An Algorithm for Differential File Comparison

J. W. Hunt

Department of Electrical Engineering, Stanfordwérsity, Stanford, California

M. D. Mcllroy
Bell Laboratories, Murray Hill, N& Jersey 07974

ABSTRACT

The prograntiff reports differences betweenadyiles, expressed as a minimal list
of line changes to bring either file into agreement with the otbéff has been engi-
neered to mak dficient use of time and space on typical inputs that arise in vetting v
sion-to-\ersion changes in computer-maintained or computer-generated docunvasts. T
and space usage are observedaxy about as the sum of the file lengths on real data,
although thg are known to vary as the product of the file lengths in the worst case.

The central algorithm ddiff solves the ‘longest common subsequence problem’ to
find the lines that do not change between filesactical diciengy is gained by attending
only to certain critical ‘candidate’ matches between the files, the breaking of which
would shorten the longest subsequence common to some pair of initial segments of the
two files. Various techniques of hashing, presorting intovelgrice classes, merging by
binary search, and dynamic storage allocation are used to obtain good performance.

[This document w&s scanned from Bell Laboratories Computing Scierobrical
Report #41, dated July 1976lext was comerted by OCR and hand-corrected (last
changed June, 2012Figures were reconstructed. Some OCR errors may remain, espe-
cially in tables and equations. Please report them to doug@cs.dartmouth.edu.]

The prograntiff creates a list of what lines of one filevha be danged to bring it into agreement
with a second file or vice versa. It is based on ideas froradesources[1,2,7,8]. As an example of its
work, consider the ta/files, listed horizontally for brevity:

a b c¢c d e f ¢
w a b x y z e

It is easy to see that the first file can be made into the second by thaniglfarescription, in which an
imaginary line 0 is understood at the beginning of each:

append after line O: W,
change lines 3 through 4, which were: c d
into: X Yy oz

delete lines 6 through 7, which were: f g.

Going the other wayhe first file can be made from the second this way:

delete line 1, which as: w

change lines 4 through 6, whichwere:x 'y 2z
into: c d,
append after line 7: f g

Delete, change and append are the only operativatalde to diff. It indicates them by 1-letter

abbreviations reminiscent of the ged text editor[3] in a form from which both directions of change can be
read off. By &changing 'a’ for 'd’ and line numbers of the first file with those of a second, we get a recipe
for going the other ay. In these recipes lines of the original file are flagged with ‘<’, lines of theederi

file are flagged with *>":

Oaill 1,1d 0
>w <w
34c46 46c¢c34
<C <X
<d <y
<z

> X
>y >c
>z >d
6,7d7 7a§7
<f > f
<g >g

In mathematical terms, the goal diff is to report the minimum number of line changes necessary to con-
vert one file into the otheEquivalently, the goal is to maximize the number of lines left unchanged, or to
find the longest common subsequence of lines that occurs in both files.

1. Solving thelongest common subsequence problem

No uniformly good way of solving the longest common subsequence problemwis.kfide sim-
plest idea—go through both files line by line untitliesagree, then search forward somelo both until
a matching pair of lines is encountered, and continue similarly—reduces the problem to implementing the
‘somehav’, which doesrt help much. Havever, in practical terms, the first step of stripping matching lines
from the bginning (and end) is helpful, for when changes are not toapeewdripping can ma& inroads
into the (nonlinear) running time of the hard part of the problem.

An extremely simple heuristic for the ‘somehow’, whicbritss well when there are rebatly few
differences between files and reldty few duplications of lines within one file, has been used by Johnson
and others[1, 11]: Upon encountering a difference, comparktithene ahead in each file with ttkdines
following the mismatch in the other fer=1,2,... until a match is found. On morefdi@lt problems, the
method can missynchronize badlp keep a lid on time and spadeis customarily limited, with the result
that longer changed passages defeat resynchronization.

There is a simple dynamic programming scheme for the longest common subsequence problem[4,5].
Call the lines of the first filé i =1,...,m and the lines of the secodl j=1,...n. LetP; be the
length of the longest subsequence common to the fires of the first file and the firgtlines of the sec-
ond. EvidentlyP;; satisfies

Pip=0 i=0,...m,
Poj=0 j=0,...1,

p. = Dl"’ Pi—l,j—l if A, = BJ
e BmaX(Pi_lvj, Pi,j—l) if A, F4 BJ

Then Py, is the length of the desired longest common subsequence. From theRyhaley that as
generated in calculatinB,,, it is easy to reoger the indices or the elements of a longest common subse-
guence.

Unfortunately the dynamic program @(mn) in time, and—egen worse—O(mn) in space. Noting
that each n P; of the difference equation is simply determined frBm,, D. S. Hrschbeg invented a
clever scheme that first calculatd,, in O(n) space and then reeers the sequence using no more space
and about as much time again as is needed td>fjjig].

