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Abstract

Let X1, . . . ,Xn be joint {±1}-valued random variables. It is known that conditioning on a random
subset of O(1/ε2) of them reduces their average pairwise covariance to below ε (in expectation). We
conjecture that O(1/ε2) can be improved to O(1/ε). The motivation for the problem and our conjectured
improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We
suggest attempting the conjecture in the case that X1, . . . ,Xn are the leaves of an information flow tree.
We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a
two-state hidden Markov model).

1 Introduction

Let X = (X1, . . . ,Xn) be a list of jointly distributed Boolean random variables taking values in {±1}. We
are interested in the quantity

avg
distinct pairs
u,v∈[n]

{∣∣Cov[Xu,Xv]
∣∣} ∈ [0, 1].

For brevity we call this the average covariance of the random variables (absolute-value sign notwithstanding).
It is a quantification of the extent to which the random variables are (pairwise) independent.

If the average covariance of X1, . . . ,Xn is not small, then in some sense a “typical” Xj contains a
considerable amount of information about a sizeable fraction of the other Xk’s. Then if we condition on Xj ,
we might expect the variance of these other Xk’s to decrease, thereby decreasing the overall average covariance.
For t ∈ Z+, we introduce the following notation:

avgCov|t(X) := avg
J⊆[n]
|J|=t

avg
distinct pairs
u,v∈[n]\J

{
E
[∣∣∣Cov[Xu,Xv]

∣∣∣ | (Xj)j∈J

]}
.

The intuitions just described lead to the idea that choosing large t should cause avgCov|t(X) to become
small. Indeed, the following has recently been proven [4, 6, 8]:

Theorem 1.1. Let X = (X1, . . . ,Xn) be {±1}-valued random variables and let 0 < ε ≤ 1. Then for some
integer 0 ≤ t ≤ O(1/ε2) it holds that avgCov|t(X) ≤ ε.

We present the following conjecture, made jointly with Yuan Zhou.

Conjecture A. Theorem 1.1 holds with O(1/ε) in place of O(1/ε2).
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Remark 1.2. In Theorem 1.1, by t ≤ O(1/ε2) we mean t ≤ C/ε2 where C is a universal constant independent
of X1, . . . ,Xn. (We also assume n ≥ C/ε2 + 2.) However one cannot simply fix t = dC/ε2e independently of
X1, . . . ,Xn; this would make Theorem 1.1 false (see Proposition 1.7). These comments apply equally to
Conjecture A with O(1/ε) in place of O(1/ε2).

Motivation for Theorem 1.1 and Conjecture A comes from the theory of rounding algorithms for convex
relaxations of optimization problems; specifically, the “correlation rounding” technique for the Sherali–Adams
and SOS hierarchies. In Section 1.2 we further discuss this motivation, as well as the importance of improving
the bound t ≤ O(1/ε2) to t ≤ O(1/ε).

We were led to make Conjecture A based on algorithmic optimism as well as being unable to find any
counterexample refuting it. The following example (which we call the “homogeneous star”) is particularly
instructive. Let X0 ∼ {±1} be uniformly random and suppose X = (X1, . . . ,Xn) is a list of independent
“ρ-correlated” copies of X0 (where ρ ∈ [0, 1]). I.e., for each j ∈ [n] we have Xj = X0Rj , where R1, . . . ,Rn

are independent {±1}-valued random variables satisfying E[Rj ] = ρ. By symmetry, all sets J in the definition
of avgCov|t(X) contribute equally to the average, so suppose we condition on X1, . . . ,Xt. It is not hard to
check that the conditional average covariance of Xt+1, . . . ,Xn is then

ρ2 Var[X0 |X1, . . . ,Xt].

If ρ ≤
√
ε then this quantity is automatically at most ε, even without conditioning. On the other hand, if

ρ�
√
ε then we need to rely on the conditional variance above being small. It’s not difficult to show via a

Hoeffding bound that this conditional variance is very small if (and only if) tρ2 � 1; i.e., ρ� 1/
√
t. Thus

by taking t a little bigger than 1/ε, the case of ρ �
√
ε is handled as well. In other words, these rough

calculations confirm (perhaps up to a log factor) that Conjecture A holds for the homogeneous star for every
value of ρ. On the other hand, this example also implies that one cannot hope for an improved bound of
t < o(1/ε) in Conjecture A.

1.1 Information flow trees

Being unable to prove Conjecture A, we turn to trying to prove it in a wide family of special cases. Specifically,
we study the conjecture in the special case of information flow trees (which includes the homogeneous star
example discussed above). Information flow trees have been studied in an extremely wide variety of contexts,
under various names: in the theory of noisy communication and computation; in statistical physics (as the
Ising model on trees); in biology (as phylogenetic trees); and in learning theory (as Markov networks/graphical
models). See Evans et al. [5] for a number of results, and Mossel [7] for a survey.

Definition 1.3. An information flow tree T = (V,E, ρ) is an undirected tree graph (V,E) (with |V | > 1)
together with a function ρ : E → [−1, 1] giving a correlation parameter for each edge. We think of T as
generating a collection of {±1}-valued random variables (Xv)v∈V , (Re)e∈E as follows: First, the random
variables Re ∈ {±1} are chosen such that E[Re] = ρ(e), independently for all e ∈ E. Next, the random
variables (Xv)v∈V are collectively chosen so that XuXv = R(u,v) holds for all (u, v) ∈ E, uniformly at
random from the two possibilities.

