
Technical Debt is not Only about Code and We Need to be Aware

about It

Clara Berenguer
 Salvador University

 Brazil
claraberenguerledo@gmail.com

Adriano Borges
 Salvador University

 Brazil
arborges.12@gmail.com

Sávio Freire
 Federal Institute of Ceará
and Federal Univ. of Bahia

 Brazil
savio.freire@ifce.edu.br

Nicolli Rios
Federal Univ. of Rio de Janeiro

Brazil
nicolli@cos.ufrj.br

Robert Ramač
University of Novi Sad

Serbia
ramac.robert@uns.ac.rs

Nebojša Taušan
Chamber of Commerce

and Industry
Serbia

nebojsa.tausan@infora.rs

Boris Pérez
Univ. of Los Andes and Francisco

de Paula S/der University
Colombia

br.perez41@uniandes.edu.co

Camilo Castellanos
University of Los Andes

Colombia
cc.castellanos87@uniandes.edu.co

Darío Correal
University of Los Andes

Colombia
dcorreal@uniandes.edu.co

Alexia Pacheco
University of Costa Rica

Costa Rica
alexia.pacheco@ucr.ac.cr

Gustavo López
University of Costa Rica

Costa Rica
gustavo.lopez_h@ucr.ac.cr

Davide Falessi
University of Rome Tor Vergata

Italy
d.falessi@gmail.com

Carolyn Seaman
University of Maryland

Baltimore County
United States

cseaman@umbc.edu

Vladimir Mandić
University of Novi Sad

Serbia
vladman@uns.ac.rs

Clemente Izurieta
Montana State University and
Idaho National Laboratories

United States
clemente.izurieta@montana.edu

Rodrigo Spínola
Salvador University and State

University of Bahia
Brazil

rodrigo.spinola@unifacs.br

ABSTRACT

Context: It is common for a software project to incur technical

debt (TD) during its development. It can impact several

artifacts produced throughout the software development

process. Therefore, it is necessary to carry out management

actions to find a balance between the benefits of incurring it

and the effects of its presence. However, so far, much of the

attention has been given only to discussions relating TD to

coding issues. This is a worrying scenario because other types

of debt can also have impactful, or even worse, consequences

on projects. Aims: This study elaborates on the need to

consider other issues of the development process and not just

the source-code when investigating the TD phenomenon.

Method: We analyze responses from 653 practitioners

concerning TD causes, effects, prevention, reasons for non-

prevention, repayment, and reasons for non-repayment and

investigate whether these TD management elements are

related to coding or to other software development issues.

Results: Coding issues are commonly related to the

investigated elements but, indeed, they are only part of the big

picture we draw. Issues related to the project planning and

management, human factors, knowledge, quality, process,

requirements, verification, validation, and test, design,

architecture, TD management, and the organization are also

common. Lastly, we present a hump diagram that, in

combination with the detailed results, provides guidance on

what to expect from the presence of TD and how to react to it

considering several issues of software development.

Conclusion: The results shed light on other concerns beyond

code that the research community and practitioners need to be

aware of.

CCS CONCEPTS

General and reference~Surveys and overviews • Software and

its engineering

KEYWORDS

Technical debt, Technical debt management, Causes, Effects

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
SBQS’21, November, 2021, Vitória, Brazil
© 2021 Copyright held by the owner/author(s). 978-1-4503-0000-
0/18/06...$15.00

https://doi.org/XXX

SBQS’21, November, 2021, Vitória, Brazil C. Berenguer et al.

ACM Reference format:

Clara Berenguer, Adriano Borges, Sa vio Freire, Nicolli Rios, Robert

Ramac , Nebojs a Taus an, Boris Pe rez, Camilo Castellanos, Darí o Correal,

Alexia Pacheco, Gustavo Lopez, Davide Falessi, Carolyn Seaman,

Vladimir Mandic , Clemente Izurieta, and Rodrigo Spí nola. 2021.

Technical Debt is not Only about Code and We Need to be Aware about

It. In Proceedings of 20th Brazilian Symposium on Software Quality

(SBQS’21). ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/1234567890

1 Introduction

Technical debt (TD) conceptualizes technical compromises that can

bring short-term benefits (e.g., higher productivity and lower costs)

but may negatively impact the long-term health of software projects

[1]. Although initially TD was associated only with code level issues,

it can also impact other artifacts of the software development process,

such as documentation and requirement engineering [2]. If not

managed, accumulated debt yields risks associated with, among

others, unexpected delays in system evolution and difficulty in

achieving quality criteria defined for the project [3].

Successful TD management is about reaching a balance

between the benefits of incurring it and later impacts of its presence

[4, 5]. Managing TD involves making decisions related to whether

a debt item should be repaid and the most appropriate time to do it

[6]. It also includes preventive actions, as preventing debt items in

earlier stages of software development can reduce the chances of

those items impacting development activities later on [7].

Research on TD management related to understanding the

causes that lead development teams to incur debt items in their

projects and their effects have also been done [3, 8]. Knowing TD

causes can support development teams in defining TD prevention

actions. Having information on TD effects can aid in the

prioritization of TD items to pay off, by supporting a more precise

impact analysis and the identification of corrective actions to

minimize possible negative consequences for the project.

