
A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 15: Semidefinite Programming
October 28, 2013

Lecturer: Ryan O’Donnell Scribe: Michael Nugent

1 The Ellipsoid Algorithm

Recall from the previous lectures that the problem Linear Programming (LP) is solvable
in polynomial time. The Ellipsoid Algorithm (hereafter, referred to as Ellipsoid) is a polyno-
mial time algorithm that solves LP. Recall that solving LP reduces to the following (simpler
question): Given

K =

{
x :

Ax ≤ b
−R ≤ xi ≤ R ∀i ∈ [n]

}
is K = ∅? [Here A ∈ Qn×n, b ∈ Qm, and R ∈ R and R is exponential in the input size,

so R can be written in poly(〈A〉, 〈b〉) bits]. Recall that Ellipsoid only needs to output x ∈ K
if K 6= ∅, and do nothing if K = ∅.

1.1 Reduction to Robust LP

Before we proceed, we actually need one additional reduction to make the K 6= ∅ case more
robust: we want to modify the problem such that Ellipsoid only needs to output x ∈ K if
K contains some tiny cube in Rn (i.e., K is full-dimensional).

Claim 1.1. LP further reduces to Robust LP: Given an input to LP, and additionally
r ∈ R such that r can be written in poly(〈A〉, 〈b〉) bits

• If K 6= ∅ and K contains a cube in Rn of side length r, output some x ∈ K.

• Otherwise, output nothing.

Clearly, if we can solve LP, we can solve Robust LP, so we just need to show the other
direction.

“Proof” of other direction. Suppose we’re given K as an input to LP. First we convert K to
the equivalent form K ′, which has some nice properties:

K ′ =

{
x :

Ax = b
xi ≥ 0 ∀i ∈ [n]

}

1

R2

Ax = b

Nonnegative
Orthant

← dist ≥ 2−poly(〈A〉,〈b〉)

(a) The case when K ′ = ∅.

R2

Ax = b

Nonnegative
Orthant

(b) The case when K ′ 6= ∅.

Figure 1: The plot of the solution space of K ′ (assuming n = 2)

In particular, the solution space is now the intersection of the hyperplane H = {x : Ax =
b} with the nonnegative orthant. See Figure 1.

First, suppose K ′ = ∅. Then the distance between H and and the positive orthant cannot
be arbitrarily small, since if there is a solution it can be written in poly(〈A〉, 〈b〉) bits. Thus,
we can relax all constraints by some r that is exponentially small in 〈A〉 and 〈b〉. In other
words, we can replace the constraint Ax = b with b − ~r ≤ Ax ≤ b + ~r, where ~r is the
n-dimensional vector where every entry is r. This “thickens” the hyperplane in both cases,
and preserves emptiness or nonemptiness. But now K ′ is full-dimensional, so it contains a
tiny cube of side length r. See Figure 2.

1.2 The Ellipsoid Algorithm

So, we just need to solve Robust LP, which Ellipsoid can do. Given R, r, and the linear
inequalities, Ellipsoid finds a point inside K if one exists. The runtime of Ellispoid is
poly

(
n, 〈A〉, 〈b〉, logR, log 1

r

)
. Ellipsoid’s name comes from the fact that throughout it’s

execution it maintains an ellipsoid containing K (assuming K 6= ∅). An ellipsoid, the
generalization of an ellipse to higher dimensions, is a sort of “stretched ball” (i.e., in n
dimensions it is the result of a linear transformation applied to an n-dimensional ball).

So to recap, Ellipsoid is an iterative algorithm that maintains the ellipsoid Q and the
invariant that, at each iteration, K ⊆ Q.

Note that once we get the separating hyperplane a · c ≥ b, we know that K lies in an
“ellipsoidal chunk”, i.e., the set Q∩{x : a·x ≥ b}. This, however, would be messy to maintain

2

R2

b− ~r ≤ Ax ≤ b + ~r

Nonnegative
Orthant

(a) The case when K ′ = ∅. Note that the
solution space is still empty.

R2

b− ~r ≤ Ax ≤ b + ~r

Nonnegative
Orthant

(b) The case when K ′ 6= ∅. Note that the
solution space is now full-dimensional.

Figure 2: The plot of the solution space of K ′ after relaxing the constraints by ~r. (assuming
n = 2)

Initialize Q to be the sphere with every vertex of the box of side length R on it
repeat

if The center of Q is in K // (this can be easily checked using the

linear inequalities).

then
We’re done! Return the point.

else
Get a “separating hyperplane” a · x ≥ b (i.e., a halfspace) to separate the
center of Q from K.
Compute Q′ to be the smallest ellipsoid containing Q ∩ {x : a · x ≥ b}.
Set Q = Q′.

end

until Until Q is too small

Algorithm 1: The Ellipsoid Algorithm

3

R

xy

↖
K

Little box
of side length r

↗

(a) The input to the Ellipsoid Algorithm.