Remark 1.4. An equivalent way to think of the (Xv) random variables being generated is as follows: First,
a vertex r ∈ V is chosen to be the “root”. (This choice can be arbitrary, as it does not affect the final
distribution.) Next, Xr is chosen uniformly at random from {±1}. Finally, the remaining random variables
(Xv)v 6=r are determined by “noisily propagating” Xr’s value along edges of the tree: if Xu has been chosen,
and (u, v) ∈ E, then Xv is set to Xu with probability 1

2 + 1
2ρ(u, v) and is set to −Xu otherwise. We add

the remark that in the end, each Xv is individually uniformly distributed on {±1}.

Remark 1.5. When discussing information flow trees, we think of the vertex random variables Xv as the
main objects of interest, and the edge random variables Re merely as ancillary information used to construct
the Xv’s. Furthermore, if V = L tM is the partition of V into leaf vertices L and internal vertices M , we
usually think of the leaf random variables (Xv)v∈L as being “observable” and the internal random variables
(Xv)v∈M as being “hidden”.
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Figure 1: An example of a caterpillar tree

In this paper we study the special case of Conjecture A in which X1, . . . ,Xn are the leaf random variables
of an information flow tree. Referring to Remark 1.2, in this case we conjecture it is possible to fix t = const/ε
independently of X1, . . . ,Xn. Assuming we can fix t allows us to make a few more simplifications. Since

avgCov|t(X) = avg
U⊆[n]
|U |=t+2

{
avgCov|t

(
(Xk)k∈U

)}
,

it follows that proving the conjecture in the n = t+ 2 case suffices to prove it for general n ≥ t+ 2. And when
n = t+ 2, the experiment reduces to the following: we choose a random pair of leaves u and v, condition on
all other leaf random variables Xw, and then measure the (conditional) covariance of Xu,Xv. Thus we are
led to the following conjecture (in which we write t instead of t+ 2 for notational simplicity):

Conjecture B. Let T be an information flow tree with leaf random variables X1, . . . ,Xt (where t ≥ 2).
Then

avg
distinct pairs

u,v∈[t]

E
[∣∣∣Cov[Xu,Xv]

∣∣∣ | (Xj)j∈[t]\{u,v}

]
≤ O(1/t). (1)

We emphasize that Conjecture B implies Conjecture A in the case that X1, . . . ,Xn are the leaves of an
information flow tree, and is in fact slightly stronger in that the bound is O(1/t) for all t, independently of
X1, . . . ,Xn.

In Sections 2–5 we will give some results in the direction of proving Conjecture B; however, we are still
unable to prove the conjecture. The main theorem that we do prove in this work is that Conjecture B holds
for caterpillars.

Theorem C. Conjecture B holds when the underlying tree of T is a caterpillar.

Here we are using the following standard graph-theoretic definition:

Definition 1.6. A caterpillar graph is a tree in which every vertex has distance at most 1 from a central
spine (path). Equivalently, a caterpillar is a graph of pathwidth 1. An example of a caterpillar tree is depicted
in Figure 1.

We remark that caterpillar graphs arise quite naturally in some of the contexts where information flow
trees are studied; for example, in Hidden Markov Models, where the leaf random variables are observed and
the spine random variables are hidden.

1.2 Motivation and previous work

Besides being a natural problem in information theory, Conjecture A is motivated by certain problems in the
algorithmic theory of convex relaxation hierarchies. We give here a very high-level sketch of the connection,
as developed in the following works: [1–4,6, 8–10].

Consider a Boolean optimization problem such as Max-Cut on a graph G = (V,E), where we write
V = [n]; the task is to find a ±1 assignment x1, . . . , xn to the vertices so as to minimize avg(u,v)∈E xuxv.
This is a non-convex (and NP-hard) optimization problem. A natural algorithmic approach is to relax it to an
(efficiently-solvable) convex optimization problem and then argue that the relaxed solution can be “rounded”
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to a genuine ±1 assignment with approximately the same value. Two important families of such relaxations
are the Sherali–Adams LP relaxation and the SOS (Lasserre–Parrilo) SDP relaxation. The families have a
tunable “degree” parameter t ∈ Z+; as t increases, the convex relaxations become tighter and tighter but the
running time for solving them increases like nO(t).

Roughly speaking, solving these relaxations yields an optimal solution to the original Max-Cut problem,
except that instead of getting a ±1 assignment x1, . . . , xn, one gets a collection of “fake degree-t ±1-valued
random variables” X1, . . . ,Xn. In fact, these are not random variables at all; they are merely a list of
numbers ρS for all S ⊆ [n] with |S| ≤ t. However, there is a promise that for each such S there exists a
collection of true ±1-valued random variables (Y v)v∈S with E[

∏
v∈S Y v] = ρs. Thus, being very imprecise,

an algorithm can act as though it has true random variables X1, . . . ,Xn, as long as it only ever uses them
in groups of at most t.

The objective function minimized by the convex relaxation is α := avg(u,v)∈E ρ{u,v}. An algorithm would
now like to take the fake random variables and produce a genuine ±1 assignment x1, . . . , xn which has, say,
avg(u,v)∈E xuxv ≤ α + ε. A simple idea for doing this is to draw xj according to Xj , independently for
each j ∈ [n]. (This counts as using the fake random variables in groups of size 1 and is thus legal since
t ≥ 1.) However in doing this we will get E[xuxv] = E[Xu] E[Xv] = ρ{u}ρ{v}, which need not bear any
relationship to the quantities ρ{u,v} entering into the definition of α. What would be desirable is if we had
|ρ{u,v}− ρ{u}ρ{v}| ≤ ε for all pairs (u, v), or at least on average over all pairs. In other words, we wish for the
“average covariance” (as defined at the beginning of Section 1) of the fake random variables X1, . . . ,Xn to be
smaller than some ε. Of course it need not be, but Conjecture A implies that it can be made so, provided we
are allowed to condition on some t ≤ O(1/ε) randomly chosen Xj ’s. In the end, using the Sherali–Adams or
SOS relaxations with degree parameter t would allow us to do this in time nO(1/ε).

