A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 10: Error-correcting Codes
October 9, 2013
Lecturer: Ryan O’Donnell Scribe: Xiaowen Ding

1 Overview

In information theory and coding theory, error detection and correction are techniques that
enable reliable delivery of digital data over unreliable communication channels. Many com-
munication channels are subject to channel noise, and thus errors may be introduced during
transmission from the source to a receiver. Error correction enables recovery of the original
data.

Information theory and electrical engineering often focus on cases that errors are random,
while computer scientists focus on worst case.

2 Basic definitions

Definition 2.1 (Error-Correcting Codes). Error-correcting codes is an injecting map from
k symbols to n symbols:
Enc: ¥F — "

where ¥ is the set of symbols.

e ¢: We say ¢ = || is the cardinality of alphabet set. In particular, for ¢ = 2, the code
is binary code.

e Message: The domain Y* is called the message space and elements in ¥*, which
would be transmitted are called message. And £ is called message length or message
dimension.

e Block length: Messages would be mapped to n-bit strings. Here, n is called block
length. In general, k£ < n.

e Code: We write C for the image, C' would have cardinality ¢* because Enc is an
injective function. We often call C' the “code” and y € C' a “codeword”. For
efficiency, we don’t want n to be too big than k.

o Rate: We call % the “rate”, and higher rates indicates higher efficiency.

Enc errors recover!
X Y ANNNNAZ X
> ZT” 2" >
The above picture indicates the procedure of encoding and decoding. Here, errors mean

up to t symbols of y are changed, and “change” here means switching to another symbol.
The decoding is recovering the original x from z.

3 Hamming distance

Definition 3.1 (Hamming distance). Hamming distance is the number of positions at which
the corresponding symbols are different.

Aly,z) = [{i: y: # 2z}

In the graph above, the box stands for all elements in ¥". Each vertex is a codeword and
each ball around is the possible z the receiver gets.

t stands for the maximum number of errors. For codeword y here, everything is the
Hamming ball has Hamming distance to y up to t. If there doesn’t exist two Hamming balls
that overlap each other, we can recover every message. In the graph, the orange ball overlaps
the purple one. Then sometimes we cannot recover x that is associated with y correctly.

Here, d indicates the minimum distance between two vertices.

Definition 3.2. Minimum distance is the least distance between two distinct codewords:

d= min {A(y,y
y;};}gc{ (v,9)}

2

Fact 3.3. Unique decoding, which means for each z the receiver gets, there is a unique x he
can recover, is possible if and only if t < ng

We usually want d to be large so that the area it can correct would be large. But by
doing this, the number of vertices we can put in 3" would become small. In many ways,
coding theory is about exploring the tradeoff.

Question: Why not just choose C' C ¥" randomly?

Answer: Inefficient encoding and decoding because we might have to maintain a huge
table.

4 Linear code

In coding theory, a linear code is an error-correcting code for which any linear combination
of codewords is also a codeword. In fact, linear codes allow for more efficient encoding and
decoding algorithms than other codes.

A linear code of length n and rank k is a linear subspace C' with dimension k of the
vector space Iy where Iy is the finite field with ¢ elements.

Definition 4.1 (Linear code). Enc: Fj — F7, linear map:
r— Gx

where x is a vector and G is a matrix

Here, GG is called “Generator matriz” which is a full-rank n x k£ matrix that makes the
linear map injective.
C' = Im(G) is the image of G which spans all linear combinations of rows.

Notation 4.2.
[TL, k(? d)]q

where n is the length of codeword, k is the length of message, and d is the minimum
distance if known.

[-] indicates that it is a linear code. For codes that are not linear, we should use (-).

Remember that encoding is very efficient for given G.

Then, let’s focus on decoding. It’s not obvious whether decoding is efficient. Given
y = Gx, it is easy to recover x. But if we get a z that is not in the code space C, it might be
NP-hard to find the nearest y that associated with a x. So we should design G s.t. decoding
is efficient.