Q0

(b) The initial ellipsoid calculated by the
Ellipsoid Algorithm.

Figure 3: The beginning of the Ellipsoid Algorithm.

Q′

↗
The separating hyperplane

(a) The first separating hyperplane and Q′ of
Ellipsoid.

Q

(b) The worst case for the Ellipsoid Algorithm:
Q is a ball and the separating hyperplane goes
right through the center.

Figure 4

4

and use, so instead we calculate the smallest ellipsoid containing Q ∩ {x : a · x ≥ b}, which
is far simpler.

1.3 Analysis of the Ellipsoid Algorithm

One could imagine that Ellipsoid would work correctly if run forever, but we need to show
that it terminates in a polynomial number of steps.

Lemma 1.2. (An easy Lemma) vol(Q′) ≤
(
1− 1

3n

)
vol(Q′)

Proof sketch. The worst case is when Q is a ball, and the halfspace goes directly through
it’s center.

This lemma says that the ellipsoid gets a little bit smaller at each step. Thus, after O(n)
iterations, the volume of the maintained ellipsoid halves. If Q0 is the initial ellipsoid, we
have that vol(Q0) ≤ RnnO(n) and vol(K) ≥ rn. Thus, we have that the number of iterations
t until Ellipsoid completes is

t = O(n) log

(
RnnO(n)

rn

)
= poly(n) log

(
R

r

)
which is polynomial in the input size.

Note that we assumed K was given as input, but we really only checked if a point was
in K, and if not we found a separating hyperplane.

Key Observation: The algorithm really just needs as inputs R, r, and a separation
oracle.

So we don’t need the LP explicitly, we can just “imagine” it as long as we can query the
separation oracle in polynomial time.

2 Semidefinite Programming

Ellipsoid also has a generalization called Semidefinite Programming (SDP). In the pre-
vious lecture, we solved the Min Cut problem in polynomial time using a LP. Now we’ll see
that the Max Cut problem is “motivation” for SDP. Unlike Min Cut, the Max Cut problem
is NP-Hard, so we can’t just right a LP for it (in the derandomization lecture we saw that
a random cut cut at least half of the edges).

The input to the Max Cut problem is a graph G = (V,E). The goal is to find f : V → {0, 1}
to maximize Prv∼w∈E[f(v) 6= f(w)].

Well, we can try to write a LP for it anyway. In the ILP, we’ll have variables xv to
indicate whether v is in or out of the cut.

ILP LP
xv ∈ {0, 1} 0 ≤ xv ≤ 1 v ∈ V
yvw ∈ {0, 1} 0 ≤ yvw ≤ 1 v, w ∈ V

max avgv∼w∈E{yvw}

5

1

1

2

2 1

Figure 5: An example input to the Max Cut problem. Here the label of each vertex is the
set it is put in, and the X’s denote the edges cut. In this case, the max cut is 4

5
.

The intent here is that somehow we want to encode yvw = 111[xv 6= xw], i.e., yvw is 1
whenever edge v ∼ w is cut. For the Min Cut problem, this is do-able:

yvw ≥ |xv − xw| ⇐⇒ yvw ≥ xv − xw and yvw ≥ xw − xv

This is successful because the goal is to minimize the y’s. But for Max Cut we want
yvw ≤ |xv − xw|, but we cannot do the same trick to encode this! So we are kind of stuck.

2.1 Semidefinite Programming Idea

The researchers C. Delorme and S. Poljak [DP93] had a smart idea about this. First, make
a notation change to xv ∈ {−1, 1}. Consider the following program:

xv ∈ {−1, 1} (1)

yvw = xvxw (2)

LP


max avg
v∼w∈E

{
1

2
− 1

2
yvw

}
(3a)

yvw = ywv (3b)

yvv = 1 (3c)

Constraints (1) and (2) plus the objective (3a) exactly capture the Max Cut problem,
since 1

2
− 1

2
yvw = 111[xv 6= xw]. The constraints (3a) and (3b) must clearly hold for any solution.

The objective (3a) plus constraints (3b) and (3c) define a LP, but not a very good one since
we could, for example, set yvw = −1000000 (hereafter (3b) and (3c) are referred to as the LP
constraints, and combined with (3a) are the LP). For this LP to work, we want to enforce
yvw = xvxw using linear constraints. What we really want to enforce is the MOMENT
constraint:

∃(xv) s.t. yv,w = xvxw ∀ v, w ∈ V (MOMENT)

This would allow us to drop the constraint xv ∈ {−1, 1}, so the LP constraints in addition
to MOMENT exactly captures Max Cut too.

