A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 24: Hardness Assumptions
December 2, 2013

Lecturer: Ryan O’Donnell Scribe: Jeremy Karp

1 Overview

This lecture is about hardness and computational problems that seem hard. Almost all of
the theory of hardness is based on assumptions. We make assumptions about some problems,
then we do reductions from one problem to another. Then, we want to make the minimal
number of assumptions necessary to show computational hardness. In fact, all work on
computational complexity and hardness is essentially in designing efficient algorithms.

2 NP-Hardness

A traditional assumption to make is that 3SAT is not in P or equivalently P # N P. From
this assumption, we also see that Maximum Independent Set, for example, is not in P through
a reduction. Such a reduction takes as input a 3CNF formula ¢. The reduction itself is
an algorithm that runs in polynomial time which outputs a graph G. For the reduction to
work as we want it to, we prove that if ¢ is satisfiable then G has an independent set of
size at least some value k£ and if ¢ is not satisfiable then the maximum independent set of G
has size less than k. This reduction algorithm will be deterministic. This is the basic idea
behind proofs of N P-hardness.

There are a few downsides to this approach. This only give you a worst-case hardness of a
problem. For cryptographic purposes, it would be much better to have average-case hardness.
We can think of average-case hardness as having an efficiently sampleable distribution of
instances that are hard for polynomial time algorithms. Then, we could efficiently create
problem instances if 3S AT, which could then be reduced to hard instances of other problems.
Also, we still don’t really know how hard 3SAT is. Note that it has been shown that
3SAT € O(1.31")

3 Learning Parity with Noise

We can also consider other reasonable assumptions. In the last lecture we discussed the
Learning With Errors (LWE) problem which is very useful for constructing cryptographic
primitives with the assumption the LWE is hard. Recall that this problem is roughly solving
noisy n-variable linear equations mod ¢ where ¢ is polynomial in n. LWE seems to be hard
in the average case. Also, there is an efficient quantum reduction from the Gap Shortest

Vector Problem with factor 6(711'6) to LWE, which says if you can solve Gap SVP in worst
case then you can solve LWE in the average case.

A related problem is Learning Parity with Noise (LPN), which is basically LWE mod 2.
This problem has two parameters, n and 0 < € < % To generate instances of the problem,
pick a “secret” string s ~ F5. The solving algorithm can ask for a noisy equation about
s. When it asks for this, it receives ays; + ... + a,s, = b. The solving algorithm gets to
see a ~ [, another uniformly random string, and b which is a - s with probability 1 — e.
One should think of € as a small constant like .1. The task for the learner is to output s by
interacting with this oracle that returns noisy linear equations.

The assumption we make is that LPN is not in P (or another similar assumption like
LPN is sub-exponential). In other words, for all constants 0 < € < %, any polynomial-time
algorithm fails except with exponentially small probability. This gives a one way function
and very efficient secret key encryption, but it is unknown in general if you can get public
key encryption. You can, however, get public key encryption if € = ﬁ [Ale03].

The fastest known algorithm for LWE runs in 29(en) time and samples [BKWO03]. This
algorithm performs “clever” Gaussian elimination. As a side note, if the algorithm can only
get polynomially many samples, then the fastest known algorithm runs in 20zt time
[Lyu05]. This motivates the assumption that this problem cannot be done in sub-exponential
time.

This problem is a search problem, but we could also make a decision problem to determine
if one is getting completely random equations or actually getting the noisy linear equations.
This decision problem is polynomial-time equivalent to the search problem.

4 Sparse-LPN

Sparse-LPN is the same as LPN except all equations have only k£ > 3 nonzero elements of a.
We need to be careful if we are to assume this problem is hard. For example, this problem
is easy if the algorithm can get > n* samples. This is because we would see every possible
equation many times and could essentially remove the noise from the equations and know
the correct answer with overwhelming probability. This problem is still easy with > n:
samples, but this requires a more sophisticated algorithm.

However, it’s more reasonable to assume that for k& = 3 there is no polynomial-time
algorithm if limited to O(n) samples. Another way to think about this is to find a string &’
which agrees wiht s on > 1 + ¢ fraction of the coordinates. The algorithm gets a set of O(n)
linear equations:

s1+ 810+ 89 =0

S53 + S18 + 55 =1

and with high probability there’s an assignment that satisfies a little bit less than 1 — €
fraction of the equations but it is seemingly hard to find an assignment that satisfies % +e€

2

IBAT » (998 1)-approximation of 3SAT

PCP Theorem

Parallel Repitition Theorern

Label Cover

[Moshkovitz and Raz '"10] .)
Fourier Analysis

Hastad's 3-Lin Hardness
Figure 1: Outline of the proof of Hastad’s theorem

fraction of the equations. Then this assumption is like saying that we can efficiently generate
hard-seeming instances of this problem. We saw previously that this problem is N P-Hard,
so this problem is hard in the worst case.

