
An Algorithm for Differential File Comparison

J. W. Hunt

Department of Electrical Engineering, Stanford University, Stanford, California

M. D. McIlroy

Bell Laboratories, Murray Hill, New Jersey 07974

ABSTRACT

The programdiff reports differences between two files, expressed as a minimal list
of line changes to bring either file into agreement with the other. Diff has been engi-
neered to make efficient use of time and space on typical inputs that arise in vetting ver-
sion-to-version changes in computer-maintained or computer-generated documents. Time
and space usage are observed to vary about as the sum of the file lengths on real data,
although they are known to vary as the product of the file lengths in the worst case.

The central algorithm ofdiff solves the ‘longest common subsequence problem’ to
find the lines that do not change between files.Practical efficiency is gained by attending
only to certain critical ‘candidate’ matches between the files, the breaking of which
would shorten the longest subsequence common to some pair of initial segments of the
two files. Various techniques of hashing, presorting into equivalence classes, merging by
binary search, and dynamic storage allocation are used to obtain good performance.

[This document was scanned from Bell Laboratories Computing Science Technical
Report #41, dated July 1976.Te xt was converted by OCR and hand-corrected (last
changed June, 2012).Figures were reconstructed. Some OCR errors may remain, espe-
cially in tables and equations. Please report them to doug@cs.dartmouth.edu.]

The programdiff creates a list of what lines of one file have to be changed to bring it into agreement
with a second file or vice versa. It is based on ideas from several sources[1,2,7,8]. As an example of its
work, consider the two files, listed horizontally for brevity:

a b c d e f g
w a b x y z e

It is easy to see that the first file can be made into the second by the following prescription, in which an
imaginary line 0 is understood at the beginning of each:

append after line 0: w,
change lines 3 through 4, which were: c d
into: x y z,
delete lines 6 through 7, which were: f g.

Going the other way, the first file can be made from the second this way:

delete line 1, which was: w,
change lines 4 through 6, which were: x y z
into: c d,
append after line 7: f g.

Delete, change and append are the only operations available to diff . It indicates them by 1-letter

-2-

abbreviations reminiscent of the qed text editor[3] in a form from which both directions of change can be
read off. By exchanging ’a’ for ’d’ and line numbers of the first file with those of a second, we get a recipe
for going the other way. In these recipes lines of the original file are flagged with ‘<’, lines of the derived
file are flagged with ‘>’:

0 a 1,1 1,1d 0
> w < w
3,4 c 4,6 4,6 c 3,4
< c < x
< d < y
--- < z
> x ---
> y > c
> z > d
6,7 d 7 7 a 6,7
< f > f
< g > g

In mathematical terms, the goal ofdiff is to report the minimum number of line changes necessary to con-
vert one file into the other. Equivalently, the goal is to maximize the number of lines left unchanged, or to
find the longest common subsequence of lines that occurs in both files.

1. Solving the longest common subsequence problem

No uniformly good way of solving the longest common subsequence problem is known. Thesim-
plest idea—go through both files line by line until they disagree, then search forward somehow in both until
a matching pair of lines is encountered, and continue similarly—reduces the problem to implementing the
‘somehow’, which doesn’t help much. However, in practical terms, the first step of stripping matching lines
from the beginning (and end) is helpful, for when changes are not too pervasive stripping can make inroads
into the (nonlinear) running time of the hard part of the problem.

An extremely simple heuristic for the ‘somehow’, which works well when there are relatively few
differences between files and relatively few duplications of lines within one file, has been used by Johnson
and others[1, 11]: Upon encountering a difference, compare thekth line ahead in each file with thek lines
following the mismatch in the other fork = 1,2,... until a match is found. On more difficult problems, the
method can missynchronize badly. To keep a lid on time and space,k is customarily limited, with the result
that longer changed passages defeat resynchronization.

