
A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 18: Analysis of Boolean Functions
November 6, 2013

Lecturer: Ryan O’Donnell Scribe: Sarah Allen

1 Introduction

Consider a Boolean function f : {0, 1}n 7→ {0, 1} that maps n bits into a single bit. Tradi-
tionally, we consider 0 to represent False, while 1 represents True. In our analysis, it will
be helpful to be flexible in our choice of domain and range. For example, we can think of
our function as being over the vector space Fn2 . As long as we have two symbols, it doesn’t
really matter which ones we pick. For most of what we will do, it is convenient to consider

f : {−1, 1}n 7→ {−1, 1}

and in some more general cases,

f : {−1, 1}n 7→ R

where −1 represents True and 1 represents False.

In this lecture, we will consider the analysis of Boolean functions from three different
perspectives:

1. Writing functions as polynomials over real numbers
2. Spectral graph theory where our graph is the hypercube
3. Applicability of Fourier analysis to property testing.

2 Fourier Analysis and Functions as Polynomials

For a Boolean function f : {−1, 1}n 7→ R
3, we can think of our domain as a set of 2n

points in n dimensions. These points form the vertices of the hypercube, which is drawn in
3 dimensions in Figure 1a. Since our function maps any assignment of {−1, 1}n to R, we
can think of function f as assigning real values to each vertex of the hypercube, depicted in
Figure 1b.

For the Fourier analysis, we want to find a polynomial that interpolates f . This is also
known as Lagrange interpolation, which is easy when our domain is just {−1, 1}n. We start

1

a(−1,−1,−1)

b(−1,−1, 1)

c (−1, 1,−1)

d

(−1, 1, 1)

e
(1,−1,−1)

f
(1,−1, 1)

g (1, 1,−1)

h (1, 1, 1)

(a) The Hamming cube in 3 dimensions

−2(−1,−1,−1)

1
2

(−1,−1, 1)

−1 (−1, 1,−1)

− 1
2

(−1, 1, 1)

3

(1,−1,−1)

−1

(1,−1, 1)

−1 (1, 1,−1)

1 (1, 1, 1)

(b) f maps each vertex to some element of R

Figure 1: Visualizing the hypercube with n = 3

by considering the vertices of the hypercube one by one. For each xi = ±1, consider the
value (1

2
± xj

2
). When xj = xi, it evaluates to 1 and when xj 6= xi, it evaluates to 0. To

create a full expression that equals 1 only on a particular assignment and 0 otherwise, we
multiply many of these terms together.

For example, let’s start with x = (1, 1, 1).
We can create an expression that is equal to the value of f(1, 1, 1) on input (1, 1, 1) and

0 otherwise. Consider the expression(
1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
+
x3
2

)
.

If any xi differs from x = (1, 1, 1), its term will equal zero, causing the entire expression
to equal zero. For each xi that is consistent with x = (1, 1, 1), its term equals 1, so the
value of the entire expression is 1 if x = (1, 1, 1) and 0 otherwise. We multiply the entire
expression by f(1, 1, 1) to get the proper value, so we have

1×
(

1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
+
x3
2

)
.

Now we will create a similar expression for x = (1, 1,−1). Again, we want an expression
that is equal to 1 if x = (1, 1,−1) and 0 otherwise. Our expression for this assignment will
be (

1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
− x3

2

)
.

It’s easy to verify that this expression has the properties we want. Again, we multiply the
whole thing by f(1, 1,−1) to get

−1×
(

1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
− x3

2

)
.

2

We do this for each possible assignment to x and add all of the expressions to get our
polynomial. Then we can expand the expressions and combine them to yield a more concise
polynomial. Since each xi appears exactly once in each expression and its degree is at most 1
in each expression, the resulting polynomial is multilinear. We call this the Fourier expansion
of f . Now, let’s consider some common functions and their Fourier expansions.