Theorem 4.1 ([HILL99)). (5 +e¢, 1 —e¢)-approzimating MAX —3LIN (mod 2) is N P-Hard.

Note, however, that if & = 2 then the Goemans-Williamson Max Cut approximation
algorithm gives a (1 — O(y/¢€),1 — €)-approximation for MAX — 2LIN (mod 2).

Hastad’s theorem is frequently used in proving theorems of hardness of approximation.
For example, this theorem is the basis for the best known N P-Hardness results of Max
Cut, Max 2SAT, TSP, robust Graph Isomorphism and many others. Then, assuming the
underlying assumption, we can generate hard instances of all these problems.

5 Hard instances of 3SAT

3S AT is much more widely studied than solving linear equations, which gives support as-
sumptions about the problem. It is N P-hard to distinguish a totally satisfiable instance and
an unsatisfiable one, whereas it is easy to solve a satisfiable linear equation without noise.
One way to make hard instances of 3SAT is to take a problem that’s hard on average and
encode it into a 3SAT instance. However, this is a bit inefficient and isn’t really done in
practice. Another possibility is to pick random clauses, but this fails because if the number
of clauses is too small or large the instance will (with high probability) by satisfiable or
unsatisfiable, respectively. A third possibility is to pick a secret solution s at random, then
output random 3C' N F’ clauses consistent with it. This, too, fails because the distribution of
the clauses will not be uniform and can be used to the advantage of a SAT solver.

Let’s now think about a decision problem, where the solver just has to decide if an
instance is satisfiable. Suppose we pick m totally random clauses. If ¢ = ™, maybe there
is a value of ¢ where the probability that the instance is satisfiable is % Empirically, it has

been roughly shown that if ¢y ~ 4.2 then Ve > ¢y, m > cn the instance is unsatisfiable
with high probability and Ve < ¢y, m < cn the instance is satisfiable with high probability.
This statement has only been shown empirically, not proven. However, we do know that
Ve > ¢y, m > cn the instance is unsatisfiable with high probability if ¢y ~ 4.5 and Ve <
co, m < cn the instance is satisfiable with high probability if ¢y &~ 3.5. If we want to be
completely accurate, we say there exists a sequence cq(n) for which the previous claim holds
[FBT99]. This theorem allows for the possibility that this sequence could oscillate rather
than being a constant.

A related hardness assumption is Feige’s R3S AT assumption: For all sufficiently large
¢, there does not exist a polynomial-time algorithm which refutes (proves unsatisfiable) a
random c-n-clause 3C'N F' instance with high probability. The proof of unsatisfiability needs
to output “typical” or “not typical” where it outputs “typical” with high probability but can
never output “typical” if the instance is unsatisfiable. Feige’s R3S AT assumption is nearly
equivalent to the k = 3 version of the Sparse-LPN assumption.

6 Worst-case hardness of CNF — SAT

It is trivial to solve this problem in time 2"poly(n) where poly(n) is the number of clauses.
A reasonable question is to ask if we can do better than this. In the case of 3SAT we can,
3SAT is solvable in O(1.31") [Her1l]. This result is from a succession of papers lowering
the running time to solve 3SAT. One notable algorithm from this series of papers is called
WALK-SAT, for which we provide pseudo-code below [Sch99]. WALK-SAT is notable for

being very simple yet successful at solving 35S AT with high probability in 6(%”)

Algorithm 1 WALK-SAT
For i=1 to 5(%”)
Pick a random assignment of variables
For j=1 to O(n)
Take any unsatisfactory clause and flip one of the variables

6.1 The Exponential Time Hypothesis

It’s of course not known what the limit is to solving 3SAT quickly. However, some people

are comfortable making the following assumption about the computational complexity of
3SAT:

Definition 6.1. [IP99] The Exponential Time Hypothesis (ETH) states that there exists
some § > 0 such that 3SAT ¢ Time(2°")

It is important to note that there are N P-Complete problems with algorithms running in
O(2V™). This illustrates that ETH is a much stronger assumption than P # NP, although
we think it is still reasonable.

Theorem 6.2. [GJT76/The planar Hamiltonian path problem is N P-Complete.

This theorem was proved with a reduction from 3SAT. If we inspect the proof, we see
that if the input size is n, then the size of the graph G outputted by the reduction is O(n?).
Then, if we assume ETH, we see that planar Hamiltonian path is in 2%V™)_ Tt is also known
that this problem can be solved in 2°V") | which matches our observation nicely. Typically,
basic N P-Completeness reductions have output size O(n), so under ETH these problems all
require 22 time.

Fact 6.3. There exists a time 1.3%poly(n) algorithm for deciding if there is a vertex cover
>k

Algorithms such as the one from Fact 6.3 are called fixed parameter tractable algorithms.
But, ETH implies that there does not exist a 2°®)poly(n) algorithm, suggesting that the
algorithm from Fact 6.3 cannot be beat.

