
Multiple Selections in Smart Text Editing

Robert C. Miller and Brad A. Myers
Schoolof ComputerScience
CarnegieMellon University�

rcm,bam� @cs.cmu.edu

Abstract

Multiple selections,thoughheavily usedin file managersand
drawingeditors,arevirtually nonexistentin text editing.This
paperdescribeshow multiple selectionscanautomaterepet-
itive text editing. Selectionguessinginfers a multiple se-
lectionfrom positiveandnegativeexamplesprovidedby the
user. The multiple selectioncanthenbe usedfor inserting,
deleting,copying, pasting,or otherediting commands.Si-
multaneousediting usestwo levels of inference,first infer-
ring a groupof recordsto beedited,theninferring multiple
selectionswith exactly oneselectionin eachrecord. Both
techniqueshavebeenevaluatedby userstudiesandshown to
befastandusablefor novices.Simultaneouseditingrequired
only 1.26examplesperselectionin theuserstudy, approach-
ing the ideal of 1-examplePBD. Multiple selectionsbring
many benefits,includingbetteruserfeedback,fast,accurate
inference,novel formsof intelligentassistance,andtheabil-
ity to overridesysteminferenceswith manualcorrections.

Keywords

programming-by-demonstration, PBD, automatedtext edit-
ing, patternmatching,search-and-replace,LAPIS

INTRODUCTION

Multiple selection— the ability to selectmultiple, discon-
tiguous objectsand apply the sameoperationor property
changeto all the selectedobjects— is commonin drawing
editorsandfile managers.But it is virtually unheard-ofin
text editing, which is unfortunate. In this paper, we show
that multiple selectioncandeliver a wide arrayof benefits,
including betteruserfeedback,fastandaccurateinference,
novel formsof intelligentassistance,andtheability to selec-
tively overridesysteminferenceswith manualcorrections.

To experimentwith multiple selectionsin text editing, we
have developeda new text editor calledLAPIS (Figure1).
AlthoughLAPIS offersseveralwaysto make a multiple se-
lectionwithout inference,includingmouseselectionandpat-
ternmatching,our primaryconcernin this paperis inferring

Permissionto make digital or hardcopiesof all or partof this work for
personalor classroomuseis grantedwithout fee provided that copies
arenot madeor distributedfor profit or commercialadvantageandthat
copiesbearthisnoticeandthefull citationonthefirst page.Tocopy oth-
erwise,or republish,to postonserversor to redistributeto lists,requires
prior specificpermissionand/ora fee.
IUI’02 , January13-16,2002,SanFrancisco,California,USA.
Copyright 2002ACM 1-58113-459-2/02/0001.. .$5.00

Figure 1: LAPIS showing amultiple selection.

a multiple selectionfrom examples. LAPIS hastwo tech-
niquesfor inferringmultiple selections:

� Selectionguessingis the mostgeneraltechnique.It takes
positive andnegative examplesfrom theuserandinfersa
multiple selectionconsistentwith the examples. At any
time, theusercaninvoke aneditingoperationon themul-
tiple selection,starta freshmultiple selectionsomewhere
else,or tell thesystemto stopmakinginferencesandadd
or removeselectionsmanuallywith themouse.� Simultaneousediting is a form of selectionguessingspe-
cializedfor a commoncasein repetitive text editing: ap-
plying a sequenceof edits to eachof a group of text re-
gions. Simultaneousediting is a two-stepprocess. The
userfirst selectsa groupof records, suchaslinesor para-
graphsor postaladdresses,by giving positiveandnegative
examples. Oncethe desiredrecordshave beenselected,
thesystementersamodein whichmultiple-selectioninfer-
enceis constrainedto make exactly oneselectionin every
record,essentiallysimulatingsingle-selectioneditingwith
the sameeditsappliedto eachrecord. The constraintsof
simultaneouseditingpermitfastinferencewith few exam-
ples,so few in fact that simultaneousediting approaches
thePBD idealof single-exampleediting.

Multiple selectionsarea goodway to give feedbackto the
useraboutthesystem’s inference.After theusergivesanex-
ampleandthe systemmakesa new inference,the usercan
scroll throughthe text editor to seewhat is selectedby the

system’s inference,and what isn’t. LAPIS also describes
the inferred

�
selectionwith a pattern. Providing both kinds

of feedbackreinforcesthe user’s understandingof what the
systemis doing.

Whenthe file is large, scrolling throughit to checkthe in-
ferredselectionscanbetedious.LAPIS alleviatesthis prob-
lem somewhatby augmentingthescrollbarwith marksindi-
catingwhereselectionscanbe found. Even moreuseful is
outlier highlighting, which drawsattentionto unusualselec-
tionsthatmightbeinferenceerrors.

Previouspapershavedescribedsomeof thesetechniques.Si-
multaneousediting was introducedin a USENIX paper[7]
thatdiscussedonly its secondstep,inferring theuser’s edit-
ing selectionsafter the recordsethasalreadybeendefined
someother way (i.e. not by inference). This papercom-
pletesthe pictureby describingthe first step,showing how
the recordsetcanbe inferredfrom examples,with a novel
regularity heuristicto rankhypothesesandreducethe num-
berof examplesrequired.Outlierhighlightingwasdescribed
in a UIST paper[8], andis mentionedhereasa new form of
intelligentassistanceenabledby multiple selections.Selec-
tion guessingis completelynew to this paper.