2.1 Fourier Expansions of Majority and Parity

Our first example will be the majority function on 3 bits, denoted as Maj3, which is defined
to be the most frequently occurring bit in the input. To find the Fourier expansion of this
function, we consider the function’s value on each input.

Our function will be as follows.

Maj3(x) = 1×
(

1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
+
x3
2

)
+

+ 1×
(

1

2
+
x1
2

)(
1

2
+
x2
2

)(
1

2
− x3

2

)
+

+ 1×
(

1

2
+
x1
2

)(
1

2
− x2

2

)(
1

2
+
x3
2

)
+

− 1×
(

1

2
+
x1
2

)(
1

2
− x2

2

)(
1

2
− x3

2

)
+

+ 1×
(

1

2
− x1

2

)(
1

2
+
x2
2

)(
1

2
+
x3
2

)
+

− 1×
(

1

2
− x1

2

)(
1

2
+
x2
2

)(
1

2
− x3

2

)
+

− 1×
(

1

2
− x1

2

)(
1

2
− x2

2

)(
1

2
+
x3
2

)
+

− 1×
(

1

2
− x1

2

)(
1

2
− x2

2

)(
1

2
− x3

2

)
Expanding this out, we get

Maj3(x) =
1

2
xi +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3,

which can also be verified by checking all assignments to x.
We also consider the parity function on three bits, denoted as Parity3(x1, x2, x3). We

define Parity3(x) = 1 if x has an even number of (-1)s and -1 if x has an odd number of
(-1)s. The fourier expansion of Parity3 can also computed using the above method, which
yields the formula

Parity3(x1, x2, x3) = x1x2x3

and we can easily verify its correctness.

3

Remark 2.1. This is slightly different from the more commonly known version of parity,
defined as a function mapping Fn2 7→ F2. In that model, we have that Parity3(x1, x2, x3) =
x1+x2+x3. While they both achieve the same functionality, we want to distinguish between
the two, as our domain and codomain are different in this case.

Using the construction described above, we can generate a polynomial for any Boolean
function.

Proposition 2.2. Every f : {−1, 1}n 7→ {−1, 1} can be uniquely computed as a multilinear
polynomial.

From the above construction, it is clear that we can compute a polynomial for f . The
uniqueness remains to be shown.

Each monomial of our polynomial contains some subset of variables (As each variable has
either degree 0 or degree 1 in each monomial). Therefore, we can consider f(x) as follows.

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi

As a notational convention, for each monomial, we will use f̂(S) = cS to denote what we call
the S-Fourier Coefficient of f . For example, since the monomial x1x2x3 of the Fourier expan-

sion of Maj3 has a coefficient of −1
2
, we would write M̂aj3({1, 2, 3}) = −1

2
. Since the majority

function has no monomial with only two terms, we would write M̂aj3({1, 2}) = 0. Similarly,

with the parity function we defined above, P̂arity3({1, 2, 3}) = 1 and P̂arity3({1, 2}) = 0.
Since there are 2n subsets of variables, we have 2n monomials in our function. For any

Boolean function, there are 2n parameters and there are 2n choices or coefficients for the
values of each f̂ , which suggests the uniqueness mentioned in Proposition 2.2.

As another notational convention, we will represent each monomial containing the ele-
ments of subset S as χS. More formally,

χS =
∏
i∈S

xi.

We define χ∅ = 1. Note that χS = ParityS(x), so every Boolean function f is a linear
combination of parity functions on subsets of its variables, which is typical for Fourier analysis
of other types of functions.

Again, we consider the analog of f that maps Fn2 7→ F2. In that case, χS still represents
a parity function but it is computed as χS =

∑
i∈S xi. If we consider the case where f maps

F
n
2 7→ {−1, 1}, we have χS =

∏
i∈S(−1)xi = (−1)

∑
i∈S xi .

In any case, these coefficients can help up to determine important properties of f , as we
will show in Section 4.