There is a simple dynamic programming scheme for the longest common subsequence problem[4,5].
Call the lines of the first fileAi, i = 1, . . . ,m and the lines of the secondB j, j = 1, . . . ,n. Let Pij be the
length of the longest subsequence common to the firsti lines of the first file and the firstj lines of the sec-
ond. EvidentlyPij satisfies

Pi0 = 0 i = 0, . . . ,m,

P0 j = 0 j = 0, . . . ,n,

Pij =




1 + Pi−1, j−1

max(Pi−1, j , Pi, j−1)

if Ai = B j

if Ai ≠ B j
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then Pmn is the length of the desired longest common subsequence. From the wholePij array that was
generated in calculatingPmn it is easy to recover the indices or the elements of a longest common subse-
quence.

Unfortunately the dynamic program isO(mn) in time, and—even worse—O(mn) in space. Noting
that each row Pi of the difference equation is simply determined fromPi−1, D. S. Hirschberg inv ented a
clever scheme that first calculatesPm in O(n) space and then recovers the sequence using no more space
and about as much time again as is needed to findPm[6].

-3-

The diff algorithm improves on the simple dynamic program by attending only to essential matches,
the breaking of which would changeP. The essential matches, dubbed ‘k-candidates’ by Hirschberg[7],
occur whereAi = B j and Pij > max(Pi−1, j , Pi, j−1). A k-candidate is a pair of indices (i, j) such that (1)
Ai = B j , (2) a longest common subsequence of lengthk exists between the firsti elements of the first file
and the firstj elements of the second, and (3) no common subsequence of lengthk exists when eitheri or j
is reduced. A candidate is a pair of indices that is ak-candidate for somek. Evidently a longest common
subsequence can be found among a complete list of candidates.

If (i1, j1) and (i2, j2) with i1 < i2 are bothk-candidates, thenj1 > j2. For if j1 = j2, (i2, j2) would
violate condition (3) of the definition; and ifj1 < j2 then the common subsequence of lengthk ending with
(i1, j1) could be extended to a common subsequence of lengthk + 1 ending with (i2, j2).

The candidate methods have a simple graphical interpretation. In Figure 1 dots mark grid points (i, j)
for which Ai = B j . Because the dots portray an equivalence relation, any two horizontal lines or any two
vertical lines on the figure have either no dots in common or carry exactly the same dots. A common subse-
quence is a set of dots that can be threaded by a strictly monotone increasing curve. Four such curves have
been drawn in the figure. These particular curves have been chosen to thread only (and all) dots that are
candidates. The values ofk for these candidates are indicated by transecting curves of constantk. These lat-
ter curves, shown dashed, must all decrease monotonically. The number of candidates is obviously less than
mn, except in trivial cases, and in practical file comparison turns out to be very much less, so the list of can-
didates usually can be stored quite comfortably.

1

2

3

4

5

6

1 2 3 4 5 6 7

a b c a b b a

c

b

a

b

a

c

k=1

k=2

k=3

k=4

Figure 1. Common subsequences and candidates in comparing
abcabba
cbabac

2. The method of diff

The dots of Figure 1 are stored in linear space as follows:

(1) Constructlists of the equivalence classes of elements in the second file. These lists occupy O(n)
space. They can be made by sorting the lines of the second file.

(2) Associatethe appropriate equivalence class with each element of the first file. This association can be
stored inO(m) space. In effect now we hav ea list of the dots for each vertical.

-4-

Having this setup, we proceed to generate the candidates left-to-right. LetK be a vector designating
the rightmostk-candidate yet seen for eachk. To simplify what follows, pad the vector out to include a
dummy 0-candidate (0, 0) and, for allk that do not yet have a candidate, a dummy ‘fence’ candidate
(m + 1,n + 1), whose components will compare high against the components of any other candidate.K
begins empty, except for padding, and gets updated as we move right. Thus after processing the 4th vertical,
marked ‘a’ in Figure 1, the list of rightmost candidates is

(0,0) (3,1) (4,3) (4,5) (8,7) (8,7) ...