RELATED WORK
LAPIS finds its roots in programming by demonstration
(PBD). In PBD, the userdemonstratesone or more exam-
plesof aprogram,andthesystemgeneralizesthedemonstra-
tion into a programthat can be appliedto other examples.
PBD systemsfor text editinghave includedEBE [10], Tour-
maline[9], TELS [11], Eager[2], Cima[5], DEED [3], and
SMARTedit [12].

Noneof thesesystemsusedmultiple selectionfor editingor
feedbackabout inferences. Multiple selectionscompletely
reshapethe dialoguebetweena PBD systemand its user.
While a traditionalPBD systemrevealsits predictionsone
exampleat a time, multiple selectionsallow the systemto
exposeall its predictionssimultaneously. Theusercanlook
andseethatthesystem’s inferenceis correct,at leastfor the
currentsetof examples,which in many tasksis all thatmat-
ters. Novel forms of intelligent assistance,suchas outlier
highlighting, can help the userfind inferenceerrors. The
usercancorrecterroneouspredictionsin anyorder, not just
theorderchosenby thePBDsystem.Alternativehypotheses
canbepresentednot only abstractly, asa datadescriptionor
pattern,but alsoconcretely, asamultipleselection.If thede-
siredconceptis unlearnable,theusermaystill beableto get
closeenoughandfix the remainingmispredictionsby hand,
withoutstoppingthedemonstration.

Thesystemthatmostcloselyresemblesmultipleselectionin
LAPIS is VisualAwk [4]. VisualAwk allows a userto cre-
ateawk-likefile transformersinteractively. Likeawk, Visual
Awk’s basicstructureconsistsof linesandwords.Whenthe
userselectsoneor morewords in a line, the systemhigh-

Figure 2: Multiple selectionsin LAPIS: sentences(top) and
words(bottom).

lights the wordsat the samepositionin all other lines. For
otherkindsof selections,theusermustselecttheappropriate
tool: e.g.,Cutterselectsby characteroffset,andMatcherse-
lectsmatchesto a regularexpression.In contrast,LAPIS is
designedarounda conventionaltext editor, operateson arbi-
traryrecords(notjust lines),usesstandardeditingcommands
likecopy andpaste,andinfersselectionsfrom examples.

USER INTERFACE
This sectiondescribesmultiple selectionand inferencein
LAPIS from the user’s point of view. We first explain how
to usemultiple selectionsfor text editingwithout inference.
Thenwediscusstwo techniquesfor inferringmultipleselec-
tions: selectionguessingandsimultaneousediting.

Multiple Selections
LAPIS (Lightweight Architecturefor ProcessingInforma-
tion Structure)is basedon the idea of lightweight struc-
ture [6], a library of patternsandparsersthatdetectstructure
in text. TheLAPIS library includesparsersfor HTML, Java,
documentstructure(words, sentences,lines, paragraphs),
andvariouscodes(URLs, emailaddresses,phonenumbers,
ZIP codes,etc). Thelibrary canbeeasilyextendedby users
with new parsersandpatterns.Part of the structurelibrary
canbeseenin thelower-right cornerof Figure1.

The structurelibrary is a powerful tool for both learning
agentsandusers.For a machine-learningagent,the library
is a collection of high-level, domain-specificconceptsthat
wouldbedifficult or impossibleto learnotherwise(e.g.Java
syntax).For a usertrying to write a search-and-replacepat-
tern,thelibrary offerspredefinedpatternsasbuilding blocks.

Thestructurelibrary is alsothe easiestway to make a mul-
tiple selectionin LAPIS. Clicking on a namein the library
selectsall theoccurrencesof thatconceptin theeditor. Fig-
ure2 showssomemultiple selectionsmadethis way.

A closelook at Figure2 revealsthatLAPIS selectionhigh-
lighting is subtlydifferentfrom conventionaltext highlight-
ing. All GUI text editorsknown to the authorsusea solid
coloredbackgroundthat completelyfills the selectedtext’s

bounds.Usingthis techniquefor multiple selectionshastwo
problems. First, two selectionsthat areadjacentwould be
indistinguishablefrom a single selectionspanningboth re-
gions.We solve this problemby shrinkingthecoloredback-
groundby onepixel on all sides,leaving a two-pixel white
gapbetweenadjacentselections.Second,two selectionssep-
aratedby a line breakwouldbeindistinguishablefrom asin-
gle selectionthat spansthe line boundary. We solve this
problemby addingsmallhandlesto eachselection,onein the
upperleft cornerandtheotherin thelowerright corner, to in-
dicatethestartandendof theselection.Thesesmallchanges
presentednodifficultiesfor theusersin ouruserstudies,who
wereableto understandandusethehighlightingwithoutany
explicit instruction.

Another way to make a multiple selection is pattern-
matching. LAPIS hasa novel patternlanguagecalled text
constraints[6], whichis designedfor combininglibrary con-
ceptswith operatorslike before, after, in, andcontains. Ex-
amplesof patternsinclude”-” in PhoneNumber, Link con-
taining”My Yahoo”, lastWord in Sentence, andMethodcon-
taining MethodName=”toString”. (Thecapitalizedwordsin
thesepatternsareconceptsfrom thestructurelibrary.) Run-
ninga patternselectsall matchesto thepattern.