4

3 Spectral Graph Theory on the Hypercube

Thus far, we have considered f as a function on the vertices of the hypercube, but have
made no mention of the edges. Similarly to our lectures on spectral graph theory, we will
consider a function on a graph G = (V,E), but we will fix our graph to be the hypercube.
Just as in previous lectures, we define f : V 7→ R.

In the past, we defined distribution π over the vertices by picking an edge of the graph
uniformly at random and then choosing one of its endpoints uniformly at random. Since
each vertex of the hyercube has n edges incident to it, our hypercube is an n-regular graph
and π is also a uniform distribution over the vertices (and over all assignments in {−1, 1}n).

Recall that we were interested in the mean of f , which is

Mean(f) = E
x∼{−1,1}n

unif.

[f(x)] .

We say that function f is balanced if its mean is 0. We were also interested in the variance,
which we define as

Var[f] = E
x

[
f(x)2

]
− E

x
[f(x)]2 .

Note that for a Boolean function with codomain {−1, 1}, for all x, f(x)2 = 1 and Ex [f(x)2] = 1.
For f : {−1, 1} 7→ R,the set of all functions {f : {−1, 1}n 7→ R} is a vector space with

dimension 2n. More specifically, it is an inner product space, since we defined the inner
product of two functions as follows.

〈f, g〉 = E
x∼{−1,1}

[f(x)g(x)]

When f, g : {−1, 1} 7→ {−1, 1}, the dot product measures the closeness of f and g. When
f(x) = g(x), the expression f(x)g(x) = 1 and when f(x) 6= g(x), the expression evaluates
to −1. Then we can also express the inner product of two functions to be:

〈f, g〉 =
(

1−Pr
x

[f(x) 6= g(x)]
)
−Pr

x
[f(x) 6= g(x)] = 1− 2 Pr

x
[f(x) 6= g(x)] .

As such, each function can be represented as a linear combination of other functions and the
parity coefficients form a basis that spans the vector space.

3.1 Parity Functions as Eigenfunctions

Recall from previous lectures that for even graph, we had a Markovian operator K, which
consisted of the normalized adjacency matrix, and a Laplacian operator L, defined to be
I−K. We also showed that they had the same eigenfunctions and the eigenvalues of L were
λi = 1− κi, where each κi is an eigenvalue of K.

We also defined Kf(x) to compute the expected value of f after walking randomly from
any vertex x to neighboring vertex y along a single edge. More formally,

Kf(x) = E
y∼x

[f(y)] .

We also proved the following claim in a homework assignment.

5

Claim 3.1. The eigenfunctions of K are the parity functions of the subsets of variables, so
each χS is an eigenfunction.

This means that for every S, there exists eigenvalue κ such that KχS = κχS. On a given
assignment x, if χS = b, then n − |S| neighbors of x have χS = b. This is because there
are n total neighbors, |S| of which have one element of S flipped and n − |S| which have

some variable not in S flipped. Therefore, KχS =
(
n−2|S|
n

)
χS =

(
1− 2|S|

n

)
χS. And our

eigenvalues are 1 − 2|S|
n

. Note that this value can range from −1 when |S| = n to 1 when
|S| = 0, so it is consistent with the upper and lower bounds from previous lectures.

Since this forms a complete basis, we can express any function f as a linear combination
of our eigenfunctions. Seeing as our eigenfunctions are also the parity functions on subsets
of variables, this is equivalent to what we have done in our Fourier analysis.

Now we want to show that the set of all 2n parity functions also form an orthonormal
basis.

Claim 3.2. The parity functions χS for all S ⊆ [n] are orthonormal.

Proof. We want to show that for S, T ⊆ [n],

〈χS, χT 〉 =

{
1 if S = T

0 if S 6= T

By our definition of inner product,

〈χS, χT 〉 = E
x∼{−1,1}n

χSχT

= E
x

[∏
i∈S

xi
∏
i∈T

xi

]

= E
x

[∏
i∈S∩T

x2i
∏

i∈S4T

xi

]

where S4T denotes their symmetric difference

= Ex

[∏
i∈S∩T

1
∏

i∈S4T

xi

]

since x2i = 1 for all xi

= Ex

[∏
i∈S4T

xi

]

6

When S = T , S4T = ∅, so χS4T = 1 and 〈χS, χT 〉 = 1.

