugs from step (1) and calculate what percentage belong to
FixNewFunc and Both, both of which are bugs whose patches
introduce new functional bugs. Similarly, we calculate the
same percentage for non-performance bugs. Table II shows
the results. These numbers show that only a small percentage
(3.4–16.7%) of performance bugs have patches that introduce
new functional bugs. These results also show some differences
between performance and non-performance bugs, i.e., fixing
performance bugs is less likely to introduce new functional
bugs than fixing non-performance bugs for SWT, and fixing
performance bugs is more likely to introduce new functional
bugs than fixing non-performance bugs for JDT and Mozilla.
We then performed a careful statistical analysis to determine

how significant these differences are. The null hypothesis
is “fixing performance bugs is as likely to introduce new
functional bugs as fixing non-performance bugs”, and column
p-val in Table II shows the p-values. For JDT and SWT, the
p-values are greater than 0.05, indicating that there is no
statistically strong evidence to show that fixing performance
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bugs and fixing non-performance bugs are different in terms of
introducing new functional bugs. For Mozilla, the difference
between performance and non-performance bugs is statistically
significant, but it is small. These results show that the common
belief that patching performance bugs carries a greater risk of
introducing new functional bugs may not be true. Therefore,
developers may not need to be over-concerned about fixing
performance bugs.

TABLE II
PERCENTAGES OF PERFORMANCE AND NON-PERFORMANCE BUGS WHOSE

PATCHES INTRODUCE NEW FUNCTIONAL BUGS. THIS TABLE USES THE

I-PERF AND I-NONPERF DATASETS.

App NPerf (%) Perf (%) p-val

JDT 6.3 7.3 >0.99

SWT 8.2 3.4 0.3

Mozilla 3.4 16.7 0.02

Fixing performance bugs is about as likely to introduce

new functional bugs as fixing non-performance bugs.

Below we present the detailed results of our steps (1) and
(2). Table III shows our results comparing the ratios of perfor-
mance and non-performance bugs (columns Perf and NPerf ) in
the uni-patch and multi-patch categories (columns Uni-Patch
and Multi-Patch); columns # and % give the number and per-
centage of bugs. About 31% (25.4% to 36.4%) of performance
bugs require additional patches after the initial patch, whereas
about 27% (22.3% to 32.6%) of non-performance bugs require
additional patches. While the percentage for performance bugs
is consistently higher than for non-performance bugs, the
differences are small. Therefore for practical purposes, fixing
performance bugs is about as likely to require supplementary
patches as fixing non-performance bugs.

TABLE III
PERFORMANCE AND NON-PERFORMANCE BUGS THAT NEED (Multi-Patch)
OR DO NOT NEED (Uni-Patch) ADDITIONAL FIXING AFTER THE INITIAL

PATCH. THIS TABLE USES THE I-PERF AND A-NONPERF DATASETS.

Uni-Patch Multi-Patch

App NPerf Perf NPerf Perf

# % # % # % # %

JDT 1,383 77.6 41 74.5 398 22.3 14 25.4

SWT 928 75.8 39 66.1 295 24.1 20 33.9

Mozilla 7,443 67.3 61 63.5 3,603 32.6 35 36.4

For the multi-patch performance bugs, we want to know
why these bugs need supplementary patches. For example, are
performance bugs so difficult to fix that their patches introduce
new functional bugs? Or, do the supplementary patches add
more performance improvements on top of the initial patch?
To understand the reason for supplementary patches, for each
performance bug, we manually analyze its supplementary
patches (one bug may have more than one supplementary
patch; Section III-B gives quantitative data for the number
of supplementary patches), the commit logs for these patches,
and the bug report.
We classify multi-patch bugs into five categories based on

the purposes of their supplementary patches. Table IV shows

the percentage of multi-patch performance bugs and non-
performance bugs that belong to the five categories. Perhaps
surprisingly, the majority of performance bugs needs supple-
mentary patches not because their patches introduced a new
functional bug that needed to be fixed, but rather because the
developers wanted to further improve performance, in addition
to the improvements already made in the initial patch. For
example, for SWT, only 5% of the multi-patch performance
bugs have supplementary patches that fix new functional bugs
introduced by their patches, while 75% of the multi-patch
performance bugs have supplementary patches that further
improve performance or complete the initial patch. JDT and
Mozilla have similar results (21.4% and 64.3% for JDT, 22.9%
and 31.4% for Mozilla). For a relatively large fraction of
performance bugs of up to 22.9%, the supplementary patches
only port the initial patch to older released branches.

