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1 Introduction

Moving on from spectral graph theory, this lecture will cover fields and polynomials. As a quick
refresher, a field is a number system that includes the operations {+,−,×,÷}. Recall that a ring
is a number system with just {+,−,×}. Fields can be infinite, such as Q, R, and C. We’ll concern
ourselves with finite fields in this lecture.

For polynomials, we’ll talk about both univariate and multivariate polynomials. A polynomial for
example might be c1x

3
1 + c2x2x

5
3. Note that the coefficients here will come from a field F. Then we

write the set of polynomials as F[x1, x2, x3].

As a quick roadmap of where we’ll be going this lecture, here is a TL; DR:

1) If p is a prime, then {xmod p | x ∈ Z} is a field, denoted Fp

2) For all l ∈ N, there also exists a field with pl elements, denoted Fpl

3) A degree d, non-zero univariate polynomial has at most d roots

4) Let P ∈ Fq[x1, . . . , xn] be a non-zero polynomial with total degree ≤ d. Then:

Pr
a1,...,an∼Fq

[
P(a1, . . . , an) = 0

]
≤ d

q

2 Fields

We’ll take for granted that Zp is a ring, where Zp is defined to be normal arithmetic modulo p. To
show that Zp is a field, we need to find a multiplicative inverse for each element. That is, given
a ∈ Zp \ {0}, we want to find a−1. Instead of just showing that a−1 exists, we’ll actually give a
construction for finding a−1.

The basic idea is to use the Extended Euclidean Algorithm. Recall that the E.E.A. finds the gcd
of two numbers (we could in fact use any algorithm that finds the gcd). Given two numbers a, b,
and if a > b, it divides the larger by the smaller, which gives a = bq + r, and uses the pair b, r at
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the next step, until r = 0. For example, we might try (100, 45):

(100, 45) =⇒ 100 = 45 · 2 + 10

(45, 10) =⇒ 45 = 10 · 4 + 5

(10, 5) =⇒ 10 = 5 · 2 + 0

(5, 0) =⇒ gcd(100, 45) = 5

If we’re smart with the bookkeeping of the algorithm, we can generate c, d ∈ Z such that:

c · a+ d · p = gcd(a, p)

c · a+ d · p = 1 since gcd(a, p) = 1

c · a+ d · 0 ≡ 1 mod p since p ≡ 0 mod p

c · a ≡ 1 mod p

=⇒ c ≡ a−1 mod p

Note we can do this efficiently in polylog(p) time, and therefore we have shown that Zp is a field,
which we write as Fp.

Aside: It is good to remember the fact that for a ∈ Fp, n ∈ N, we can compute an ∈ Fp in
poly(log p, log n) time (we can square a, then square the result, and so forth, taking each result
mod p).

3 Picking a prime

In this section, we explore the question: How do you pick a prime? We know that picking a prime
gives us a field, so this is an important question to answer. In general, we can use the (not so)
elegant method below:

1) Pick a random m-bit number
2) Run a primality test on the selected number. If prime, output p. Else, go to 1.

An important point is that testing a number for primality can be done in deterministic poly(m)
time with the AKS primality test [AKS04].

A natural question to ask is why don’t we just start at some 2m, test if it’s prime, then try 2m + 1,
2m + 2, and so forth. There are a couple reasons. First, in some cases, we actually want a random
prime number (for example cryptography). Secondly, there can actually be long stretches where
there are no prime numbers. Fortunately, the prime number theorem (of which you proved a weaker
version in homework 1) states:

fraction of m-bit numbers which are prime ∼ 1

2 ln(2) ·m

This is good news for us! Recall that if a weighted coin is heads with probability h, then the
expected number of flips until we see a heads is 1

h . Therefore, the expected number of trials we
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have to run until we find a prime is ∼ 2 ln(2) ·m ∈ O(m).

4 Other fields

One note: there are also finite fields not of this form. Specifically, there are finite fields of size 2l

which are particularly useful for computer scientists. An example of another field is:{
a+ bi : a, b ∈ F3

}
where i =

√
−1. This field is actually (isomorphic to) F9. Another interesting point: if a, b are

drawn from F5, then this is not a field.

5 Randomized algorithms

Before we move onto polynomials, we’ll take a quick detour to discuss randomized algorithms. This
will help later in the course when we cover derandomization. We define several classes of random-
ized algorithms:

Definition 5.1. Zero-sided error: These algorithms run in expected poly time, and the answer is
always correct (note the answer might be “I don’t know”).