Now a new k-candidate on the next vertical is the lowest dot that falls properly between the ordinates of the
previous (k − 1)- andk-candidates. Two such dots are on the 5th vertical in Figure 1. They displace the
2-candidate and 3-candidate entries to give the new vectorK :

(0,0) (3,1) (5,2) (5,4) (8,7) (8,7) ...

The two dots on the 6th vertical fall on, rather than between, ordinates in this list and so are not candidates.
Each new k-candidate is chained to the previous (k − 1)-candidate to facilitate later recovery of the longest
common subsequence.For more detail see the Appendix.

The determination of candidates on a given vertical is thus a specialized merge of the list of dots on
that vertical into the current list of rightmost candidates. When the number of dots isO(1), binary search in
the list of at most min(m, n) candidates will do the merge in timeO(log m). Since this case of very few dots
per vertical is typical in practice, we are led to merge each dot separately by binary search, even though the
worst case time to process a vertical becomesO(n log m), as againstO(m + n) for ordinary merging.

3. Hashing

To make comparison of reasonably large files (thousands of lines) possible in random access mem-
ory, diff hashes each line into one computer word. This may cause some unequal lines to compare equal.
Assuming the hash function is truly random, the probability of a spurious equality on a given comparison
that should have turned out unequal is 1/M , where the hash values range from 1 toM . A longest common
subsequence of lengthk determined from hash values can thus be expected to contain aboutk/M spurious
matches whenk << M , so a sequence of lengthk will be a spurious ‘jackpot’ sequence with probability
aboutk/M . On our 16-bit machine jackpots on 5000-line files should happen less than 10% of the time and
on 500-line files less than 1% of the time.

Diff guards against jackpots by checking the purported longest common subsequence in the original
files. What remains after spurious equalities are edited out is accepted as an answer even though there is a
small possibility that it is not actually a longest common subsequence.Diff announces jackpots, so these
cases tend to get scrutinized fairly hard. In two years we have had brought to our attention only one jackpot
where an edited longest subsequence was actually short—in that instance short by one.

Complexity

In the worst case, thediff algorithm doesn’t perform substantially better than the trivial dynamic pro-
gram. From Section 2 it follows that the worst case time complexity is dominated by the merging and is in
fact O(mn log m) (althoughO(m(m + n)) could be achieved). Worst case space complexity is dominated by
the space required for the candidate list, which isO(mn) as can be seen by counting the candidates that
arise in comparing the two files

a b c a b c a b c ...
a c b a c b a c b ...

This problem is illustrated in Figure 2. Whenm = n the kite-shaped area in which the candidates lie is 1/2
the total area of the diagram, and (asymptotically) 1/3 of the grid points in the kite are candidates, so the
number of candidates approachesn2/6 asymptotically.*

In practice,diff works much better than the worst case bounds would indicate. Only rarely are more
than min(m, n) candidates found. In fact an early version with a naive storage allocation algorithm that

* Direct counting shows that there are (4mn − m2 − n2 + 2m + 2n + 6) / 12 candidates whenm − 1 and n − 1
differ by at most a factor of 2. The floor is exact whenever n − 1 and m − 1 are multiples of 6.

-5-

provided space for justn candidates first overflowed only after two months of use, during which time it was
probably run more than a hundred times. Thus we have good evidence that in a very large percentage of
practical casesdiff requires only linear space.

Figure 2. Common subsequences and candidates in comparing
a b c a b c a b c ...
a c b a c b a c b ...

As for practical time complexity, the central algorithm ofdiff is so fast that even in the biggest cases
our implementation can handle (about 3500 lines) almost half the run time is still absorbed by simple char-
acter handling for hashing, jackpot checking, etc., that is linear in the total number of characters in the two
files. Typical times for comparing 3500-line files range from 1/4 to 3/4 cpu minutes on a PDP11/45. By
contrast, a speeded-up variant of Hirschberg’s dynamic programming algorithm[6] took about 5 cpu min-
utes on 3500-line files. The heuristic algorithm sketched at the beginning of Section 1 typically runs about 2
or 3 times as fast asdiff on long but trivially different files, but loses much of that advantage on more diffi-
cult cases that are within the competence of both methods. Since the failure modes of the two programs are
quite different, it is useful to have both on hand.