Thus we see that the quantitative dependence in Conjecture A directly relates to the running time of
algorithms based on “correlation rounding” of Sherali–Adams/SOS hierarchies. An example consequence
of Conjecture A (see [10]) would be that the Sherali–Adams LP hierarchy provides an arbitrarily good
multiplicative approximation to Max-Cut on n-vertex, εn2-edge graphs in time nO(1/ε). This gives a very nice
tradeoff between density and running time, one that works almost all the way down to the “sparse” regime
(i.e., O(n) edges). On the other hand, using the weaker Theorem 1.1, the running time becomes nO(1/ε2).
This is only nontrivial when ε� n−1/2; i.e., for graphs with ω(n3/2) edges.

We end this section by commenting on the Raghavendra–Tan proof [8] of Theorem 1.1. They study
the analog avgInfo|t(X) of avgCov|t(X), in which |Cov(Xu,Xv)| is replaced by the mutual information,
I(Xu;Xv) ≥ 0. They deduce very simply from the definitions that for any 0 < T < n− 1,

T−1∑
t=0

avgInfo|t(X) ≤ 1.

This means that there exists a t < T such that avgInfo|t(X) ≤ 1/T . The basic relationship |Cov[Xu,Xv]| ≤√
2
√
I(Xu;Xv) lets them complete the proof Theorem 1.1 with a bound of t ≤ 2/ε2. Thus we see that proving

Conjecture A requires surmounting a familiar difficulty: the quadratic relationship between L1-distance and
KL-distance.

Finally, while it’s tempting to think that avgCov|t(X) and avgInfo|t(X) should be decreasing functions
of t (thereby allowing us to fix t independently of X1, . . . ,Xn in Theorem 1.1 and Conjecture A), this is not
the case.

Proposition 1.7. For any fixed integer T ∈ Z+, there exist random variables X = (X1, . . . ,Xn), n = T +2,
such that avgCov|t(X) = 0 for t < T but avgCov|T (X) = 1 (and similarly for avgInfo|t).

Proof. We simply define X1, . . . ,XT+2 to be uniformly random conditioned on X1X2 · · ·XT+2 = 1. Then
consider any J ⊂ [T + 2] and any outcome of (Xj)j∈J . If |J | < T then the remaining Xk’s are (conditionally)
pairwise independent. On the other hand, if |J | = T then the remaining pair (Xu,Xv) is either uniform on
{(+1,+1), (−1,−1)} or uniform on {(+1,−1), (−1,+1)}; in either case, the (conditional) covariance is 1. a
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1.3 Organization of this paper

In Section 2, we describe some basic transformations on information flow trees that preserve the joint
distribution on the leaf random variables. These allow us to make certain convenient assumptions about the
structure of our information flow trees in in subsequent sections. Section 3 contains an explicit formula for
the covariance of two leaves in an information flow tree conditioned on some outcome of the other leaves. In
Section 4 we demonstrate that this expression is nondecreasing as a function of edge correlations along the
spine. This essentially lets us reduce a caterpillar tree to an inhomogeneous star; we analyze the latter in
Section 5. Finally, the proof of Theorem C is given in Section 6.

2 Information flow tree equivalences

Given an information flow tree, there are several ways it can be modified so that the joint distribution of its
leaf random variables does not change. Since Conjecture B and Theorem C are only concerned with the leaf
random variables, and not the “internal” random variables, we are free to make such modifications. We use
the following definition:

Definition 2.1. Let T and T ′ be information flow trees, generating random variables (Xv)v∈V and
(X ′v′)v′∈V ′ . Further, assume that V and V ′ have the same set of leaves, L (though T and T ′ may otherwise
have different tree topologies and correlation functions). We say T and T ′ are equivalent if (X`)`∈L and
(X ′`)`∈L have the same joint distribution.

In this section we describe some transformations on general information flow trees that put them into simpler,
equivalent forms.

The first two transformations allow us to assume without loss of generality that ρ(e) ≥ 0 for all edges e,
except possibly for edges incident to leaves. (In fact, allowing correlations in [−1, 0) is not really an essential
aspect of our model; the reader will not lose much by simply assuming ρ ≥ 0 always.)

Lemma 2.2. Let T = (V,E, ρ) be an information flow tree and let w ∈ V be an internal vertex. Let
T ′ = (V,E, ρ′) be the information flow tree that is the same as T except with ρ′(e) = −ρ(e) for all edges e
incident on w. Then T and T ′ are equivalent.

Proof. Let (Xv)v∈V and (Re)e∈E be the random variables generated by T . Define:

R′e =

{
−Re if e is incident to w,

Re otherwise;
X ′v =

{
−Xv if v = w,

Xv otherwise.

It’s easy to see that (R′e)e∈E has the correct joint distribution for T ′. It’s then easy to see that (X ′v)v∈V has
the correct joint distribution for T ′. Since w is not a leaf, we have X` = X ′` for all leaves `. Thus T and T ′
are equivalent. a

Lemma 2.3. For every information flow tree T = (V,E, ρ), there is an equivalent one T ′ = (V,E, ρ′) in
which ρ′(e) ≥ 0 for all “internal” edges e; i.e., for edges e not touching a leaf.