Although it might be hard to find nearest y for z, it is easy to check if y is in the code.
One way to do it is to check whether it is a span of the row vectors, another way is to check
whether it is orthogonal to a bunch of vectors.

Let C+ = {w € Fy wly = 0,Vy € C}, every vector in C* are orthogonal to every
codeword.

Since (s dimension is k, C* is a subspace of dimension n — k.
In our mind, in 3-dimension space, two subspaces that are orthogonal would be like a
line and a plane in the following graph:

But in finite fields, thing would like different.

Example 4.3. ¢ =2, n =2,

C = {(Oa())a(l?l)};
Ct = {(070)7(1’1)}

C+ is same with C.

C+ gives rise to a [n,n — k|, code, Enct - IFZ*’C — F maps w to H"w, where H is a
(n — k) x n matrix like H

Here H is called parity check matrix of the original code C.

C* is rowspan of H,so 2 € C < Hz = 0.

When ¢ = 2, each row of H is a binary string, and a string z is in the original code C' iff
Hz = 0. Since every bit in H is either 0 or 1, it’s like checking the parity of some subsets
of z.

In general, for a linear code that has some nice properties, we would usually look at the
dual and find another nice properties.

Definition 4.4 (Hamming weight). Hamming weight of w is wt(w) = A(0, w).

Fact 4.5. d(c) is the least Hamming weight of a nonzero codeword. This is because A(y,)
is Hamming weight of y —v/'.

Fact 4.6. d(c) is the minimum number of columns of H which are linearly dependent.
Proof.
d(c) = min{wt(z) : z € C,z # 0}
= min{wt(z) : Hz =0,z # 0}

The columns of H that associated with the non-zero entries of z are linearly dependent. [

4

5 Hamming Code

Hamming code [Ham50] is defined by the case of linear code that ¢ = 2:

0O0¢0 --- - . 1
000 -+ v . 1
H= oo : : : :
O1 1 -+ o .. 1
10 1 -+ oo oo 1

where H is a r x (2" — 1) matrix and columns span all possible binary of length r except the
all-zero column.

H is full-rank because it has the identity matrix. And distance is 3 because from fact 4.6,
the minimum number of linearly dependent columns is 3.

Ham, is [2" — 1,2" — 1 — r, 3], or we can say it’s [n,n — logy(n + 1), 3]s for n = 2" — 1.
This code has excellent rate % ~ 1. Basically, we just need to add log, n bits to the message
and transit it. And since the distance is 3, it is uniquely decodable from up to |3] =1 error.

In fact, we can correct one error easily. First, we can check if Hz = 0. If it is, y
is not modified. Otherwise, one bit changed, we know that for some 7, z = y + ¢;, so
Hz = H(y+e;) = Hy+ He; = He;, which is just the ith column of H. Actually, the ith
column of H is equally to ¢ written in binary. So we can easily find the corresponding ¢ here.

This code is called perfect code:

Definition 5.1 (perfect code). A perfect code may be interpreted as one in which the balls
of Hamming radius t centered on codewords exactly fill out the space.

This code is perfect because for each z € X7 such that Hz # 0, there exists a column
of H: H; such that Hz = H; because the columns of H span all possible binary string of
length 7, and z + e; is the center of the Hamming ball containing z.

In 1973, it was proved that any non-trivial perfect code over a prime-power alphabet has
the parameters of a Hamming code or a Golay code [Gol49].

6 Hadamard Code

The Hadamard code is a code with terrible rate and excellent distance. It is always used
for error detection and correction when transmitting messages over very noisy or unreliable
channels.

First, let’s look at dual generator matrix of Hamming code:

00 -~ 01
0 0 1
BT 0 0 11
11 -+ 10
- 11

Then let’s add in an all-zero extra row:

0 0 0 0
00 0 1
0 0 10
G=10 0 11
11 -~ 10
11 11

The matrix G above is the generator matrix of Hadamard code.