1<i<m/l<j<n.

The diff algorithm impraes on he simple dynamic program by attending only to essential matches,
the breaking of which would chand® The essential matches, dubbddcandidates’ by Hirschbgf7],
occur whereA; = B; and Pj; > max(P;_y j, Pi j-1). A k-candidate is a pair of indices |) such that (1)

A = Bj, (2) a longest common subsequence of lehkgtxists between the firstelements of the first file
and the first elements of the second, and (3) no common subsequence ofkengdts when eitheror j

is reduced. A candidate is a pair of indices thatlkscandidate for som&. Evidently a longest common
subsequence can be found among a complete list of candidates.

If (i1, 1) and (5, jo) with i, <i, are bothk-candidates, thef; > j,. For if j; = |5, (i5, j») would
violate condition (3) of the definition; andjif < j, then the common subsequence of ledgémding with
(i1, j1) could be extended to a common subsequence of l&ngthending with {5, j,).

The candidate methodsveaa $mple graphical interpretation. In Figure 1 dots mark grid point9 (
for which A = B;. Because the dots portray an eglénce relation, antwo horizontal lines or antwo
vertical lines on the figure ka @ther no dots in common or carryaetly the same dots. A common subse-
guence is a set of dots that can be threaded by a strictly monotone increasing curve. Four suclveurves ha
been drawn in the figure. These particular curve® fmen chosen to thread only (and all) dots that are
candidates. The values lofor these candidates are indicated by transecting curves of canstéeise lat-
ter curves, shown dashed, must all decrease monotonitiadynumber of candidates is obviously less than
mn, except in trvial cases, and in practical file comparison turns out to be very much less, so the list of can-
didates usually can be stored quite comfortably.

a b c¢c a b b a
6

5 e

R N W

Figure 1. Common subsequences and candidates in comparing
abcabba
chabac

2. The method of diff
The dots of Figure 1 are stored in linear space as follows:

(1) Constructlists of the equialence classes of elements in the second file. These listsyo€{uap
space. Thgcan be made by sorting the lines of the second file.

(2) Associatehe appropriate equalence class with each element of the first file. This association can be
stored inO(m) space. In effect nw we havea list of the dots for each vertical.

Having this setup, we proceed to generate the candidates left-to-righ€. heta vector designating
the rightmostk-candidate yet seen for eakhTo dmplify what follows, pad the vector out to include a
dummy O-candidate (0,0) and, for <hat do not yet he a andidate, a dummy ‘fence’ candidate
(m+1,n+1), whose components will compare high against the components afttear candidateK
begins emptyexcept for padding, and gets updated as weemight. Thus after processing the 4#rtical,
marked a’ in Figure 1, the list of rightmost candidates is

(0,0) (3,1) (4,3) (4.,5) (8,7) (8,7) ...

Now a rew k-candidate on the nexextical is the lowest dot that falls properly between the ordinates of the
previous (k — 1)- andk-candidates. Wo such dots are on the 5ttentical in Figure 1. Thedisplace the
2-candidate and 3-candidate entries t@ d¢hie nev vectorK:

(0,0) (3,1) (5,2) (5,4) (8,7) (8,7) ...

The two dots on the 6th vertical fall on, rather than between, ordinates in this list and so are not candidates.
Each nev k-candidate is chained to the previoks-(1)-candidate to facilitate later raamy of the longest
common subsequencé&or more detail see the Appendix.

The determination of candidates on gegivertical is thus a specialized merge of the list of dots on
that \ertical into the current list of rightmost candidates. When the number of daf$)isbinary search in
the list of at most mim(, n) candidates will do the merge in tinlog m). Since this case of veryviedots
per vertical is typical in practice, we are led to geeeach dot separately by binary searet ¢hough the
worst case time to process a vertical beco®@dog m), as againsd(m + n) for ordinary merging.

3. Hashing

To make comparison of reasonably large files (thousands of lines) possible in random access mem-
ory, diff hashes each line into one comput@rdv This may cause some unequal lines to compare equal.
Assuming the hash function is truly random, the probability of a spurious equality eenacginparison
that should hee turned out unequal iYW, where the hashalues range from 1 tM. A longest common
subsequence of lengthdetermined from hash values can thus be expected to containkaklospurious
matches whek < M, so a gquence of lengthk will be a spurious ‘jackpot’ sequence with probability
aboutk/M. On aur 16-bit machine jackpots on 5000-line files should happen less than 10% of the time and
on 500-line files less than 1% of the time.

Diff guards against jackpots by checking the purported longest common subsequence in the original
files. What remains after spurious equalities are edited out is accepted as an easiteugh there is a
small possibility that it is not actually a longest common subsequBiffeannounces jackpots, so these
cases tend to get scrutinized fairly hard. lo fw@ars we hee had brought to our attention only one jackpot
where an edited longest subsequence was actually short—in that instance short by one.