Definition 5.2. One-sided error: These algorithms can make an error on one side with small prob-
ability. For example, the Miller-Rabin test for primality always outputs “prime” if the number is
prime, but may occasionally output “prime” even if the number is composite (although with very
low probability).

Definition 5.3. Two-sided error: These algorithms may output wrong answers for both cases, but
with very low probability.

You might have heard the term “Las Vegas algorithms” for zero-sided error and “Monte Carlo al-
gorithms” for one-sided error. While prevalent in literature, these make less sense as names (Ryan
suggests that it’s possible that the name Las Vegas algorithms comes from the fact that the house
always wins, but who knows).

Note in practice, we would actually use the Miller-Rabin test, since it’s roughly O(m3), whereas
the AKS primality test is about O(m7.5).
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6 Polynomials

We’ll also want to discuss a topic related to fields. We write a set of polynomials where the coeffi-
cients are taken from the field F as F[x1, . . . , xn]. A quick note on degree:

Definition 6.1. Total degree: max degree of any monomial (term).
Definition 6.2. Individual degree of xi: max degree of xi.

For example, given the polynomial c1x
3
1x

4
2 + c2x

2
1x3x

2
5, it has total degree 7, and the individual

degree of x1 = 3.

Before we move on, we make a quick note of a fact.

Fact: We can do univariate division with a remainder. Given A(x),B(x), we can write

B(x) = A(x) ·Q(x) + R(x)

which corresponds to dividing B(x) by A(x). Additionally, here deg(R) < deg(A).

Corollary 6.3. There is an analog to the Euclidean Algorithm for two univariate polynomials A(x)
and B(x). The output is the highest degree polynomial which evenly divides both A(x) and B(x).

Given this corollary, we see that there is a “gcd” between two polynomials. We can now define an
irreducible polynomial.

Definition 6.4. A polynomial P(x) with deg(P) > 1 is irreducible (prime) if and only if
gcd(P(x),Q(x)) = e, where e ∈ F, for any Q(x) where deg(Q) < deg(P).

Equivalently, a polynomial is irreducible if it can’t be factored.

7 Fields with polynomials

We can now get other fields by taking polynomials modulo an irreducible polynomial. Note that in
general, polynomials defined over a field form a ring. By taking everything modulo an irreducible,
we can define a field as follows:{

F[x] mod P(x)
}

is a field of size |F|deg(P)

Note the modulo here works similar to integers. For example, any polynomial mod x3 + x2 + . . .
will yield a polynomial of at most degree 2 (i.e.x2 + x). One can also think of an element as a list
of coefficients in F. Given Fp and an irreducible polynomial of degree l, we can do arithmetic in
Flp in time poly(l · log p). If we write q = pl, then this is just poly(log q), where log q is the number
of bits needed to write an element.
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Given a general field element c0 + c1x + . . . + cl−1x
l−1 mod P(x), we can see that F lp is a vector

space over Fp. There are a couple more brief comments before we move on from finite fields.

For finding an irreducible polynomial, we use the same strategy as finding primes—pick one at
random and test it. Of course, this only works if two things hold. First, we need to be able to
efficiently check if a polynomial is irreducible. Secondly, irreducible polynomials must occur with
a reasonable probability.

Fact: Checking if a polynomial P(x) of degree l is irreducible is in deterministic poly(l log p) time.

Fact: If we pick P(x) = xl + cl−1x
l−1 + . . .+ c0 randomly (where ci ∈ Fp),
1

2l
< Pr[P(x) irreducible] <

1

l

And in fact, asymptotically is ∼ 1
l .

In some cases, we care about fields of size 2l, and in this case we don’t mind having factors of poly(p)
in our runtime, since they are just poly(2). There are a couple results that are of interest to us then:

Theorem 7.1. There exists a deterministic, poly(p, l) time algorithm to find a degree l irreducible
polynomial modulo p. [Sho90]

The next theorem is due to Van Lint, and defines a pattern of irreducible polynomials modulo 2.

Theorem 7.2. x2 +x+ 1, x6 +x3 + 1, x18 +x9 + 1, and in general x2·(3k) +x3k + 1 are irreducible
modulo 2 for all k ≥ 0.

For now, that’s it for finite fields. The main takeaway is that fields of pl exist, and you can do all
arithmetic efficiently in it.

8 Roots of polynomials

We begin our study of roots of polynomials with an elementary fact:
Theorem 8.1. Degree Mantra: A non-zero, univariate polynomial with degree d has at most d
roots.