Theusercanalsomake a multiple selectionwith themouse.
As in other text editors, clicking and draggingin the text
clearsthe selectionand makes a single selection. To add
moreselections,the userholdsdown the Control key while
clicking anddragging.To removea selection,theuserholds
down Controlandclicks on theselection.Selectionscanbe
addedandremoved from any multiple selection,so a mul-
tiple selectioncreatedby patternmatchingcanbe manually
adjustedwith themouse.

A multiple selectioncaninclude insertionpointsaswell as
regions.An insertionpointis azero-lengthselectionbetween
two characters.As in other text editors,an insertionpoint
is selectedby clicking without dragging.Multiple insertion
points are selectedby holding down Control and clicking.
Insertionpoints can also be selectedby a pattern,suchas
pointendingLine or point just before”,”.

Oncea multiple selectionhasbeencreated,editingwith it is
a straightforwardextensionof single-selectionediting. Typ-
ing a sequenceof charactersreplacesevery selectionwith
the typed sequence.PressingBackspaceor Deletedeletes
all the selectionsif the multiple selectionincludesat least
onenonzero-lengthregion, or elsejust the characterbefore
(or after)eachinsertionpoint if theselectionis all insertion
points.Othereditingcommands,suchaschangingcharacter
stylesor capitalization,areappliedto eachselection.

Clipboardoperationsareslightly morecomplicated.Cutting
or copying a multiple selectionputsa list of stringson the
clipboard,onefor eachselection,in documentorder. If the
clipboardis subsequentlypastedbackto a multipleselection

Figure 3: SelectionGuessingdialogbox.

of the samelength,theneachstring in the clipboardlist re-
placesthecorrespondingtargetselection.If thetargetselec-
tion is longeror shorterthanthe copiedselection,thenthe
pasteoperationis generallyprevented,andadialogboxpops
up to explain why. Exceptionsto this rule occurwhen the
sourceor the target is a singleselection. Whenthe source
is a singleselection,it canbe pastedto any numberof tar-
getsby replication.Whenthetargetis a singleselection,the
stringson the clipboardare pastedone after another, each
terminatedby a line break,andan insertionpoint is placed
after eachpastedstring. Line breakswerechosenasa rea-
sonabledefault delimiter. Theusercaneasilydeletetheline
breaksor replacethemwith a differentdelimiter using the
new multipleselection.

Selection Guessing

Themostgeneralinferencetechniquein LAPIS is selection
guessing. Selectionguessingis amodein whicheveryselec-
tion addedor removedby themouseis usedasa positive or
negative examplefor inference,producinga multiple selec-
tion that is consistentwith the examples.The hypothesisis
displayedbothasa multiple selectionin theeditor, andasa
patternin anotherpane.

As longasselectionguessingmodeis active,LAPIS displays
a modelessdialogbox showing somealternative hypotheses
for theuserto choosefrom (Figure3). Theusercanclick on
any hypothesisto seethe correspondingmultiple selection
in the editor. The hypothesesare ranked by a scorebased
partlyonthepattern’scomplexity andpartlyontheregularity
heuristicdescribedbelow.

The dialog box also includessomecontrolsthat inhibit in-
ference.When“Selectbestguessautomatically”is checked
(thedefault), thesystemautomaticallychangesthemultiple
selectionafter eachexampleto reflect the currentbesthy-
pothesis.Whenthis option is unchecked, however, the sys-

tem never changesthe selectionautonomously, but merely
updates� the dialog box with its latesthypothesis.The user
mustclick on thehypothesisto view it.

Turningoff automaticguessingallows theuserto makease-
ries of correctionswithout having the selectionchangedby
a new hypothesisaftereachcorrection.Thesefeatureswere
motivatedby userstudyobservations.In principle,if aselec-
tion is learnable,thenturningoff automaticguessingwould
be unnecessary, becausethe user’s correctionswould even-
tually converge to the desiredselection. In practice,how-
ever, usershaveno way to predictwhetherthedesiredselec-
tion is learnableor how many examplesit might take. As
a result, assoonasan almost-correcthypothesisappeared,
usersexpresseda desireto make the systemstopguessing
andlet themfix the exceptionsmanually. Turningoff auto-
maticguessingmakesthispossible.

If the desiredselectionis outsidethe hypothesisspace,in-
ferencewill eventually fail to find a hypothesisconsistent
with the examples. When inferencefails, the systemstops
guessing.Theusercancontinuecorrectingthelastsuccess-
ful hypothesismanually. LAPIS keepsa history of recent
hypotheses,so the usercanreturnto a previous hypothesis
which mighthavebeencloserto thedesiredselection.

Oncethedesiredmultipleselectionis made,theusercanedit
with it asdescribedin the previoussection. While the user
is typing or deletingcharacters,no inferenceis done.When
theuserstartsa new selection,thesetof examplesis cleared
andthesystemgeneratesa freshhypothesis.