Despite the growing number of studies on TD, there is a clear

concentration of studies investigating TD from the source code and

its related artifacts perspective, suggesting tools to support its

management [2, 9] and identification [2, 13]. But, if debt items are

present in requirements specifications or test cases, then how can

they be identified? Or, until which point are those items tolerable

for the project? Focusing from a code-related perspective alone can

bring risks to software projects, because TD can affect other

artifacts produced throughout the software development process.

This paper elaborates on growing need to expand TD research

to other areas of software development. To this end, we analyze six

elements related to TD management: causes, effects, preventive

practices, reasons for non-prevention, repayment practices, and

reasons for non-repayment. We use a subset of the data collected

by the InsighTD project, a family of surveys globally distributed on

causes, effects, and management of TD [3]. The subset consists of

data from six replications, totaling 653 responses from software

practitioners. By investigating how practitioners face TD in their

projects, we gained insight into the state of practice regarding TD

management, which allow us to identify existing gaps in TD

management theory. The data are analyzed qualitatively and

quantitatively to investigate whether those TD management

elements are more related to coding or other issues (e.g., planning

and management, requirements engineering, human factors) of the

software development.

Overall, the results indicate that coding issues are commonly

affected by TD but, indeed, they are only a part of the big picture

of TD management. Given all the investigated TD management

elements, other software development issues are more commonly

reported by practitioners. Planning and management issues and

human factors stand out, but there are several other issues involved

with the presence of debt items such as process, knowledge, TD

management, and requirement engineering issues. Results are

conveniently presented with a hump diagram that, in combination

with the analyses of each of the investigated TD management

elements, provides guidance on what to expect from the presence

of TD and how to react to them considering several issues of the

software development process.

In addition to this introduction, this paper has six additional

sections. Section 2 presents background information on TD

research and the InsighTD project. Section 3 describes the

methodology used. Then, Section 4 presents the results, which are

discussed in Section 5. Section 6 discusses the threats to validity.

Finally, Section 7 presents final considerations.

2 Background

In this section we first discuss taxonomy of TD, followed by the

introduction of the InsighTD project.

2.1 Taxonomy of TD

TD occurs in several artifacts over the software development

process, having different characteristics depending on the time it is

incurred and on the activities it is associated with [2]. However,

even with the growth of research in the area, much effort is still

concentrated on solely investigating TD at the source code level.

Li et al. [6] classified TD into ten types. Code debt was the most

studied type among the primary articles analyzed. In another

mapping study of the area, Alves et al. [2] reported artifacts that

have been frequently used to identify debt items in software

projects, pointing out a greater focus on strategies for identifying

debt items from the source code. On the other hand, other artifacts

such as requirements specification, documentation, and test reports,

among others, were only mentioned occasionally. The authors

suggested that the concentrated focus on source code may be

related to the existence of several tools that perform static analysis

of the code, supporting the detection of debt items.

More recently, Rios et al. [9] updated the taxonomy of types of

debt to fifteen types. Again, the main focus of investigations has also

been on types that are related to the source code. The authors reported

that one of the possible explanations for this is the influence of the

concept of TD coined by Ward Cunningham [14], which focuses

specifically on development activities. Another reason for this

concentration can be that the types related to code tend to cause

effects that can be felt more quickly by development teams [9].

TD is not Only about Code and We Need to be Aware about It SBQS’21, November, 2021, Vitória, Brazil

Such concentration of studies at the coding level is a worrying

scenario because other types of debt can also have impactful, or

even worse, consequences on projects. We claim that it is necessary

to go beyond the source code and investigate other facets of TD.

We do it under the perspective of TD causes, effects, prevention,

and repayment, and use data collected from InsighTD project,

presented in the next section.

2.2 The InsighTD Project

The InsighTD project is a family of surveys that have been carried

out with industry practitioners in several countries to investigate the

causes, effects, and how professionals deal with TD in their projects

[3]. So far, several results from the project have been disseminated

as shown at http://www.td-survey.com/publication-map/.

From the InsighTD data, we have reported the general list of (i)

causes and effects of TD [3], (ii) preventive practices and reasons

for not applying these practices [7], and (iii) repayment practices

and reasons for not applying these practices [11], and the

relationship between TD management and process models [12].

Although these results provide an initial view of TD management,

we did not run specific analysis to investigate if the TD elements

(causes, effects, prevention practices, reasons for non-prevention,

repayment practices, and reasons for non-repayment) were related

or not to coding issues. In this work, we fill that gap by

investigating whether the TD management elements are more

related to coding or other software development issues.

3 Method

This section presents our research questions and the data collection

and analysis procedures.

3.1 Research Questions

The main research question (RQ) is “Are the TD management

elements (causes, effects, prevention, and repayment) more related

to coding issues or to other software development issues?”.

Through this question, we intend to shed light on the importance of

other software development issues when dealing with TD, by

reporting evidence from industry on the topic. Thus, we consider

the following sub-questions:

RQ1: Are the causes of TD more related to coding issues or

other software development issues?

RQ2: Are the effects of TD more felt in coding issues or other

issues in the software development process?

RQ3: Is TD prevention more related to coding issues or other

issues in the software development process?

RQ4: Are the reasons for not preventing TD more related to

coding issues or other development issues?

RQ5: Is TD repayment more associated with coding issues or

other issues in the software development process?

RQ6: Are the reasons for not paying TD more related to coding

issues or other development issues?

3.2 Data Collection

This study uses a subset of available data from 18 questions of the

InsighTD questionnaire. Table 1 presents these questions, reporting

their type and the RQ they are related to.