TABLE IV
WHY DO DEVELOPERS NEED SUPPLEMENTARY PATCHES? THIS TABLE

USES THE MULTI-PATCH BUGS FROM I-PERF AND I-NONPERF. THE

VALUES REPRESENT THE PERCENTAGE OF BUGS IN EACH CATEGORY OUT

OF THE MULTI-PATCH BUGS.

Why?
JDT (%) SWT (%) Mozilla (%)

NPerf Perf NPerf Perf NPerf Perf

FixNewFunc 22.2 21.4 11.1 5.0 10.5 22.9

FixOld&Perf 44.4 64.3 61.1 75.0 42.1 31.4

Both 5.6 7.1 22.2 5.0 0.0 22.9

Format 5.6 0.0 5.6 0.0 5.3 0.0

To Branch 22.2 7.1 0.0 15.0 42.1 22.9

Bug and Patch Examples: Figure 1 shows an example
supplementary patch (for the Mozilla 240934 bug) that further
improves the performance gained by the initial patch. The
high level fix idea for Mozilla 240934 is to search using a
hashtable instead of performing a linear search over an array.
The initial patch incorporates a hashtable in the code, changing
348 lines of code, a relatively large patch. Later, the developer
realizes that the hashtable can use a better hash method, and
implements this better hash method in the second patch, as
shown in Figure 1. In other words, performance is already
improved by the initial patch, and the supplementary patch
just adds to the initial improvement.

1 Index: trunk/mozilla/layout/html/base/src/nsPresShell.cpp
2 ========================================
3 @@ −1031,11 +1031,12 @@
4 ...
5 − NS PTR TO INT32(command−>GetTarget()) ˆ
6 + (NS PTR TO INT32(command−>GetTarget()) >> 2) ˆ
7 ...

Fig. 1. A supplementary patch for Mozilla bug 240934, which further
improves performance by using a better hash function, in addition to the
improvement offered by the initial patch.

For some bugs (e.g., SWT 99524, JDT 89096, Mozilla
239358, and SWT 120721), the initial and supplementary
patches are one high level fix. However, developers chose to
commit this high level fix in several different patches (which
became the initial and supplementary patches), either because
the different patches represented logically different coding sub-
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tasks, or simply because the overall fix was large and the
developer implemented it in several stages. For example, the
patches for Mozilla 239358 total over 900 lines of code, and
it appears that the developer implemented and committed the
different patches in several stages.
The patches for performance bugs can indeed introduce new

functional bugs. Figure 2 shows an example supplementary
patch, that fixes the bug inserted by the initial patch for the
performance bug Mozilla 221361. The new functional bug
created by the initial patch was found and reported (as Mozilla
270297) one year after it was introduced. The initial patch for
Mozilla 221361 changed 36 lines of code, among them several
lines doing pattern matching on strings, similar to line 5 in
Figure 2. Among so many changes, the developer got one
pattern wrong (line 5 in Figure 2), which makes Firebird build
wrong URLs.

1 Index: trunk/mozilla/browser/base/content/browser.js
2 ========================================
3 @@ −4801,7 +4801,8 @@
4 ...
5 − searchStr = searchStr.replace(/\s∗(.∗?)\s∗$/, ”$1”);
6 + searchStr = searchStr.replace(/ˆ\s+/, ””);
7 + searchStr = searchStr.replace(/\s+$/, ””);
8 ...

Fig. 2. Supplementary patch that fixes a new functional bug (Mozilla 270297)
created by the initial patch of a performance bug (Mozilla 221361).