When S 6= T ,

〈χS, χT 〉 = Ex

[∏
i∈S4T

xi

]
and all xi are independent, so

=
∏

i∈S4T

E[xi]

=
∏

i∈S4T

0 = 0.

Now that we have a vector space of all functions and an orthonormal basis, every function
can be written uniquely in this basis. For example, consider the Fourier coefficients of f .

Proposition 3.3. For all S ⊆ [n], f̂(S) = 〈f, χS〉.
Proof. By definition

〈f, χS〉 =
∑
T⊆[n]

〈f̂(T)χT (x), χS(x)〉

=
∑
T⊆[n]

f̂(T)〈χT (x), χS(x)〉

= f̂(S).

So we can think of this inner product as the correlation of f with ParityS.
We now have the following corollary, due to Parseval.

Corollary 3.4. (Parseval Theorem) For functions f and g,

〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof. We can write f =
∑

S⊆[n] f̂(S)χS and g =
∑

T⊆[n] f̂(T)χT Then, 〈f, g〉 = Ex[f(x)g(x)]

can be expanded to yield 〈f, g〉 = Ex[
∑

S,T⊆[n] f̂(S)ĝ(T)χSχT] = Ex[
∑

S⊆[n] f̂(S)ĝ(S)] =∑
S⊆[n] f̂(S)ĝ(S).

Since the inner product of any function with itself is always 1, we also have that for all
f ,

〈f, f〉 =
∑
S⊆[n]

f̂(S)2 = 1.

We can check this with Maj3(x) = 1
2
x1+

1
2
x2+

1
2
x3−1

2
x1x2x3, where we have

∑
S ⊆ [n]f̂(S)2 =

4× 1
4

= 1. Because each f̂(S) is nonnegative and they sum to 1, we can think of the Fourier
coefficients as assigning a weight to the subsets of the variables with respect to their effect
on the function’s value.

7

3.2 Energy of F

Recall that during the spectral graph theory lectures, we were interested in what we called
the energy, Dirichlet form, or local variance of f , which we defined to be

E [f] =
1

2
E
x∼y

[
(f(x)− f(y))2

]
.

We also had an equivalent definition of

E [f] = 〈f, Lf〉

which we can now write as

E [f] =
∑
S⊆[n]

2|S|
n
f̂(S)2.

As a result,

n

4
E
x∼y

[
(f(x)− f(y))2

]
=
∑
S⊆[n]

|S|f̂(S)2.

n E
x∼y

[(
f(x)− f(y)

2

)2
]

=
∑
S⊆[n]

|S|f̂(S)2.

n∑
i=1

E
x

[(
f(x)− f(x+ ei)

2

)2
]

=
∑
S⊆[n]

|S|f̂(S)2

where x+ ei denotes assignment x with the ith bit flipped.

If the ith bit makes no difference in the value of f , the expression in the summation is 0. If
it does and f is Boolean, the expression evaluates to 2

2
= 1. So

∑
S⊆[n]

|S|f̂(S)2 =
n∑
i=1

Pr
x

[f(x) 6= f(x+ ei)]

We call the value inside the summation the influence of variable xi on f . We call their
summation, also written as

E
x∼{−1,1}n

[
n∑
i=1

1[f(x) 6= f(x+ ei)]

]
the average sensitivity of f . This quantity comes up frequently in complexity and lower
bounds.

8

4 Applications and Property Testing

Now we consider some applications of the Fourier expansion of a Boolean function f . One
such application is property testing. Suppose we have a graph or a Boolean function (given
as a truth table) and we want to determine whether it has a certain property. The input,
however, is far too large, and we don’t want to read all of it. Naturally, we will use a
randomized algorithm to look at some subset of the input and try to determine whether it
has the property with some probability.

