A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 16: Constraint Satisfaction Problems
10/30/2013
Lecturer: Ryan O’Donnell Scribe: Neal Barcelo

1 Max-Cut SDP Approximation

Recall the Max-Cut problem from last lecture. We are given a graph G = (V, E) and our
goal is to find a function F': V' — {—1,1} that maximizes Pr(; j).p[F(v;) # F(v;)]. As we
saw before, this is NP-hard to do optimally, but we had the following SDP relaxation.

max an(i,j)eE{% - %ym}
st. Ypo=1 Yo
Y = (yi;) is symmetric and PSD

)

Note that the second condition is a relaxation of the constraint “Jxz; s.t. y;; = x;x;” which is
the constraint needed to exactly model the max-cut problem. Further, recall that a matrix
being Positive Semi Definitie (PSD) is equivalent to the following characterizations.

1. Y € R™™™ is PSD.
2. There exists a U € R™*" such that Y = UTU.

3. There exists joint random variables X1, ... X, such that y,, = E[X,X,].

-

4. There exists vectors (fl, . U, such that Yow = ((2,, Uw)-
Using the last characterization, we can rewrite our SDP relaxation as follows

max an(i,j)eE{% - %Wz,v?)}
st [[Gill3 =1
Vector v; for each v; € V

First let’s make sure this is actually a relaxation of our original problem. To see this,
consider an optimal cut F* : V' — {1,—1}. Then, if we let v; = (F*(v;),0,...,0), all of the
constraints are satisfied and the objective value remains the same. So, any solution to the
original problem is also a solution to this vector program and therefore we have a relaxation.
We will use SDPOpt to denote the optimal value of the SDP relaxation above.

Now the question is how can we get a real integer cut whose solution value is close to the
SDPOpt. As we will see the idea is to use a rounding technique developed by [GW95]. The
outline of the algorithm as follows,

Figure 1: An example of rounding by choosing a random hyper plane. Here an edge between
the vertex representing v; and vy would be cut since they are on different sides of the
hyperplane.

1. Solve SDP, get vector v; for each v; € V.
2. Pick a random hyperplane through the origin which partitions the vectors into two sets

3. Label one of these sets with +1 and the other with —1.

The first step can be done in polynomial time using the ellipsoid algorithm. For the
second step, note that we can define a hyper plane by it’s normal vector, so we just have
to pick a random normal vector. More formally, let gi,...g, be n independent normal
guassians. Then, we define § = (g1,...,9n). Then, note that the side that v is on relative
to this hyperplane is determined by the sign of it’s dot product with g. That is, we create
a labeling function F': V' — {—1,1} with F(v) = sgn((¥, §)). An example of this rounding
techinque can be seen in Figure 1. We first show the following lemma which tells us the
probability two vectors will be cut by such a random hyper plane.

Lemma 1.1. The probability that an edge (i,7) is cut is %4(172-,17]-).

Proof. Consider the plane defined by the span of v; and v;. Let ¢’ be the normalization of
the projection of g onto this plane. The two crucial facts are the following. One is that since
g is composed of gaussians which are rotationally symmetric, ¢’ will be uniformly distributed
on a unit circle on this plane. The other crucial fact is that, v; - g7 = v; - ¢, and So we can
reduce our analysis to the plane. Now, consider Figure 1. Note that v; - ¢' < 0 if and only if
g is to the left of AB. Similarly, v; - ¢’ < 0 if and only if ¢’ is to the left of C'D. Therefore,
the signs of v; - ¢’ and v; - ¢’ are different (and hence the edge is cut) if and only if ¢ is
between AB and C'D. However, the angle between these is the same as the angle between
v; and v;. Since ¢’ is uniformly distributed, the result follows. n

We will also need the following technical lemma which can be verified numerically.
Lemma 1.2. £ > 878(1 — L cos(d)).
Theorem 1.3. The [GW95] Algorithm is a .875 Approzimation for Mazx-Cut.

