
A Theorist's Toolkit (CMU 18-859T, Fall 2013)

Lecture 23: Cryptography

November 25, 2013

Lecturer: Ryan O'Donnell Scribe: Linus Hamilton

1 Introduction

Alice wants to send a secret message m to Bob, but doesn't want the eavesdropper Eve
to get any infomation about m. To do this, she encrypts the plaintext m to get the
ciphertext c = Enc(m). Then she sends c to Bob, who decrypts it to obtain the message
m = Dec(c).

Simple, right?

2 Symmetric-Key Cryptography

Of course, if Eve and Bob have equal information, then Eve can decode any message Bob
can. To get around this, Alice meets with Bob beforehand to share a secret key SK.
They agree to use SK in the encryption and decryption algorithms. Now the procedure
looks like this:
• Alice and Bob secretly generate SK = Gen(), using the function Gen to generate a

random secret key.
• Later, Alice wants to send the message m to Bob. She computes c = Enc(m,SK)

and sends it to Bob. Eve might eavesdrop on the ciphertext c.
• Bob decrypts m = Dec(c, SK) and gets the original message back.
This kind of procedure is called an SKE scheme, or symmetric-key encryption scheme.

We'd like some measure of security, so that Alice and Bob can be sure Eve doesn't
�nd out their secret. One reasonable security condition is that Eve should gain absolutely
no information about m from seeing c.

De�nition. An SKE scheme is perfectly secure (or �Shannon secure�) if Eve gains no
information about the plaintext m from seeing the ciphertext c; in other words, if the
distribution {Enc(m,SK) : SK ← Gen()} is the same for any message m.

Let's �nd an SKE scheme which is perfectly secure. For notation's sake, from now
on, write Un to be the uniform distribution on {0, 1}n.

De�nition. The One-Time Pad encryption scheme lets Alice send an n-bit message to
Bob, as follows. Gen generates a random SK from Un. Then Enc(m,SK) = m ⊕ SK,
and Dec(c, SK) = c⊕ SK, where ⊕ denotes bitwise XOR.

Theorem. The One-Time Pad scheme is perfectly secure.

1

Proof. For any message m, the distribution {Enc(m,SK) : SK ← Gen()} is the uniform
distribution Un.

Great! So why don't we just use the One-Time Pad everywhere and call it a day?
Well, unfortunately, the OTP has some problems. For instance, like the name indicates,
you can only use an OTP once. If Eve gets her hands on both m0 ⊕ SK and m1 ⊕ SK,
she now knows m0 ⊕m1 with certainty, which can help her break the code. (In practice,
if m0 and m1 are English sentences, and you know m0 ⊕m1, it's almost always trivial to
work out both m0 and m1.)

Another problem is that the key in an OTP has to be as long as the message. It's
pretty easy to see that any perfectly secure cipher must have this property. So much for
perfect security. In light of these problems, cryptologists usually use a relaxed notion of
security.

Computational Indistinguishability

For perfect security, we required that for any two possible messagesm0 andm1, the distri-
butions of their possible ciphertexts are statistically indistinguishable. For computational
security, we require only that the distributions be computationally indistinguishable. Intu-
itively, we assume that Alice, Bob, and Eve are PPT (i.e. they can only run probabilistic
polynomial time algorithms). For an encryption scheme to be secure, Eve should only
�gure out Alice's message with negligible probability (e.g. if she gets extremely lucky
and happens to guess the secret key).

De�nition. A function is negligible if it is less than 1
nc for every constant c. In the vein

of big-O notation, we write negl(n) = 1
nω(1) .

De�nition. Let Xn = {Xn1 , Xn2 , . . . , Xnm} and Yn = {Yn1 , Yn2 , . . . , Ynk
} be ensembles

on {0, 1}`(n), i.e. sequences of random variables taking values in {0, 1}`(n). Xn and Yn
are computationally indistinguishable if no algorithm can reliably tell them apart. That
is, for every PPT algorithm A,

|Pr[A(Xn) returns true]−Pr[A(Yn) returns true]| ≤ negl(n).

When Xn and Yn are computationally indistinguishable, write Xn
c
≈ Yn.

Fact 1.
c
≈ is transitive, even if you chain polynomially many of them together. That is,

if X1, . . . , Xpoly(n) are ensembles on {0, 1}n, and Xi
c
≈ Xi+1 for all i, then X1

c
≈ Xpoly(n).

Proof. Use the triangle inequality. For every PPT algorithm A,

|Pr[A(X1) returns true]−Pr[A(Xpoly(n)) returns true]|

≤
∑
i

|Pr[A(Xi) returns true]−Pr[A(Xi+1 returns true)]

≤
∑
i

negl(n) = poly(n) · negl(n)

= negl(n).