Suppose we want to test for the property P , where f ∈ P iff f has the property. We
assume out input is a Boolean function f : {−1, 1}n 7→ {−1, 1}. We are given query access
to f , meaning that we can choose a specific value x ∈ {−1, 1}n and an oracle will give us the
value f(x). This line of work was started by Blum, Luby, and Rubinfeld, and then became
more heavily studied in the context of property testing for graphs.

We can view this construction as a generalization for graph property testing where n =(|V |
2

)
and the value of f is an edge indicator for every pair of vertices in the graph. Similarly,

we want to determine a property of the graph, but only have query access to determine
whether an edge is present in the graph. The idea of property testing is well-studied and
well-understood for graphs, but the more general problem of property testing for Boolean
functions is still relatively open.

Just like with our previous randomized algorithms, we want our property testing algo-
rithm to have two features.

1. If f has property P , we output Yes with high probability (think of the probability as
being ≥ 2

3
, but it really doesn’t matter as long as it’s > 1

2
).

This is referred to as completeness.

2. If f does not have property P , we output No with high probability. This is referred
to as soundness.

In analyzing the algorithm, we want to minimize the number of queries made and we
won’t concern ourselves with the runtime of the rest of the algorithm (as long as it is poly-
nomial), but usually these randomized algorithms are simple, so the query time dominates
the algorithm’s performance in most cases.

The features or our algorithm, however, may be problematic, even for some very simple
properties. Consider the property P , where f ∈ P iff f ≡ 1. In the event that our function
f = 1 on every input except for one input x∗, the probability that we will end up querying
f(x∗) is very low. In order for the algorithm to reject f with high probability, we would need
to query Ω(2n) inputs.

This function is, however, very close to having the property we want. The solution is to
relax our soundness condition to make our goals more realistic.

Definition 4.1. Function f is ε-far from satisfying property P if for all g ∈ P , Prx[f(x) = g(x)] > ε.
This can also be written as 〈f, g〉 < 1− 2ε.

Now we can relax our soundness condition to be:

9

• If f is ε-far from satisfying P , then we output No with high probability.

Now we have a new parameter ε, which is also given as an input to the algorithm. Note that
this leaves some ambiguity as to how the algorithm performs when f /∈ P , but f is not ε-far
from having P . In this case, we do not place any restrictions on the algorithm’s output; it
can answer either Yes or No. There is also a harder variant of this problem, in which we
want to estimate the distance between f and the closest function that has the property. We
will not consider this variant.

Now we have a plausible goal for our algorithm and our dream scenario is that the number
of queries we need to perform is dependent only on ε. We say that a property is testable if
such an algorithm exists. Let’s go back to our example of testing for f ∈ P iff f ≡ 1.

Proposition 4.2. Property f ≡ 1 is testable with O(1
ε
) queries.

Proof. Our algorithm is as follows: Test O(1
ε
) inputs at random. If f = 0 for any of them,

return No. Otherwise, return Yes.
Clearly, our completeness requirement is met. If f ≡ 1, then none of our queries will

return f = 0 and we will say Yes. Now, we show soundness. If f is ε-far from 1, f = 1 on
no more than a 1 − ε fraction of inputs. Therefore, the probability of all queries returning
f(x) = 1 is at most (1− ε)O(1

ε
), which converges to a small constant as ε→ 0.

Now let’s consider a problem where we will use Fourier analysis. We consider the property
P , where f ∈ P if f is a parity function.

Theorem 4.3. [BLR90] Property P where f ∈ P iff f is a parity function is testable with
O(1

ε
) queries.

Note that this is also referred to as linearity testing and probabilistically checkable proofs
are an offshoot of this. This problem is more classically defined as follows: Given f : Fn2 7→
F2, do there exist a1, . . . , an ∈ F2 such that f(x) =

∑n
i=1 aixi?

