
OutlierFinding: FocusingUserAttentiononPossibleErrors

RobertC. Miller andBradA. Myers
Schoolof ComputerScience
Carnegie Mellon University

5000ForbesAve
Pittsburgh,PA 15213USA

+1-412-268-1188
{rcm,bam}@cs.cmu.edu

ABSTRACT
Whenusershandlelargeamountsof data,errorsarehardto
notice. Outlier finding is a new way to reduceerrorsby di-
recting the user’s attentionto inconsistentdatawhich may
indicateerrors. We have implementedan outlier finder for
text, whichcandetectbothunusualmatchesandunusualmis-
matchesto a text pattern.Whenintegratedinto the userin-
terfaceof aPBDtext editorandtestedin auserstudy, outlier
findingsubstantiallyreducederrors.

KEYWORDS: programming-by-demonstration,PBD,intel-
ligent userinterfaces,text editing,patternmatching,search-
and-replace,LAPIS, clusteranalysis,unsupervisedlearning

INTRODUCTION
The search-and-replacecommandin a typical text editor
forcesusersto choosebetweentwo alternatives:replaceone
matchat a time with confirmation,or replaceall matchesat
once.Whenthedocumentis longandthenumberof matches
large, neither choice is ideal. Confirming eachmatch is
tediousand error-prone. When most answersare Yes, a
boredor hurriedusereventuallystartsto pressYeswithout
thinking. On the other hand, replacingall matcheswith-
out confirmationrequiresthe userto trust the precisionof
the searchpattern. Recklessapplicationsof global search-
and-replacehave beenfeaturedin comp.risks, amongthem
“eLabourated”in a news report about the British govern-
ment,“back in the African-American”in an article abouta
budgetcrisis, and “arjpgicial turf” on a web site that evi-
dentlyswitchedfrom TIFF to JPEG[11].

Weproposeanalternativeto thesetwo extremes:outlier find-
ing. In statistics,anoutlieris adatapointwhichappearsto be
inconsistentwith therestof thedata[2]. Applied to search-
and-replace,thisideameansthatthetext editorhighlightsthe

Permissionto make digital or hardcopiesof all or partof this work for
personalor classroomuseis grantedwithout fee provided that copies
arenot madeor distributedfor profit or commercialadvantageandthat
copiesbearthisnoticeandthefull citationonthefirst page.Tocopy oth-
erwise,or republish,to postonserversor to redistributeto lists,requires
prior specificpermissionand/ora fee.
UIST’01, November11-14,2001,Orlando,Florida,USA.
Copyright 2001ACM 1-58113-212-3/01/0001.. .$5.00

mostatypicalpatternmatches,so that theusercanfocuson
the matchesthat aremost likely to be problematic.Outlier
finding reorganizesthe search-and-replacetask so that hu-
manattention– anincreasinglyscarceresource– is usedfar
moreefficiently.

Briefly, theoutlier findertakesasetof text regionsmatching
a targetpattern,generatesa list of binary-valuedfeaturesde-
scribingthepatternmatchesandtheircontext (suchas“starts
with S” or “at endof a line”), teststhefeaturesagainsteach
matchto computea featurevectorfor thematch,andfinally
sortsthematchesbasedontheirweightedEuclideandistance
from the medianmatch in featurevector space. Matches
which lie far from the medianareconsideredoutliers. We
have implementedanoutlier finderaspartof theLAPIS sys-
tem (Lightweight Architecturefor ProcessingInformation
Structure),a text-editor/web-browserdesignedfor browsing
andeditingsemi-structuredtext [7].

Outlier finding dependson two assumptions. First, most
matchesmustbecorrect,sothaterrorsaretheneedlesin the
haystack,not the hay. This assumptionis essentialbecause
theoutlier finderhasno way of knowing whattheuseractu-
ally intendsthepatternto match.Unlessthesetof matchesis
roughlycorrectto begin with, theoutlierfinder’ssuggestions
areunlikely to behelpful. Second,erroneousmatchesmust
differ from correctmatchesin waysthatarecapturedby the
features.Althoughtheoutlier findercanbeaugmentedwith
domainknowledge– ourshasa substantialknowledgebase,
including a Java parserandHTML parser– the knowledge
baseinevitably hasgaps,and the featurelanguagemay be
incomplete.Fortunately, theseassumptionsarenot seriously
limiting. Outlierfindingactuallyhasmorevaluewhenerrors
arelike needlesin a haystack,sothefirst assumptionmeans
only that it works betterwhenit’s moreuseful. As for the
secondassumption,we have found that many errorsdiffer
in dramaticways from correctmatches,often requiringno
domainknowledgeatall to detect.

Outlier finding is particularlyusefulfor focusinghumanat-
tentionwherehumanjudgmentis needed.The LAPIS sys-

temincludesa novel userinterfacefor automatingrepetitive
editing� tasks,calledsimultaneousediting [9]. Simultaneous
editing usesmultiple synchronizedcursorsto edit multiple
locationsin a documentat once, inferring the locationsof
othercursorsfrom thelocationof thecursortheuseris con-
trolling. Sometimesthe other cursorsare misplacedby a
wronginference,resultingin thewrongedits,butauserstudy
found that usersoften overlook this error until it’s too late
[9]. In this paper, we show how outlier finding canbe used
to draw theuser’sattentionto potentially-misplacedcursors,
andpresenttheresultsof aseconduserstudyin whichoutlier
findingsubstantiallyreducedthefrequency of thiserror.

Outlier finding can explore both sidesof a set boundary–
not only borderlinematchesto a pattern,but alsoborderline
mismatches.Borderlinemismatchescanbeevenmorevalu-
ableto the userthanborderlinematches,sincethe spaceof
mismatchesis usuallymuchlarger. In practice,finding near
mismatchesto a text patternis complicatedby the fact that
the searchspaceis the setof all substringsin a document.
Theproblemcanbesimplifiedby reducingthesearchspace–
e.g.,searchingonly wordsor lines,or ruling out mismatches
thatoverlapamatch.

RELATED WORK
Most work on outlierscomesfrom thefield of statistics[2],
focusingon statisticalteststo justify omitting outliersfrom
experimentaldata.A largenumberof testshave beendevel-
opedfor variousprobability distributions. For the applica-
tionswe areinterestedin, however, thedistribution is rarely
simpleandusuallyunknown. Ouroutlierfindercannotmake
strongstatisticalclaimslike “this outlier is 95%likely to be
anerror,” but ontheotherhandit canbeappliedmorewidely,
with no assumptionsaboutthedistributionof thedata.