2

Fact 2. If Xn
c
≈ Yn, then for any PPT function B, B(Xn)

c
≈ B(Yn).

Proof. If B(Xn) 6
c
≈ B(Yn), then Eve can distinguish Xn from Yn by applying B to both.

Using these de�nitions, we can formulate a de�nition of cryptographically secure.

De�nition. An SKE scheme (Gen,Enc,Dec) is single-message secure if for any two

messages m0 and m1, with SK ← Gen(), we have Enc(m0, SK)
c
≈ Enc(m1, SK). (Here

Enc(m0, SK) is understood to be a single-element ensemble.)

In the next section, we'll see how to use cryptographic PRGs to make secure SKE
schemes.

Cryptographic PRGs

De�nition. A cryptographic PRG is a deterministic polytime-computable function G :

{0, 1}n → {0, 1}`(n) such that G(Un)
c
≈ U`(n).

A cryptographic PRGs is very similar to a normal PRGs (from the lecture on deran-
domization). You could say that a cryptographic PRG is a normal PRG that negl(n)-fools
the class of PPT-computable functions.

For the purposes of cryptography, it is useful to make the following assumption:

Conjecture. Cryptographic PRGs G with `(n) = n+ 1 exist.

Remark. This conjecture implies P 6= NP. Proof sketch: If P = NP, then we can check
whether any string s ∈ {0, 1}n+1 is one of G's possible outputs in polynomial time. In
that case, the algorithm A(s) = [true if s ∈ image(G), else false] distinguishes G(Un)
from Un+1, so G isn't a cryptographic PRG after all.

Since the above conjecture implies P 6= NP, we aren't going to prove it anytime soon.

In the conjecture, `(n) = n + 1 may seem like a weak assumption. But it is actually
enough, due to the following theorem.

Theorem. If there are crypto PRGs with `(n) = n+1, then there are crypto PRGs with
`(n) = poly(n) for any desired polynomial.

Proof. For all n, let Gn : {0, 1}n → {0, 1}n+1 be a crypto PRG with input length n.
We will construct a procedure for a crypto PRG G′ with `(n) = poly(n). The idea is

just to use G over and over.
Given an input x ∈ {0, 1}n, let G′(x) = Gpoly(n)−1 ◦Gpoly(n)−2 ◦ · · · ◦Gn+1 ◦Gn(x).
To prove this works, we repeatedly apply Facts 1 and 2, above.

We have Gn(x)
c
≈ Un+1

So Gn+1(Gn(x))
c
≈ Gn+1(Un+1)

c
≈ Un+2

So Gn+2(Gn+1(Gn(x)))
c
≈ Gn+2(Un+2)

c
≈ Un+3

Et cetera.

3

Before we continue with the abstract theory, here's an example of a function believed
to be a crypto PRG.

Blum-Blum-Shub:
Frst pick N , the product of two 3 (mod 4) primes.
Now, given input X, repeatedly set X ← X2(mod N) and output the least signi�cant
bit of X.
The stream of outputs is believed to be a crypto PRG.[5]

Now, we'll show how to generate a single-message computationally secure SKE scheme
using any crypto PRG.

Theorem. Let G be a crypto PRG. Set Gen() = Un, Enc(m,SK) = m ⊕ G(SK),
Dec(c, SK) = c⊕G(SK). Then (Gen,Enc,Dec) is single-message secure.

Proof. Just do it: for any message m, Enc(m,SK) = m⊕G(Un)
c
≈ m⊕U`(n) = U`(n).

This works �ne for single-message security, but what if Alice wants to send more than
one message? Then the above scheme has the same problem that using a One-Time Pad
twice does. Worse still, let's say Eve is allowed to execute known-plaintext attacks: she
has a set of previous coded messages sent by Alice, along with their decoded plaintexts.
This may sound unreasonable, but it's not. If Alice and Bob attack Eve one day at dawn,
she can deduce that their previous message decoded to �ATTACK AT DAWN.�

Nevertheless, under some plausible assumptions, Alice and Bob can still communicate
securely.

Theorem. [Hill '99] Even if Eve can execute known-plaintext attacks, Alice and Bob can
still communicate securely if pseudorandom function families (PRFs) exist.

Intuitively, think of a PRF as follows. A PRF is a family of functions {0, 1}n → {0, 1}.
It should be pseudorandom, in the following sense. If we give Eve a function f sampled
randomly from the PRF, along with a random oracle O : {0, 1}n → {0, 1}, then she
should be unable to �gure out which one is which, except with negligible probability.

Goldreich, Goldwasser, and Micali showed how to create a PRF from a PRG.[3] We
know the following chain of implications:

One�way functions exist ⇐⇒ Crypto PRGs exist

⇐⇒ Crypto PRFs exist

=⇒ Symmetric�key encryption is possible

The �rst in the chain of implications, one-way functions, are basically functions that
are hard to invert.