The majority of performance bugs have supplementary

patches that either improve the performance gains offered

by the initial patch or complete the implementation of

the initial patch. Relatively few performance bugs have

supplementary patches that fix new functional bugs intro-

duced by other patches of the same original bug.

B. RQ2: Is fixing performance bugs more difficult than fixing

non-performance bugs?

This section studies whether fixing performance bugs is
more difficult than fixing non-performance bugs. While it is
hard to define and quantify the “difficulty” of fixing a bug, we
study a wide spectrum of aspects of fixing performance and
non-performance bugs to provide some understanding toward
this end. Such information can help developers prioritize the
types of bugs to fix and estimate the resources needed.
We first investigate the average time necessary to fully

fix bugs, and the number of developers and users involved
in the discussion that lead to the final fix. Second, for the
bugs that require more than one fix attempt (i.e., the multi-
patch bugs) and are thus more difficult to fully fix, we
present the total number of fix attempts and the time from
the initial (insufficient) patch to the last patch. These numbers
approximate the extra effort needed to fully fix multi-patch
bugs. Third, we study the size of the initial patch, and, if
the initial patch did not fully fix the bug, the size of the
supplementary patches. These numbers approximate the effort
required to patch the bug and the complexity added to the code.

Fourth, we investigate if clone detection can help developers
discover similar buggy locations and fix incomplete initial
patches that need additional fixing.
Table V shows the average time (in days) that took to

resolve a bug, from when it was first reported, to when it was
closed. Performance bugs usually take more time than non-
performance bugs to be resolved, e.g., about 75 more days on
average for SWT and Mozilla.

TABLE V
TIME NECESSARY TO FULLY RESOLVE A BUG. THIS TABLE USES THE

I-PERF AND A-NONPERF DATASETS.

App NPerf Perf

JDT 126.4 123.3

SWT 201.0 275.9

Mozilla 655.8 730.8

Table VI shows the average number of developers that
took part in the discussion about how to fix the bug. Fixing
performance bugs consistently involved more developers than
fixing non-performance bugs. For example, SWT needs an
average of 3.3 developers to fix a non-performance bug, but
an average of 3.9 developers to fix a performance bug. The
results are statistically significant for Mozilla because the p-
value is less than 0.05. The differences are factual differences
for JDT and SWT since we examine the entire population as
explained in Section II-C (denoted by “/”).

TABLE VI
DEVELOPERS INVOLVED IN FIXING A BUG. THIS TABLE USES I-PERF AND

A-NONPERF. “/” INDICATES THAT P-VALUES ARE NOT NEEDED SINCE WE

EXAMINE THE ENTIRE POPULATION AS EXPLAINED IN SECTION II-C.

App NPerf Perf p-val

JDT 3.7 3.9 /

SWT 3.3 3.9 /

Mozilla 5.2 6.5 8.0e-4

Figure 3 shows, for the bugs that are fixed more than
once, the total number of patches required for each bug.
Performance bugs consistently need more patches than non-
performance bugs for all three applications. For example,
fewer performance bugs need two or three patches than non-
performance bugs. In other words, while performance bugs
are not more likely to need supplementary patches than non-
performance bugs (Section III-A), the performance bugs that
do need supplementary patches are more difficult to fix.
Figure 4 shows, for the bugs that are fixed more than once,

the time between the initial patch and the last patch. These
numbers show for how long the code was incompletely fixed,
and indicate how difficult it was to fully fix the bug (note that
these numbers apply only for multi-patch bugs and represent
different data than the numbers in Table V). For JDT and SWT,
performance bugs need more time for the initial patch to be
fully fixed compared to non-performance bugs; for Mozilla,
performance bugs need less time than non-performance bugs.
Table VII compares the size of the initial patch for per-

formance and non-performance bugs. Column Files gives the
average number of files changed, column LOC gives the

242



     
































     




























     






























Fig. 3. Number of times a bug is fixed. This figure uses the multi-patch
bugs from I-Perf and A-NonPerf.