2

B

Figure 2: A figure representing the situation where the random plane will split v; and v;. If
the projection of the normal vector, ¢’, lies between AB and C'D then v; and v; will be cut.

Proof. We first calculate the expected cost of the algorithm. Let F' be the assignment
returned by the algorithm. We have,

E[fraction of edges F' cuts| = Z Pr[F cuts v; and vj]
g
(i.j)eE

= >) 1)

(i,9)EFE
Z(vg,v5)

T
11
> 878 - ave(; i\eE 5 - 5 COS(UZ' : Uj) (2)
— 878 - SDPOpt (3)
> 878 - Opt (4)

Here (1) follows by lemma 1.1, (2) follows by lemma 1.2, (3) follows by the definition of the
objective function in the SDP relaxation, and (4) follows since we showed that SDPOpt >
Opt. O

We end the section by noting that this approximation ratio is much better than the trivial
.5 we receive from randomly placing each vertex in one of the two sides of the cut.

2 Constraint Satisfaction Problems

Constraint satisfaction problems represent a class of problems where variables are assigned
to values from a domain of possible values subject to a set of constraints. As we will see

3

later in this section, this formulation captures many of the problems that we are interested in
studying. First, consider the following formal definition. A Constraint Satsifaction Problem
consists of a tuple (V, 2, C) each of which we will define below.

Definition 2.1 (Domain). The domain of a CSP, €, is the set of values assignable to the
variables v € V.

Typically we will have Q = {0,1,...,¢— 1} and often we will be in the case where ¢ = 2.

Definition 2.2 (Constraint). A constraint ¢ € C' consists of a function ¢ : Q" — {0,1} and
a tuple S or r variables from V.

Here we say that 1) has arity r and we let W denote the set of all such allowable predicates.

Definition 2.3 (Instance). An Instance Z of a constraint satisfaction problem on an n
variable set V' is a list of constraints.

In order to get a feel for how we can model problems as constraint satisfaction problems,
let’s look at formulations of some familiar problems.

Example 2.4 (Max-Cut). For the Maz-Cut problem, let Q = {—1,1}, V be the set of
vertices, and W = {#}. The not equals predicates are of the form ¢ : {—1,1}* — {0,1}
returning 1 if the inputs are not equal and 0 otherwise.

Example 2.5 (E3SAT). In the ESSAT, every clause must have exactly 3 literals. To model
this as a CSP, let Q = {0,1}, and ¥ = {3-ary OR with literals}. As an example one such
¥ €V would be Y(x,y,2) =1— (1 —x)(y)(2) which represents the clause x V —yV —z.

Example 2.6 (NAE3-SAT). This stands for not all equal 3SAT, where we wish to assign
true or false to each variable such that no clause has all of the literals equal. (So unlike
3SAT we disallow all true as well as all false). To model this as a CSP, let Q = {0,1} and
let W = {NAES3 with literals}. For example the 1) for the clause xV yV z is 1 if not all of x
y and z are the same.

Example 2.7 (3-Cut (3-Color)). Here we model the problem of 3-Coloring a graph as a
CSP. Let Q = {red,green,blue} and W = {#£}. Again the not equals predicate is similarly
defined as in the Max-Cut problem where it takes as input two colors and returns 1 if they
are not equal.

Example 2.8 (Max-Bij(q)/Unique-Games(q)). Let Q = {0,1,...,q — 1}. We define ¥ =
{any “bijective” arity 2 predicate}. By this we mean 1 : Q* — {0,1} € U if and only if for
all a € Q there exists a unique b € Q such that ¥(a,b) = 1.

Now that we have a feel for how many familiar problems can be formulated as CSP’s,
let’s look at what it means to solve a CSP and how we can measure the goodness of solutions.

Definition 2.9 (Assignment). Given a CSP instance Z, an assignment is amap f: V — Q.
We say that f satisfies a constraint ¢ = (C,S) € U if ¢(f(S5)) = 1. Finally, let Valz(F) be
the fraction of constraints that F' satisfies.