Proof. Given T , choose a root vertex r ∈ V arbitrarily. The idea is that in a top-down fashion starting
from r, we “fix” all negative internal edges. Specifically, we apply the following procedure:

for j = 1, 2, 3, . . . ,
for each non-leaf vertex w at distance j from r,

if the parent edge e of w has ρ(e) < 0,
apply the transformation from Lemma 2.3 to w.

It is easy to see that this procedure terminates with an equivalent information flow tree T ′ in which all
internal edges have a nonnegative correlation value. a
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v1 v2 v3

`1 `2 `3 `4 `5 `6

ρ1 ρ2

ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

⇓

w11 w12 w21 w31 w32 w33

`1 `2 `3 `4 `5 `6

1 ρ1 ρ2 1 1

ρ3 ρ4 ρ5 ρ6 ρ7 ρ7

Figure 2: Applying the transformation of Lemma 2.7 to v1 and v3

Correctness of the next two transformations follows from the fact that if R1, R2 are independent
{±1}-valued random variables with expectations ρ1, ρ2, then R1R2 is a {±1}-valued random variable with
expectation ρ1ρ2:

Lemma 2.4. Suppose T = (V,E, ρ) is an information flow tree, v ∈ V has degree 2, and (e1, e2) is the
length-two path of edges through v. Modify T by deleting v and replacing (e1, e2) with a single edge e satisfying
ρ(e) = ρ(e1)ρ(e2). Then the resulting information flow tree is equivalent to the original T .

Lemma 2.5. Let T = (V,E, ρ) be an information flow tree and let e ∈ E. Modify T by splitting e into a
length-two path (e1, e2) with ρ(e1)ρ(e2) = ρ(e). Then the resulting information flow tree is equivalent to the
original T .

The next two transformations are similar and use the fact that along a path in which all correlations
are 1, the vertex random variables are always equal.

Lemma 2.6. Let T = (V,E, ρ) be an information flow tree and let P = (V ′, E′) be a connected subgraph
of (V,E) in which ρ(e) = 1 for all e ∈ E′. (For us, P will typically be a path.) Assume V ′ does not contain
leaves of V . Then the information flow tree gotten from T by contracting V ′ into a single vertex is equivalent
to T .

Lemma 2.7. Let T = (V,E, ρ) be an information flow tree and let v ∈ V . For any m ∈ Z+, suppose we
delete v and replace it with a path (w1, . . . , wm) whose edges are assigned correlation 1 by ρ. For each edge
e = (u, v) formerly attached to v, we replace it with e = (u,wi) for an arbitrarily chosen i ∈ [m]. Then
the resulting information flow tree is equivalent to the original T . An example of such a transformation is
depicted in Figure 2.

The next transformation allows us to convert to trees of maximum degree 3. Indeed, we can say slightly
more.

Lemma 2.8. For each information flow tree T , there is an equivalent one T ′ in which the underlying graph
has maximum degree 3. Indeed, we can take T ′ to be a rooted binary tree in which each internal node has
exactly 2 children.
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Proof. Suppose v is a vertex in T of degree d > 3. We apply Lemma 2.7 to v; by taking m = d when doing
so, we have room to attach each of v’s neighbors to a different wi. As a result, each wi will have degree at
most 3. Repeating this for each vertex of degree exceeding 3, we get an equivalent tree T ′ of degree at most 3.
By applying Lemma 2.5 to an arbitrary edge e, we can root the tree at newly created vertex. Finally, any
vertices of degree 2 (other than the root) that remain can be eliminated using Lemma 2.4. a

Finally, we will use the last lemma to simplify general caterpillar trees.

Definition 2.9. We say a caterpillar is simple if the spine has at least two vertices, and each vertex of the
spine is attached to exactly one leaf.

Lemma 2.10. For each information flow caterpillar T , there is an equivalent information flow simple
caterpillar T ′.

Proof. We apply Lemma 2.8 to T , taking care with one step: When replacing a high-degree spine vertex v,
we insert the new path (w1, . . . , wm) as part of the spine, with v’s spine neighbor(s) attached appropriately
at w1 or wm. Finally, the resulting binary tree will not quite be a simple caterpillar because the spine node
furthest from the root will have two leaf children. To fix this we can simply take either of these two leaf
edges and split it using Lemma 2.5, creating one more spine vertex. a

Remark 2.11. It is also possible to convert any information flow tree T into an “essentially” equivalent one
T ′ = (V ′, E′, ρ′) which is homogeneous — meaning ρ′ is a constant — and which has maximum degree 3.
Since we won’t use this, we merely sketch the conversion. Given T , we can assume it has maximum degree 3
using the first part of Lemma 2.8. Next, fix ρ′ = −(1 − δ) for some very small δ > 0. Now for each edge
e ∈ E, replace it with a path of length k ∈ Z+ so that (ρ′)k is as close as possible to ρ(e). Since we can make
δ arbitrarily small, we can get all approximations (ρ′)k ≈ ρ(e) simultaneously as close as desired, yielding an
“essentially” equivalent tree T ′. Note that we can’t quite ensure all vertices of T ′ have exactly two children:
merging the degree-2 vertices of T ′ would spoil its homogeneity property.

