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Abstract

We present an object detection system and show results on the PASCAL
2006 dataset. We introduce a codebook defined over segment-level fea-
tures and show how multiple segmentations and Latent Topic Models can
be used to localize objects in images despite the bag-of-words assump-
tion. We demonstrate how to train both the Latent Dirichlet Allocation
model and the Correlated Topic Model in a supervised way and show
how our approach is capable of detecting multiple instances of objects in
images such as cars, horses, grass, sheep, etc.

1 Introduction

Object detection can be defined as the localization of novel object instances in an image
from a known list of object classes. This problem is difficult because of the appearance,
geometry, and viewpoint variations that can occur in an image. To make things worse,
not only are many object classes visually similar but we want to avoid training specialized
detectors for each different object class.

Given a manually labeled dataset that contains either bounding boxes or segmentation
masks of objects from a small number of object classes, we want to learn models of those
objects so that we can localize novel instances of those objects in a new image.

1.1 What has been done before?

In the recent years, several different approaches have been presented with the goal of de-
tecting objects in images using a codebook of appearance parts.

*This report is focused on the Computer Vision aspect of this work, while the Correlated Topic
Model Details report is focused on the Machine Learning aspect of this work.



While Fergus et al. [6] utilized a strongly parameterized geometric model over parts and
Vidal-Naquet & Ullman [13] used loose relationships between parts, bag-of-words ap-
proaches which don’t model any geometrical relationships between parts have perform
suprisingly well. Examples of bag-of-words approaches include the work of Csurka et al.
[4] and Sivic et al. [12].

In addition, a large body of work has focused on incorporating context into object detec-
tion. Much of this work is based on some form of a conditional random field (Lafferty et
al. [10]). CRF approaches avoid making any hard decisions locally by employing both
local classifiers and pairwise relationships between these classifiers. Statistical inference
algorithms are then used to find the best assignment of image features to classes.

2 Representation

2.1 Bag-of-words

Building off of the successes of the bag-of-words approach, we also represent an image as
a bag of words; however, we define a lexicon over segment-level words (s-words) which
densely cover the image. By utilizing the bag-of-words representation, we discard all in-
formation regarding the connectivity of segments. These s-words are the most atomic units
of representation in our work; the final segmentation mask obtained by our algorithm is a
linear combination of these atomic s-words.

2.2 Multiple Segmentations

Although using segments allows us to densely cover the image (as opposed to sparse visual
words [12]), we are still left with the problem of obtaining a good segmentation. Instead of
trusting a single bottom-up segmentation to produce a correct grouping of pixels, we use a
soup of segments (several outputs of a segmentation algorithm by varying its parameters).
We hope that by using multiple segmentations, some of the segments will be correct some
of the time. An example of multiple segmentations is show in Figure 2 for the cow image
found in Figure 1.

Multiple segmentations have been used in the work of Russel e al. [11] and Hoiem et al.
[8] for slightly different purposes. Our goal is to detect objects in an image while Russell
et al. [11] used multiple segmentations for the unsupervised discovery of semantically
meaningful segments in a large collection of images and Hoiem et al. [8] used multiple
segmentations to classify image regions into one of several geometric classes.

2.3 Texton Histograms

After obtaining multiple segmentations for each training image, we describe each segment
by a normalized histogram of textons. Our textons are obtained by vector quantizing filter
bank responses via K-means to T clusters. We use a filter bank very similar to that of Winn
et al. [14], which contains both zero-sum and sum-to-one filters that are convolved with
the 3 LAB channels of an image. In other words, certain filters respond to color while other
filters respond to edges at different orientations. Each pixel in the training images is then
assigned to the nearest texton.

Next, the T'-component texton histograms are normalized to achieve robustness to scale
variations and then vector quantized via K-means to L clusters. (In the language of statisti-
cal text processing, we would say that we have L words in our lexicon.) Each segment-level
normalized texton histogram is then assigned to the nearest cluster center; these L s-words
are the primitives that we use as input into the Bayesian Hierarchical Models defined in the
following section.



Figure 1: Running example cow image from PASCAL 2006 dataset.

Running Example: Raw Segmentation with 645 segments

Figure 2: Segments extracted from a PASCAL 2006 image. (33 Segmentations)



3 Latent Topic Models

Latent Topic Models (otherwise known as aspect models) have been successfully used for
unsupervised topic discovery in text corpora [3]. The strength of these techniques is their
ability to deal with polysemous words. For example, the word bank could refer to a river
bank or a financial bank. Based on co-occurrence of words from a finite lexicon, topic
model are able to associate words a topic. These techniques have also been used for scene
classification by Fei-Fei et al. [5] and object discovery by Sivic ef al. [12]. Fei-Fei et al.
[5] used a codebook from image patches, while Sivic er al. [12] used a codebook made
from SIFT descriptors computed at interest points.