Fact 6.4. There exists a time n* algorithm for the k-clique problem.
On the other hand, ETH implies that there does not exist a n°*) algorithm for k-clique.

Fact 6.5. There exists a time 200w @) poly(n) algorithm for the Maz Cut problem.

(treewidth(Q))

The ETH implies that we cannot improve on this; there is no 2° poly(n) algo-

rithm.

Definition 6.6. The Strong Exponential Time Hypothesis states that there does not exist
§ > 0 such that CNF — SAT is solvable in 2=)"poly(n).

Theorem 6.7. [PW10] The Strong ETH implies that the k-Sum problem on n integers

requires nS%).

The k-Sum problem requires the solver to determine if some £ of the n integers sum to

7 Label Cover

The Label Cover problem is the baseline for many hardness of approximation results. An
instance of Label Cover with domain size ¢ is a special type of 2 — C'SP. We can think of
an instance as a bipartite graph, where each edge (u,v) has a function 7, : [¢] — [¢] where
each edge is a constraint that is satisfied iff m,,(A(u)) = A(v) where A(x) is the labeling
of vertex x. Note that if the label functions are bijections then this is the Unique Games
problem.

Theorem 7.1. [Raz98] For all § > 0 there egists ¢ = poly(3) such that (9, 1)-approzimating
Label Cover with domain size q 1s N P-hard.

Hastad also showed that for all €, (n¢, n'~¢)-approximating Maximum Independent Set is
N P-Hard. One downside of Raz’s result is that it maps 3SAT instances of size n to Label
Cover instances of size n°1°8(:) . Then ETH, along with Raz and Hastad’s results show that
(.51, .99)-approximating 3LIN requires 2" for some very small ¢ > 0 which is not so great.
An upside to this is that Moshkovitz and Raz [MR10] showed a reduction from a 3SAT
instance of size n to Label Cover instances of size n'*°(!) even for subconstant 6. Then
combining ETH with this result gets shows that 3LIN requires 2”1_0(1), which is nicer than
the previous bound.

8 Unique Games

We mentioned earlier that if we require the functions in Label Cover instances to be bijections
we have the Unique Games problem. This problem was identified by Khot [Kho02].

Conjecture 8.1 (Unique Games Conjecture). For all § > 0, there exists ¢ = q(0) such that
(0,1 — §)-approzimating Unique Games is NP-Hard.

The Unique Games Conjecture implies many sharp inapproximability results. For exam-
ple, Raghavendra [RS09] showed that the Unique Games Conjecture implies that Semidefinite
Programming algorithms give optimal approximations for all CSPs. However, we aren’t so
sure how believable the Unique Games Conjecture is.

Theorem 8.2. [ABS10] For all § > 0, there is a (5,1 — d)-approzimation algorithm for
1
Unique Games in time on?@?),
This doesn’t mean the Unique Games is not N P-Hard, but it’s a bit scary. Furthermore,
we don’t know how to generate hard instances of Unique Games and we are able to solve all
known instances of Unique Games.

References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
unique games and related problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 563-572. IEEE, 2010.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In Foun-
dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium
on, pages 298-307. IEEE, 2003.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM (JACM), 50(4):506—
519, 2003.

[FB+99)

(GITT76]

[Her11]

[HILL99)

[IP99)

[KhoO2]

[Lyu05]

IMR10]

[PW10]

[Raz98]

[RS09]

[Sch99]

Ehud Friedgut, Jean Bourgain, et al. Sharp thresholds of graph properties, and the
k-sat problem. Journal of the American Mathematical Society, 12(4):1017-1054,
1999.

Michael R Garey, David S. Johnson, and R Endre Tarjan. The planar hamiltonian
circuit problem is np-complete. STAM Journal on Computing, 5(4):704-714, 1976.

Timon Hertli. 3-sat faster and simpler-unique-sat bounds for ppsz hold in general.
In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Sympo-
stum on, pages 277-284. IEEE, 2011.

Johan Hastad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364-1396, 1999.

Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Compu-
tational Complezity, 1999. Proceedings. Fourteenth Annual IEEE Conference on,
pages 237-240. IEEE, 1999.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 767-775.
ACM, 2002.

Vadim Lyubashevsky. The parity problem in the presence of noise, decoding ran-
dom linear codes, and the subset sum problem. In Approzimation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 378-389.
Springer, 2005.

Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. Journal
of the ACM (JACM), 57(5):29, 2010.

Mihai Patragscu and Ryan Williams. On the possibility of faster sat algorithms.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1065—-1075. Society for Industrial and Applied Mathematics,
2010.

Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763—
803, 1998.

Prasad Raghavendra and David Steurer. Integrality gaps for strong sdp relaxations
of unique games. In Foundations of Computer Science, 2009. FOCS’09. 50th
Annual IEEE Symposium on, pages 575-585. IEEE, 2009.

T Schoning. A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In Foundations of Computer Science, 1999. 40th Annual Symposium on,
pages 410-414. IEEE, 1999.