De�nition. A one-way function is a function f which is polytime-computable, but for
any PPT algorithm A, A almost never successfully inverts f . That is, given a random
input x to f , Pr[f(A(f(x))) = f(x)] is negligible in the input size.

By the way, theorists are pretty sure that one-way functions exist. (Although it's still
stronger than P 6= NP, so don't start F5ing the Wikipedia page.) We know this fact:

4

Fact. If even a �weak one-way function� (i.e. a one-way function but with negligible
probability replaced by 1

poly(n)
probability) exists, then a full one-way function exists.

The following is one candidate for a one-way function:

In the following function, a1, . . . , an are integers mod 2n, and S is a subset of [n].
f(a1, a2, . . . , an, S) = (a1, a2, . . . , an,

∑
s∈S as).

The statement �f is a one-way function� basically expresses the belief that subset-sum is
hard on average.

3 Public Key Cryptography

Eve is getting frustrated. Alice and Bob are sending each other messages back and forth
with wild abandon, using their darn secret key SK.

She resolves not to make this mistake again. She won't let her new enemies, Alice'
and Bob', share a secret key. Since Alice' and Bob' live on opposite sides of the Earth,
they don't stand a chance. Eve intercepts everything they say, and as a result, they can
never share a single secret.

Three weeks later, Eve opens her communication log to �nd that Alice' has sent Bob'
a paper on lattice methods in public-key cryptography. She throws her keyboard against
the wall � all is lost.

In public-key cryptography, Alice wants to send Bob a secret message, but they can't
meet up beforehand to share a key. Amazingly, even if Eve has access to their entire
record of conversation, it is still possible for them to send messages securely. A typical
protocol proceeds like so:
• Bob runs Gen() to generate PK and SK, a public key and a secret key respectively.

He publishes PK and keeps SK to himself.
• When Alice wants to send Bob a message m, she encrypts it to c = Enc(m,PK)

and sends it to Bob.
• Bob decrypts m = Dec(c, SK) with his secret key.

Theorem. If Alice can send Bob one-bit messages securely with public-key cryptography

(i.e. (PK,Enc(”0”, PK))
c
≈ (PK,Enc(”1”, PK)), then she can send arbitrary messages

securely.

Just like one-way functions and SKE cryptography, most theorists believe that public-
key cryptography is possible. In other words, out of Impagliazzo's �ve possible worlds[4],
most people believe that we live in Cryptomania.

As witness, RSA and Di�e�Hellman. In recent years, lattice methods have also be-
come popular. Here's an example of a lattice-based cryptosystem, based on the Learning
With Errors (LWE) problem.

5

Fix n, q (usually ∼ n2 or n3), and α (usually ∼ 1√
n logn

).

Bob picks a secret (s1, . . . , sn) ∈ Zn
q . He publishes a batch of about O(n log n) equations

of the form
�a1s1 + · · ·+ ansn ≈ b�.
Here the ai are random numbers mod q, the si are variables, and b = (

∑
aisi) + error.

The error term is chosen from the Gaussian N (0, α2q2).

To send Bob a random bit, Alice �rst chooses a random subset of the equations and adds
them together to get A1s1 + · · · + Ansn ≈ B. If the bit is zero, she sends this equation
to Bob. If the bit is 1, she instead sendsA1s1 + · · ·+ Ansn ≈ B + b q

2
c.

To �nd out Alice's message, Bob checks whether the equation is true or far from true.
We can see with a Cherno� bound that one of these will almost always be the case.

The key to this cryptosystem's security is that Eve, given the batch of equations,
cannot work out the values of s1, . . . , sn. Working out these values is called the Learning
With Errors problem.

Theorem. (Ajtai-Dwork, Regev '05) The Learning With Errors (LWE) problem is average-
case hard, if the Shortest Vector Problem is hard to n1.5-approximate in the worst case
on a quantum computer.[1]

Now that we know that quantum computers can break RSA and Di�e�Hellman easily,
lattice-based cryptography and other non-number-theoretical methods are growing more
popular. If you think the NSA has a quantum computer, then these are the cryptosystems
for you.

References

[1] Miklos Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. ACM STOC, 1997.

[2] Yevgeniy Dodis. Introduction to Cryptography, 2012.

[3] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How to Construct Random
Functions, 1985.

[4] Russell Impagliazzo. A Personal View of Average-Case Complexity, 1995.

[5] Pascal Junod. Cryptographic Secure Pseudo-Random Bits Generation : The Blum-
Blum-Shub Generator, 1999.

6

	1 Introduction
	2 Symmetric-Key Cryptography
	3 Public Key Cryptography