Questions Q1 thru Q8 capture the characterization of the survey

respondents. In Q13, they provide an example of a TD item that

occurred in their projects. Participants discuss causes of TD in Q16

thru Q18 and effects in Q20. We use the answers given to these

questions for answering RQ1 (Q16-Q18) and RQ2 (Q20).

Concerning TD prevention, participants give their responses in Q22

and Q23, and address TD repayment in Q26 and Q27. The answers

given in these questions are used for answering RQ3-4 (Q22 and

Q23) and RQ5-6 (Q26 and Q27).

Table 1. Subset of the InsighTD survey’s questions (adapted from [3]).

RQ No. Question (Q) Description Type

- Q1 What is the size of your company? Closed

- Q2 In which country are you currently working? Closed

- Q3 What is the size of the system being developed in that project? (LOC) Closed

- Q4 What is the total number of people of this project? Closed

- Q5 What is the age of this system up to now or to when your involvement ended? Closed

- Q6 To which project role are you assigned in this project? Closed

- Q7 How do you rate your experience in this role? Closed

- Q8 Which of the following most closely describes the development process model you follow on this project? Closed

- Q10 In your words, how would you define TD? Open

- Q13 Please give an example of TD that had a significant impact on the project that you have chosen to tell us about: Open

RQ1 Q16 What was the immediate, or precipitating, cause of the example of TD you just described? Open

RQ1 Q17 What other cause or factor contributed to the immediate cause you described above? Open

RQ1 Q18 What other causes contributed either directly or indirectly to the occurrence of the TD example? Open

RQ2 Q20 Considering the TD item you described in question 13, what were the impacts felt in the project? Open

RQ3-4 Q22 Do you think it would be possible to prevent the type of debt you described in question 13? Closed

RQ3-4 Q23 If yes, how? If not, why? Open

RQ5-6 Q26 Has the debt item been repaid (eliminated) from the project? Closed

RQ5-6 Q27 If yes, how? If not, why? Open

http://www.td-survey.com/publication-map/

SBQS’21, November, 2021, Vitória, Brazil C. Berenguer et al.

We invite only software practitioners from the Brazilian,

Chilean, Colombian, Costa Rican, North American, and Serbian

software industries through LinkedIn, industry-affiliated member

groups, and industry partners for answering the survey.

3.3 Data Analysis Procedures

The analysis procedures are divided into three steps: demographics,

preparing data for analysis, and data classification and analysis.

3.3.1 Step 1 - Demographics. We calculated the number of

respondents choosing an option available through the closed

questions of the survey. Afterwards, we summarize the

participants’ characterization.

3.3.2 Step 2 - Preparing Data for Analysis. We applied a coding

process for the open-ended questions [15]. In answers given to Q16

thru Q18 and Q20, we followed the coding process previously

described in [3], resulting in a set of causes and effects and their

respective number of occurrences. In answers given to Q23, we

performed the coding process described in [7]. From this process,

we identified practices for TD prevention when Q22 received a

positive response, otherwise, we recognized reasons for TD non-

prevention. Lastly, following the coding process described in [11],

we coded the answers given to Q27. Similarly, when Q26 received

a positive answer, we identified TD repayment practices, otherwise,

we identified reasons for non-repayment. For both prevention and

repayment, we also had a list of practices and reasons, and their

corresponding number of occurrences.

The coding process was performed by at least two researchers

from each replication. The first codified list of causes, effects,

practices for prevention, reasons for not preventing, repayment

practices, and reasons for not repaying was done by the Brazilian

replication team and was sent to the other replication teams to

standardize the used nomenclature. The consistency was verified

by the Brazilian replication team.

3.3.3 Step 3 - Data Classification and Analysis. Initially, we

analyzed the codes of each TD management element and defined if

they are related to coding issues or other software development

issues. For example, the repayment practices bug fixing, code

refactoring, and using code reuse were classified as practices

related to coding issues. On the other hand, the repayment practices

prioritizing TD items and update system documentation were

associated with other software development issues. This process

was performed by the first and second authors independently. The

consensus was done by the third (prevention and repayment) and

forth (causes and effects) authors. Further, the final classification

was reviewed by the last author.

Next, we grouped the TD management elements related to the

other software development issues into categories following the

grouping process defined by [15]. The categories reveal the

relationship among issues of the software development process (e.g.,

requirement engineering issues, planning and management issues,

human factors issues) and each TD management element. The

categories’ names arise from the continuous process of grouping the

TD management elements around the central concern to which they

are related. For example, the causes deadline and inappropriate

planning are part of the category planning and management issues,

while the effects team demotivation and dissatisfaction of the parties

involved compose the category human factors. This process was

conducted by the first and second authors independently. The

consensus was done by the third (prevention and repayment) and

forth (causes and effects) authors, and the final result was reviewed

by the last author.

4 Results

Participants were required to provide a definition (Q10) and an

example of a significant TD item (Q13). As detailed in [3], we used

the responses for these questions as the inclusion criterion of the

participants. In total, we consider responses from 653 practitioners

from six countries (Brazil=107, Chile=89, Colombia=134, Costa

Rica=145, Serbia=79, and the United States=99). The upcoming

subsections detail the demographics and the responses for the posed

research questions.

4.1 Demographics

Figure 1 presents demographic information. Overall, although it is

not possible to guarantee that the participants represent all the

professionals in the software industry of the surveyed countries, the

sample encompasses a broad and diverse set of professionals.