-6-

References

[1] S. C. Johnson, ‘ALTER − A Comdeck Comparing Program,’ Bell Laboratories internal memorandum
1971.

[2] Generalizing from a special case solved by T. G Szymanski[8], H. S. Stone proposed and J.W. Hunt
refined and implemented the first version of the candidate-listing algorithm used bydiff and embedded it in
an older framework due to M. D. Mcllroy. A variant of this algorithm was also elaborated by Szyman-
ski[10]. We hav ehad many useful discussions with A. V. Aho and J. D. Ullman. M. E. Lesk moved the pro-
gram from UNIX to OS/360.

[3] ‘Tutorial Introduction to QED Text Editor,’ Murray Hill Computing Center MHCC-002.

[4] S. B. Needleman and C. D. Wunsch, ‘A General Method Applicable to the Search for Similarities in the
Amino Acid Sequence,’J Mol Biol 48 (1970) 443-53.

[5] D. Sankoff, ‘Matching Sequences Under Deletion/Insertion Constraints’,Proc Nat Acad Sci USA 69
(1972) 4-6.

[6] D. S. Hirschberg, ‘A Linear Space Algorithm for Computing Maximal Common Subsequences,’ CACM
18 (1975) 341-3.

[7] D. S. Hirschberg, ‘The Longest Common Subsequence Problem,’ Doctoral Thesis, Princeton 1975.

[8] T. G Szymanski, ‘A Special Case of the Maximal Common Subsequence Problem,’ Computer Science
Lab TR-170, Princeton University 1975

[9] Michael L. Fredman, ‘On Computing the Length of Longest Increasing Subsequences,’ Discrete Math
11 (1975) 29-35.

[10] T. G. Szymanski, ‘A Note on the Maximal Common Subsequence Problem,’ submitted for publication.
[The paper finally appeared as H. W. Hunt III and T. G. Szymanski, ‘A fast algorithm for computing longest
common subsequences’,CACM 20 (1977) 350-353.]

[11] The programs calledproof , written by E. N. Pinson and M. E. Lesk for UNIX and GECOS use the
heuristic algorithm for differential file comparison.

-7-

Appendix

A.l Summary of the diff algorithm

Algorithm to find the longest subsequence of lines common to file 1, whose length ism lines, and file 2,n
lines.

Steps 1 through 4 determine equivalence classes in file 2 and associate them with lines in file 1 in prepara-
tion for the central algorithm. (Thediff program that is in actual use does the work of these steps somewhat
differently.)

1. LetV be a vector of elements structured (serial, hash), whereserial is a line number andhash is an
integer. Set

V [j] ← (j, H(j)) j = 1, . . . ,n.

whereH(j) is the hash value of linej in file 2.

2. SortV into ascending order onhash as primary key and serial as secondary key.

3. Let E be a vector of elements structured (serial, last). Then set

E[j] ← (V [j]. serial, f (j)) j = 1, . . . ,n,

E[0] ← (0,true),

where

f (j) =




true
false

if j = n or V [j]. hash ≠ V [j + 1]. hash

otherwise

E lists all the equivalence classes of lines in file 2, withlast = true on the last element of each class.
The elements are ordered byserial within classes.

4. LetP be a vector of integers. Fori = 1, . . . ,m set

P[i] ←




j such thatE[j − 1]. last = true andH(i) = V [j]. hash

0 if no such j exists

whereH(i) is the hash value of linei of file 1. The j values can be found by binary search inV .
P[i], if nonzero, now points in E to the beginning of the class of lines in file 2 equivalent to linei in
file 1.

Steps 5 and 6 are the longest common subsequence algorithm proper.