      




































      




























      






























Fig. 4. Time (number of days) between the first patch and the last
supplementary patch. This figure uses the I-Perf and A-NonPerf datasets.

average number of lines of code changed, and column Added

LOC gives the average number of code lines that are added,
as a percent of the total number of lines changed. For all
three applications, fixing performance bugs requires changing
more files and more lines of code than fixing non-performance
bugs. For example, for JDT, fixing non-performance bugs
changes on average 2.8 files, while fixing performance bugs
changes on average 4.4 files. The difference is even larger
when considering the lines of code changed: double for JDT
and Mozilla, and almost three times for SWT (44.2 lines
for non-performance, and 131.4 for performance). Percentage-
wise, performance bugs require slightly less added lines of
code than non-performance bugs, but the differences are small,
and in absolute numbers, performance bugs still add more
lines of code than non-performance bugs. Overall, the initial
patch is considerably larger for performance bugs than for non-
performance bugs.

TABLE VII
SIZE OF INITIAL PATCHES. THIS TABLE USES I-PERF AND A-NONPERF.

App
Files LOC Added LOC%

NPerf Perf p-val NPerf Perf p-val NPerf Perf p-val

JDT 2.8 4.4 / 108.4 211.2 / 67.9 60.9 /

SWT 1.9 2.5 / 44.2 131.4 / 72.0 69.5 /

Mozilla 4.2 8.2 0.01 212.5 570.7 2.6e-7 62.9 58.4 0.02

Table VIII compares, for performance and non-performance
bugs which have an incomplete first patch, the size of the
supplementary patches. Columns Files, LOC, and Added LOC

give the average number of files changed, lines of code

changed, and lines of code added, respectively. For JDT and
Mozilla, the supplementary patches for performance bugs are
considerably larger than those for non-performance bugs by
all three metrics; for SWT, they are slightly smaller. These
numbers indicate that, even though performance bugs are not
more likely to have incomplete patches than non-performance
bugs (Section III-A), when they do, the supplementary patches
are much more complex than for non-performance bugs.

TABLE VIII
SIZE OF ADDITIONAL PATCHES. THIS TABLE USES THE I-PERF AND

A-NONPERF DATASETS.

App
Files LOC Added LOC%

NPerf Perf p-val NPerf Perf p-val NPerf Perf p-val

JDT 3.0 4.0 / 96.9 222.0 / 62.0 66.2 /

SWT 3.6 3.4 / 179.6 141.0 / 76.8 72.9 /

Mozilla 6.6 11.5 0.07 343.5 480.1 0.01 64.1 65.3 0.12

Clone detection has been used to detect and fix bugs. We
compare how this technique works for performance and non-
performance bugs. Figure 5 gives the percentages of the sup-
plementary patches that are either clones of the initial patches,
backports of the initial patches, or neither. For JDT and SWT,
performance bugs have a smaller percentage of clones of their
initial patches than non-performance bugs, while for Mozilla,
the percentages are about the same. This means that clone
detection is probably less effective for helping developer fix
performance bugs completely than fixing non-performance
bugs completely, because clone detection tools are less likely
to find buggy locations similar to what the initial patch fixes
to help developers complete the fix.
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Fig. 5. Supplementary patches that are clones, backports, or none of the two.
This table uses the I-Perf and A-NonPerf datasets.

Fixing performance bugs is more difficult than fixing

non-performance bugs. First, performance bugs need

more time to be fixed, more fix attempts, more developers

involved, and more time from the first to the last fix

attempt. In addition, both the initial and supplementary

patches (if needed) for performance bugs are more com-
plex than the patches for non-performance bugs. Further-

more, fewer performance bugs’ supplementary patches

are clones of the initial patches.
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C. RQ3: How are performance bugs discovered and reported

in comparison to non-performance bugs?