Simultaneous Editing
Many repetitivetaskshaveacommonform: agroupof things
all needto bechangedin thesameway. Someexamplesfrom
thePBD literatureinclude:

� add“[author year]” to bibliographiccitations[5]� reformatbaseballscores[10]� changethestylesof all sectionheadings[9]

Thesetaskscanbe representedasan iterationover a setof
text regions,whichwecall recordsfor lackof abettername,
wherethebodyof theloopperformsafixedsequenceof edits
on eachrecord. LAPIS addressesthis classof taskswith a
specialmodecalledsimultaneousediting.

The userenterssimultaneouseditingmodeby first describ-
ing therecordsetwith positiveandnegativeexamples,using
thesameinteractiontechniquesasselectionguessing.Once
thedesiredrecordsetis obtained,thesystementerssimulta-
neouseditingmodeandtherecordsetis highlightedin yel-
low (Figure 4). Now, when the usermakes a selectionin
onerecord,thesystemautomaticallyinfersexactly onecor-
respondingselectionin every otherrecord. If the inference
is incorrecton somerecord,theusercancorrectit by hold-
ing down theControl key andmakingthe correctselection,
afterwhichthesystemgeneratesanew hypothesisconsistent

Figure 4: Simultaneousediting modeon Java sourcecode.
Therecordsarepaint()calls,highlightedin yellow. Theuser
gave oneexampleselection,“rectangle”,andthesystemin-
ferred the patternfirst ActualParameterto make the selec-
tionsin theotherrecords.

with thenew example.As in selectionguessing,theusercan
edit with themultiple selectionat any time. Theuseris also
freeto makeselectionsoutsiderecords,but no inferencesare
madefrom thoseselections.

Simultaneousediting is more limited than selectionguess-
ing, becauseits hypothesesmusthave exactly onematchin
everyrecord.But theone-selection-per-recordconstraintde-
liverssomepowerful benefits.First, it dramaticallyreduces
the hypothesissearchspace,so that far fewer examplesare
neededto reachthe desiredselection. In the userstudyof
simultaneousediting describedlater in this paper, the aver-
ageselectionneededonly 1.26 examples,and 84% of se-
lectionsneededonly one. Second,the hypothesissearchis
much faster. Since the recordset is specifiedin advance,
LAPIS preprocessesit to find commonsubstringsandlibrary
conceptsthat occurat leastonce,significantlyreducingthe
spaceof featuresthat canbe usedin hypotheses.As a re-
sult, whereselectionguessingmight take severalsecondsto
deliver a hypothesis,simultaneouseditingtakes0.4-0.8sec,
making it far moresuitablefor interactive editing. Finally,
theone-selection-per-recordconstraintmakeseditingseman-
tically identicalto single-selectioneditingoneachrecord.In
particular, aselectioncopiedfrom oneplacein therecordcan
alwaysbepastedsomewhereelse,sincethesourceandtarget
areguaranteedto have thesamenumberof selections.

Outlier Highlighting
In a long document,someof the inferredselectionsmay lie
outsidethevisiblescrollarea.LAPIS makestheseselections
easierto find by putting marksin the scrollbarcorrespond-
ing to lineswith selections(see,for example,the scrollbars
in Figure2). The usercanscroll throughthe documentto
check that selectionsare correctbefore issuingan editing
command.Whentherearemany selections,however, check-
ing themall canbe tedious. LAPIS addressesthis problem
with outlier highlighting.

An outlier is anunusualselection,onethatdiffers from the
otherselectionsin oneor morefeatures.For example,if all
but oneselectionis followedby a comma,thentheselection
that doesn’t have a commacould be consideredan outlier.
The morefeaturesin which a selectiondiffers, the stronger
the casefor calling it an outlier. Briefly, our outlier finding
algorithmcomputesthe distanceof eachselection’s feature

Figure 5: Redoutlierhighlightingdrawsattentionto aselec-
tion error in simultaneousediting: only “Hayes” is selected
insteadof thefull name“Hayes-Roth”.

vectorfrom themedianfeaturevector. If a smallnumberof
selectionslie far from the median,thenthoseselectionsare
consideredoutliers.

Sinceoutliers might be inferenceerrors,LAPIS can high-
light theoutliersto draw theuser’s attention.Thehighlight-
ing takesdifferentforms dependingon the inferencemode.
In selectionguessingmode,outlierselectionsarecoloredred
(insteadof blue,thecolorusedfor ordinaryselections).In si-
multaneouseditingmode,however, theentirerecordcontain-
ing the outlier changescolor from yellow to red (Figure5).
Highlighting therecordis morelikely to catchtheuser’seye
thanhighlighting just the selection,becausea recordoccu-
piesmorescreenareathana selection,particularlyif these-
lectionis just aninsertionpoint. Theredhighlightingis also
reflectedasa redmark in the scrollbar, so that the usercan
find andcheckon outliersoutsidethevisible scroll area.

Even when the document fits in the window without
scrolling, however, outlier highlighting draws attentionto
inferenceerrors. A userstudy of simultaneousediting [8]
foundthatusersnoticedandcorrectedmoreinferenceerrors
with outlier highlighting(75%)thanwithout (43%).

IMPLEMENTATION
Thissectiondescribesthealgorithmusedto infermultiplese-
lectionsfrom positiveandnegativeexamples.Thealgorithm
describedhereis usedfor selectionguessingandtherecord
definitionstepof simultaneousediting.Previouspapershave
describedthe otheralgorithmsfor simultaneousediting [7]
andoutlier finding [8].