4.2 The relation between TD management
elements and software development issues

The results indicate that coding issues related to the causes, effects,

prevention, non-prevention, repayment, and non-repayment of TD

are only a small part of the concerns that practitioners face in the

presence of TD. Indeed, TD has been more commonly found in

other software development issues.

The radar graph presented in Figure 2 shows the percentages of

the distribution of the participants’ responses to each of the

investigated elements concerning the categories coding issues and

other software development issues. We calculated the percentages

considering all citations of the participants for each TD

management element. For example, 13% (8) of the citations of

reasons for not preventing TD are related to coding, while 87% (55)

are associated with other development issues. For every

investigated element, most of the responses are related to other

software development issues. The difference is quite bigger for the

elements: causes, prevention, reasons for not preventing, and

reasons for not repaying. The values for TD repayment are very

close between the two groups (56% vs 44%). This is an indication

that, although practitioners perceive that TD is ubiquitous in

software development projects, they also see that its repayment is

commonly related to coding issues.

We present the detailed results of each investigated TD

management element in the following subsections. We use the

same structure when describing the results. For example, for the

element TD cause, initially we (i) present the overall result. Next,

we (ii) discuss the causes related to coding issues. Then, we (iii)

present the causes related to the other software development issues,

and (iv) analyze which are the types of those issues (e.g., planning

and management, human factors, knowledge issues).

TD is not Only about Code and We Need to be Aware about It SBQS’21, November, 2021, Vitória, Brazil

4.2.1 RQ1 - Are the causes of TD more related to coding

issues or other software development issues? In total, 96 causes that

lead to the occurrence of TD were identified, totaling 1695

citations. Of this total, ~92% were related to other development

issues, while only ~8% were related to code. This indicates a

significant difference between the two subsets, representing a

tendency of other software development issues to have a big

influence on the occurrence of TD items.

Figure 2: Participant response distribution

There are 13 causes related to coding issues. The five most

commonly cited are presented in the second column of Table 2. The

complete list is available at https://bit.ly/3zoAtFL. The causes non-

adoption of good practices, sloppy code, and lack of refactoring

stand out. All of them indicate issues that compromise the internal

quality of the product.

Alternatively, we identified 83 causes related to other software

development issues. The three most commonly (third column of

Table 2) cited causes reflect concerns focused on project

management and planning: deadline, not effective project

management, and inappropriate planning. Other issues related to

the team's lack of technical knowledge and processes were also

commonly mentioned.

Table 2. The five most cited causes related to coding and
other development issues

 Coding Other development issues

Cause # Cause #

1st Non-adoption of good
practices

54 Deadline 169

2nd Sloppy code 21 Not effective project

management

98

3rd Lack of refactoring 17 Inappropriate planning 83

4th External component

dependency

12 Lack of technical

knowledge

80

5th Adoption of contour

solutions as definitive

11 Producing more at the

expense of quality

67

We observed that those causes were related to each other and

grouped them, identifying 14 categories of causes that reflect the

main concerns that practitioners have during the development of

software projects:

• Planning and management: refers to causes related to the

project's planning and management issues. Some examples are

deadline and inappropriate planning;

• Human factors: groups causes related to people's participation

in project issues. Some examples are lack of experience and

lack of commitment;

• Knowledge issues: groups items originating from concerns

around the knowledge of team members. Two examples are

lack of technical knowledge and lack of domain knowledge;

• Requirements engineering: encompasses the causes related to

requirements issues. Examples are: change of requirements

and requirements elicitation issues;

• Verification, validation, and testing: encompasses the causes

related to the execution of quality assurance issues. Two

examples are inappropriate/poorly planned/poorly executed

test and lack of code review;

• Architectural issues: groups causes related to decisions made

regarding software architecture. Examples are: inadequate

technical decision and problems in architecture;

Figure 1: Participants’ demographics.

https://bit.ly/3zoAtFL

SBQS’21, November, 2021, Vitória, Brazil C. Berenguer et al.

• Process issues: refers to causes related to the definition or

execution of the processes used in the development of the

software. Two examples are lack of a well-defined process and

lack of traceability of bugs;

• Design issues: encompasses causes related to the design of the

software. There are two causes in this category: poor design,

and changes in design;

• Documentation: groups causes related to documentation.

Example of causes in this category are nonexistent

documentation and outdated/incomplete documentation;

• External factors: refers to causes associated with external

factors, such as customer does not listen the project team and

structural change in the involved organizations;

• Infrastructure issues: encompasses causes related to problems

in the software development infrastructure, such as required

infrastructure unavailable and updating existing tools;

• Organizational issues: groups causes from the organizational

context, such as lack of awareness of the importance of testing

and refactoring and organizational misalignment;

• Quality issues: refers to causes (lack of quality) associated

with lack of quality in software artifacts;

• TD Management: encompasses causes related to management

of TD items. This category has only the cause lack of

perception of the importance of dealing with TD.

Table 3 shows the categories together with the corresponding

number of causes, number of citations, and percentage of the causes

cited in relation to the other categories. The category planning and

management stood out with ~47% of citations, representing more

than three times the citations of the second ranked category. This is

an indication that the causes of the occurrence of TD are strongly

related to project management issues. The results also highlight the

importance that human factors have, occupying the second position

with ~13% of citations. This result is somehow aligned with

previous work on social debt [16, 17]. Concerns related to

requirements engineering and issues related to knowledge were

also mentioned.