Outlierfindinghasbeenappliedto dataminingby Knorr and
Ng [6], becauseoutliersin largedatabasescanyield insights
into thedata.Knorr andNg proposea “distance-based”def-
inition of anoutlier, which is similar to our approach.They
definea

�������	�
���
outlier asa dataobjectthat lies at leasta

distance
�

(in featurespace)from at leasta fraction
�

of the
restof thedataset.Thechoiceof

�
and

�
is left to a human

expert.Ouralgorithmis simplerfor nonexpertusersbecause
it merelyranksoutliersin a singledimensionof weirdness.
Usersdon’t needtounderstandthedetailsof theoutlierfinder
to useit, andappropriateweightsandparametersaredeter-
minedautomaticallyby thealgorithm.

Our outlier finding algorithm draws on techniquesbetter
known in the machinelearningcommunityasclusteringor
unsupervisedlearning [1]. In clustering,objectsareclassi-
fied into similar groupsby a similarity measurecomputed
from featuresof theobject.Clusteringis commonlyusedin
informationretrieval to find similar documents,representing
eachdocumentby avectorof termsandcomputingsimilarity
betweenterm vectorsby Euclideandistanceor cosinemea-
sures.Ourapplicationdomain,text patternmatching,is con-

cernedwith matchingsmall partsof documentsratherthan
retrieving whole documents,so term vectorsare lesssuit-
ableasarepresentation.Freitagconfirmedthishypothesisin
hisstudyof inductivelearningfor informationextraction[4],
which showedthata relationallearnerusingfeaturessimilar
to ourswasmuchmoreeffective at learningrulesto extract
fieldsfrom text thana term-vector-basedlearner.

Onewayto find borderlinemismatchesin text patternmatch-
ing is to allow errorsin the patternmatch. This is the ap-
proachtaken by agrep [15], which allows a boundednum-
berof errors(insertions,deletions,or substitutions)whenit
matchesa pattern.Agrepis particularlyusefulfor searching
documentswhich maycontainspellingerrors.

Spellingandgrammarcheckingarewell-known waysto find
errorsin text editing. Microsoft Word pioneeredthe ideaof
using thesecheckers in the background,highlighting pos-
sible errorswith a jaggedunderlineas the usertypes. Al-
thoughspell-checkingandoutlier-findingbothhavethesame
goal – reducingerrors– the approachesaredrasticallydif-
ferent. Spelling and grammarcheckers comparethe text
with a known model,suchasa dictionaryor languagegram-
mar. Outlier finding has no model. Instead,it assumes
that the text is mostly correctalready, andsearchesfor ex-
ceptionsand irregularities. Whereasa conventionalspell-
checkerwouldbeflummoxedby text thatdivergesdrastically
fromthemodel– suchasLewisCarroll’s“TheJabberwocky”
[3] – a spell checker basedon outlier-finding might notice
thatoneoccurrenceof “Jabberwock” hasbeenmistypedbe-
causeit is spelleddifferently from the rest. On the other
hand,an outlier-finding spell checker would overlook sys-
tematicspellingerrors. Morris andCherrybuilt an outlier-
findingspell-checker [10] thatcomputestrigramfrequencies
for a documentandthensortsthedocument’swordsby their
trigramprobability, andfoundthatit workedwell on techni-
cal documents.We have not tried to applyour own outlier-
findingalgorithmto spell-checking,but it would make inter-
estingfuturework.

CASE STUDY: SIMULTANEOUS EDITING
Before delving into the detailsof the outlier-finding algo-
rithm,wefirst describehow weusedoutlierfindingto reduce
errorsin anintelligenttext editor.

Simultaneous Editing
Simultaneousediting is a new user interfacetechniquefor
automatingrepetitive tasksin text editing[9]. Theuserfirst
selectsa setof text regionsto edit, calledthe records. For
example,the recordsmight be the entriesin a bibliography,
suchasFigure1. Theusercanselectthe recordsetin three
ways: by making a multiple selectionwith the mouse,by
writing apatternin theLAPIS patternlanguage,or by giving
oneor moreexamplesandlettingLAPIS infer therest.

After definingtherecords,theusermakesa selectionin one
recordusingthemouseor keyboard.In response,thesystem

Figure 1: Simultaneous editing in action. The record
set is a list of bibliography entries. The user selected
“1.” in the first record, which the system generalized to
a selection in the other records.

Figure 2: The final result of the bibliography-editing
task.

makesan equivalentselectionin all other records. Subse-
quentediting operations– suchas typed text, deletions,or
cut-and-paste– affect all recordssimultaneously, as if the
userhadappliedthe operationsto eachrecordindividually.
For example,thetaskin Figure1 is to make eachentrystart
with theauthor’snameandyearin squarebrackets.Figure2
shows the desiredresult. To do part of this task, the user
selectsthe author’s namein onerecordandcopiesit to the
beginningof the record. Simultaneously, the author’s name
in everyotherrecordis selectedandcopied.

A userstudy[9] found thatnovice userscoulddo taskslike
this oneafteronly a 10-minutetutorial,andevensmalltasks
(fewer than10 records)werefasterto do with simultaneous
editingthanwith manualediting.

Thegreatestchallengein simultaneouseditingis determining
theequivalentselectionwhereeditingshouldoccurin other
records.Givena cursorpositionor selectionin onerecord,
the systemmustgeneralizeit to a descriptionwhich canbe
appliedto all other records. Although our system’s gener-
alizationsareusuallycorrect(theuserstudyfoundthat84%
of users’selectionsweregeneralizedcorrectlyfrom only one
example),sometimesthe generalizationis wrong. The user
cancorrectageneralizationby holdingdown theControlkey
andmakingaselectionin anotherrecord– effectively giving
anotherexampleof thedesiredselection– but theusermust
first noticethatthegeneralizationneedsto becorrected.

In the userstudy, we observed that someincorrectgeneral-
izationsarefar morenoticeablethanothers.Figure3 shows
anincorrectgeneralizationthatwaseasyfor usersto notice.
The userhasselected“89”, the last two digits of the first
record’s publicationyear, which the systemhasmistakenly
generalizedinto the description“from just after first “9” to
just after first year”. This generalizationis drastically, visi-
bly wrong,selectingfarmorethantwo digits in somerecords
andnearlytheentirelastrecord.All eightusersin thestudy

Figure 3: Incorrect generalization of the last two digits
of the publication year. This misgeneralization is visibly
wrong, and all users noticed it.

Figure 4: Incorrect generalization of the author’s name.
“Hayes-Roth” is only partially selected, but no users
noticed.

noticedandcorrectedthis misgeneralization.