Since the expected and unexpected behaviors for perfor-
mance bugs are less clearly defined than those of non-
performance bugs, we want to know how users discover
and report performance bugs, and how it compares to non-
performance bugs. We investigate two aspects: (1) how the
bug reporter discovered the bug, and (2) what input the bug
reporter provided to help developers reproduce and fix the bug.
Table IX shows how performance bugs were discovered

compared to non-performance bugs. Row Reason gives the
percentages of bugs that were found through code inspec-
tion and reasoning. Row Observe shows the percentages of
bugs that were found because users or developers observed
the adverse effects of the bugs (e.g., program crashing and
program running slow). Row Test R. presents the percentages
of bugs that were found because a regression test failed. Row
Profiler gives the percentages of bugs that were found because
developers profiled the code.

TABLE IX
HOW ARE PERFORMANCE AND NON-PERFORMANCE BUGS DISCOVERED?

THIS TABLE USES THE I-PERF AND I-NONPERF DATASETS.

How?
JDT (%) SWT (%) Mozilla (%)

NPerf Perf p-val NPerf Perf p-val NPerf Perf p-val

Reason 5.1 50.9 7.7e-10 4.1 33.9 1.2e-5 15.5 57.3 2.6e-7

Observe 91.1 36.4 1.4e-11 94.5 49.2 2.6e-9 84.5 30.2 2.9e-11

Test R. 3.8 7.3 0.44 1.4 8.5 0.09 0.0 2.1 0.53

Profiler 0.0 5.5 0.07 0.0 8.5 0.02 0.0 10.4 0.01

An unexpectedly large fraction of performance bugs (50.9%,
33.9%, and 57.3% for JDT, SWT, and Mozilla, respectively)
are found through code reasoning. For example, the report
for bug 108820 in JDT states: “When computing a hierarchy

on a class, we should ignore potential subtypes in the index

that are interfaces and annotations as these cannot possibly

extend the focus class.”. This text suggests that the bug reporter
understands the high level semantics of the code, knows
that some computation is unnecessary, and proposes to skip
that computation. From the bug report and the subsequent
discussion, the reporter did not experience a slow program
behavior (which would qualify the bug for Observe category),
nor did the reporter profile the code to find this deficiency
(which would qualify the bug for Profiler category).

In contrast, only few non-performance bugs (5.1%, 4.1%,
and 15.5% for JDT, SWT, and Mozilla, respectively) are found
through code reasoning. These differences are statistically
significant as the p-values in row Reason are less than 0.05.
Contrary to expectations, the table shows that profiling code

is not the major source for discovering performance bugs,
accounting for only 5.5%, 8.5%, and 10.4% of performance
bugs in JDT, SWT, and Mozilla, respectively.
Some reporters found bugs using a mixture of the above

techniques, and we label such reports in the group with the
most precise technique, or the technique that seemed to be
the primary factor that contributed to finding that bug. For
example, the report for bug 79557 in SWT states: “Dis-

play.getShells() and Disply.getActiveShell() methods are called

in eclipse very frequently. ... This is due to widgetTable, which

contains hundreds of widgets, is scanned each time. However

amount of non-disposed shells is about 2-4 depending on

amount of opened dialogs. So it is better to keep separate

array of non-disposed shells rather than scan throw [sic]
widgetTable.”. The developers likely profiled an execution
scenario, identified some method as being expensive, and then
reasoned about the code and tried to deduce if that method
usage pattern can be improved. We consider the report in the
Profiler category, because the primary means to find the bug
was profiling, not purely code reasoning.

The above data suggests that developers need tool support
to detect performance bugs. For example, static analysis may
help developers during code reasoning and better profilers
may focus on finding performance bugs rather than only slow
computation (which may be truly needed and thus not a bug).

Unlike non-performance bugs, many performance bugs
are found through code reasoning, not through direct ob-

servation of the bug’s negative effects. Few performance

bugs are found through profiling.

Table X shows what additional information was provided
with the bug reports for performance and non-performance
bugs. Row Input gives the percentage of bug reports that
contain a test or input file, row Steps gives the percentage
of bug reports that have a detailed description on how to
reproduce the bug but do not contain a test or input file, and
row Gen./None is the percentage of the bug reports that contain
only a high level description of the bug cause or none at all.

TABLE X
WHAT ADDITIONAL INFORMATION WAS PROVIDED WITH THE BUG

REPORT? THIS TABLE USES THE I-PERF AND I-NONPERF DATASETS.