Table 3. Categories of causes not related to coding.
Categories of causes #causes #cited

causes

~%cited

causes

Planning and Management 22 733 47%

Human Factors 10 206 13%

Knowledge Issues 7 128 9%

Requirement Engineering 7 120 8%

VV&T 6 91 6%

Architectural Issues 6 63 5%

Process Issues 6 54 4%

Design Issues 2 45 3%

Documentation 4 37 2%

External Factors 4 25 2%

Organizational Issues 3 25 2%

Infrastructure Issues 4 15 1%

Quality Issues 1 12 1%

TD Management 1 1 0.1%

4.2.2 RQ2 - Are the effects of TD more felt in coding issues or

other issues in the software development process? The participants

reported a total of 73 TD effects, totaling 980 citations. Among

them, ~64% are related to other development issues and ~36% are

related to coding.

There are 18 coding-related effects experienced by the

participants. The five most commonly cited are presented in Table

4 (second column). The full list is available at

https://bit.ly/3zoAtFL. Concerns about the capacity of the team to

evolve the code, rework, and the need of employing refactoring

practices to improve the internal quality of the software are

common. Other common effects are: bad code and low

performance.

Table 4. The five most cited effects related to coding and
other development issues

 Coding Other development issues

Effects # Effects #

1st Low maintainability 97 Delivery delay 141

2nd Rework 86 Low external quality 78

3rd Need of refactoring 35 Financial loss 55

4th Bad code 31 Increased effort 41

5th Low performance 28 Stakeholder

dissatisfaction

34

We identified 55 effects related to other development issues.

The five most commonly (third column of Table 4) cited reflect

concerns on the project management and planning (delivery delay,

increased effort, financial loss), external quality of the product (low

external quality), and human factors (stakeholder dissatisfaction).

Table 5 shows the categories of effects not related to coding.

The category planning and management has ~47% of citations,

revealing that managerial aspects of software development are

commonly affected by the presence of debt items. Next is the

human factors category, with ~18% of the effects cited, showing

that TD also impacts human aspects of software development.

Quality issues are also a common concern. The other categories are

less commonly cited.

Table 5. Categories of effects not related to coding.
Categories of effects #effects #cited

effects

~%cited

effects

Planning and Management 15 297 47%

Human Factors 7 110 18%

Quality issues 6 110 18%

VV&T 3 23 4%

Design Issues 2 21 3%

Knowledge issues 8 21 3%

Architectural Issues 4 18 3%

Organizational issues 3 10 2%

Documentation 1 6 1%

Process Issues 2 4 1%

Requirement Engineering 2 4 1%

Infrastructure Issues 1 3 0.5%

TD Management 1 2 0.3%

4.2.3 RQ3 - Is TD prevention more related to coding issues or

other issues in the software development process? The data shows

a total of 89 practices to support the prevention of TD items,

https://bit.ly/3zoAtFL

TD is not Only about Code and We Need to be Aware about It SBQS’21, November, 2021, Vitória, Brazil

resulting in 819 citations. From this, ~84% are items related to other

development issues, while only ~16% are associated with code.

This result indicates a tendency for other development issues to

play a key role in the prevention of TD.

We identified a total of 13 TD prevention practices related to

coding. Table 6, second column, presents the five most cited items.

The complete list is available at https://bit.ly/3zoAtFL. Adopting

good practices and using good design practices reflect concerns

that practitioners should have when carrying out their coding and

design activities. The practices refactoring and code review are

related to the continuous improvement of the code under

development. Lastly, increasing time for analysis and design is

related to concerns that teams must have around an adequate

analysis of the functionalities.

Table 6. Top five most commonly cited TD prevention

practices related to coding or other development issues.

 Coding Other development issues
Prevention Practices # Prevention Practices #

1st Adoption of good

practices
49 Well-defined

requirements

57

2nd Using good design

practices
26 Better Project

Management

43

3rd Refactoring 12 Providing training 36

4th Code review 10 Follow the proj. planning 34

5th Increasing time for
analysis and design

7 Improving software
development process

33

On the other hand, we found 76 prevention practices related to

other development issues. Table 6 (third column) shows the five

most cited. Interestingly, they reflect different concerns through the

software development process, such as management (following the

project planning and better project management), the process itself

(improving software development process), the documentation

(well-defined requirements), and the qualification of the team

(providing training).

We see in Table 7 that TD prevention practices are commonly

related to project management issues (~34%). The results also

highlight the importance that the process followed by the team

have, ranking second (~12%) among the most cited categories.

Concerns related to requirements, validation, TD management, and

human factor were also commonly mentioned.

Table 7. Categories of prevention practices not related to

code
Categories of prevention

practices
#practices #cited

practices
~%cited

practices

Planning and Management 21 232 34%

Process Issues 8 80 12%

Requirement Engineering 5 69 11%

VV&T 11 67 10%

TD Management 7 64 10%

Human Factors 11 61 9%

Knowledge Issues 4 51 8%

Documentation Issues 2 28 4%

Architectural Issues 3 27 4%

Organizational Issues 2 4 1%

Infrastructure Issues 2 3 1%

4.2.4 RQ4 - Are the reasons for not preventing TD more

related to coding or other development issues? Participants

reported 25 reasons that lead to the non-prevention of TD items,

resulting in 63 citations. Of them, ~87% are related to other

development issues, while only eight ~13% are related to coding.