3 A formula for conditional covariance on general trees

Suppose Xv1 ,Xvm are two vertex random variables in an information flow tree. Prior to any conditioning,
it’s easy to see that their covariance is equal to the product of ρ(e) along the edges e joining v1 and vm. In
this section we generalize this to a formula for their expected covariance when conditioned on any event that
is comprised of several conditionally independent events.

Theorem 3.1. Let T = (V,E, ρ) be a information flow tree, with associated vertex random variables (Xv)v∈V .
Fix any path P = (v1, . . . , vm) of vertices in T , where m ∈ Z+. We think of P as partitioning T into a
sequence of subtrees Ti, with Ti rooted at vi. For notational simplicity we write

Xi = Xvi , X = (X1, . . . ,Xm), ρi = ρ(vi, vi+1).

Let Li be any event depending only on the random variable outcomes in Ti. Write L = L1 ∧ L2 ∧ · · · ∧ Lm,
and assume L has nonzero probability. Then

Cov[X1,Xm | L] =

∏m−1
i=1 ρi

∏m
i=1 Pr[Li |Xi = +1] Pr[Li |Xi = −1]

Pr[L]2
(2)

Proof. Introducing the notation
λ±i = Pr[Li |Xi = ±1], (3)

we want to show that

Pr[L]2 Cov[X1,Xm | L] =

m−1∏
i=1

ρi

m∏
i=1

λ+i λ
−
i . (4)
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Recall that if (Y ,Z) is a pair of random variables, Cov[Y ,Z] = 1
2 E[(Y − Y ′)(Z −Z ′)], where (Y ′,Z ′)

denotes an independent copy of (Y ,Z). Substituting this into (4), the identity we want to prove becomes

m−1∏
i=1

ρi

m∏
i=1

λ+i λ
−
i = Pr[L]2 · 12 E[(X1 −X ′1)(Xm −X ′m) | L]

= Pr[L]2 ·
∑

x,x′∈{±1}m
Pr[X = x | L] Pr[X

′
= x′ | L] · 12 (x1 − x′1)(xm − x′m)

=
∑

x,x′∈{±1}m
Pr[X = x, L] Pr[X

′
= x′, L] · 12 (x1 − x′1)(xm − x′m). (5)

We will prove (5) by induction on m. The base case, m = 1, is

λ+1 λ
−
1 =

∑
x,x′∈{±1}

Pr[X1 = x, L1] Pr[X ′1 = x′, L1] · 12 (x− x′)2. (6)

To verify this, note that when x = x′ the summand in (6) is zero and when x 6= x′ the summand in (6) is
2 Pr[X1 = +1, L1] Pr[X1 = −1, L1]. Thus the whole sum in (6) is indeed

4 Pr[X1 = +1, L1] Pr[X1 = −1, L1]

= 4(Pr[L1 |X1 = +1] Pr[X1 = +1])(Pr[L1 |X1 = −1] Pr[X1 = −1]) = 4λ+1 · 12 · λ
−
1 · 12 = λ+1 λ

−
1 .

We now assume (5) holds for a given m ∈ Z+ and prove it for m+ 1. Thus we need to show

m∏
i=1

ρi

m+1∏
i=1

λ+i λ
−
i =

∑
x ∈{±1}m
x′∈{±1}m

∑
xm+1∈{±1}
x′m+1∈{±1}

Pr[X = x, Xm+1 = xm+1, L, Lm+1] ·

Pr[X
′

= x′,X ′m+1 = x′m+1, L, Lm+1] · 12 (x1 − x′1)(xm+1 − x′m+1),
(7)

Because of the information flow tree structure we have

Pr[X = x,Xm+1 = xm+1, L, Lm+1] = Pr[X = x, L] Pr[Xm+1 = xm+1, Lm+1 |Xm = xm]

= Pr[X = x, L] · ( 1
2 + 1

2ρmxmxm+1) · λxm+1

m+1 ,

and similarly for x′, x′m+1. Thus the right-hand side of (7) is∑
x ∈{±1}m
x′∈{±1}m

(
Pr[X = x, L] Pr[X

′
= x′, L] · 12 (x1 − x′1)

·
∑

xm+1∈{±1}
x′m+1∈{±1}

( 1
2 + 1

2ρmxmxm+1) · λxm+1

m+1 · ( 1
2 + 1

2ρmx
′
mx
′
m+1) · λx

′
m+1

m+1 · (xm+1 − x′m+1)
)
.

(8)

Regarding the inner sum here (i.e., the second line in (8)), there is no contribution when xm+1 = x′m+1; by a
little algebra, the contribution from the two xm+1 6= x′m+1 summands is

1
2λ

+
m+1λ

−
m+1

(
(1 + ρmxm)(1− ρmx′m+1)− (1− ρmxm)(1 + ρmx

′
m+1)

)
= λ+m+1λ

−
m+1ρm(xm − x′m).

Thus (8) (equivalently, the right-hand side of (7)) is

ρm+1λ
+
m+1λ

−
m+1

∑
x,x′∈{±1}m

Pr[X = x, L] Pr[X
′

= x′, L] · 12 (x1 − x′1)(xm − x′m) =

m∏
i=1

ρi

m+1∏
i=1

λ+i λ
−
i ,

by the induction hypothesis (5). a
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We present an equivalent way to write (2) in the following corollary.

Corollary 3.2. Suppose we are in the setting of Theorem 3.1. Then for any x ∈ {±1}m and its bitwise
negation −x,

Cov[X1,Xm | L] =

m−1∏
i=1

ρi ·
Pr[X = x | L]

Pr[X = x]
· Pr[X = −x | L]

Pr[X = −x]
.