This is equivalent to asking whether f(x+ y) = f(x) + f(y) mod 2 for all x, y ∈ Fn2 . We
translate this problem to the equivalent version for f : {−1, 1}n 7→ {−1, 1}, where we ask
whether f(x · y) = f(x)f(y), and (x · y)i = xiyi.

For f = ParityS, f(x · y) =
∏

i∈S xiyi and f(x)f(y) =
∏

i∈S xi
∏

i∈S yi. Our algorithm
will pick a random x and y, then test this identity. The original proof is combinatorial in
nature and rather complicated, so we present a different version here which relies on the
Fourier expansion of f .

Proof. Our algorithm will perform the following subroutine many times.

1. Choose x, y ∼ {−1, 1}n independently, uniformly at random.

2. Let z ∈ {−1, 1}n = x · y. (zi = xiyi)

3. Query f(x), f(y), and f(z)

4. If f(z) 6= f(x)f(y), return No.

10

If all iterations of this subroutine have f(z) = f(x)f(y), return Yes.
Note that as opposed to the previous algorithm, we are choosing our queries based on

something other than just random strings. While x and y are random, our three queries are
linearly dependent.

Again, the completeness of this algorithm is obvious. If f is linear, all iterations of the
subroutine will succeed.

Now we show soundness. We fix some f : {−1, 1}n 7→ {−1, 1}. What is Pr[Yes]?

Pr[Yes] = E
x,y

1[Yes]︷ ︸︸ ︷[
1

2
+

1

2
f(x)f(y)f(z)

]
We can consider this expression the indicator function of Yes because if f(z) = f(x)f(y),
the product is 1, whereas it is -1 otherwise.

Pr[Yes] =
1

2
+

1

2
E
x,y

∑
S⊆[n]

f̂(S)
∏
i∈S

xi

∑
T⊆[n]

f̂(T)
∏
i∈T

yi

∑
U⊆[n]

f̂(U)
∏
i∈U

zi


Pr[Yes] =

1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)× E
x,y

[∏
i∈S

xi
∏
i∈T

yi
∏
i∈U

xiyi

]

Now, considering just this expectation, and using the same trick as above with symmetric
differences,

Pr[Yes] =
1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)× E
x,y

[∏
i∈S4U

xi
∏

i∈T4U

yi

]

Because x and y are independent,

Pr[Yes] =
1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)× E
x

[∏
i∈S4U

xi

]
︸ ︷︷ ︸
0 unless S4U = ∅

E
y

[∏
i∈T4U

yi

]
︸ ︷︷ ︸
0 unless T4U = ∅

Unless S = T = U , everything but the leading 1
2

is 0, so we have

Pr[Yes] =
1

2
+

1

2

∑
S⊆[n]

f̂(S)3

Pr[Yes] =
1

2
+

1

2

∑
S⊆[n]

f̂(S)2f̂(S)

Pr[Yes] ≤ 1

2
+

1

2
max
S
{f̂(S)}

∑
S⊆[n]

f̂(S)2

11

Recall from Parseval’s theorem that the sum of f̂(S)2 = 1.

Pr[Yes] ≤ 1

2
+

1

2
max
S
{〈f, χS〉}

Since we are showing soundness, we can assume that f is ε-far from the parity function, so

∀S〈f, χS〉 < 1− 2ε <
1

2
+

1

2
(1− 2ε) = 1− ε.

For our subroutine, the probability that we output Yes when f is ε-far from the parity
function is less than 1− ε. If we repeat this subroutine O(1

ε
) times, we will perform a total of

3O(1
ε
) queries. Additionally, the probability that we output Yes is constant, just like with

our first example.

This technique could possibly be applied to additive combinatorics, which deals with sets
of strings. The 3Sum version of the Goldbach conjecture is also shares similar terms to our
proof here, but instead of f̂(S)3, it has f̂(S)2, which would change the analysis.

References

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. In STOC, pages 73–83,
http://doi.acm.org/10.1145/100216.100225, 1990.

12