Themistake in Figure4, on theotherhand,wasmuchharder
to spot. The userhasselectedthe last nameof the first au-
thor, “Aha”. The system’s generalizationis “first capital-
ized word”, which is correct for all but record7, whereit
selectsonly the first half of the hyphenatedname“Hayes-
Roth”. The error is so visually subtlethat all seven users
who madethis selectionor a relatedselectioncompletely
overlookedtheerrorandusedtheincorrectselectionanyway.
(The eighthuserluckily avoided the problemby including
thecommain theselection,whichwasgeneralizedcorrectly.)
Althoughthreeuserslaternoticedthemistake andmanaged
to change“[Hayes95]” to thedesired“[Hayes-Roth95]”, the
otherfour usersnevernoticedtheerroratall. A similareffect
wasseenin anothertask,in whichsomeusersfailedto notice
thatthetwo-wordbaseballteam“Red Sox” wasnot selected
correctly, resultingin errors.

Highlighting Outliers
In an effort to make incorrectselectionssuchas Figure 4
morenoticeable,weaugmentedthesystemwith outlier find-
ing. Whenever thesystemmakesa generalization,it passes
theresultingsetof selectedregionsto theoutlier finder. The
outlier finderdeterminesa setof relevant featuresandranks
thesetof regionsby thedistanceof eachselection’s feature
vectorfrom themedianfeaturevector. Thealgorithmis de-
scribedin moredetail in a latersection.Usingthis ranking,
thesystemhighlightsthemostunusualregionsin a visually
distinctive fashion,in orderto attractthe user’s attentionso
thatthey canbecheckedfor errors.

Two designquestionsimmediatelyarise:how many outliers
shouldbehighlighted,andhow shouldthey behighlighted?
Outliers are not guaranteedto be errors. Highlighting too
many outlierswhentheselectionis actuallycorrectmaylead
theuserto distrustthehighlightinghint. On theotherhand,
an error may be an outlier but not the farthestoutlier, so

Figure 5: Incorrect generalization with outlier highlight-
ing drawing attention to the possible error.

highlightingmoreoutliersmeansmoreactualerrorsmaybe
highlighted. But highlighting a large numberof outliers is
unhelpfulto theuser, sincetheusermustexamineeachone.
Ideally, theoutlier findershouldhighlight only a handfulof
selectionswhen the selectionis likely to have errors,and
noneat all if theselectionis likely to becorrect.

After someexperimentation,we found that the following
heuristicworks well. Let
 be the weightedEuclideandis-
tanceof the farthestselectionfrom the medianandlet � be
the setof selectionsthat arefartherthan
���� from the me-
dian. If � is small – containingfewer than10 selectionsor
fewer thanhalf of all the selections,whichever is smaller–
thenhighlighteverymemberof � asaoutlier. Otherwise,do
not highlight any selectionsasoutliers. This algorithmputs
a fixedupperboundon thenumberof outlier highlights,but
avoidsdisplayinguselesshighlightswhentheselectionsare
not significantlydifferentfrom oneanother.

Theseconddesigndecisionishow outlierhighlightingshould
be renderedin the display. One possibility is the way
Microsoft Word indicatesspelling and grammarerrors, a
jagged,brightly coloredunderline.ExperiencedWord users
are accustomedto this convention and alreadyunderstand
thatit’smerelyahint. In simultaneousediting,however, out-
lier highlightingmuststandout throughselectedtext, which
is renderedusing a blue background. A jaggedunderline
wouldbetoosubtleto benoticedin thiscontext, particularly
in peripheralvision.

Instead,we highlight an outlier selectionby changingits
backgroundfrom blue to red. To further enhancethe high-
lighting, theentirerecordcontainingtheoutlier is alsogiven
a red background,and the scrollbaris augmentedwith red
markscorrespondingto thehighlightedoutliers. Simultane-
ouseditingalreadyaugmentsthescrollbarwith markscorre-
spondingto theselection,sotheredoutliermarksaresimply
paintedon top of the blue selectionmarks. Figure5 shows
the resultingdisplay, highlighting two outliers in the erro-
neousauthorselection.

User Study

To evaluatethe effectivenessof outlier highlighting, we re-
peatedour original userstudywith new subjects.The only
differencebetweentheoriginal studyandthenew studywas
thepresenceof outlier highlighting. Thesetupof bothstud-
iesis briefly describedbelow, andthentheresultsrelevantto
outlier highlightingarediscussed.

Userswerefoundby solicitingcampusnewsgroups– 8 users
for theoriginalstudywith nooutlierhighlighting,and6 users
for the new studywhich includedoutlier highlighting. All
werecollegeundergraduateswith substantialtext-editingex-
perienceandvarying levels of programmingexperience(in
eachgroup,roughlyhalf describedtheir programmingexpe-
rienceas “little” or “none,” and half as “some” or “lots”).
All werepaid for participating.Usersfirst learnedaboutsi-
multaneousediting by readinga tutorial and trying the ex-
amples. This tutorial took lessthan10 minutesfor all but
two users,who spentextra time exploring the systemand
makingcomments.Thetwo groupsreceivedslightly differ-
ent tutorials. Both tutorialsdiscussedtheproblemof incor-
rectgeneralizationsandgave usersanexercisein correcting
a generalization,but theoutlier-highlightinggroup’s tutorial
alsodiscussedwhatoutlier highlighting looks like andwhat
it means.

After completingthe tutorial, eachuserperformedthe fol-
lowing threetasksusingsimultaneousediting:

1. Put theauthornameandpublicationyearin front of each
citation.
Before:
1. Aha, D.W. and Kibler, D. Noise-tolerantinstance-basedlearningalgorithms.
In Proceedingsof the EleventhInternationalJoint Conferenceon Artificial Intelli-
gence.MorganKaufmann,1989,pp. 794-799.
2. Brajnik, G. andTasso,C. A Shell for developingnon-monotonicusermodeling
systems.Int. J.Human-ComputerStudies40(1994),31-62.
... (7 more)...
After:
[Aha 89] Aha, D.W. and Kibler, D. Noise-tolerantinstance-basedlearningalgo-
rithms. In Proceedingsof theEleventhInternationalJointConferenceon Artificial
Intelligence.MorganKaufmann,1989,pp. 794-799.
[Brajnik 94] Brajnik, G. andTasso,C. A Shell for developingnon-monotonicuser
modelingsystems.Int. J.Human-ComputerStudies40 (1994),31-62.
... (7 more)...