3.1 Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) model by Blei et al [3] is a generative model for a
collection of exchangeable discrete data. LDA has mainly been used to model text corpora,
where the notion of exchangeability corresponds to the bag-of-words assumption that is
commonly employed in such models.

The model is simplest to describe for text corpora. In a nutshell, LDA models each docu-
ment as a mixture over topics, where each vector of mixture proportions is assumed to have
been drawn from a Dirichlet distribution. A topic in this model is defined to be a discrete
distribution over words from some finite lexicon. For example, if a topic is “astrophysics”,
then the word “quasar” would presumably be assigned a higher probability than the word
“burrito”.

More precisely, let D be a collection of M documents and w be a document with words
wi, ..., W,. We assume that each word corresponds to one of K possible topics, and
that for each word, there is a latent topic assignment z; which takes on values 1,..., K,
indexing into the set of topics. By convention, we will represent z; by a K dimensional
vector with one component set to one indicating its value in 1,..., K and the rest set to
zero. The generative process is as follows:

1. Draw 6 ~ Dirichlet(a, . .., o)
2. For each word w,, € w,
(a) Draw a topic z; ~ Multinomial(6)

(b) Draw a word w; ~ Multinomial((3(z;)) where (k) is a probability distribu-
tion over words corresponding to topic k

The inference task in LDA is to solve for the vector of topic mixture proportions, 8, and the
topic assignment z; for each word, given the words w; and the model parameters «, O. Ex-
act inference in this model involves an intractable integral, but approximations via Markov
Chain Monte Carlo sampling [7] or mean-field methods have been shown to work well.

3.2 Correlated Topic Model

A problem with drawing the topic mixture proportions (fs) from a Dirichlet distribution
is that Dirichlet distributions are too simple, and exhibit a near-independence structure.'
However, visual object classes are highly correlated and thus we expect the Dirichlet distri-
bution to lack the power to model the correlations between objects. For example bird/sky,
sheep/grass, car/road are highly correlated pairs of object classes.

'A way to draw from a Dirichlet distribution is to sample k independent Gamma distributions,
concatenate the samples into a vector and divide by their sum. This process shows that the correla-
tions between the components of a Dirichlet random variable arise solely from the fact that they must
all sum to one.



The solution is to model each mixture over topics as a sample from a more powerful dis-
tribution. The Logistic-Normal distribution [1] is an alternative distribution over a simplex
which forms a richer class of distributions and better captures inter-component correlations.
The process of drawing a k-dimensional Logistic-Normal random variable 6 is as follows:

1. Draw v ~ N(p, X) where N (i, X) is a k — 1 dimensional Normal distribution.

2. Define v, = 0.

3. Let
exp v

k
> j=1€XPU;
(This is the projection of exp(v) to the simplex)

0:

We are thus able to capture the covariance between visual classes using the Logistic-Normal
at the expense of computational complexity. The Correlated Topic Model [2] models the
same type of data as LDA and only differs in the first step of the generative process. Instead
of drawing 6 from a Dirichlet distribution it assumes that 6 is drawn from a Logistic-Normal
Distribution.

3.3 Supervised Training

Both LDA and CTM have been introduced for the unsupervised discovery of topics in
text corpora. For our particular application, we utilize ground truth labels to supervise
the training procedure. Supervised training for Latent Topic Models allows us to define
what is a topic. In our work, we enforce a one-to-one correspondence between topics
and object classes. It is important to note that by supervising our training procedure we
are still using the full LDA/CTM models; the only difference is that during training the
topics are observed. Interestingly, since our framework is based on models that have been
shown to work in an unsupervised setting we can perform training in an unsupervised way
with minimal modifications to our approach (we choose not to pursue this direction at the
moment).

3.4 Background Modeling & Segment Labeling

In order to perform supervised training, we need a topic label for each segment in the train-
ing set. Initial experiments on the MSRC dataset 2, which contains ground truth segmen-
tation masks for background categories such as grass, road, sky, and water demonstrated
the utility of modeling background categories as well as objects such as cats, sheep, cars,
etc. Unfortunately, many object datasets only contain ground truth labels for objects and
the backgrounds are unlabeled. For such datasets, we create pseudo-background labels
by clustering background segments on appearance. When labeling the segments from the
training set with ground truth labels, we employed the following procedure:

Segments falling completely inside an object of interest were given the label of that par-
ticular class. Segments falling completely outside of any objects, were labelled as “back-
ground”. Segments which contained pixels both inside a bounding box and in the back-
ground were labelled as the foreground object if their overlap score was better than Ogo04,
labelled as background if their overlap was less than Oy, and labelled as “bad” otherwise.
(These numbers were tweaked by hand on a small number of training images).