Likemostlearningsystems,theinferencealgorithmsearches
througha spaceof hypothesesfor a hypothesisconsistent
with theexamples.Thehypothesisspaceis constructedfrom
conjunctionsof features,wherea featurecaneitherbeacon-
ceptfrom theLAPIS structurelibrary or aliteral stringfound
in thetext. WhereasotherPBDsystemsinfer from afixedset
of low-level features,LAPIS canuseany conceptin its struc-
turelibrary to form features,includingconceptsthatit would
not otherwisebeableto learn(e.g. Java syntax).Extending
thefeaturesetis assimpleasaddinga patternto thelibrary,
which canbedoneby users.

Region Sets
Beforedescribingtheinferencealgorithm,wefirst briefly de-
scribethe representationsusedfor selectionsin a text file.
More detail canbe found in an earlierpaperaboutLAPIS

[6]. A region ���	��

� is a substringof a text file, describedby
its startoffset � andendoffset
 relative to the startof the
text file. A regionsetis asetof regions.Regionsetsareused
throughoutLAPIS: to representmultipleselections,structure
library concepts,features,andhypotheses.

LAPIS hastwo novel representationsfor region sets. First,
a fuzzyregion is a four-tuple ���������
����
�����

��� that represents
the set of all regions ���	��

� such that �����������
� and

�����
���

� . Note thatany region ������

� canberepresented
asthefuzzy region � ��������
���

� . Fuzzyregionsareparticularly
usefulfor representingrelationsbetweenregions.For exam-
ple, the setof all regionsthat are inside � ����
!� canbe com-
pactly representedby the fuzzy region � ����
����	��

� . Similar
fuzzy region representationsexist for otherrelations,includ-
ing contains,before, after, justbefore, justafter, starting(i.e.
having coincidentstartpoints),andending. Theserelations
are fundamentaloperatorsin the LAPIS patternlanguage,
andarealsousedto form features.Theserelationsbetween
intervals in a string arevery similar to Allen’s relationsfor
intervalsin time [1].

The secondnovel representationis the region tree, a union
of fuzzy regionsstoredin a treein lexicographicorder[6].
A region treecanrepresentanarbitrarysetof regions,even
if the regionsnestor overlap. A region tree containing "
fuzzy regionstakes #%$&"(' space,#%$)"+*-,/.0"1' time to build,
and #%$2*-,/.3"(' timeto testaregionfor membershipin theset.

Feature Generation
A featureis a predicatedefinedover text regions.Theinfer-
encealgorithmusestwo kinds of features:library features
derivedfrom thestructurelibrary, andliteral featuresdiscov-
eredby examiningthetext of thepositiveexamples.Features
arerepresentedby aregionsetcontainingeveryregionin the
documentthatmatchesthepredicate.

Library featuresaregeneratedby prefixingoneof sevenre-
lational operatorsto eachconceptin the structurelibrary:
equal to, just before, just after, starting with, endingwith,
in, or containing. For example,just before Numberis true
of a region if theregion is immediatelyfollowedby a match
to theNumberpattern,andin Commentis true if the region
is insidea Java comment. Thus, featurescanrefer to con-
text, evennonlocalcontext likeJavaor HTML syntax.Since
theinferencealgorithmlearnsonly conjunctionsof features,
LAPIS discardsany library featuresthat don’t matchevery
positiveexample.

Literal featuresaregeneratedby combiningtherelationalop-
eratorswith literal stringsderived from the positive exam-
ples. For example,startswith “http://” is a literal feature.
We generatea startswith featurefor every commonprefix
of the positive examples,but if two prefixesareequivalent,
we discardthe longerone. For example,startswith “http ”
is equivalentto startswith “http://” if “http” is alwaysfol-
lowed by “://” in the currentdocument.Similar techniques

generateliteral featuresfor endswith, just before, just af-
ter, and� equalto. Literal featuresfor containsaregenerated
from substringsthatoccurin every positive example,which
canbefoundefficiently with asuffix tree, apath-compressed
trie into which all suffixes of a string have beeninserted.
More detailsaboutthesefeaturegenerationalgorithmscan
befoundelsewhere[7].

Hypothesis Generation

After generatingfeaturesthat matchthe positive examples,
LAPIS formsconjunctionsof featuresto producehypotheses
consistentwith all theexamples.Sinceaselectionmusthave
a clearly definedstartpoint andendpoint, not all conjunc-
tionsof featuresareusefulhypotheses.We thereforereduce
thesearchspaceby formingkernelhypotheses.A kernelhy-
pothesisis eithera singlefeaturewhich fixesboth the start
andend(equal to F), or a conjunctionof a start-pointfea-
ture (starts-withF or just-afterF) with anend-pointfeature
(ends-withF or just-before F). All possiblekernelhypothe-
sesaregeneratedfrom thefeatureset,andhypothesesincon-
sistentwith thepositiveexamplesarediscarded.