Using this, we can now develop a notion of an optimal assignment, which will give us a
way to compare assignments produced by our algorithms. This is done in the natural way
as seen below.

Definition 2.10. The optimal assignment, denoted Opt(Z), is the assignment F' that max-
imizes Valz(F'). More formally,

Opt(Z) = FI;?/EE(Q{V@ZI}

Note that Opt(Z) € [0, 1]. Finally, we say that Z is satisfiable if Opt(Z) = 1.

2.1 Algorithmic Problems for CSP’s

So now that we have developed a way of measuring the “goodness” of different assignments,
there are several algorithm problems to consider when solving CSP’s. We list these below
and then examine what is known for each problem type.

1. Satisfiability: Given a CSP instance Z, decide if Z is satisfiable. Recall that this is
equivalent to determining if there is an assignment that satisfies all constraints.

2. Optimization: Find F' with value as large as possible. This is equivalent to finding the
assignment which satisfies the largest fraction of clauses.

3. Refutation: Given an instance Z, out a “proof” of Opt(Z) < p’for § as large as you
can. We will see later exactly what we mean by a “proof”.

2.1.1 Satisfiability

Let’s look at task 1 first, determining whether a CSP instance Z is decidable. If we look
at the problems that we formulated before we’ll see that every problem is either in P or
NP—Complete. In particular we have the following classifications.

Problems contained in P.
Problems that are NP—complete.

Max-Cut
¢ axbu e 3SAT

e Max-Bijection(q) NAE-SAT
. B}

e 2-SAT
e l-out-of-3-SAT

e Order(10) (2 = {0,...,9} constraints of the form 3-Col
F(z) < F(y))- * e

Let’s take a closer look at some of the problems that are in P. While it may seem strange

at first that Max-Cut is listed in P, recall that we are considering the satisfiability problem.
So for Max-Cut, this question is equivalent to asking if the given graph is bipartite which is

clearly in P. Similarly, the satisfaction problem for Max-Bijection(q) is in P since for every
assignment of values to a variable, it will uniquely force all other assignments. So we can
simply try all possibilities for a single variable and see if the resulting forced assignments
ever satisfy all constraints. Omne can also show that 2-SAT is in P but the argument is
slightly more complicated than Max-Cut. Lastly, the Order(10), this can be solved using a
topological sort which is in P.

Given the evidence above, one might wonder whether every CSP satisfiability problem is
in P or NP—complete. Indeed this is the currently believed conjecture which we state below.

Conjecture 2.11 (Feder Vardi Dichotomy Conjecture, [Var98|). Every CSP Satisfiability
problem is in P or NP—complete.

There is actually a stronger conjecture which gives an algorithmic way of determining
whether a problem is in P or NP—complete.

Conjecture 2.12 (Algorithm Dichotomy Conjecture [BJKO05]). CSP(V) satisfiability is in
P of U has a “Taylor Polymorphism” and in NP—complete otherwise.

The second part of this conjecture has been proven but the first part is still open, and in

particular they are missing algorithms for such problems that have “Taylor Polymorphisms”.
Schafer [Sch78] showed the first part for |Q2] = 2 and Bolutov [Bul06] showed it for || = 3.

2.1.2 Optimization and Refutation

So we saw that for satisfiability problems there is a nice conjecture about when problems
are easy and hard. Unfortunately, almost all optimization problems for CSP’s are NP—hard.
Because of this, we will often be interested in approximating the optimal assignment.

Definition 2.13 (optimization («, 3)-approximation). An efficient algorithm A is an
(o, B)—approximation algorithm if for all Z with Opt(I) > /3, A finds an assignment F’ with
ValI(F) Z Q.

Note that one algorithm can be («,8)—approximate simultaneously for several a, f.
For example [GW95] is a (.8780, §)—approximation for all 5 € [0,1]. We can similarly
define a notion of approximation for refutation algorithms since most refutation problems
are NP—hard.

Definition 2.14 (refutation («, 3)-approximation). For all Z with Opt(/) < «, A outputs
a “proof” of “Opt(Z) < 5" or better.