Again, other development issues have an important role in

preventing TD.

There are only four reasons related to code leading teams not to

prevent the occurrence of debt items: lack of technical knowledge,

lack of good technical solutions, lack of concern about

maintainability, and continuous change of coding standards. On

the other hand, we found 21 reasons (the five most cited are

presented in Table 8) not related to code. Short deadline was the

most commonly cited.

Table 8. Top five most cited reasons for not preventing TD

related to other development issues.
 Other development issues
 Reason #

1st Short deadline 14

2nd Ineffective management 7

3rd Lack of predictability in the software development 5

4th Requirements change 5

5th Pressure for results 4

Table 9 shows the categories identified. Planning and

management once again stands out with ~38% of citations. The

other categories were less commonly cited, with less than seven

citations. Although not too mentioned, the result suggests that other

issues related to the software development can also negatively

influence teams in TD prevention.

Table 9. Categories of reasons for TD non-prevention not

related to coding.
Categories of reasons #reason #cited

reasons
~%cited

reasons
Planning and Management 2 21 38%
Requirement Engineering 2 6 11%

Coding 1 5 9%
External Factors 2 5 9%
Human Factors 4 4 8%
Process Issues 2 3 6%
Design Issues 1 2 4%
Documentation Issues 1 2 4%
Knowledge Issues 1 2 4%
TD Management 2 2 4%
Architectural Issues 1 1 2%

Infrastructure Issues 1 1 2%

Organizational Issues 1 1 2%

4.2.5 RQ5 - Is TD repayment more associated with coding

issues or other issues in the software development process? We

identified 32 TD repayment practices, resulting in 315 citations. Of

them, ~56% are related to other development issues, while ~44%

are associated with code. Unlike the other variables, these

percentages differ slightly, indicating that coding issues play a key

role in TD repayment initiatives.

We identified eight TD repayment practices related to coding,

and the five most cited are presented in Table 10. Code and design

https://bit.ly/3zoAtFL

SBQS’21, November, 2021, Vitória, Brazil C. Berenguer et al.

refactoring are the most cited practices. Both are associated with

changes in the internal structure of the system without changing its

external behavior. Lastly, the practices solving technical issues and

bug fixing are focused on fix open issues in the code.

Table 10. Top five most commonly cited TD repayment

practices related to coding or other development issues.
 Coding Other Development Issues

Repayment practices # Repayment practices #

1st Code refactoring 80 Investing effort on TD
repayment activities

33

2nd Design refactoring 25 Investing effort on testing

activities

22

3rd Adoption of good
practices

10 Prioritizing TD items 15

4th Solving technical

issues

9 Negotiating deadline

extension

14

5th Bug fixing 6 Update system
documentation

9

The remain 24 repayment practices are related to other

development issues. Table 10 (third column) shows the five most

cited ones. These practices evidence several concerns in software

development processes: documentation (update system

documentation), project management (negotiating deadline

extension, investing effort on TD repayment, and prioritizing TD

items), and software quality (investing effort on testing activities).

Table 11 presents the categories of repayment practices. TD

management and planning and management stand out with ~32%

and ~27% of the total of citations. The categories verification,

validation and test, and process issues were both cited by ~12% of

participants, while the others were less commonly cited.

Table 11. Categories of repayment practices not related to

code
Categories of repayment

practices

#practices #cited

practices

~%cited

practices

TD Management 4 56 32%

Planning and Management 8 47 27%

VV&T 1 22 13%

Process Issues 5 21 12%

Documentation 1 9 6%

Organizational issues 1 8 5%

Human Factors 1 6 4%

Requirement Engineering 1 3 2%

Infrastructure Issues 1 3 2%

Design Issues 1 2 1%

4.2.6 RQ6 - Are the reasons for not repaying TD more related

to coding issues or other development issues? We identified 27

reasons for not repaying TD items, totaling 319 citations. From

these, 99.7% are related to other development issues and only lack

of access to the component code (0.3%) is associated with code.

The reasons for TD non-repayment arise from development issues

other than coding.

Table 12 shows the five best-positioned reasons for not repaying

TD. The complete list is available at https://bit.ly/3zoAtFL. We

notice that the majority of the reasons (focusing on short-term

goals, lack of time, cost, lack of resources) are associated with

project planning and management.

We also grouped the reasons into categories. As shown in Table

13, planning and management stands out with ~58% of the

citations, indicating that the reasons from this category are decisive

for TD non-repayment. The categories organizational issues and

TD management were also commonly cited by ~16% and ~11% of

the participants.

Table 12. Top five most cited reasons for not paying off TD

related to other development issues.
 Other Development Issues
 Reason #

1st Focusing on short term goals 69

2nd Lack of org. interest 48

3rd Lack of time 41

4th Cost 34

5th Lack of resources 19

Table 13. Categories of reasons for TD non-repayment not

related to coding.
Categories of reasons #reason #cited

reasons

~%cited

reasons

Planning and Management 7 185 58%

Organizational issues 2 50 16%

TD Management 7 34 11%

External Factor 1 13 5%

Knowledge issues 3 12 4%

Human Factors 3 11 4%

Architectural Issues 2 11 4%

VV&T 1 2 1%

5 Discussion

In the technical literature [6,9], the taxonomy of types of debt,

composed of fifteen types, indicates that TD items can be related to

different software development issues, such as requirements, code,

and test. Even though, the current number of studies that investigate

the presence of TD items in coding issues is much bigger than in

other software development issues [2,6]. Although we understand

that source code is one of the main artifacts generated during

software development projects, investigating the relation between

TD items and other software development issues can shed light on

the needs of software practitioners to increase their capability to

appropriately manage TD items.