Proof. Beginning with (2), we have

Cov[X1,Xm | L] =

m−1∏
i=1

ρi ·
∏m
i=1 Pr[Li |Xi = +1]

Pr[L]
·
∏m
i=1 Pr[Li |Xi = −1]

Pr[L]

=

m−1∏
i=1

ρi ·
∏m
i=1 Pr[Li |Xi = xi]

Pr[L]
·
∏m
i=1 Pr[Li |Xi = −xi]

Pr[L]
.

By virtue of the information flow tree structure we have Pr[Li |X = x] = Pr[Li |Xi = xi]. Thus the above
equals

m−1∏
i=1

ρi ·
∏m
i=1 Pr[Li |X = x]

Pr[L]
·
∏m
i=1 Pr[Li |X = −x]

Pr[L]
=

m−1∏
i=1

ρi ·
Pr[L |X = x]

Pr[L]
· Pr[L |X = −x]

Pr[L]
.

The proof is now completed by applying Bayes’ theorem. a

4 A monotonicity property

Though the formula in Theorem 3.1 is quite precise, we will only use it in a rather “soft” way, to show a
certain monotonicity property. Suppose we are in the setting of Theorem 3.1 and that L denotes a certain
outcome for all the leaf random variables in the tree (these are the events of main interest for us). Assume for
simplicity that the “path correlations” ρ1, . . . , ρm−1 are all nonnegative. Then the formula from Theorem 3.1
implies that Cov[X1,Xm | L] is also nonnegative, a fact that does not seem obvious a priori. We’ll in fact
be interested in the expected value of this conditional covariance, over all the outcomes L.

The goal of this section is to show that this expected covariance can only increase if one of the “path
correlations” ρi is increased. Though this fact seems “intuitive”, it’s also not a priori obvious; we’ve only
been able to prove it with the aid of Theorem 3.1. Note that this monotonicity property is not immediately
obvious from the formula in Theorem 3.1, since the expressions Pr[X = (±1, . . . ,±1) | L] have an implicit
dependence on the ρi’s.

Theorem 4.1. In the setting of Theorem 3.1, assume that ρ1, . . . , ρm−1 ∈ [0, 1]. Let Y = (Y 1, . . . ,Y `) be
the leaf random variables of T . Then

E
[∣∣∣Cov[X1,Xm]

∣∣∣ | Y ] (9)

is a nondecreasing function of each ρi.

Proof. Let y ∈ {±1}` be any potential outcome for the leaf random variables, and let Ly denote the event
that Y = y. Then it’s easy to see that Ly has the factorizable form described in Theorem 3.1. (A slight
annoyance is that it’s possible to have Pr[Ly] = 0. However this can only happen if some pair Y i,Y j is
fully correlated; i.e., Cov[Y iY j ] = ±1. In this case, letting Xi denote one of the ancestors of Y i,Y j on
path P , we have that Xi is fully determined by every possible outcome y. In turn, this means X1 and Xm

are independent conditioned on every possible outcome y; i.e., the random variable Cov[X1,Xm | Y ] is

9



identically 0. Then (9) is trivially a nondecreasing function of the ρi’s. Thus we may henceforth assume that
no pair Y i,Y j is fully correlated and hence that Pr[Ly] 6= 0 for all y ∈ {±1}`, no matter what the ρi’s are.)

Rewriting identity (4), Theorem 3.1 equivalently states that for any y ∈ {±1}`,

Pr[Ly] ·
∣∣∣Cov[X1,Xm | Ly]

∣∣∣ =

∏m−1
i=1 ρi

∏m
i=1 λ

+
i λ
−
i

Pr[Ly]
. (10)

(We are able to insert the absolute-value sign on the left because, as noted earlier, the right-hand side is
evidently nonnegative.) By definition, our quantity of interest (9) is the sum of (10) over all y ∈ {±1}`. We’ll
in fact show that for every y ∈ {±1}` and every j ∈ [m− 1], the quantity (10) is a nondecreasing function
of ρj .

In the numerator of (10) we have that
∏
i 6=j ρi is a nonnegative constant independent of ρj . The same is

true of
∏m
i=1 λ

+
i λ
−
i : by the definition (3), each λ±1i represents a probability that depends on y but not on

any of the ρi’s. Thus it remains to show that

ρj
Pr[Ly]

=
ρj

Pr[Y = y]
(11)

is a nondecreasing function of ρj . Note that Pr[Y = y] implicitly depends on all of the ρi’s; in fact, it’s
a linear function of each of them. To see this, note that ρj = ρ(vj , vj+1) enters into the generation of T ’s
random variables only through the edge random variable Rvj ,vj+1

; thus we can write

Pr[Y = y] = (1
2 + 1

2ρj) Pr[Y = y | Rvj ,vj+1
= +1] + ( 1

2 −
1
2ρj) Pr[Y = y | Rvj ,vj+1

= −1],

where the two conditional probabilities on the right do not depend on ρj . Thus we can express (11) as

ρj

Pr[Y = y]
=

ρj
b+ cρj

(12)

for some numbers b, c not depending on ρj . Now a function of this form,
ρj

b+cρj
, is nondecreasing if and only

if b ≥ 0; i.e., if and only if the denominator in (12) is nonnegative for ρj = 0. But indeed this quantity is
nonnegative, being a probability. a

We end this section by observing that although we have shown that (9) is an increasing function of the
“path correlations” ρi, we actually expect it to be a decreasing function of |ρ(e)| for all edges e not on the
path between Xv1 and xvm . The intuition is that increasing one such |ρ(e)| gives more information about its
ancestor random variable Xvi on the path P . In turn, this should decrease the expected covariance between
Xv1 and Xvm . As an example, if vi had just a single edge (vi, `) hanging off it, and ρ(vi, `) were increased
to 1, then observing the leaf random variable X` would determine Xvi completely. Thus Xv1 and Xvm

would become independent (covariance-0) conditioned on any observed outcome for X`.

