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1 Introduction

The topic for this lecture is ”communication complexity”. To explain what this means, say
there are players Alice and Bob and there is a wall between them. Alice receives an n-bit
string x ∈ X and Bob receives an n-bit string y ∈ Y . Alice and Bob are both trying to
compute f : X × Y → {0, 1} for their inputs by sending 1-bit messages. By the end, both
Alice and Bob should know f(x, y). We would like to minimize the communication bits given
that the two players have infinite computation power. This has been studied for two players,
but it gets a lot harder for a large number of players.

2 Definitions

In this section we will define the communication protocol more carefully. A communication
protocol π is a tree that has outcomes as leaves and at each node that is not a leaf it has a
player and a function associated with it.

Definition 2.1. costπ(x, y) is the length of the path on input (x, y), or, in other words, it
is the number of bits required to communicate for the input pair (x, y).

3 Examples

• EQn. This is the question of checking if the two n-bit strings are equal. It can be
computed deterministically by communicating n + 1 bits and using randomness by
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communicating O(log n) bits. For the deterministic algorithm, Alice sends to Bob all
of her bits, Bob computes the result and sends it back to Alice. Actually, this procedure
would work for any function.

• Parity(x) + Parity(y). This can be done in two bits. Alice sends a bit representing
the parity of her string and Bob sends back a bit representing the result.

• Alice gets a string representing a set S ⊆ [n] and Bob gets a string representing the
set T ⊆ [n]. They would like to compute the median of S ∪ T . This can be achieved
in O(log2 n).

• Disjointness. Assume Alice and Bob have strings defined as above. They would like to
compute f(x, y) such that f(x, y) = 1 iff S ∩ T = ∅. This can be achieved determinis-
tically by using n+ 1 bits.

Theorem 3.1. [KS92] The disjointness problem requires n bits of communication even
if we allow random bits.

• Inner product. That is, Alice and Bob need to compute
∑n

i=1 xiyi mod 2. This can
be achieved with n+ 1 bits deterministically and Ω(n) randomly.

4 Communication matrix

We define Mf to be the communication matrix of f . The matrix Mf has size 2n× 2n. Every
row corresponds to a possible value of x and every column corresponds to a possible value
of y. The entry at position (x, y) is the value of f(x, y).

Each time Alice or Bob sends a bit of information, the matrix is divided into two rectan-
gles. At the end of the protocol, we obtain a partition. In order for the protocol to work the
division should give us monochromatic rectangles. These rectangles need not be contiguous.

In order to illustrate this we will describe the protocol for EQ2 using a communication
matrix. Figure 1 represents the initial MEQ2 . Afterwards, Alice sends her bits to Bob and
the matrix looks like Figure 2. However, since Bob knows his bits, the matrix actually looks
like Figure 3 to him. So, he can send Alice back the correct value for EQ2(x, y)
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Theorem 4.1. Any c-bit communication protocol π that is deterministic and computes f
correctly, partitions f into at most 2c rectangles that are f -monochromatic.

Theorem 4.2. D(EQn) = n+ 1

Proof. We notice that in the communication matrix of EQn we have n ones placed on
the diagonal and zeros everywhere else. Because of this structure, each 1 should be in
its own rectangle. So, since the zeros require at least one rectangle, the total number of
rectangles is at least 2n + 1. So, by the theorem above the communication requires at least
dlog(2n + 1)e = n+ 1 bits

Theorem 4.3. [MS82] D(f) ≥ log(2rank(Mf )− 1)

Corollary 4.4. The lower bound for the communication complexity of EQn follows from
this theorem.

Proof. rank(MEQn) = rank(I2n×2n) = 2n. By the theorem above, D(EQn) ≥ dlog(2 · 2n −
1)e = n+ 1
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Corollary 4.5. Communicating whether two sets are disjoint takes at least n bits.

Proof.

MDISJn =

(
1 1
1 0

)N
n

This matrix also has rank 2n

It was conjectured( [LS88]) that D(f) ≤ polylog(rank(Mf ). The best known upper
bound is D(f) ≤ Õ(rank(Mf ).

Theorem 4.6. There exists F such that D(f) ≥ log(rank(Mf ))
log3 6

5 Randomized communication complexity

So far we have analyzed examples assuming that all algorithms are deterministic. Now,
assume that the players also base their communication on some random bits. The model
always considers the worst case over all inputs. A good algorithm should give the right
answer over all inputs with high probability. There are two types of model we can use:
private coin or public coin. In the first case, Alice knows only her set of random bits and
Bob knows only his set of random bits. In the second case, there are some random bits in
the sky that both Alice and Bob can look at. These two models are actually very nearly
equivalent.

Definition 5.1. Rpri
ε (f) is the number of bits communicated on worst case input for a

private coins protocol which computes f with probability 1− ε for all inputs (x, y)

Example 5.2. Rpri
1/3(EQn) = O(log n)

First, Alice and Bob agree on a prime p. Each of their strings can be viewed as the
coefficients of a polynomial in Zp. Alice picks a random number r with 1 ≤ r ≤ p and
computes her polynomial for value r. Then, she sends the number r and her result to Bob.
Bob computes his polynomial at r. If the results agree they say that the two strings are equal.

Another way to do this is to have Alice and Bob agree on an asymptotically good code
[O(n), n, .1n]2. Then, it would be enough for Alice to send (i, Enc(x)i) for a random i.

Now, we look at the same problem for public coins.

Theorem 5.3. Rpub
1/3(EQn) ≤ 3
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Proof. We interpret the random bits in the sky as two strings in Fn, r1 and r2. Alice sends
x · r1, x · r2 to Bob. Then, Bob checks if the results would be the same for string y and tells
Alice the answer. For t bits this gives a probability of error of 2−t

Theorem 5.4. [New91] We can convert a public coin protocol to a private coin protocol only
incurring an additional error of δ and using O(log n+ log δ) bits.

Proof. Assume a function can be computed by a protocol using m random bits. In order to
create an appropriate private coin protocol Alice and Bob first jointly write down t = O(n/δ2)
random strings r1, r2, . . . rt ∈ {0, 1}m. Afterwards they go to separate rooms and Alice picks
j randomly from t and tells it to Bob. Then, they can use the public coin protocol with rj
as the random bits.

In general, the ”standard” randomized protocol is the public-coin protocol. So, we will
define Rε(f) = Rpub

ε (f).
Let µ be a distribution on inputs (x, y).

Definition 5.5. The distributional complexity Dµ
ε is the cost of the best determnistic pro-

tocol that gives the correct value of f for at least 1− ε of the inputs, weighed by µ.

Corollary 5.6.
Rε(f) ≥ Dµ

ε

This corollary is usually used to prove lower bounds. For example, to compute the inner
product, R1/3(IP2) ≥ Ω(n) one can choose µ to be the uniform distribution and apply Fourier
Analysis (this is hard.)
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