Definition 6.1 (Hadamard code). Hadamard encoding of z is defined as the sequence of all
inner products with x:
T (@ T)acry

Definition 6.2. Given z € F}, define r-variate linear polynomial L, : F}, — F5 as

T
a— zla = E Tia;
i=1

Actually, for each z, it is a linear mapping. When x is fix, we can view z; as coefficients
and a; as variables.
This is like mapping z to the “truth table” of L, because (a - #)ser; = (L2(a))aers

Fact 6.3. Hadamard code is a [27,7,2" "], code. Let n = 2", it’s a [n,logyn, %n]Q code.

For any two distinct “truth tables”, they differ in at least half of coordinates. That is,
Vo # 0, Pro.py[Lao(a) # 0] > § by Schwartz-Zippel Lemma [Zip79, Sch80].

Actually, we can view L,(a) as xia; + xeas+ - - - + x,a,. For non-zero z, say x; # 0, when
fix other coordinates, exactly one of the two cases a; = 1 and a; = 0 would make L,(a) to
be 0. So for half of a’s, L,(a) is non-zero. So Pro.pp[L,(a) # 0] = 1.

In general, for alphabet with ¢ symbols, it is a [¢", r, (1 — %)q’“]q code.

7 Reed-solomon Codes

In coding theory, Reed-Solomon(RS) codes are non-binary cyclic error-correcting codes in-
vented by Irving S. Reed and Gustave Solomon. [RS60] Reed-Solomon codes have since found
important applications from deep-space communication to consumer electronics. They are
prominently used in consumer electronics such as CDs, DVDs, Blu-ray Discs, in data trans-
mission technologies such as DSL and WiMAX, in broadcast systems such as DVB and
ATSC, and in computer applications such as RAID 6 systems.

Definition 7.1 (Reed-solomon codes). For 1 < k < n, ¢ > n, select a subset of symbols of
cardinality n, S C F,, |S| = n. We define Enc:]F’qc — 7 as following:
For message m : (mq,my, - ,my_1) € FF,

m = (Pn(a))aes

where P, (z) € F[z] is mg + mix + ... + my_j2*!

Remember the following:
e Usually ¢ =n, S =T, and P, is the “truth table” of polynomial

e It is linear code. We can easily check it by definition. We add two messages m and m/’,
Enc(m+m’) = Enc(m)+ Enc(m') because it’s like adding the coefficients of polynomial.

e Generator matrix is a Vandermonde matrix that each row is [1, a, a2, - -+, a*71] for an
aesS

o min-dist >n — (k—1) =n — k+ 1. The number of different roots of a polynomial of
degree k — 1 is at most k — 1. So in [P, (ao), Pn(aq), ..., Pn(ay)], at most k — 1 entries
are 0.

RS code has the above great properties except ¢ has to be at least as large as n. To
summarize, it’s a [n, k,n — k4 1], code. In particular, ¢ = n, it’s a [n,k,n — k + 1],, code. If
we set k to be half of n, then the rate would be half and the minimum distance is also half
of n.

One thing that might be confusing is that why larger alphabet size would help. One
reason is that if the alphabet size is large, say 2'°, then each symbol’s length is 10 bits. It’s
like “packing” each 10 bits, and once an error occurs, it would be in a “package” instead of
random 10 bits.

In fact, the parameters of this code is optimal. And we will see it in next section.

8 Good codes exist

Theorem 8.1 (Singleton bound). For a [n,k,d], code, k <n—d+1 [Sin64]

Proof. Assume for the sake of contradiction, |C] > ¢"~?*! by pigeonhole principle, some
two elements in C' have same first n — d + 1 coordinates.
Then Hamming distance < d —1 < d]

We observe that this bound doesn’t rely on alphabet size. So one problem here is for
fixed ¢ (say g = 2), whether there exist codes with both good rates and good distances.

Fixed ¢, let C' = {C,,} be a sequence of codes [n, k(n),d(n)],

For the codes we learned above:

e Hamming Code: [n,n — log,(n + 1), 3]s
e Hadamard Code: [n,log,n, 52

e Reed-Solomon Code: It’s not a code family since the alphabet size is growing. But if
we set ¢ = n, it’s [n, k,n — k + 1],

We always want the code to be good for infinite many n instead of some particular ones.
So we define the following things:

Definition 8.2 (Asymptotic rate).