2. Reformata list of mail aliasesfrom HTML to text.
Before:
<DT>ConceptualGraphs
<DT> KIF
... (5 more)...
After:
;; ConceptualGraphs
congra:mailto:cg@cs.umn.edu
;; KIF
kif: mailto:kif@cs.stanford.edu
... (5 more)...

3. Reformata list of baseballscoresinto a taggedformat.
Before:
Cardinals5, Pirates2.
RedSox12,Orioles4.
... (5 more)...
After:
GameScore[winner’Cardinals’;loser’Pirates’;scores[5,2]].
GameScore[winner’RedSox’; loser’Orioles’; scores[12,4]].
... (5 more)...

All taskswere obtainedfrom other authors(tasks1 and 2
from Fujishima[5] andtask3 from Nix [12]). Thetasksare
small enoughto fit entirely on the screenwithout scrolling.
After performinga taskwith simultaneousediting,usersre-
peatedthe taskwith manualediting in orderto estimatethe
benefitof simultaneouseditingfor thatuser, but only on the
first threerecordsto avoid unnecessarytedium.For all tasks,

userswereinstructedto work carefullyandaccuratelyattheir
own pace. All usersweresatisfiedthat they hadcompleted
thetasks,althoughthefinishedproductsometimescontained
unnoticederrors.Eachtaskdescriptionincludeda complete
printout of the desiredresult, leaving no ambiguityin what
wasexpected.

Results
Comparingthe two groupsof users,onewith outlier high-
lighting andtheotherwithout, showeda reductionin uncor-
rectedmisgeneralizations,althoughthesamplesizewastoo
smallfor statisticalsignificance.Thesystem’s incorrectgen-
eralizationsin thesetasksfall into four categories:

� Year (task1): selectionof the last two digits of the year
(Figure??)� Author (task1): selectionof theauthor’snameor theposi-
tion just afterit, whicherrson“Hayes-Roth”(Figure4)� Winner (task3): selectionof thewinning team’s nameor
just afterit, whicherrson“Red Sox”� Loser(task3): selectionof thelosing team’s nameor just
afterit, which errson (adifferentinstanceof) “RedSox”

Only tasks1 and3 havemisgeneralizations.All selectionsin
task2 aregeneralizedcorrectlyfrom oneexample.

All usersin bothgroupsnoticedthat theYearselectionwas
misgeneralizedandcorrectedit, probablybecausethe mis-
generalizationis dramaticallywrong (Figure ??). For the
other two kinds of selections,the outlier highlighting algo-
rithm correctlyhighlightedthe errorsin the selection.As a
result,usersseeingtheoutlierhighlightingcorrectedtheAu-
thor, Winner, andLosermisgeneralizationsmoreoften than
userswithout outlier highlighting (Table 1). In particular,
the Author misgeneralization,which was never noticedor
correctedwithout outlier highlighting,wasnoticedandcor-
rected5 out of 8 times(63%) with the help of outlier high-
lighting. Usersconfirmedthevalueof outlierfindingby their
commentsduringthestudy. Oneuserwassurprisedthatout-
lier highlightingwasnot only helpful but alsoconservative,
highlightingonly a few places.

Becauseoutlierhighlightingencouragedusersto correctmis-
generalizations,it alsoreducedtheoverallerrorrateon tasks
1 and3, measuredasthenumberof tasksfinishedwith errors
in the final result (Table2). Editing with a misgeneralized
selectiondoesnot always leadto errorsin the final output,
becausesomeusersnoticedthe errorslater andfixed them
by hand.Theerrorrateontask2 increased,however, despite
thefactthattask2 hadnomisgeneralizationsto becorrected.
Oneof thesetask2 errorsoccurredbecausetheuserprovided
multiple inconsistentexamplesof oneselection,a problem
that was unfortunatelyexacerbatedby outlier highlighting.
Thisproblemis discussedin moredetail in thenext section.

Discussion
Although outlier highlighting reducedthe numberof errors
usersmade,it did not eliminatethementirely. Onereason

Correctedmisgeneralizations

Year Author Winner Loser

Outliers (task1) (task1) (task3) (task3)

Not highlighted 8/8 (100%) 0/7 (0%) 1/8 (13%) 4/7 (57%)

Highlighted 7/7 (100%) 5/8 (63%) 4/7 (57%) 5/6 (83%)

Table 1: Fraction of misgeneralized selections that
were noticed and corrected by users (number cor-
rected / number total). Most users made each se-
lection once, but some avoided making the selection
or made it twice.

Taskscompletedwith errors
Outliers Task1 Task2 Task3

Not highlighted 4/8 (50%) 1/8 (13%) 3/8 (38%)
Highlighted 2/6 (33%) 2/6 (33%) 1/6 (17%)

Table 2: Fraction of tasks completed with errors in final
result (number of tasks in error / number total).

is thatthesystemusuallytook400-800millisecondsto com-
puteits generalization,with or without outlier highlighting,
andusersdid notalwayswait to seethegeneralizationbefore
issuingan editing command. For example, in the outlier-
highlightingcondition,2 of the3 uncorrectedAuthor gener-
alizationswentuncorrectedbecausetheuserissuedanedit-
ing commandbeforethegeneralizationandoutlierhighlight-
ing evenappeared.After theuserstudy, we changedthede-
sign so that recordscontainingoutliers remainhighlighted
in red throughsubsequentediting operations,until the user
makesa new selection.As a result,even if theuserdoesn’t
noticean incorrectselectionbeforeediting with it, the per-
sistentoutlier highlighting hopefully draws attentionto the
erroreventually.

Outlier highlightingalsodraws attentionto correctgeneral-
izations,undeservedly. Several usersfelt the needto deal
with theoutliersevenwhentheselectionwascorrect,to “get
rid of the red” asoneuserput it. Our designinadvertently
encouragedthis behavior by erasingthe red highlight if the
userprovidedtheoutlier asanadditionalexample.As a re-
sult, several usershabitually gave superfluousexamplesto
eraseall theoutlier highlighting. Of the143total selections
madeby userswith outlier highlighting,16 wereoverspeci-
fied in thisway, whereasnoselectionswereoverspecifiedby
theuserswithout outlier highlighting.To put it anotherway,
thetasksin theuserstudyrequiredanaverageof 1.25exam-
plesperselectionfor perfectgeneralization.Without outlier
highlighting, usersgave only 1.13 examplesper selection,
underspecifyingsomeselectionsandmakingerrorsasa re-
sult. With outlierhighlighting,usersgave1.40examplesper
selection,overspecifyingsomeselections.Giving unneces-
sary examplesis not only slower but also error-prone,be-
causetheextra examplesmayactuallybe inconsistent.This
happenedto oneuserin task2 – a correctgeneralizationbe-
cameincorrectaftertheusermisselectedanoutlierwhile try-
ing to eraseits highlight,andtheusernevernoticed.