6

Idea: Try to enforce MOMENT with linear inequalities.
Suppose you hand off the LP to Ellipsoid (which we now think of as a black box). The

LP is clearly unbounded, so Ellipsoid will return something along the lines of yvw = −2poly(n)

for v 6= w and yvv = 1 ∀v, w ∈ V . But then we can say, “Just a moment, I forgot one
constraint:” ∑

v,w∈V

yvw ≥ 0. (4)

Basically, we just “surprised” Ellipsoid with a new hyperplane constraint, but Ellipsoid
can handle that. Why is (4) a valid constraint?

Claim 2.1. MOMENT implies constraint (4).

Proof. ∑
v,w∈V

yvw =
∑

v,w∈V

xvxw =

(∑
v∈V

xv

)2

≥ 0

Since (4) is a valid constraint implied by MOMENT, so we add that constraint to the
LP since we can’t add MOMENT directly.

Now imagine Ellipsoid continues running begins to output another solution:

y11 = 1

y12 = 100

y21 = 100

y22 = 1

y13 = . . .

but we interrupt it and say “Just a moment, I forgot a constraint:”

y11 − y12 − y21 + y22 ≥ 0 (5)

(Of course, now Ellipsoid is getting a little annoyed (sorry Ellipsoid!) because we again
sprang a new constraint on it.)

Claim 2.2. MOMENT implies constraint (5)

Proof.
y11 − y12 − y21 + y22 = x1x1 − x1x2 − x2x1 + x2x2 = (x1 − x2)

2 ≥ 0

Then Ellipsoid responds with “Just kidding! I really meant y12 = −100, y21 = −100, . . . ”,
but then we respond that we forgot the constraint

y11 + y12 + y21 + y22 ≥ 0 (6)

7

Claim 2.3. MOMENT implies constraint (6)

Proof.
y11 + y12 + y21 + y22 = x1x1 + x1x2 + x2x1 + x2x2 = (x1 + x2)

2 ≥ 0

Note that

• Adding constraint (5) to the LP implies that 1−2y12 + 1 ≥ 0, which is true if and only
if y12 ≤ 1.

• Adding constraint (6) to the LP implies that 1 + 2y12 + 1 ≥ 0, which is true if and only
if y12 ≥ −1.

So even constraints (5) and (6) are beginning to constrain the y variables in an interesting
way.

Back to the dialogue with Ellipsoid. We could keep surprising Ellipsoid with more con-
straints, but note that, for general constants cv ∈ R we have that(∑

v∈V

cvxv

)2

≥ 0 =⇒
∑

v,w∈V

cvcwxvxw ≥ 0

Therefore, it follows from the MOMENT constraint that∑
v,w∈V

cvcwyvw ≥ 0 (SDP) (7)

and, for constant c’s, these are linear constraints in the y’s, exactly like those we’ve been
adding. It would be nice if we could add all of these inequalities. There are infinitely many
inequalities of the form (7), but this is not necessarily a problem as long as we can solve the
separation problem. This is the idea behind Semidefinite Programming. We refer to (7) as
the SDP constraints.

2.2 Formal Definition of Semidefinite Programming

First, here are some key facts about Semidefinite Programming

Fact 2.4. We can solve the LP with the SDP constraints efficiently (i.e., even though there’s
an infinite number of constraints, we can solve the problem of finding a solution satisfying
both LP and SDP in polynomial time).

Fact 2.5. MOMENT implies SDP, but SDP does not imply MOMENT (i.e., LP with SDP
does not exactly capture the Max Cut problem).

Fact 2.6. LP with SDP is a pretty good relaxation for Max Cut (in particular, it finds a
Max Cut at least 88% of the optimal).

8

We just showed the first part of Fact 2.5 (MOMENT implies SDP), and the second part
of Fact 2.5 is an easy exercise. Fact 2.6 will be shown next lecture, so we focus on proving
Fact 2.4: Given a set of y’s, we need to see if all SDP constraints are satisfied, and find a
set of cv’s corresponding to an unsatisfied constraint if not.

Definition 2.7. A symmetric matrix Y ∈ Rn×n is positive semidefinite (PSD), written
Y � 0, if for all c ∈ Rn, ∑

i,j∈[n]

cicjyij ≥ 0

i.e.,

[
←−− cT −−→

]  Y



x
cy
 ≥ 0

For example, the Laplacian of any graph is PSD. We want to check if the solution to
Ellipsoid is PSD, and, if not, find c such that cTY c < 0. The following theorem was proved
and referred to in the footnote of Problem 3 of Homework 3.