R(C) = lim infM

n—oo n

Definition 8.3 (Asymptotic relative distance).

d(C) = lim infM

n—o0 n

Here are asymptotic rate and asymptotic relative distance of codes we learned:
e Hamming Code: R=1,0 =0
e Hadamard Code: R=0,6 = %

e Reed-Solomon Code: R = Ry,0 =1 — Ry because it depends on how we set k. But it
doesn’t really count because ¢ is not fixed.

Definition 8.4 (Asymptotically good code family). Asymptotically good code family is a
code family such that

R(C) > Ryg>0

5(C)>0>0

Fact 8.5. Good codes exist.

There is a natural greedy approach to construct a code of distance at least d. We can
randomly add a codeword and erase the part within distance d and repeat adding until we
cannot proceed.

Theorem 8.6 (Gilbert-Varshamov bound). Vg > 2, V§ € [0,1 — %], 3C, Vn, with 6(C) =6,

q

R(C)>1—hy(0) >0
where hy(x) = zlog,(q — 1) — zlog, z — (1 — x)log,(1 —)

In fact, The Gilbert-Varshamov bound was proved in two independent works. Gilbert
proved this bound for greedy aproach and Varshamov proved this bound by using the prob-
abilistic method for linear code. [Gil52, Var57]

Justesen codes [Jus72] form a class of error-correcting codes that have a constant rate,
constant relative distance, and a constant alphabet size.

Theorem 8.7 (Justesen’72). For ¢ = 2, 3 polynomial time constructible, encodable, and
decodable good code family. VO < R < 1, 0 ~ %(1 — R) decode from up to L%"J errors.

Sipser and Spielman [SS96] use expander graphs to construct a family of asymptotically
good, linear error-correcting codes.

Theorem 8.8 (Sipser-Spielman’96). They construct asymptotic good code family (q = 2)
that can be encodable and decodable in linear time and can be decoded from Q(1) fraction of
error.

Concatenated codes are error-correcting codes that are constructed from two or more
simpler codes in order to achieve good performance with reasonable complexity. Originally
introduced by Forney in 1965 to address a theoretical issue, they became widely used in
space communications in the 1970s. [For66]

For example, if we concatenate Reed-Solomon code and Hadamard code:

F* Fy

q

YO " [

Enc

It has horrible rate and excellent minimum distance.

Theorem 8.9 (Forney’66). Concatenated codes could be used to achieve exponentially de-
creasing error probabilities at all data rates less than capacity, with decoding complexity that
increases only polynomually with the code block length.

References

[For66]
[Gil52]

[Gol49]
[Ham50]

[Jus72]

[RS60]

[Sch80]

[Sin64]

S396]

[Varb7]

[ZipT79]

G David Forney. Concatenated codes, volume 11. Citeseer, 1966.

Edgar N Gilbert. A comparison of signalling alphabets. Bell System Technical
Journal, 31(3):504-522, 1952.

Marcel JE Golay. Notes on digital coding. Proc. ire, 37(6):657, 1949.

Richard W Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147-160, 1950.

Jorn Justesen. Class of constructive asymptotically good algebraic codes. Infor-
mation Theory, IEEE Transactions on, 18(5):652-656, 1972.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial & Applied Mathematics, 8(2):300-304, 1960.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM (JACM), 27(4):701-717, 1980.

R Singleton. Maximum distance-nary codes. IEFE Transactions on Information
Theory, 10(2):116-118, 1964.

Michael Sipser and Daniel A Spielman. Expander codes. Information Theory,
IEEE Transactions on, 42(6):1710-1722, 1996.

RR Varshamov. Estimate of the number of signals in error correcting codes. In
Dokl. Akad. Nauk SSSR, volume 117, pages 739-741, 1957.

Richard Zippel. Probabilistic algorithms for sparse polynomials. Springer, 1979.

10