5. Let candidate(a, b, previous) be areference-valued constructor, wherea and b are line numbers in
file 1 and file 2 respectively and previous is nil or a reference to a candidate.
Let K [0: min(m, n) + 1] be a vector of references to candidates. Letk be the index of the last usefully
filled element ofK . Initialize

K [0] ← candidate(0, 0,nil),

K [1] ← candidate(m + 1,n + 1,nil),

k ← 0.

K [1] is a fence beyond the last usefully filled element.

6. For i = 1, . . . ,m, if P[i] ≠ 0 do merge(K , k, i, E, P[i]) to updateK andk (see below).

Steps 7 and 8 get a more convenient representation for the longest common subsequence.

7. Let J be a vector of integers. Initialize

J [i] ← 0 i = 0, . . . ,m.

-8-

8. For each elementc of the chain of candidates referred to byK [k] and linked by previous references
set

J [c. a] ← c. b.

The nonzero elements ofJ now pick out a longest common subsequence, possibly including spurious
‘jackpot’ coincidences. The pairings between the two files are given by

{(i, J [i]) | J [i] ≠ 0}.

The next step weeds out jackpots.

9. For i = 1.m, if J [i] ≠ 0 and linei in file 1 is not equal to lineJ [i] in fi le 2, set

J [i] ← 0.

This step requires one synchronized pass through both files.

A.2 Storage management

To maximize capacity, storage is managed indiff per the following notes, which are keyed to the steps in
the preceding summary. After each step appear the number of words then in use, except for a small additive
constant, assuming that an integer or a pointer occupy one word.

1. Storagefor V can be grown as file 2 is read and hashed. The value ofn need not be known in
advance. [2n words]

3. ThoughE contains information already inV ; it is more compact because thelast field only takes one
bit, and can be packed into the same word with theserial field. E can be overlaid onV . serial. [2n
words]

4. P can be grown as wasV in step 1. [2n + m words]
V is dead after this step. Storage can be compacted to contain only the live information,E and P.
[n + m words]

5. Candidatescan be allocated as needed from the free storage obtained in the previous compaction, and
from space grown beyond that if necessary. Because they are chained, candidates do not have to be
contiguous.

6 During theith invocation of merge, the firsti elements ofP are dead, and at most the firsti + 2 ele-
ments ofK are in use, so with suitable equivalencing K can be overlaid on P. [n + m + 3×(number
of candidates)]

7. P andK are dead, soJ can be overlaid on them.E is dead also. [m + 3×(number of candidates)]

A.3 Summary of merge step

procedure merge(K , k, i, E, p)
K is as defined in step 5 above, by reference
k is index of last filled element ofK , by reference
i is current index in file 1, by value
E is as defined in Step 3 above, by reference
p is index in E of first element of class of lines in file 2 equivalent to linei of file 1, by value

1. Letr be an integer andc be a reference to a candidate.c will always refer to the last candidate found,
which will always be anr-candidate.K [r] will be updated with this reference once the previous
value of K [r] is no longer needed. Initialize

r ← 0.

c ← K [0].

(By handling the equivalence class in reverse order, Szymanski[10] circumvents the need to delay
updatingK [r], but generates extra ‘candidates’ that waste space.)

-9-

2. Dosteps 3 through 6 repeatedly.

3. Let j = E[p]. serial.
SearchK [r: k] for an elementK [s] such thatK [s] → b < j andK [s + 1] → b > j. (Note that
K is ordered onK [.] → b, so binary search will work.)
If such an element is found do steps 4 and 5.

4. If K [s + 1] → b > j, simultaneously set

K [r] ← c.

r ← s + 1.

c ← candidate(i, j, K [s]).

5. If s = k do: Simultaneously set

K [k + 2] ← K [k + 1] (move fence),

k ← k + 1.

Break out of step 2’s loop.

6. If E[p]. last = true, break out of step 2’s loop.
Otherwise setp ← p + 1.

7. SetK [r] ← c.