Complexity

In the worst case, thaiff algorithm doesn’perform substantially better than the trivial dynamic pro-
gram. From Section 2 it folles that the worst case time complexity is dominated by the merging and is in
fact O(mnlog m) (althoughO(m(m + n)) could be achied). Worst case space conxity is dominated by
the space required for the candidate list, whic®({sn) as @n be seen by counting the candidates that
arise in comparing the twfiles

abcabcabec...
acbacbachb...

This problem is illustrated in Figure 2. When= n the kite-shaped area in which the candidates lie is 1/2
the total area of the diagram, and (asymptotically) 1/3 of the grid points in the kite are candidates, so the
number of candidates approaché asymptotically.*

In practice,diff works much better than the worst case bounds would indicate. Only rarely are more
than mingn, n) candidates found. In fact an early version with as@aiorage allocation algorithm that

* Direct counting shes that there ar&4mn — m? — n? + 2m+ 2n + 6)/120candidates whem—-1 and n-1
differ by at most a factor of 2. The floor is exact wivenea — 1 and m -1 are multiples of 6.

provided space for just candidates firstwerflowed only after tw months of use, during which time itas
probably run more than a hundred times. Thus we lgaod evidence that in a very large percentage of
practical casediff requires only linear space.

. ,////,

/
A

\

: /Q/
. §ZaSERs

Figure 2. Common subsequences and candidates in comparing
abcabcabec...
acbhbhacbach...

As for practical time complty, the central algorithm ddiff is so fast thatwen in the biggest cases
our implementation can handle (about 3500 lines) almost half the run time is still absorbed by simple char
acter handling for hashing, jackpot checking, etc., that is linear in the total number of charactersan the tw
files. Typical times for comparing 3500-line files range from 1/4 to 3/4 cpu minutes on a PDP11/45. By
contrast, a speeded-up variant of Hirschlsedynamic programming algorithm[6] took about 5 cpu min-
utes on 3500-line files. The heuristic algorithm sketched at thierirg of Section 1 typically runs about 2
or 3 times as fast akff on long but trivially different files, but loses much of that advantage on mdire dif
cult cases that are within the competence of both methods. Since the failure modes @ptbgrams are
quite different, it is useful to ke loth on hand.

References

[1] S. C. JohnsonALTER - A Comdeck Comparing Programell Laboratories internal memorandum
1971.

[2] Generalizing from a special case solved bysTSzymanski[8], H. S. Stone proposed andWi. Hunt
refined and implemented the first version of the candidate-listing algorithm usifl byd embedded it in
an older frame&ork due to M. D. Mcllry. A variant of this algorithm was also elaborated by Szyman-
ski[10]. We havehad maw useful discussions with A..\Aho and J. D. Ullman. M. E. Lesk wed the pro-
gram from UNIX to OS/360.

[3] ‘Tutorial Introduction to QED &xt Editor, Murray Hill Computing Center MHCC-002.

[4] S. B. Needleman and C. D. Wunsoh,General Method Applicable to the Search for Similarities in the
Amino Acid Sequence) Mol Biol 48 (1970) 443-53.

[5] D. Sanloff, ‘Matching Sequences Under Deletion/Insertion Constraiftsic Nat Acad Sci USA 69
(1972) 4-6.

[6] D. S. Hirschberg,A Linear Space Algorithm for Computing Maximal Common SubsequérZaGM
18 (1975) 341-3.

[7] D. S. Hirschberg, ‘The Longest Common Subsequence Prollectoral Thesis, Princeton 1975.

[8] T. G Szymanski, A Special Case of the Maximal Common Subsequence Prolflamputer Science
Lab TR-170, Princeton Uwérsity 1975

[9] Michael L. Fredman, ‘On Computing the Length of Longest Increasing Subsequé&nsergte Math
11 (1975) 29-35.

[10] T. G. ymanski, A Note on the Maximal Common Subsequence Probkmmitted for publication.
[The paper finally appeared as H. Mnt Ill and T G. SZymanski, A fast algorithm for computing longest
common subsequence€ACM 20 (1977) 350-353.]

[11] The programs callegroof , written by E. N. Pinson and M. E. Lesk for UNIX and GECOS use the
heuristic algorithm for differential file comparison.

Appendix

A.l Summary of the diff algorithm
Algorithm to find the longest subsequence of lines common to file 1, whose lengtimés, and file 2n

lines.

Steps 1 through 4 determine eglence classes in file 2 and associate them with lines in file 1 in prepara-
tion for the central algorithm. (Ttei#ff program that is in actual use does treknof these steps sombat
differently.)

1.