All of the “background” segments from the training images were then clustered into K,
clusters using K-means. Like before, we used the normalized texture histogram as the
feature associated with each segment. Finally, each “background” segment was assigned

“Publicly available at http://research.microsoft.com/vision/cambridge/recognition/



BG Topic Mixing Weights for Doc 000019, Likelihoods -4140.221165
T T

Mixing Weight

L. ;. 1
1 B2 B3 B4 BS Bs B7 Bo B9 B10 BI1 Biz B3 B14 BIS Bis BI7 Bls B1e B20 Bzl B2z B23 B24 B25 BZ6 B27 B2s Bz9 B0
contracted FG Topic Mixing Weights

2T

Figure 3: Topic Distribution from LDA inference on a PASCAL 2006 image.

to the nearest cluster. In conclusion the training set consisted of a collection of images
where each image contained a bag of segment words with their associated labels. All of
(non-"bad”) segments were used for training; each segment had one of K labels (K,
background labels and Ky, object labels).

3.5 Inference

What can a Latent Topic Model tell us about a new image? For approximate inference,
we use variational inference ([9], [3]) which returns an approximate topic distribution per
image as well as a topic distribution per word. For example, the topic distribution for the
cow image in Figure 1 can be seen in Figure 3.

4 Integrating Multiple Segmentations

We obtain a distribution over topic labels per segment in the soup of segments associated
with each image; however, these segments are overlapping and so we must somehow inte-
grate these multiple hypothesis into a single resulting image. Similar to Hoiem et al. [8],
we marginalize over the multiple segmentations to obtain a topic distribution at the pixel
level; for each topic we obtain a topic response images whose pixel values range from 0
to 1. What this marginalization procedure does is simply take the average topic response
in a pixel from all segments that contain that particular pixel. A marginalization of the
PASCAL 2006 cow image can be seen in Figure 4.

4.1 From Topic Responses to Detection and Segmentation

After we marginalize across segmentations to obtain topic response images for each topic,
we can assign each pixel to the most likely topic. This assignment of pixel to topic pro-
duces a segmentation and a detection simultaneously. We deem each connected component
in the final segmentation corresponding to an object classes as a separate detection. The
confidence associated with each such segment is the average topic response inside the seg-
ment.

5 Results

5.1 PASCAL Dataset

The dataset we are working with is a subset of the 2006 PASCAL Visual Object Classes
Challenge dataset(®). The subset (referred to as trainval) contains 2,618 images of 10 ob-
ject classes (bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep) with ground-
truth bounding boxes at the object-instance level. This dataset is further partitioned into a

3http://www.pascal-network.org/challenges/VOC/voc2006/index. html



topic strengths: [, cow1, hrse1, prsn1, BG3, BG4, BG6, BG12, BG14, BG16, BG19, BG20, BG24, BG27, BG29, BG30,]
1

Figure 4: Topic Response Images extracted from a PASCAL 2006 image. The first three
sub-images belong to the object classes car, horse, and person while the remaining sub-
images correspond to background topics. Not how the first sub-image correctly depicts a
strong response to the cow topic.

training set (referred to as train in the challenge) and a testing set (referred to as val in the
challenge). For this subset of the PASCAL dataset, ground truth data was made publicly
available which we used for training, testing, and generating precision-recall curves.

Since the PASCAL 2006 dataset data did not contain any annotation for the backgrounds,
we created pseudo-background labels by clustering background segments (See Section
3.4).

In order to make our output adhere to the PASCAL challenge, we simply draw a bounding
box around each connected component in the resulting marginalized topic response image
(see Figure 4).

5.2 Implementation Details

We used a texton dictionary of size 7' = 1000, and an s-word lexicon of size L = 1500 in
our implementation. Since our training set consisted of 1277 images, random subset of all
of features were used for both the texton dictionary and s-word lexicon.

For the overlap criterion, we used Ogo04 = .95, Opy = .3. For the number of background
topics, we used K, = 30 and K, = 10.