5 The inhomogeneous star

To motivate the result in this section, let’s recall Conjecture B. Suppose we are given any information flow
tree T and we would like to upper-bound the expected covariance of some particular pair of leaves Y u,Y v.
As we’ll see, it’s easy to reduce this to analyzing the expected covariance of the leaves’ parents, call them
Xv1 ,Xvm . Next, our monotonicity result Theorem 4.1 implies that this expected covariance can only increase
if all edge-correlations along the path between Xv1 ,Xvm were increased to 1. In this case, by Lemma 2.6 we
could equivalently think of the entire path as being contracted into one internal random variable X0.

Suppose now that the original tree was a caterpillar—in fact, by Lemma 2.10 we can assume it was a
simple caterpillar. After contracting the path, the collection L of leaves that were originally “between” Y u

and Y v now hang directly off of X0. The two parts of the caterpillar “to the outside” of Xv1 and Xvm also
hang off of X0 as gangly caterpillar-subtrees — but we plan on ignoring them. We only intend to analyze
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the “inhomogeneous star” formed by X0 and L. The hope will be that if there is “squared correlation” along
the edges to L, then conditioning on them will typically leave X0 with very small variance; equivalently, Xv1

and Xvm will have very small covariance.
The following lemma concerning the inhomogeneous star uses well-known ideas, but as we do not have a

reference for the exact statement, we give a proof.

Lemma 5.1. Let T be an information flow tree comprising a “star center” vertex with random variable X0,
as well as m leaf vertices with random variables denoted Y 1, . . . ,Y m. We allow T to contain additional
vertices not mentioned. Write ρi ∈ [−1, 1] for the correlation between X0 and Y i, and write α =

∑m
i=1 ρ

2
i .

Then
E
[
Var[X0] | Y

]
≤ 4 exp(−α/2),

where Y denotes (Y 1, . . . ,Y m).

Proof. Let us define the random variable

S = S(Y ) = sgn(ρ1Y 1 + · · ·+ ρmY m).

(Take sgn(0) = +1 for definiteness.) For each y ∈ {±1}m let’s write

p(y) = Pr[X0 6= S | Y = y].

Once we condition on Y = y, the random variable S becomes some fixed sign s ∈ {±1}, and the random
variable X0 takes on some conditioned distribution, call it Z. Now since Z is a {±1}-valued random variable
we have

Var[Z] = 4 Pr[Z = +1] Pr[Z = −1] ≤ 4 Pr[Z 6= s],

no matter what s is. Thus
Var[X0 | Y = y] ≤ 4p(y),

and so
E
[
Var[X0] | Y

]
≤ 4 E[p(Y )] = 4 Pr[X0 6= S].

It thus remains to show that

exp(−α/2) ≥ Pr[X0 6= S] ≥ Pr[X0(ρ1Y 1 + · · ·+ ρmY m) ≤ 0].

The two cases X0 = ±1 are symmetric, so we may assume X0 = +1. Then Y 1, . . . ,Y m are independent
{±1}-valued random variables with E[Y i] = ρi, and we wish to show that

Pr[ρ1Y 1 + · · ·+ ρmY m ≤ 0] ≤ exp(−α/2).

This follows immediately from Hoeffding’s inequality, applied to the random variables ρiY i ∈ [−ρi, ρi]. a

6 Proof of Theorem C

In this section we prove Theorem C. Let T = (V,E, ρ) be a information flow caterpillar tree with t ≥ 2
leaves. By Lemma 2.10 we may assume T is a simple caterpillar. By Lemma 2.3 we may assume that ρ has a
nonnegative value on all spine edges of T . We write X1, . . . ,Xt for the vertex random variables along T ’s
spine and Y 1, . . . ,Y t for the leaf random variables, with ei denoting the edge between Xi and Y i. We write
Ri = XiY i for the edge random variable that T associates to ei, and we write ρi = ρ(ei) = E[Ri]. See
Figure 3 for a depiction of this.

Recall that we wish to show

avg
distinct pairs

u,v∈[t]

E
[∣∣∣Cov[Y u,Y v]

∣∣∣ | (Y j)j∈[t]\{u,v}

]
≤ O(1/t). (13)
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Figure 3: A Simple Information Flow Caterpillar Tree

Let us suppose for some time that the pair u, v ∈ [t] is fixed. For brevity we’ll write Y = (Y j)j∈[t]\{u,v} for
the leaf random variables other than Y u,Y v. Then

E
[∣∣∣Cov[Y u,Y v]

∣∣∣ | Y] = E
[∣∣∣Cov[XuRu,XvRu]

∣∣∣ | Y] = E
[∣∣∣ρuρv Cov[Xu,Xv]

∣∣∣ | Y]
= |ρu| |ρv|E

[∣∣∣Cov[Xu,Xv]
∣∣∣ | Y] (14)

where the second equality uses that Ru,Rv are independent of (Xu,Xv,Y).
Given u, v, let T ′ denote T with edges eu, ev deleted. We may apply our monotonicity result Theorem 4.1

to T ′, with P being the spine path between Xu and Xv. (Note that we earlier arranged for all spine edges
to have nonnegative correlation, as required for Theorem 4.1.) We conclude that if the edge correlations

along P were raised to 1, this could only increase the quantity E
[∣∣∣Cov[Xu,Xv]

∣∣∣ | Y] appearing in (14).