How?
JDT (%) SWT (%) Mozilla (%)

NPerf Perf NPerf Perf NPerf Perf

Input 58.2 16.4 45.2 39.0 17.2 20.8

Steps 15.2 10.9 21.9 6.8 24.1 17.7

Gen./None 26.6 72.7 32.9 54.2 58.6 61.5

What additional information is provided with the bug report
is not necessarily dependent on how the bugs were discovered
(Table IX). For example, even if JDT bug 108820 was dis-
covered through code reasoning, and thus initially there was
no code exposing the bug, the developer still provides a test
exposing the bug. The test was written to measure the perfor-
mance of the buggy method newTypeHierarchy(null), and
the test does not represent a real-world usage scenario. This
is similar to how developers can find non-performance bugs
in some actual usage scenario but provide small unit tests that
expose the bug independently of the original usage scenario
that exposed the bug.
For JDT and SWT, non-performance bugs are more likely

to be reported with an input or steps to reproduce than
performance bugs. For Mozilla, the ratio of bugs in the Input
or Steps category is about the same for performance and non-
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performance bugs, but performance bugs are more likely to
be reported with a test or input than non-performance bugs.
A large fraction of both performance and non-performance
bug reports either contain only a high level description of the
bug cause or no description at all. The percentages vary from
project to project, which suggests that programming language
and project reporting policy may have influenced the quality
of the bug reports.
Overall, better reporting policies are needed for both perfor-

mance and non-performance bugs. Tool support for capturing
the relevant execution scenario, extracting unit tests from
system tests, or deterministic replay can also help.

Many performance bugs are reported without inputs or
steps to reproduce. Non-performance bugs have a similar

problem, though to a lesser extent in JDT and SWT.

IV. THREATS TO VALIDITY

Internal Threats: We use keyword search and manual
inspection to identify the performance bugs in I-Perf. The
precision of this approach is 100%, which is the proportion of
true performance bugs among the performance bugs manually
verified by us. To minimize the risk of incorrect results given
by manual inspection, the bugs in I-Perf were labeled as
performance bugs independently by two authors. We estimate
the recall of this technique to be 50%, which means that for
each performance bug that we analyzed, there is a performance
bug that we missed. To compute this recall, we randomly
sampled 227 bugs and manually inspected each of them. We
found 6 performance bugs, of which only 3 were found by
keyword search and manual inspection. Zaman et al. [26]
use an alternate approach to compute recall. They sample
approximately the same number of predicted performance
and non-performance bugs. Using this approach, our recall
is 97.22%, which is comparable to the recall obtained by
them. The risk of not analyzing all performance bugs cannot
be fully eliminated. However, combining keyword search and
manual inspection is an effective technique to identify bugs of
a specific type from a large pool of generic bugs, which was
successfully used in prior studies [24], [37], [38].
External Threats: The bugs we use are from relatively

large and mature applications, written both in Java (JDT and
SWT) and in C/C++ (Mozilla). However, we cannot guarantee
that our results from them will generalize to all other software
projects. Furthermore, the applications used in our study are
open-source, and performance bugs in commercial software
may have different characteristics. As in the prior study [35],
the studied period is about two years, which could be a threat.
Extending this study to other projects and longer periods of
time remains as our future work. Data recorded in bug tracking
systems and code version histories can have a systematic bias
relative to the full population of bug fixes [40] and can be
incomplete or incorrect [41]. Our study, like similar studies,
can be affected by these problems, and minimizing the their
effects is an ongoing research problem.