Figure 6: The Unusual Matches window showing oc-
currences of “copy” in an old UIST paper [8]. The
most prominent outlier, which is selected, is found in
an italicized word, “rcopy”.

After thestudy, we madeseveraldesignchangesto mitigate
the problemof overspecifiedselections.First, selectingan
outlier asan additionalexampleno longererasesits outlier
highlighting. Instead,userswho wantto “get rid of thered”
mustright-click on anoutlier to dismissits highlight, elimi-
natingthedangerof misselection.(This designwasinspired
by Microsoft Word, which usesthecontext menuin a simi-
lar fashionto ignoreor correctspellingandgrammarerrors.)
Second,the outlier highlighting was changedto make the
outliers themselvesblue, just like non-outliers,in order to
make it clearerthata selectioncanbeusedfor editingeven
if it containsoutliers. Now, only the recordcontainingthe
outlier is coloredred. In simultaneousediting, eachrecord
containsexactly oneselection,sotherecanbeno ambiguity
aboutwhich selectionis theoutlier.

MORE APPLICATIONS
Unusual Matches Display
In simultaneousediting, outlier finding is usedbehindthe
scenesto direct theuser’s attentionto possibleerrors.Some
usersmay want to accessthe outlier finder directly, in or-
der to explore the outliersandobtain explanationsof each
outlier’s unusualfeatures. For example,supposea user is
writing a patternto searchandreplacea variablenamein a
largeprogram,andtheuserwantsto debugthepatternbefore
usingit. For thiskind of task,theLAPIS text editorprovides
theUnusualMatcheswindow (Figure6).

The UnusualMatcheswindow works in tandemwith the
LAPIS patternmatcher. Normally, when the userentersa
pattern,LAPIS highlightsall thepatternmatchesin the text
editor. WhentheUnusualMatcheswindow is showing,how-
ever, LAPIS alsorunstheoutlierfinderonthesetof matches.

Unlike the outlier highlighting techniquedescribedin the
previoussection,theUnusualMatcheswindow doesnot use
athresholdto discriminateoutliersfrom typicalmatches.In-

stead,it simply displaysall thematches,in orderof increas-
ing weirdness(distancefrom the median),andlets the user
decidewhich matcheslook like outliers.Eachmatchis plot-
tedasa smallblock. Blocksneartheleft sideof thewindow
representtypical matches,being very closeto the median,
andblocksneartheright siderepresentoutliers,far from the
median.Thedistancebetweentwo adjacentblocksis propor-
tional to theirdifferencein weirdness.Strongoutliersappear
noticeablyalonein this visualization(Figure6).

Matcheswith identical featurevectorsarecombinedinto a
cluster, shown as a vertical stackof blocks. Matchesthat
lie at the samedistancefrom the medianin featurespace,
but along different vectors,are not combinedinto a stack.
Instead,they aresimply renderedside-by-sidewith 0 pixels
betweenthem.

Theusercanexplore the matchesby clicking on a block or
stackof blocks,which highlightsthe correspondingregions
in the text editor (using red highlights to distinguishthem
from theotherpatternmatchesalreadyhighlightedin blue).
Theeditorwindow scrollsautomaticallyto displaythehigh-
lighted region. If a stackof blocks was clicked, then the
window scrolls to the first region in the stackanddisplays
redmarksin thescrollbarfor theothers.To gotheotherway,
theusercanright-click onaregionin theeditingwindow and
choose“Locatein UnusualMatchesWindow”, whichselects
thecorrespondingblock in theUnusualMatcheswindow.

Whena matchis selectedin the UnusualMatcheswindow,
thesystemalsodisplaysanexplanationof how it is unusual
(bottompanein Figure6). The explanationconsistsof the
highest-weightedfeatures(at most 5) in which the region
differsfrom themedianfeaturevector. If two featuresarere-
latedby generalization,suchasstartswith Letter andstarts
with UpperCaseLetter, only the higher-weightedfeatureis
includedin the explanation.Next to eachfeaturein the ex-
planation,the systemdisplaysthe fraction of matchesthat
agreewith the medianvalue– a statisticwhich is relatedto
the feature’s weight, but easierfor the userto understand.
Theexplanationgeneratoris still rudimentary, andits expla-
nationssometimesincludeobscureor apparently-redundant
features.Generatinggoodexplanationsis ahardproblemfor
futurework.

Unusual Mismatches
The UnusualMatcheswindow can also show mismatches
in the samedisplay (Figure7). Whenmismatchesaredis-
played,the usercansearchfor both kinds of bugsin a pat-
tern: falsenegatives(mismatcheswhich shouldbematches)
aswell asfalsepositives(matcheswhichshouldnotbe).

Thetricky partof displayingmismatchesis determiningthe
setof candidatemismatches.The searchspacefor pattern
matchingis thesetof all substringsof thedocument.A naive
approachwould let thesetof mismatchesbethecomplement
of thematchesrelative to theentiresearchspace.Sincethis

Figure 7: The Unusual Matches window showing both
matches and mismatches to the pattern Line starting
“F rom:“ in a collection of email message headers.
The most prominent mismatch, which is selected, is a
Sender line which appears where the From line would
normally appear in the message.

setis quadraticin thelengthof thedocument,wehavecome
up with threereasonableways to reducethe searchspace.
Currently, LAPIS only implementsthefirst:

1. Negated predicate. Many patternsin LAPIS arewritten
by appendingoneor morepredicatesto a library pattern.
For example, Line containing “Truman” constrainsthe
Linepattern.If theuser’spatternfollowsthisscheme,then
we cannegatethepredicateto find a setof candidatemis-
matches:Line not containing“Truman”. This technique
effectively restrictsthe searchspaceto the unconstrained
library pattern,������� .

2. All substrings between matches. Since most applica-
tionsof patternmatching(likesearch-and-replace)require
nonoverlappingmatches,we might definea mismatchas
any substringthatdoesnot overlapa match.Eventhough
this setmaystill be quadratic,it canbe representedcom-
pactly using fuzzyregions [7]. We have not yet imple-
mentedthisstrategy.

3. Approximate matches. If theuserspecifiesa literal string
or regularexpressionpattern,thenasetof mismatchescan
be generatedby approximatestringmatching[15], which
allows a boundednumberof errorsin the patternmatch.
We havenot yet implementedthisstrategy either.