Our results reveal that TD management elements are more

related to other software development issues than coding issues.

From software practitioners’ point of view, the causes that lead to

the occurrence of TD items and the effects of their presence are

more commonly related to non-coding issues. It means that there is

a risk for software projects’ healthy when software development

teams consider only the source code to identify TD items or applies

strategies for reducing their effects. Also, strategies used for

managing TD items can add risks to the project when preventive

and repayment practices are only applied in the source code.

For making our results more feasible to be digest by software

practitioners, we represented them using a hump diagram (see Fig.

3). The diagram represents the relationship between the

https://bit.ly/3zoAtFL

TD is not Only about Code and We Need to be Aware about It SBQS’21, November, 2021, Vitória, Brazil

investigated TD management elements (causes, effects, prevention

practices, reasons for non-prevention, repayment practices, and

reasons for non-repayment) and software development issues. In

order to plot results for coding and for other issues in the same

hump diagram, we normalized the number of citations for an

element of a specific software development issue with the total

number of citations for that element. For example, prevention

practices have in total 819 citations, but 232 citations for the issue

planning and management. Thus, hump value for planning and

management issues of prevention practices is 28% (232/819*100).

This count is slightly different from the ones we used in Tables 3,

5, 7, 9, 11, and 13 because now we consider coding as another

software development issue.

We can read the hump diagram horizontally and vertically.

Horizontally, we have a broad view on the impact of each software

development issue through the TD management elements. For

example, we can notice that coding plays an important role for all

the analyzed TD elements, but mainly for TD repayment. There is

a high concentration of practices related to TD repayment and, at

the same time, almost none of reasons for the non-repayment of

debt items is due to coding issues.

We also perceive that there are many other issues we need to be

aware of when dealing with TD in software projects, mainly,

planning and management. Indeed, this is even stronger when

combined with TD management concerns. Much about the non-

repayment of TD can be understood by looking at these issues.

Human factors also call our attention, clearly indicating that TD,

more than technical aspects of the software development, is also

about team morale, satisfaction, motivation, communication, and

commitment. Other commonly found issues in several elements of

the TD management are architectural issues, design issues,

documentation, knowledge issues, process issues, requirement

engineering, and VV&T.

By reading the diagram vertically, we can observe the impact of

all identified software development issues on each TD management

element. For example, planning and management, organizational,

and TD management issues are decisive for the non-repayment of

debt items. We also notice that the presence of debt items mainly

impacts (effect) planning and management, quality issues,

maintenance issues, human factors, and coding.

Practitioners can use the hump diagram to have a

comprehensive view on how TD relates to several issues of their

software projects, ranging from organizational to coding level

issues. Moreover, for each TD management element, they can go

through the detailed results presented in Section 4 and the auxiliary

material to understand how to deal with them. For example, by

looking at Fig. 3, a practitioner can see that the effects of TD are

commonly related to coding, human factors, maintenance, quality,

and planning and management issues. If (s)he is interested in

discovering more about the human factors issues, then (s)he can

observe in the results and auxiliary material that team demotivation,

dissatisfaction of the parties involved, and stress with stakeholders

are the main concerns to be mitigated. Thus, the findings can be

used as guide to support decision making on TD management

6 Threats to Validity

As in any empirical study, there are threats to validity in this work

[10]. We attempt to remove them when possible, and mitigate their

effects when removal is not possible.

Figure 3: The hump diagram for TD management elements and their software development issues.

SBQS’21, November, 2021, Vitória, Brazil C. Berenguer et al.

Regarding external validity, the study focused on industry

professionals and sought to obtain a variety of participants in terms

of the level of experience and work environment. Even so, we

cannot generalize the results of this study. To strengthen external

validity, future steps in this research include expanding the data

collected through other replications of InsighTD project.

In addition, the questionnaire was designed to eliminate threats

to internal validity. As discussed in [3], the questionnaire went

through a series of validations (three internal and one external) and

a pilot study to identify any problems before its execution. It is also

worth mentioning that the participants could act differently from

what they usually do because they are part of a study. To avoid this,

we clearly explain the purpose of the study and ask participants to

answer the questions based on their own experience. We also state

explicitly that the questionnaire is anonymous, and that the data

collected is analyzed without considering the identity of the

participants. Also, participants may have misinterpreted the use of

the terms prevention and repayment of TD. To investigate whether

this threat manifested, all responses on how participants avoided

and repaid the debt item were analyzed (Q23 and Q27) to analyze

if there were invalid answers. A high proportion of invalid

responses would mean that the questions could be misinterpreted.

In the end, we did not identify any invalid response, indicating that

this threat did not appear in the study.

The main threat to the validity of the conclusion is related to the

qualitative analysis carried out. To mitigate it, the analyses were

carried out separately by two researchers, and the consensus was

carried out by a third, more experienced one. Also, additional

procedures were considered for seeking consistency in the

nomenclature used by each replication team during their coding

activities, as described in Section 3.3.2. Lastly, the classification of

the coded TD management elements into code/non-code, as well as

the definition of their categories, are essentially subjective tasks.