If therearenegative examples,thenadditionalfeaturesare
addedto eachkernelhypothesisto excludethem. Features
are chosengreedily to excludeas many negative examples
as possible. For instance,after excluding negative exam-
ples, a kernelhypothesisequal to Link (which matchesan
HTML link element¡a¿...¡/a¿)might becomethe final hy-
pothesisequalto Link 4 contains”cmu.edu” 4 just-before
Linebreak. Kernelhypotheseswhich cannotbe specialized
to excludeall thenegativeexamplesarediscarded.

This simplealgorithmis capableof learningonly monotone
conjunctions. This is not as greata limitation as it might
seem,becausemany of theconceptsin theLAPIS structure
library incorporatedisjunction(e.g. UppercaseLetters,Let-
ters,andAlphanumeric).It is easyto imagineaugmentingor
replacingthissimplelearnerwith a DNF learner, suchasthe
oneusedby Cima[5].

Hypothesis Ranking

After generatinga setof hypothesesconsistentwith all the
examples,we areleft with theproblemof choosingthebest
hypothesis— in otherwords,definingthepreferencebiasof
our learner. Most learnersuseOccam’sRazor, preferringthe
hypothesiswith thesmallestdescription.Sinceour hypothe-
sescanrefer to library concepts,however, many hypotheses
seemequallysimple. Which of thesehypothesesshouldbe
preferred:Word, JavaIdentifier, or JavaExpression? We sup-
plementOccam’sRazorwith aheuristicwe call regularity.

The regularity heuristic was designedfor inferring record
setsfor simultaneousediting. It is basedon theobservation
that recordsoften have regular features, featuresthat occur
a fixed numberof timesin eachrecord. For instance,most
postaladdressescontainexactly onepostalcodeandexactly

threelines.MostHTML links haveexactlyonestarttag,one
endtag,andoneURL.

It is easyto find featuresthatoccuraregularnumberof times
in all thepositiveexamples.Not all of thesefeaturesmaybe
regular in theentirerecordset,however, sowe find a setof
likely regular featuresby thefollowing procedure.For each
feature 5 that is regular in the positive examples(occuring
exactly 687 timesin eachpositive example),countthenum-
berof times " 7 that 5 occursin theentiredocument.If 5 is
a regularfeaturethatoccursonly in records,thentheremust
be " 7:9�687 recordsin the entiredocument.We call " 7:9�687
the record countpredictionmadeby 5 . Now let ; be the
recordcountpredictedby themostfeatures.If ; is unique
andintegral, thenthe likely regular featuresarethe features
that predicted; . Otherwise,we give up on the regularity
heuristic. The upshotof this procedureis that a featureis
keptasa likely regular featureonly if otherfeaturespredict
exactly thesamenumberof records.Featureswhicharenon-
regular, occuringfewer timesor moretimesin somerecords,
will usually predict a fractional numberof recordsand be
excludedfrom thesetof likely regularfeatures.

For example,supposetheuseris trying to selectthepeoples’
namesanduseridsin the list below, andhasgiven the first
two itemsasexamples(shown underlined):

Acar, Umut (umut)
Agrawal, Mukesh(mukesh)
Balan,RajeshKrishna(rajesh)
Bauer, Andrej (andrej)

Thetwo exampleshave severalregularfeaturesin common,
amongthem“,” (comma),whichoccursexactlyoncein each
example; CapitalizedWord, occurring twice; Word, three
times; andParentheses, once. Computingthe recordcount
prediction " 7:9�687 for thesefeaturesgives4 for comma,4.5
for CapitalizedWord, 4.33 for Word, and4 for Parentheses.
The record count predictedby the most featuresis 4, so
the likely regular featureswould be commaand Parenthe-
ses. This exampleis oversimplified,sincethe structureli-
brarywouldfind otherfeaturesaswell.

Likely regularfeaturesareusedto testhypothesesby assign-
ing ahigherpreferencescoreto ahypothesisif it is in greater
agreementwith likely regularfeatures.A usefulmeasureof
agreementbetweena hypothesis< and a feature = is the
category utility > $ <(?�= ' > $ =@?A< ' , which was also usedin
Cima[5]. If a hypothesisanda featurearein perfectagree-
ment, then the category utility is 1. We averagecategory
utility acrossall likely regular featuresto computea score
for thehypothesis.

Although the regularity heuristicwas originally developed
for inferring record setsin simultaneousediting, we have
found that it works for selectionguessingaswell. The no-
tion of regularfeaturesmustbegeneralizedbeyondcontains
features,however, becauseselectionguessingis often used

B
DT C B

A HREF=”mailto:cg@cs.umn.edu”NICKNAME=”congra” C ConceptualGraphs
B

/A CB
DT C B

A HREF=”mailto:kif@cs.stanford.edu”NICKNAME=”kif” C KIF
B

/A C
... etc. (5 morerecords)

DFE
;; ConceptualGraphs

congra:mailto:cg@cs.umn.edu

;; KIF

kif: mailto:kif@cs.stanford.edu

... etc.

Figure 6: Userstudytask(from Fujishima[3]): reformatanannotatedlist of emailaddressesfrom HTML to plain text.