Regardlessof how thepossiblemismatchesaredefined,the
UnusualMatcheswindow plotseachmismatchon thesame
graphas the matches. Mismatchesare coloredwhite and
plottedbelow thehorizontalmidline to clearlyseparatethem
from matches.Likematches,mismatcheswith identicalfea-
turevectorsareclusteredtogetherinto astack.Clicking ona
mismatchhighlightsit in the text editoranddisplaysanex-
planationof why it shouldbeconsideredasapossiblematch.

Theexplanationconsistsof thehighest-weightedfeaturesin
which themismatchagreeswith themedianmatch.Figure7
shows theexplanationfor amismatch.

Discussion
TheUnusualMatchesdisplayoffersusersa new way to ex-
plore the setof patternmatchesin a document. Insteadof
steppingthroughmatchesin conventionaltop-to-bottomdoc-
umentorder, theusercanjump aroundtheUnusualMatches
window. Clicking on outlierscanhelp find exceptionsand
mistakes in the pattern,while clicking on typical matches
cangive confidencethat the patternis matchingmostly the
right things. If the UnusualMatcheswindow were tightly
integratedwith a search-and-replacefunction — a stepwe
have not yet taken in LAPIS — thenthe usermight invoke
ReplaceAll on entirestacksof typical matches,but give the
outliersmoreconsiderationbeforereplacingthem.

OUTLIER FINDING ALGORITHM
We now turn to the detailsof the outlier finding algorithm
itself. The algorithmtakesas input a setof dataobjects �
(in this case,substringsof a document)andreturnsa rank-
ing of � by eachobject’s degreeof similarity to the other
membersof � . Similarity is computedby representingeach
object in � by a binary-valuedfeaturevectorandcomput-
ing theweightedEuclideandistanceof eachvectorfrom the
medianvectorof � . Thedistancecalculationis weightedso
that featureswhich aremorecorrelatedwith membershipin
� receivemoreweight.Featuresandfeatureweightsaregen-
eratedautomaticallyfrom � , optionallyassistedby aknowl-
edgebase(in thiscase,a library of usefultext patterns).

If we want to find borderlinemismatches,we usea related
algorithmthat takestwo disjoint sets,� and � , where � is
the setof matchesand � is the setof mismatches.The al-
gorithm then ranksthe elementsof both setsaccordingto
their similarity to � . Sincethis algorithm is usedto find
bothmatchesandmismatches,wereferto it asthetwo-sided
outlier finder. Thesimultaneouseditingstudyonly usedone-
sidedoutlierfinding. TheUnusualMatcheswindow usesthe
two-sidedoutlierfinder, but only whentheuser’spatterncan
benegatedusingthe“negatedpredicate”techniquedescribed
previously. Otherwise,the UnusualMatcheswindow falls
backto one-sidedoutlier finding. Thediscussionbelow fo-
cuseson one-sidedoutlier finding,mentioningthetwo-sided
algorithmonly whereit differs.

Theonly partof thesealgorithmsthat is specificto text sub-
stringsis featuregeneration.Applying thealgorithmto other
domainswould entail using a different set of features,but
otherwisethealgorithmwould remainthesame.

Region Sets
Beforedescribingtheoutlier finder, we first briefly describe
the representationsusedfor selectionsin a text file. More
detailcanbefoundin anearlierpaperaboutLAPIS [7].

A region ��� � � � is a substringof a text file, describedby its

startoffset � andendoffset � relative to thestartof the text
file. A regionsetis a setof regions.

LAPIS hastwo novel representationsfor region sets. First,
a fuzzyregion is a four-tuple ���"! � �$#�%&�'! � �$#�� that represents
the set of all regions ��� � �$� such that �"!)(*�+(*�$# and
�"!,(-�.(-�$# . Fuzzyregionsareparticularlyusefulfor repre-
sentingrelationsbetweenregions.For example,thesetof all
regionsthatareinside �/� � �$� canbecompactlyrepresentedby
the fuzzy region �/� � �"%0� � �$� . Similar fuzzy region represen-
tationsexist for other relations,including contains,before,
after, just before, just after, starting (i.e. having coincident
start points), and ending. Theserelationsare fundamental
operatorsin the LAPIS patternlanguage,andarealsoused
in generalization.

Thesecondrepresentationis theregiontree, aunionof fuzzy
regionsstoredin anR-treein lexicographicorder[7]. A re-
gion treecanrepresentanarbitrarysetof regions,evenif the
regions nestor overlapeachother. A region tree contain-
ing 1 fuzzy regionstakes 2 � 1 �

space,2 � 143658791 �
time to

build, and 2 � 36587.1 �
time to testa region for membershipin

theset.

Feature Generation
A featureis a predicate: definedover text regions. The
LAPIS outlierfindergeneratestwo kindsof features:library
featuresderived from a patternlibrary, and literal features
discoveredby examiningthetext of thesubstringsin � .

LAPIS hasa considerablelibrary of built-in parsersandpat-
terns, including Java, HTML, characterclasses(e.g. dig-
its, punctuation,letters),Englishstructure(words,sentences,
paragraphs),andvariouscodes(e.g.,URLs,emailaddresses,
hostnames,IP addresses,phonenumbers). The user can
readilyaddnew patternsandparsersto the library. Features
aregeneratedfrom library patternsby prefixingoneof seven
relationaloperators:equalto, just before, just after, starting
with, endingwith, in, or containing. For example,just be-
fore Numberis trueof a region if the region is immediately
followedby amatchto theNumberpattern,andin Comment
is true if the region is insidea Java comment. In this way,
featurescanreferto thecontext aroundsubstrings,evennon-
local context like Javaor HTML syntax.

Literal featuresaregeneratedby combiningrelationalopera-
torswith literal stringsderivedfrom thesubstringsin � . For
example,startswith “http://” is a literal feature.To illustrate
how wefind literal features,considerthestartswith operator.
Thefeaturestartswith “x” is usefulfor describingdegreeof
membershipin � if andonly if a significantfractionof sub-
stringsin � startwith theprefix ; . To find ; , wefirst find all
prefixesthataresharedby at leasttwo membersof � , which
is doneby sortingthesubstringsin � andtakingthelongest
commonprefix of eachadjacentpair in thesortedorder. We
thentesteachlongestcommonprefix to seeif it matchesat
leasthalf thestringsin � , atrivial testbecause� isalreadyin

sortedorder. For all prefixes; thatpassthetest,wegenerate
thefeaturestartswith “x” .

With a few tweaks,the samealgorithmcangenerateliteral
featuresfor endswith, just before, just after, andequal to.
For example,the endswith versionsearchesfor suffixesin-
steadof prefixes,andthejustbeforeversionsearchesfor pre-
fixesof the text after eachsubstringinsteadof in the sub-
string itself. Only in andcontainsfeaturescannotbegener-
atedin thisway. TheLAPIS outlierfinderdoesnotpresently
generateliteral featuresusingin or contains.