We could further upper-bound this quantity as follows: Write Tuv for the modification of T ′ in which P is
contracted to a single vertex with random variable called X0 (as in Lemma 2.6). Then by applying the
inhomogeneous star result, Lemma 5.1 to Tuv, we would get

E
[∣∣∣Cov[Xu,Xv]

∣∣∣ | Y] = E
[
Var[X0] | Y

]
≤ 4 exp(−α(u, v)/2),

where
α(u, v) :=

∑{
ρ2i : i is between u and v

}
.

Putting these observations together, we conclude that for a fixed pair u, v ∈ [t],

E
[∣∣∣Cov[Y u,Y v]

∣∣∣ | (Y j)j∈[t]\{u,v}

]
≤ |ρu| |ρv| · 4 exp(−α(u, v)/2).

Thus to complete the proof of (13) we need to show

(∗) := avg
distinct pairs

u,v∈[t]

{|ρu| |ρv| · exp(−α(u, v)/2)} ≤ O(1/t). (15)

This is now simply a combinatorial problem concerning the list of numbers ρ1, · · · , ρt.
We solve the problem as follows. First, we’d like to switch u and v to being drawn without replacement.

Note that

(∗) = E
u,v∼[t]

uniformly, independently

[{
|ρu| |ρv| · exp(−α(u,v)/2) if u 6= v,

(∗) if u = v.

}]
Since |ρu| |ρv| · exp(−α(u,v)/2) ∈ [0, 1] always, and since Pr[u = v] = 1/t, the above differs from

E
u,v∼[t]

uniformly, independently

[|ρu| |ρv| · exp(−α(u,v)/2)] (16)
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Figure 4: A small example illustrating the indices of Uk(v). The label on edge e is ρ2e.

by at most 2/t. Thus to show (15), it suffices to upper-bound (16) by O(1/t). To do this, we first apply
Cauchy–Schwarz, obtaining

E
u,v∼[t]

[|ρu| |ρv| · exp(−α(u,v)/2)] ≤
√

E
u,v∼[t]

[ρ2u · exp(−α(u,v)/2)]
√

E
u,v∼[t]

[ρ2v · exp(−α(u,v)/2)]

= E
u∼[t]

[
ρ2u · exp(−α(u,v)/2)

]
, (17)

the last equality because u and v are symmetrically distributed. Let’s introduce the following events:

A0 = “α(u,v) ∈ [0, 1)”, Ak = “α(u,v) ∈ [2k−1, 2k)”, k ∈ Z+.

Using the fact that
∑
k≥0 1Ak

≡ 1, we have that (17) equals

E
u,v∼[t]

ρ2u ·∑
k≥0

1Ak
· exp(−α(u,v/2))

 ≤ E
u,v∼[t]

ρ2u ·∑
k≥0

1Ak
· e1/4 exp(−2k−2)

 .
Here we essentially lower-bounded α(u,v)/2 by 2k−2 on the event that Ak occurs — except, that is not quite
correct when k = 0; this why we included the factor e1/4, to cover the k = 0 case. Thus it remains to show∑

k≥0

exp(−2k−2) · E
u,v∼[t]

[
ρ2u · 1Ak

]
≤ O(1/t). (18)

To show this, let’s consider a fixed integer k ≥ 0 and imagine that in the expectation, v ∼ [t] is chosen first.
Once v is chosen, we define interval U−k (v) ⊆ [t] to be the set of all possible u < v such that the event Ak
occurs. We define U+

k (v) similarly, but for u > v. Figure 4 shows a small example. Denote the union of
U−k (v) and U+

k (v) by Uk(v) .
Furthermore, we must have ∑

u∈Uk(v)

ρ2u =
∑

u∈U+
k (v)

ρ2u +
∑

u∈U−k (v)

ρ2u ≤ 2k + 2k = 2k+1 ∀k ≥ 0.

It follows that we have the upper bound

E
u,v∼[t]

[
ρ2u · 1Ak

]
= E

v∼[t]

 ∑
u∈Uk(v)

Pr[u = u]ρ2u

 = (1/t) E
v∼[t]

 ∑
u∈Uk(v)

ρ2u

 ≤ (1/t) E
v∼[t]

[
2k+1

]
= 2k+1/t.

Substituting this into (18), it remains to observe that indeed∑
k≥0

exp(−2k−2) · 2k+1 ≤ O(1).

The proof of Theorem C is complete.
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7 Conclusions

Lacking any directions for proving the main Conjecture A, we believe that Conjecture B (the case of general
information flow trees) is a good place to start. Having proved Theorem C (the case of caterpillars), a natural
next case to consider is an information flow tree with the property that each leaf is at distance at most two
from a central spine. By the transformations in Section 2, it suffices to consider the case that each spine node
has a single edge hanging off it, which in turn has an inhomogeneous star hanging off it. Perhaps some of
the “reconstruction” results from [5] in terms of effective electrical resistance could be of use here. Another
interesting special case of Conjecture B that one could try to resolve is that of a complete binary tree in
which all edge correlations have the same value ρ. (This is the most heavily-studied information flow tree.)
We believe that this case satisfies Conjecture B by a wide margin for all ρ, even with a sub-inverse-polynomial
bound in place of O(1/t). Perhaps the formula in our Theorem 3.1 could help prove this.
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