LetV be a vector of elements structuradrial, hash), whereserial is a line number anbash is an
integer Set

VIl <« (4,H3G) J1=1,...n
whereH () is the hash value of lingin file 2.
SortV into ascending order dmash as primary ky and serial as secondarydy.
LetE be a vector of elements structuraseral, last). Then set

E[j] < (V[i] serid, f(j)) j=1,...n,

E[0] ~ (O,true),
where
_Utrue if j =norV[j]. hash # V[j +1]. hash
_Dfalse otherwise

f(i)

E lists all the equidlence classes of lines in file 2, withst = true on the last element of each class.
The elements are ordered $&gyial within classes.
LetP be a vector of integers. Fbe 1, ... mset
P[i] Uj such thatE[j - 1].last = true andH(i) = V[j]. hash
- EO if no such j exists

whereH(i) is the hash value of linieof file 1. Thej values can be found by binary searctvin
P[i], if nonzero, na points inE to the bginning of the class of lines in file 2 egdent to linei in
file 1.

Steps 5 and 6 are the longest common subsequence algorithm proper.

5.

6.

Let candidate(a, b, previous) be areference-glued constructpmwherea andb are line humbers in
file 1 and file 2 respeettly and previous is nil or a reference to a candidate.

Let K[0: min(m, n) + 1] be a ector of references to candidates. kéte the inde of the last usefully
filled element oK. Initialize

K[0] ~ candidate(0, O,nil),
K[1] < candidate(m+1,n+1,nil),

k < 0.

K[1] is a fence beyond the last usefully filled element.
Fori =1,... m,if P[i] # 0 do merge(K, k,i, E, P[i]) to updateK andk (see below).

Steps 7 and 8 get a more gament representation for the longest common subsequence.

7.

LetJ be a vector of integers. Initialize

Ji] <0 i=0,...m

8. For each element of the chain of candidates referred to k] and linked by preious references
set

J[c.a] < c.b.

The nonzero elements dfnow pick out a longest common subsequence, possibly including spurious
‘jackpot’ coincidences. The pairings between the files are gien by

{(, J[i]) | I[i] # O}.
The next step weeds out jackpots.
9. Fori=1..... m, if J[i] # 0 and linei in file 1 is not equal to lind[i] in file 2, set

J[i] < o.

This step requires one synchronized pass through both files.

A.2 Stor age management

To maximize capacitystorage is managed idiff per the following notes, which areyed to the steps in
the preceding summargfter each step appear the number of words then in yseptefor a small addite
constant, assuming that an integer or a pointer gomog word.

1. Storagefor V can be grown as file 2 is read and hashed. The valueneied not be knen in
advance. [8 words]

3. ThoughE contains information already W; it is more compact because tlast field only takes one
bit, and can be packed into the same word withsthial field. E can be werlaid onV. serial. [2n
words]

4. P can be grown as wasin step 1. [+ mwords]
V is dead after this step. Storage can be compacted to contain onlyetlirddimation,E and P.
[n+ mwords]

5. Candidatesan be allocated as needed from the free storage obtained in the previous compaction, and
from space grown beyond that if necessBgcause theare chained, candidates do novéd be
contiguous.

6 During theith invocation of merge, the firstelements of are dead, and at most the first2 de-
ments ofK are in use, so with suitable egaencingK can be werlaid onP. [n+ m+ 3x(number
of candidates)]

7. P andK are dead, sd can be werlaid on themE is dead also.r + 3x(number of candidates)]

A.3 Summary of merge step

procedure merge(K, k, i, E, p)

K is as defined in step 5 alm by reference

k is index of last filled element oK, by reference

i is current indein file 1, by value

E is as defined in Step 3 al® by reference

pis index in E of first element of class of lines in file 2 e¢plént to linei of file 1, by value

1. Letr be an integer andbe a reference to a candidatavill always refer to the last candidate found,
which will always be anr-candidate K[r] will be updated with this reference once thevimes
vaue of K[r] is no longer needed. Initialize

r - 0.

¢ < KJ0].

(By handling the equalence class in x&rse order Szymanski[10] circumvents the need to delay
updatingK[r], but generates extra ‘candidates’ that waste space.)

2. Dosteps 3 through 6 repeatedly.

3. Letj = E[p]. serial.
SearchK[r: k] for an elemenK|[s] such thatK[s] - b< j andK[s+1] - b> j. (Note that

K is ordered orK[.] - b, so binary search will work.)
If such an element is found do steps 4 and 5.

4. If K[s+1] - b> j, amultaneously set
K[r] < c.

r « s+1.
C « candidate(i, j, K[9]).

5. If s=k do: Simultaneously set
Klk+2] « K[k+1] (move fence),

k « k+1.

Break out of step &'loop.
6. If E[p]. last = true, break out of step &'loop.
Otherwise sep — p+1.

7. SetK[r] ~ c.