Thetwo-sidedoutlierfindergeneratesliteral featuresby sort-
ing both � and � together, sothatit considersliteral features
sharedby any pair of matchesor mismatches.However, a
literal featuremustbesharedby at leasthalf of � or at least
half of � to beretainedasa feature.

Feature Weighting
After generatinga list of features,thenext stepis determin-
ing how muchweightto giveeachfeature.Without weights,
only the numberof unusualfeatureswould matterin deter-
mining similarity. For example,without weights,two mem-
bersof � that differ from the medianin only one feature
wouldberankedthesameby theoutlierfinder, evenif onere-
gionwasthesoledissenterin its featureandtheothershared
its valuewith 49%of the othermembersof � . We want to
preferfeaturesthatarestronglyskewed,suchthatmost(but
not all) membersof � havethesamevaluefor thefeature.

The one-sidedoutlier finder weightseachfeatureby its in-
versevariance.Let < � :�= � �

be the fraction of � for which
feature: is true.Thenthevarianceof : is >@?BA4< � :�= � �C�ED	F
< � :�= � �C�

. Theweightfor feature: is GH?�A D � >@? if >�?JIALK ,
or zerootherwise.With inversevarianceweighting,features
that have the samevaluefor every memberof � (> ? A+K)
receive zero weight, and henceplay no role in the outlier
ranking. Featuresthat areevenly split receive low weight,
andfeaturesthatdiffer on only onememberof � receive the
highestweight(= � = � � = � = FMDN�

).

Two-sidedoutlier finding usesnot only � but also � to es-
timatethe relevanceof a feature.We want to give a feature
high weight if it hasthesamevalueon mostmembersof � ,
but the oppositevalueon mostof � . We usemutual infor-
mationto estimatetheweights[13]. Themutualinformation
betweena feature: andthepartition � � � is givenby

OMP ? A-Q � � �RF Q � � =S: �
where Q � � �

is the entropy of � and Q � � =S: �
is the condi-

tionalentropy of � given : :T�U/VXWZY [R\9U�V,W]_^0`R\9U�V,WN[a\9U VXW]_^0`R\9U V,W
TbU�V,c deWZY \9U�dfW [R\9U/VXc deWC]_^0`R\9U�V,c deW�[a\9U Vgc deWC]_^0`R\9U V,c deW

h \9U dfW [R\9U�V,c dfWC]_^0`R\9U�V,c deW�[a\9U V,c deW]_^0`f\9U Vgc deW
Mutual informationis relatedto theinformationgainheuris-
tic usedto inducedecisiontrees[14].

Feature Pruning

After computingweightsfor the features,we pruneout re-
dundantfeatures. Two featuresare redundantif the fea-
tures match the samesubsetof � (and �) and one fea-
ture logically implies the other. For example, in a list of
YahooURLs, the featuresstarts with URL and starts with
“http://www.yahoo.com”would be redundant.Keepingre-
dundantfeaturesgives them too much weight, so we keep
only themorespecificfeatureanddroptheotherone.

Wetestfor redundancy by sortingthefeaturesby weightand
comparingfeaturesthathave identicalweight. Featuresare
representedinternally as region treescontainingall the re-
gions in the documentthat matchthe feature,and the sys-
temcanquickly comparethetwo regiontreesto testwhether
thematchesto onefeaturearea subsetof thematchesto the
other. Thusthesystemcanfind logical implicationsbetween
featureswithout heuristicsor preprogrammedknowledge.It
doesn’t needto be told that LowercaseLetters implies Let-
ters, or thatstartswith “http” impliesstartswith URL. The
systemdiscoverstheserelationshipsat runtimeby observing
their effects.

Pruningdoesnoteliminateall thedependenciesbetweenfea-
tures. For example,in a web page,containsURL andcon-
tainsLink (whereLink is a library patternthatmatches<A>
elements)areusuallystronglycorrelated,but neitherfeature
logically impliestheother, soneitherwould bepruned.The
effectof correlatedfeaturescouldbereducedbyusingtheco-
variancesbetweenfeaturesaspartof theweightingscheme,
but it is hardto estimatethe covariancesaccuratelywithout
a largeamountof data(accuratelyestimatingthe � # covari-
ancesamong� featureswould require 2 � � # � samples).An-
othersolutionwould beto carefullydesignthefeaturesetso
thatall featuresareindependent.This might work for some
domains,at thecostof makingthesystemmuchharderto ex-
tend.Oneof thebenefitsof our approachis thatnew knowl-
edgecanbeaddedsimply by writing a patternandputtingit
in the library. Thusa usercanpersonalizetheoutlier finder
with knowledgelike CampusBuildingsor ProductCodesor
MyColleagueswithout worrying about how the new rules
might interactwith existing features.

Ranking

Thelaststepin outlierfindingisdeterminingatypicalfeature
vectorfor � andcomputingthedistanceof everyelementof
� from this typical vector.

For the typical featurevector, we usethe medianvalue of
eachfeature,computedoverall elementsof � . Anotherpos-
sibility is the meanvector, but the meanof every nontrivial
featureis a valuebetweenK and

D
, so every memberof �

differsfrom themeanvectoronmostfeaturesandlooksabit
like an outlier asa result. The medianvectorhasthe desir-
ablepropertythatwhenamajorityof elementsin � sharethe
samefeaturevector, thatvectoris themedian.

After computingthemedianfeaturevectorij? , we compute
theweightedEuclideandistance
 �6kf� betweenevery

kml �
andi :

 �6kf� A ? G.? �6k ? F in? � #

� is thensortedby distance
 ��kf� . Elementsof � with small

 �6kf� valuesare typical membersof � ; elementswith large

 �6kf� valuesareoutliers.

The two-sidedoutlier finder also computes
 ��kf� for mem-
bersof � . Membersof � with small
 ��kf� valuessharemany
featuresin commonwith � , andhenceareoutliersfor � .

Running Time
In practice,therunningtime of theoutlier finding algorithm
is dominatedby two stepsin the algorithm: (1) generating
library features,which takes 2 � � = � = � timewhere� is theset
of library patternsandparsersand� is thelengthof thedocu-
ment;and(2) testinglibrary featuresagainsttheregionsin � ,
whichtakes 2 � = � =Co = � = � time. Theremainingsteps– weight-
ing, pruning,andranking– arenegligible. Fortunately, the
setof library featuresis independentof � , sostep(1) canbe
performedin thebackgroundbeforetheoutlierfinderis used
andcachedfor all subsequentcallson thesamedocument.