To mitigate them, we followed a rigorous analysis procedure

previously described in Section 3.3.3. The classification process

was always performed individually in pairs, being reviewed by at

least one experienced researcher.

7 Conclusion

In this paper, we conjecture that TD is not only about the code. We

need to be aware about the other important concerns of the software

development process that can be impacted by its presence. The

combined use of the hump diagram and the detailed results provides

a comprehensive guidance for software development teams about

what to expect from the presence of TD and how to react to them

considering several software development issues.

Furthermore, our results point out the need of investing more

effort on other issues of the software development. For example,

complementary to understanding TD at the code level, it is also

necessary to investigate strategies to mitigate the managerial

reasons that lead software teams to not repay debt items. Another

promising topic for investigation would be the relationship between

human factors of the software development and TD.

The next steps of this work include an investigation into whether

the type of debt impacts how practitioners see TD management

elements. We also intend to investigate the main human factors

associated with TD. Lastly, the next steps of this research also

includes the development of an TD management instrument

encompassing the hump diagram and the detailed results, and

investigate how to position it into a strategy to support TD

management.

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES)

Finance Code 001. This research was also supported by the David

A. Wilson Award for Excellence in Teaching and Learning.

REFERENCES
[1] Clemente Izurieta, Antonio Vetrò, Nico Zazworka, Yuanfang Cai, Carolyn

Seaman, and Forrest Shull, 2012. Organizing the technical debt landscape. in
Proc. of the 3rd Int. Work. on Managing Technical Debt (MTD). Zurich, 23-26.

[2] Nicolli N. S. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O.
Spínola, Forrest Shull, and Carolyn Seaman, 2016. Identification and
management of technical debt: A systematic mapping study. Information and
Software Technology, 70, 100-121.

[3] Nicolli Rios, Rodrigo O. Spí nola, Manoel Mendonça, and Carolyn Seaman,
2020. The practitioners’ point of view on the concept of technical debt and
its causes and consequences: a design for a global family of industrial
surveys and its first results from Brazil. Empirical Softw. Eng. 25, 3216-3287.

[4] Yuepu Guo, Rodrigo O. Spí nola, and Carolyn Seaman. 2016. Exploring the
costs of technical debt management --- a case study. Empirical Softw. Engg.
21, 1 (February 2016), 159–182.

[5] Erin Lim, Nitin Taksande, and Carolyn Seaman, 2012. A balancing act: What
software practitioners have to say about technical debt. IEEE Softw. 29, 6
(November 2012), 22–27. DOI: https://doi.org/10.1109/MS.2012.130.

[6] Zengyang Li, Paris Avgeriou, and Peng Liang, 2015. A systematic mapping
study on technical debt and its management. Journal of Systems and
Software, 101, 193–220. DOI: https://doi.org/10.1016/j.jss.2014.12.027.

[7] Sa vio Freire, Nicolli Rios, Manoel Mendonça, Davide Falessi, Carolyn
Seaman, Clemente Izurieta, and Rodrigo O. Spí nola, 2020. Actions and
impediments for technical debt prevention: results from a global family of
industrial surveys. In Proc. of the 35th ACM SAC. Brno, 1548–1555.

[8] Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch, 2020. The
influence of technical debt on software developer morale. Journal of Systems
and Software,167. DOI: https://doi.org/10.1016/j.jss.2020.110586.

[9] Nicolli Rios, Manoel Mendonça, and Rodrigo Spí nola, 2018. A tertiary study
on technical debt: Types, management strategies, research trends, and base
information for practitioners. Inf. and Soft. Technology, 102, 117-145.

[10] Claes Wohlin, Per Runeson, Martin Ho st, Magnus C. Ohlsson, Bjo rn Regnell,
and Anders Wessle n. 2012. Experimentation in software engineering: An
introduction. Springer

[11] Sa vio Freire, Nicolli Rios, Boris Gutierrez, Darí o Torres, Manoel Mendonça,
Clemente Izurieta, Carolyn Seaman, and Rodrigo O. Spí nola, 2020. Surveying
Software Practitioners on Technical Debt Payment Practices and Reasons
for not Paying off Debt Items. In Proc. of the Evaluation and Assessment in
Software Engineering. Trondheim, 210–219.

[12] Nicolli Rios, Sa vio Freire,Boris Pe rez, Camilo Castellanos, Darí o Correal,
Manoel Mendonça, Davide Falessi, Clemente Izurieta, Carolyn B. Seaman,
and Rodrigo O. Spí nola, 2021. On the Relationship Between Technical Debt
Management and Process Models. IEEE Softw.

[13] Nico Zazworka, Antonio Vetro’, Clemente Izurieta, Sunny Wong, Yuanfang
Cai, Carolyn Seaman, and Forrest Shull, 2014. Comparing four approaches
for technical debt identification. Software Quality Journal, 22, 403–426.

[14] Ward Cunningham, 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4, 2 (April 1993), 29-30.

[15] Anselm Strauss and Juliet M. Corbin, 1998. Basics of qualitative research:
Techniques and procedures for developing grounded theory. Sage
Publications.

[16] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet
(2015). Social debt in software engineering: insights from industry. Journal
of Internet Services and Applications, 6(1), 1-17.

[17] Antonio Martini, Viktoria Stray, and & Nils Brede Moe, 2019. Technical-,
social-and process debt in large-scale agile: an exploratory case-study. In
International Conference on Agile Software Development (pp. 112-119).
Springer, Cham.