Multiple-selection Equivalenttasksize
inferencetechnique Multiple-selectiontime Single-selectiontime novices expert
Selectionguessing 426.0[173–653]s 43.0[32–52]s/rec 9.3 [4.7–15.7]recs 2.3recs

Simultaneousediting 119.1[64–209]s 32.3[19–40]s/rec 3.6 [1.9–5.8]recs 1.6recs

Table 1: Time takenby usersto performthe testtask(mean[min-max]). Equivalenttasksizeis the ratio betweenmultiple-
selectioneditingtime andsingle-selectioneditingtime, averagedover users;novicesareusersin theuserstudy, andexpert is
oneof theauthors,providedfor comparison.A taskwith morerecordsthanequivalenttasksizewould befasterwith multiple
selectionsthansingle-selectionediting.

to infer selectionsthatdon’t containany text atall, i.e. inser-
tion points. Thus,thefeaturesjust-before F andjust-afterF
areconsideredregular featuresif positive examplescontain
no otheroccurrencesof = , andin F is consideredregular if
everypositiveexampleis in a differentinstanceof = .

EVALUATION

Selectionguessingandsimultaneouseditingwereevaluated
with two small userstudies. Userswere found by solicit-
ing campusnewsgroups— 5 usersfor theselectionguessing
study and 8 usersfor the simultaneousediting study. All
werecollegeundergraduateswith substantialtext-editingex-
perienceandvaryinglevelsof programmingexperience.All
werepaid for participating. Userslearnedaboutthe infer-
encetechniquethey weregoing to useby readinga tutorial
andtrying its examples.Thetutorial took lessthan15 min-
utesfor all users.

After completingthe tutorial, eachuserwas asked to per-
form onetesttask(Figure6), obtainedfrom Fujishima[3].
After performing the task with multiple selections,users
repeatedthe first 3 recordsof the task with conventional,
single-selectionediting, in orderto estimatethe user’s edit-
ing speed.Multiple-selectionediting alwayscamefirst, so
time to learn and understandthe task was always charged
to multiple-selectionediting. Single-selectionediting al-
wayscamesecondbecausewe neededto measuretheuser’s
asymptotic,steady-stateediting speed,without learningef-
fects,in orderto do theanalysisdescribedbelow.

Thesimultaneouseditingstudyalsohadusersdo two other
taskswhich wereomittedfrom theselectionguessingstudy.
More detailsabout the full simultaneousediting study are
foundin apreviouspaper[7].

All 8 simultaneous-editinguserswereable to completethe
task entirely with simultaneousediting, and 4 out of 5
selection-guessingusersdid, too. The fifth useralsocom-
pletedit, but only by exiting selection-guessingmodeat one

point,doingatroublesomepartwith single-selectionediting,
andthenresumingselection-guessingto finish thetask.

Aggregatetimes for the task are shown in Table 1. Fol-
lowing the analysisusedby Fujishima[3], we estimatethe
leverageof multiple-selectioneditingby dividing thetimeto
edit all recordswith multiple selectionsby the time to edit
just onerecordwith singleselections.This ratio, which we
call equivalenttask size, representsthe numberof records
for which multiple-selectionediting time would beequalto
single-selectionediting time for a givenuser. Sincesingle-
selectiontime increaseslinearly with record numberand
multiple-selectiontime is roughly constant(or only slowly
increasing),multiple-selectionediting will be fasterwhen-
ever thenumberof recordsis greaterthantheequivalenttask
size. (Note that the averageequivalenttasksizeis not nec-
essarilyequalto theratio of theaverageeditingtimes,sinceG � ;H9JI �LKD G � ; � 9 G � I � .)
As Table1 shows,theaverageequivalenttasksizesaresmall.
For instance,the averagenovice userworks fasterwith si-
multaneousediting if therearemorethan3.6 recordsin the
test task. Thus simultaneousediting can win over single-
selectioneditingevenfor very small repetitiveeditingtasks,
andeven for userswith as little as15 minutesof exposure
to the idea. Selectionguessingis not as fastassimultane-
ousediting on this task,primarily becauseselectionguess-
ing requiresmoreexamplesfor eachselection.Bothkindsof
multiple-selectioneditingcomparefavorablywith otherPBD
systemsthathavereportedperformancenumbers.For exam-
ple,whenDEED [3] wasevaluatedwith noviceuserson the
sametask,thereportedequivalenttasksizesaveraged42and
rangedfrom 6 to 200,which is worseon averageandmore
variablethanselectionguessingor simultaneousediting.

Anotherimportantpartof systemperformanceis generaliza-
tion accuracy. Eachincorrectgeneralizationforcesthe user
to provideanotherpositiveor negativeexample.For all three
tasksin thesimultaneouseditinguserstudy[7], usersmade
a totalof 188selectionsthatwereusedfor editing.Of these,

158 selections(84%) werecorrectafter only oneexample.
The remainingselectionsneededeither1 or 2 extra exam-
plesto generalizecorrectly. Onaverage,1.26exampleswere
neededperselection.

In theselectionguessingstudy, usersactuallyhadtwo ways
to correctanincorrectselection:eithergiving anotherexam-
pleor selectinganalternativehypothesis.(Thethird method,
correctingthe hypothesismanually, wasnot availablewhen
the userstudywasdone.) To judge the accuracy of selec-
tion guessing,wemeasurethenumberof actionsausertook
to createa selection,whereanactionis eithergiving anex-
ampleor clicking on an alternative hypothesis. Of the 51
selectionsusedin selectionguessing,34 (67%)werecorrect
afteronly oneaction.On average,2.73actionswereneeded
to createeachselectionusedfor editing.