5.3 Getting Multiple Segmentations

We use Stella Yu’s Constrained Normalized Cuts framework [15], and produce 33 segmen-
tations by varying the number of segments (from 3 to 30 by 3s as well as 50 segments)
for a total of 11 segmentations per scale and processing the image at three different scales
(height of 400, 200, 150 and width changed accordingly). Each image was composed of
approximately 650 segments (note that segments from different segmentations are usually
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Figure 5: Top 9 sheep detections for the Correlated Topic Model.

overlapping).

5.4 Detection Results

For several object categories and both LDA and CTM we show the top 9 object detections
(sorted by confidence). In Figure 5 and Figure 6 we show the top sheep detections. In
Figure 7 and Figure 8 we show the top cow detections. In Figure 9 and Figure 10 we
show the top bicycle detections. In each figure, a dotted green bounding box represents a
true positive, a red bounding box represents a false positive, and a yellow bounding box
represents the ground truth bounding box.

5.5 Precision-Recall Curves

In figures 11 and 12 we show the precision-recall curves for the Latent Dirichlet Allocation
and Correlated Topic Models, respectively. At the top right hand corner of these figures,
the average precision is listed for each object class.

6 Discussion and Summary

6.1 Bag-of-segments and LDA Discussion

Bayesian Hierarchical Models used in this work, namely LDA and CTM, model the context
between co-occuring s-words. Independently, each s-word isn’t powerful enough to predict
the presence of an object of interest; however, a large number of co-occuring s-words are
capable of predicting the presence of an object. In our work, the s-word representation
was learned in an unsupervised way using k-means clustering and we were able to obtain a
good assignment of s-word to topic based on the co-occurrence of s-words in an image.

While we decided to learn appearance clusters in an unsupervised way and obtain a topic
distribution per segment for all segments at once, many approaches (especially the CRF-
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Figure 6: Top 9 sheep detections for the LDA Model.
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Figure 7: Top 9 cow detections for the Correlated Topic Model.
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Figure 8: Top 9 cow detections for the LDA Model.
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Figure 9: Top 9 bicycle detections for the Correlated Topic Model.
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Figure 10: Top 9 bicycle detections for the LDA Model.
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Figure 11: LDA precision-recall curves and Average Precision.
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Figure 12: CTM precision-recall curves and Average Precision.

based techniques) utilize classifiers which are capable of predicting a topic distribution
from just one segment. In the CRF literature, context modeling is achieved by coupling the
unary classifiers via pairwise potentials.

A severe limitation of our approach was the lack of spatial constraints used in the bag-of-
words model. Our model discarded information about neighboring segments inside one
segmentation and overlapping segments across different segmentations. Consider a hy-
pothetical situation where we have an image of a person with blue pants and a red shirt
standing on some green grass with some blue sky above the person. In the case that the
shirt and pants were never grouped into one segment, the blue pants would be probably
associated with the sky class even if they were surrounded by green and red segments. This
is an example of the lack of context.

6.2 Multiple Segmentations Discussion

As opposed to the work of Russell et al. [11] — where the goal was to find good segments —
our work used all of the segments in tandem. This means that in our work segments some-
times represented objects as a whole and sometimes an object of interest was represented
as a collection of segments.

7 Future Work

e Detection Confidence Measure: The mean topic response didn’t work so well as
a confidence (can be seen by the jaggedness of the precision recall curve). Two
ideas to improve this measure are 1.) incorporating some type of spatial voting
where each segment votes for the object center and the density of the votes is a
confidence and 2.) after obtaining the region for a particular class we could match
the histogram of words falling in that region to the histograms of words associated
with all instances in the database (the distance to the nearest neighbor of that class
would be inversely proportional to the confidence).



o [ntelligent Lexicon Creation: As opposed to naively running k-means in an unsu-
pervised fashion, class labels could have been used to choose words that are more
discriminative with respect to class labels.

o CTM versus LDA: The Correlated Topic Model has been shown to outperform
Latent Dirichlet Allocation for unsupervised topic discovery in text corpora. We
would like to answer why the Correlated Topic Model did not outperform Latent
Dirichlet Allocation for our particular application.

o Segmentations: How much does the image-driven bottom-up segmentation help
up? Perhaps simply using many partitions of the image into box regions which
doesn’t rely on the image data could be sufficient for the localization of objects
within a bounding box.

8 Conclusion

In conclusion, we incorporated multiple segmentations into Latent Topic Models and
showed that we can get localization and segmentation of objects. Due to the availabilty
of labeled data, we were able to train our models in a supervised fashion as opposed to
the more commonly used unsupervised training procedure. Finally, we compared Latent
Dirichlet Allocation and the Correlated Topic Model and found that they gave similar re-
sults, with LDA slightly outperforming CTM.
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