Theorem 2.8. There exists a polynomial(〈Y 〉)-time algorithm that finds c ∈ Rn such that
cTY c < 0 if such a c exists, and outputs “Y is PSD” if not.

Proof Sketch. We do “Symmetric” Gaussian Elimination1 on Y and continue as long as the
diagonal is nonnegative. If at any point an entry on the diagonal is negative, we can stop
and find c. If not, we have a proof that Y is PSD. More specifically, we are trying to write

Y = LDLT =


1 ↖ ↑ ↗
↖ 1 0 →
← ∗ . . . ↘
↙ ↓ ↘ 1



d1 ↖ ↑ ↗
↖ d2 0 →
← 0

. . . ↘
↙ ↓ ↘ dn




1 ↖ ↑ ↗
↖ 1 ∗ →
← 0

. . . ↘
↙ ↓ ↘ 1


L D LT

where the ∗ entries could be anything, and the di’s are all nonnegative. If we find a negative
di, since Y was being decomposed in this way, we can easily extract a c such that cTY c < 0.
If we succeed in writing Y this way, then Y is PSD, since Y = LDLT and we have that

cTY c = cTLDLT c = cTL
√
D
√
DLT c

=
(√

DLT c
)(√

DLT c
)T

=
∣∣∣∣∣∣√DLT c

∣∣∣∣∣∣2
2
≥ 0

1This is called “Cholesky Decomposition”. The idea is to simultaneously zero out all entries but the first
in both the first column and the first row at the same time. Then we move on to the second column and
row, etc.

9

Therefore, there exists a polynomial-time separation oracle for whether or not a solution
is PSD. Thus, we can use Ellipsoid to solve2 the LP with PSD constraints (i.e., the LP with
the additional constraint that Y is PSD).

Proposition 2.9. A symmetric matrix Y is PSD if and only if Y = UTU for some matrix
U ∈ Rn×n.

Proof. As we saw in the previous proof, if Y is PSD then Y = LDLT = L
√
D
√
DLT , so

we can set U = L
√
D. For the other direction, note that cTUT = (Uc)T , so the ith entry

of cTUT is equal to the ith entry of Uc, so cTUTUc is just a sum of squares, and hence
nonnegative.

There are many good definitions of PSD. For example:

Proposition 2.10. A symmetric matrix Y is PSD if and only if all the eigenvalues of Y
are nonnegative.

Recall that we have the following

MOMENT 6⇐= SDP
∃xi ∈ R s.t. yij = xixj =⇒

∑
i,j cicjyij ≥ 0 ∀ c ∈ Rn ⇐⇒ ∃ U ∈ Rn×n s.t. Y = UTU

Even though SDP does not imply MOMENT, there is a similar condition that SDP is
equivalent to (it’s probably a good definition to remember).

Proposition 2.11. A symmetric matrix Y is PSD if and only if there exists jointly random
variables X1, . . . ,Xn such that yij = E[X iXj].

Proof. (⇐=) Suppose these random variables exist, and yij is as defined. Then, for all
c ∈ Rn. ∑

i,j

cicjyij =
∑
i,j

cicj E[X iXj] = E

[∑
i,j

cixicjxj

]
= E

(∑
i

cixi

)2
 ≥ 0

(=⇒) Given a symmetric PSD matrix Y , how do we get the random variables? Recall
that Y = UTU for some U ∈ Rn×n. Now we must define (X i)i∈[n]. Pick k ∼ [n] uniformly
at random, and set X i =

√
nUT

ik =
√
nUki for all i ∈ [n].

←−−−− k −−−−→

Y = UTU =



x1

x2
...
xn






UT U

2Of course, Ellipsoid also needs a full-dimensional input (little box of side length r) and a bound on the
solution space (R). The setting of yvv = 1 is not full-dimensional, so we need to relax the constraints to
1− 2−poly(〈A〉,〈b〉) ≤ yvv ≤ 1 + 2−poly(〈A〉,〈b〉). Henceforth we ignore this detail, but it is a technical point to
keep in mind.

10

Then we have that

E[X iXj] =
1

n

n∑
k=1

√
nUT

ik

√
nUT

jk =
n∑

k=1

UT
ikUkj =

(
UTU

)
ij

= yij

Here is one more useful definition of PSD:

Proposition 2.12. A symmetric matrix Y is PSD if and only if there exists vectors ~u1, . . . , ~un ∈
Rn such that yij = 〈~ui, ~uj〉.

Proof. If Y is symmetric and PSD, then Y = UTU , so let ~ui be the ith column of U . If such
~ui exist, then Y = UTU , where U = [~u1, ~u2, . . . , ~un], so Y is PSD.

References

[DP93] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem.
Math. Programming, 62(3, Ser. A):557–574, 1993.

11