After the study, userswere asked to evaluatethe system’s
ease-of-use,trustworthiness,andusefulnessona5-pointLik-
ert scale,with 5 beingbest. The questionswere also bor-
rowed from Fujishima[3]. The averagescoreswere quite
positive for simultaneousediting (easeof use4.5, trustwor-
thiness4.1,usefulness4.3),but mixedfor selectionguessing
(easeof use3.6,trustworthiness3.0,usefulness4.8).

FUTURE WORK
Inferringselectionsfrom examplesmayalsobeusefulin ap-
plicationsthatalreadyusemultipleselection,suchasgraphi-
cal editors,spreadsheets,andfile managers.Evenin thetext
domain,however, multiple-selectionediting doesnot cover
all caseswherePBD is applicable.Multiple-selectionedit-
ing is bestsuitedto repetitive taskswhereall the examples
to beeditedarepresenta singlefile — whatmight becalled
repetitionover space. But PBD is alsousedfor automating
repetitionover time, that is, creatinga programthatwill be
executedfrom time to time on new data.Goodexamplesof
repetitionover time areemail filtering rules andweb page
wrappers.Multiple selectioneditingmight beappliedto au-
tomatingrepetitionover time by collectingsomeexamples
(e.g.,from an email archive) andediting the exampleswith
multiple selection.Inferredselectionsandthe editingcom-
mandsthatusethemwould be recordedasa script that can
beappliedto futureexamples.If thescriptfailsonsomenew
example,theuserwould addtheexampleto theexampleset
andredemonstratethebrokenpartof thescripton theentire
exampleset,therebyguaranteeingthat thescriptstill works
on old examples.

The low examplecount and fast responsetime of simulta-
neousediting make it a good candidatefor future refine-
ment. Supportingnestediterations(subrecordsinsideeach
record),conditionals(omittingsomerecordsfrom amultiple
selection),and sequences(1-2-3, A-B-C, or Jan-Feb-Mar)
would help simultaneousediting addressmoretasks.Since
the userstudiestestedselectionguessingandsimultaneous
editing separately, it is still an openquestionwhetherusers
can understandthe differencebetweenthe two modesand

determinewhento useeachone,or whetherthe two modes
shouldbe somehow combinedinto one. In retrospect,the
name“simultaneousediting” is probablymisleading,since
all multiple-selectionediting is “simultaneous”no matter
how theselectionis made.

CONCLUSION
Multiple selectionsoffer a new way to automaterepetitive
text editing tasks.Two techniquesfor inferring multiple se-
lectionsfrom exampleswerepresented:selectionguessing
andsimultaneousediting.Althoughselectionguessingis the
moregeneraltechnique,simultaneouseditingrequiresfewer
examplesandhasfasterresponsetime.

Availability
LAPIS is a freely available,open-sourceprogramwritten in
Java. It implementsall thetechniquesdescribedin thispaper:
selectionguessing,simultaneousediting, and outlier high-
lighting. LAPIS canbedownloadedfrom:

http://www.cs.cmu.edu/˜rcm/lapis/

ACKNOWLEDGMENTS
This researchwassupportedin partby USENIX StudentRe-
searchGrants.

REFERENCES
1. J.F. Allen. Maintaining knowledge about temporalintervals.

Communicationsof theACM, 26(11):832–843,Nov 1983.
2. A. Cypher. Eager: Programmingrepetitive tasksby demon-

stration.In A. Cypher, ed.,Watch WhatI Do: Programmingby
Demonstration, pp.205–218.MIT Press,1993.

3. Y. Fujishima.Demonstrationalautomationof text editingtasks
involving multiple focuspointsandconversions.In Proc. IUI ,
pp.101–108,Jan1998.

4. J. LandauerandM. Hirakawa. Visual AWK: a modelfor text
processingby demonstration.In Proc.VL ’95, pp.267–274.

5. D. Maulsby. InstructibleAgents. PhDthesis,U. Calgary, 1994.
6. R.C. Miller andB.A. Myers.Lightweight structuredtext pro-

cessing.In Proc.USENIXTech. Conf., pp131–144,June1999.
7. R.C. Miller andB.A. Myers. Interactive simultaneousediting

of multiple text regions.In Proc.USENIXTech. Conf., pp161–
174,June2001.

8. R.C.Miller andB.A. Myers.Outlier finding: Focusinghuman
attentionon possibleerrors.In Proc.UIST, pp 81–90,2001.

9. B.A. Myers.Tourmaline:Text formattingby demonstration.In
A. Cypher, ed.,Watch What I Do: Programmingby Demon-
stration, pp.309–322.MIT Press,1993.

10. R. Nix. Editing by example. ACM TOPLAS, 7(4):600–621,
Oct.1985.

11. I.H. WittenandD. Mo. TELS:Learningtext editingtasksfrom
examples.In A. Cypher, ed.,Watch WhatI Do: Programming
byDemonstration, pp.183–204.MIT Press,1993.

12. S.A. Wolfman, T. Lau, P. Domingos,and D.S. Weld. Mixed
initiative interfacesfor learningtasks:SMARTedit talksback.
In Proc.IUI , pp.167–174,2001.