Remark 2.15. We remark that refutation («, 3)-approximation is strictly weaker than op-
timization («, 3)-approximation. To see why this is true, say A is an («, §) approximation
algorithm. If it doesn’t output a value of at least «, then by the definition of optimization
approximations we know that Opt(Z) < . However this constitutes a proof that Opt(Z) <
and therefore we have a refutation approximation.

While we do not have nice dichotomy conjectures like we do for satisfiability problems,
there are several specific problems for which we know can classify the hardness based on the
desired approximation. Let’s take a few examples.

Max - E3SAT Here we are given a E3SAT instance and we want to satisfy as many
clauses as possible. The following results are known

e (1,1)—approximation: NP—hard.
e (1—107* 1)—approximation: NP—hard. (“PCP Theorem”)

° (%, 1)—approximation: In P. (Just use a random setting and in expectation you meet

7/8 of the clauses).
e (% + ¢ 1)—approximation, for all € > 0: NP—hard [Has01]

So as you can see for Max-E3SAT, the book is closed on the hardness of approximating.
One might wonder what changes if we remove the exactly 3 portion of the problem and
just consider Max-3SAT. Using a complicated SDP approach, [KZ97] were able to show that
(%, 1) is still in P. Note that you can no longer just choose randomly since now a clause may
consist of a single literal.

Max-Cut We have seen the Max-cut problem from the beginning of this lecture, so let’s
look at what is known for the hardness of approximating this.

e (1,1)—approximation: In P. We saw before this is just asking if the graph is bipartite.
e (3,3)—approximation: NP—hard.

e (3,2 — ¢)—approximation: NP—hard. [Has01, TSSW9G]

° (%, % + ﬁi)—approximation: In P. This is the algorithm we covered in section 1.

)—approximation: ?? Still don’t know the answer to this question.

L]
—~
oo
ot

2.1.3 Unique Games

The following material was added on piazza. Recall that Unique-Games(q) is the CSP
where the domain is [g] and any ”bijective” binary constraint is allowed. A special case of
this is called Max-2Lin(q), in which the domain is Z, and all the constraints are of the form
v; —v; = ¢ (mod q) for variables v;, v; and constants c. When ¢ = 2, a further special case
is Max-Cut.

As we discussed, the satisfiability problem, (1, 1)-approximating UG(q) is in P, easily
solved by ”propagation”. On the other hand, it’s easy to show that (1—e, 1—¢)-approximating
UG(q) is NP-hard for any ¢ > 0; in fact, this is true even for Max-Cut.

What about (1/2, 1—e)-approximating Unique-Games(q)? For ¢ = 2 this is in P. However,
for ¢ > 3 it is unknown if it’s in P or if it’s NP-complete. This is even true in the special
case of Max-2Lin(q).

The original ”Unique Games Conjecture” of Khot (2002) is, "for all € > 0 there exists ¢
such that (e, 1 — €)-approximating UG(q) is NP-hard”.

It is known to be equivalent to the following: "for all ¢ > 0 there exists ¢ such that
(1/2,1—¢)-approximating Max-2Lin(q) is NP-hard”. Also, that 1/2 can be any fixed constant
between 0 and 1.

References

[BJKO5]

[Bul06]

[GW95]

[Has01]

[KZ97]

[Sch78]

[TSSW96]

[Var9g]

Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing, 34:2005, 2005.

Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM, 53(1):66-120, January 2006.

Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42:1115-1145, 1995.

Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798-859,
July 2001.

Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for max 3sat? In
In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science, pages 406-415, 1997.

Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings
of the tenth annual ACM symposium on Theory of computing, STOC *78, pages
216-226, New York, NY, USA, 1978. ACM.

Luca Trevisan, Gregory Sorkin, Madhu Sudan, and David P. Williamson. Gad-
gets, approximation, and linear programming. In Foundations of Computer Sci-
ence, 1996. Proceedings., 37th Annual Symposium on, pages 617-626, 1996.

Moshe Y. Vardi. The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput, 28:57-104, 1998.