Construct Threats: The bugs we use were identified by
Park et al. [35] by automatically finding bug IDs from commit
logs and bug data bases. While this technique can miss bugs
and patches, there is no reason to believe that there are
fundamental differences in the characteristics of the missed
bugs and patches. The studied bugs may have not yet been
fully fixed, or may be re-opened in future. To minimize this
concern, the studied bugs were reported between 2003 and
2006 (Table I), and thus chances are high they are fully
fixed and will not be re-opened. I-Perf and I-NonPerf contain
equal numbers of bugs, which does not model the fact that
there are more non-performance than performance bugs. While
sampling proportionally more non-performance bugs would
closer model the bug population, the manual effort would
be extremely high. We believe the large number of manually
inspected bugs (210 performance and 210 non-performance
bugs) reduces the potential risks created by this design choice.
Conclusion Threats: For the experiments where we ran-

domly sampled bugs (e.g., I-NonPerf are a small fraction
of non-performance bugs sampled out of all 14,050 non-
performance bugs), the number of random samples may not
be sufficient to accurately characterize the bug population. To
minimize this threat, we manually inspected a large number
of bugs: 210 performance and 210 non-performance bugs.

V. RELATED WORK

To the best of our knowledge, our RQ1 has not been studied
before; and we discuss how our RQ2 and RQ3 are different
from the related work below.
Empirical Studies of Performance Bugs: Zaman et al. [25]

study security, performance, and generic bugs in the Firefox
web browser. Their analysis includes metrics similar to the
metrics that we use to answer RQ2. In addition, our anal-
ysis discriminates between uni-patch and multi-patch bugs,
considers initial and supplementary patches, studies more
applications, and analyzes additional data such as clones.
Their followup paper [26] studies the bug reports for per-

formance and non-performance bugs in Firefox and Chrome.
They study how users perceive the bugs, how the bugs were
reported, what developers discussed about the bug causes
and the bug patches. Similar to our data in Table X, they
also analyze bug reports that have an input attached. Unlike
their study, our study analyzes different information from bug
reports, analyzes patches, differentiates between uni-patch and
multi-patch bugs, and studies more applications.
Jin et al. [24] study the root cause of 109 performance bugs

from five code bases, observe frequent code patterns related
to performance bugs, and use these patterns to detect new
performance bugs. Unlike their study, our study focuses on
how performance bugs are discovered, reported, and fixed.
Empirical Studies of Generic Bugs: There are many

projects that study and characterize different aspects of generic
bugs, e.g., [37]–[39], [41]–[46]. The studies by Park et al. [35]
and Yin et al. [36] investigate the bugs that need more than
one fix attempt. Our study reuses the bugs used by Park et
al. [35] because answering some of our research questions
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requires distinguishing between bugs that were fixed correctly
on the first attempt and bugs that required several attempts to
be fully fixed. However, the study by Park et al. is not related
to performance bugs. Unlike all these studies of generic bugs,
our study focuses on performance bugs.
Detecting Performance Bugs and Improving Perfor-

mance: There is much work on detecting performance bugs
and improving performance. Most of the work identifies code
locations that take a long time to execute [11]–[13], [34], [47].
Several techniques [14]–[16] identify performance problems
by detecting either anomalous or unexpected behavior. Other
techniques [17]–[20] detect runtime bloat, i.e., operations that
perform a lot of work to accomplish simple tasks. Several tech-
niques generate or select tests for performance testing [21]–
[23]. All these techniques give good insight about some
particular sources and causes of performance bugs. Unlike
these specific techniques, our study analyzes more generally
how performance bugs are discovered, reported, and fixed by
developers, and is thus complementary.

VI. CONCLUSIONS

Performance bugs create problems even for well tested
software written by expert programmers [4]–[8]. This paper
studies three large, mature, and popular projects (Eclipse JDT,
Eclipse SWT, and Mozilla), which reveals several important
findings. First, fixing performance bugs is about as likely
to introduce new functional bugs as fixing non-performance
bugs. Developers do not need to be overly concerned that
fixing performance bugs carries a greater risk of introducing
new functional bugs than fixing typical, non-performance
bugs. Second, we find that fixing performance bugs is more
difficult than fixing non-performance bugs. Finally, unlike
non-performance bugs, many performance bugs are found
through code reasoning, not through direct observation of
the bug’s negative effects (e.g., slow code). Furthermore, few
performance bugs are found through profiling. The results
suggest that improving techniques for discovering, reporting,
and fixing performance bugs would greatly help developers
address performance bugs.
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