FUTURE WORK
Althoughwehaveonly appliedoutlier finding to text pattern
matching,it isn’t hard to imagineapplicationsin otherdo-
mains.Outlierfindingis well-suitedto debuggingatricky se-
lectionor pattern.Examplesin otherdomainsincludeemail
filtering rules,databasequeries,selectingfiles to packinto a
ZIP archive or backup to tape,or selectingthe outlineof a
complicatedobjectin a bitmapeditor. Outlier finding could
alsobe usedto searchfor irregularitiesin applicationdata,
suchasweird valuesin a spreadsheetor database.Most do-
mainsareactuallyeasierfor outlierfinding thantext because
the searchspaceconsistsof discreteobjects,so the set of
mismatchesis obvious.

Somedomainswould requireextensionsto the outlier find-
ingalgorithm.Ouroutlierfinderonly usesbinary-valuedfea-
tures,but otherdomainswouldrequireinteger-valuedor real-
valuedfeatures(e.g.file sizes,spreadsheetvalues,pixel val-
ues).Text patternmatchingcouldalsobenefitfrom integer-
valuedfeatures(e.g.,thenumberof occurrencesof a library
patternor a literal string). Our outlier finder alsoconsiders
only two classesof dataobjects,matchesandmismatches,
but morethantwo classeswould beusefulfor someapplica-
tions. Techniquesfor thesekindsof extensionsareplentiful
in themachinelearningliterature[1].

Outlier finding hasmany applicationsto programming-by-
demonstration(PBD)systems,suchassimultaneousediting.
PBDsystemsusuallyrely ontheuserto noticewhenthesys-
tem hasguessedwrong. With an outlier finder, however, a
PBD systemmight be ableto stopandaskthe userabouta

weird example,insteadof plowing blindly aheadandhan-
dlingp it incorrectly. Outlier finding might alsodetectwhen
the userhasprovided inconsistentexamples,anotherprob-
lem thatplaguesPBD systems,but only if theuserprovides
enoughexamplesto find meaningfuloutliers. Simultaneous
editingrequiredvery few examplesin our userstudy– only
1.25examplesper concepton average– sowe wereunable
to testthis idea.

CONCLUSION
This paperpresentedan algorithm for finding outliers in a
text patternmatch,demonstratedits applicationin the user
interfaceof anadvancedtext editor, andpresenteduserstud-
iesthatshow thatoutlier finding reducederrors.

Theoutlier-finding ideacanbeappliedto any setof dataob-
jects,regardlessof how it wascreated.The setmay be the
resultof adescriptionwrittenbyauser(e.g.apatternmatch),
a descriptioninferredby a learningalgorithm(e.g. a gener-
alizationin simultaneousediting),or evena selectionmade
by theuser(e.g.,a groupof selectedfiles in a file browser).
Givena usefulsetof features,theoutlier findercandraw at-
tentionto unusualmembersin any set.

Oneusabilitydangerof outlierfindingis thatusersmaygrow
to rely ontheoutlierfinderto find all errors,whichin general
is impossible. The sameproblemexists with spell check-
ers, which have taken the placeof proof-readingfor many
users,even though friend and fiend are equally acceptable
to a spell-checker. Oneapproachto this problemis to run
othererrorcheckersthatfill in thegaps,muchasa grammar
checkercanfindsomeof themisspellingsthataspell-checker
overlooks.

Outlier finding canserve asa usefulsubroutinein anintelli-
gentsystem,suchassimultaneouseditingandPBD, to help
the systemnoticeunusualdataandbring it to the user’s at-
tention.Outlier findingenablesa humanuseranda software
agentto form a partnershipin which eachplaysa role suited
to their strengths:brute force computationto find possible
mistakes,andfinehumanjudgementto dealwith them.

AVAILABILITY
The systemdescribedin this paperis freely available for
downloadingfrom:
http://www.cs.cmu.edu/~rcm/lapis/

ACKNOWLEDGMENTS
This researchwassupportedin partby USENIX StudentRe-
searchGrants.

REFERENCES
1. M. R. Anderberg. ClusterAnalysisfor Applications. AcademicPress,

1973.

2. V. Barnettand T. Lewis. Outliers in StatisticalData. Wiley, 2nd
edition,1984.

3. L. Carroll. TheJabberwocky. ThroughtheLooking-GlassandWhat
AliceFoundThere, 1872.

4. D. Freitag.MachineLearningfor InformationExtraction in Informal
Domains. PhDthesis,Carnegie Mellon University, November1998.

5. Y. Fujishima.Demonstrationalautomationof text editingtasksinvolv-
ing multiple focuspointsandconversions. In Proceedingsof the In-
ternationalConferenceonIntelligentUserInterfaces(IUI ’98), pages
101–108,1998.

6. E. M. Knorr andR. T. Ng. Algorithmsfor mining distance-basedout-
liers in largedatasets.In Proceedingsof the24th InternationalCon-
ferenceonVeryLargeDatabases(VLDB), pages392–403,1998.

7. R. C. Miller andB. A. Myers. Lightweightstructuredtext processing.
In Proceedingsof the 1999 USENIXAnnual Technical Conference,
pages131–144,June1999.

8. R. C. Miller andB. A. Myers. Synchronizingclipboardsof multiple
computers.In Proceedingsof theACM Symposiumon UserInterface
Software andTechnology (UIST’99), pages65–66,1999.

9. R. C. Miller and B. A. Myers. Interactive simultaneousediting of
multiple text regions. In Proceedingsof the 2001 USENIXAnnual
Technical Conference, pages161–174,June2001.

10. R. Morris andL. L. Cherry. Computerdetectionof typographicaler-
rors. TechnicalReport18,Bell Laboratories,July1974.

11. P. G. Neumann(moderator).RisksDigest:Forumon risksto thepub-
lic in computersand relatedsystems. http://catless.ncl.ac.uk/Risks/.
v10n23,v18n24,v19n12.

12. R. Nix. Editing by example. ACM Transactionson Programming
LanguagesandSystems, 7(4):600–621,October1985.

13. A. Papoulis.Probability, RandomVariables,andStochasticProcesses.
McGraw-Hill, 3rdedition,1991.

14. J. R. Quinlan. Inductionof decisiontrees. Machine Learning, 1:81–
106,1986.

15. S. Wu andU. Manber. Agrep– a fastapproximatepatternsearching
tool. In Proceedingsof the Winter USENIXTechnical Conference,
pages153–162,1992.