Proof. Given P(x), write it for example as:

P(x) = (x− α1)(x− α2)(x
3 + . . .)(x2 + . . .)

where the terms on the right are irreducible. Note that here α1, α2 are roots. It is a fact that
an irreducible polynomial has no roots. This can easily be seen by considering an irreducible
polynomial A(x) and a root β. We can write A(x) = (x − β) Q(x) + R. β is a root if and only if
R ≡ 0, which would imply that (x− β)|Q(x).
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We’ve known this since high school. Why is this important? The next section describes a concrete
application in communication complexity.

9 Communication complexity

The basic setup of the communication complexity problem is as follows:

Alice Wall Bob

a ∈ {0, 1}n | b ∈ {0, 1}n

|
←−m1

m2 −→
. . . . . .

In the above diagram, Alice and Bob both have a bit string known only to themselves at the start.
There is a wall between them, and they communicate by sending messages across the wall. Com-
putation is free in this model, and we are only concerned with the number of bits communicated
over the wall. Specifically, we want to minimize the number of bits sent. Note in general, we only
ever need to send n + 1 bits, since Bob can send over his entire number, Alice can perform some
computation on it, and Alice can send over 1 bit indicating yes/no depending on the problem at
hand.

An example problem is equality, which is the question: Is a = b?

Any deterministic algorithm requires at least n bits of communication. Therefore, we look at
randomized approaches to see if we can do better. We want a randomized strategy that outputs
the correct answer with probability 1− 1

n . This should work for every input pair a, b, and not just
for randomized input. For example, a flaw with sending over random indexes and their values is
that if a, b differ in only 1 bit, we would need to send a linear number of bits.

It is possible to do this with O(log n) bits of communication, using a one-sided error randomized
algorithm. It’s also known that Ω(log n) bits is required, which implies that this is an asymptotically
optimal solution.

Proof. We give an algorithm to do so here.

1) Alice fixes Fq, where q ∈ [n2, 2n2]. She tells Bob, which sends O(log q) = O(log n) bits.

2) Alice then forms PA(x) = anx
n + an−1x

n−1 + . . .+ a1x.

3) Bob also forms PB(x) = bnx
n + bn−1x

n−1 + . . .+ b1x.

4) Alice choose α ∈ Fq at random, sends α and PA(α) to Bob, which sends O(log n) bits.

6



5) Bob checks PB(α), and says a = b if PB(α) = PA(α).

There are two cases to analyze. If a = b, then PA(x)−PB(x) = 0, so Pr[equal] = 1. If a 6= b, then
the output is wrong if and only if α is a root of PA(x)− PB(x). Since this polynomial has degree
at most n, and we are choosing α from a field of size at least n2,

Pr[output equal when not equal] = Pr[α is a root]

≤ n

n2

=
1

n

Note we could repeat this procedure to give us a probability of error at most 1
nk (we could also just

choose q ∈ [n2k, 2n2k]). This still maintains the O(log n) bound.

10 Polynomials as functions

Before we move on, let’s make a brief note on interpreting polynomials as functions.

Fact: Every P ∈ F[x1, . . . , xn] computes some function f : Fnq → Fq.

Additionally, every function is computed by some polynomial (we can use interpolation to construct
it). There exist qq

n
functions, but there are infinitely many polynomials. Therefore, there exist

two polynomials that compute the same function.

If these are A and B, and if we let Z = A−B,

Z computes the 0 function

The above is important because Z is a “non-zero” polynomial.

Example: xq − x ∈ Fq[x] is always 0 since αq = α (mod q), for all α ∈ Fq.

One thing we might realize is that we can reduce any polynomial so that each individual degree is
≤ q−1 without changing the computed function. For example, if q = 2, then x3 ≡ x2x ≡ x (mod q).

Question: How many reduced monomials are there?

Answer: Since there are n different xi’s, and each one can have a power p with 0 ≤ p ≤ q − 1,
there are qn reduced monomials.

Question: How many reduced polynomials are there?
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Answer: Every reduced monomial can have a coefficient c with 0 ≤ c ≤ q − 1, so there are qq
n

reduced polynomials. This leads to the following corollary.

Corollary 10.1. Every function f : Fnq → Fq is computed by a unique reduced polynomial.

Lastly, of particular interest might be the boolean functions f : {0, 1}n → {0, 1}.

11 Schwartz–Zippel Lemma

We now cover one last important fact about polynomials, based on the Degree Mantra. The
Schwartz–Zippel Lemma was discovered independently by Schwartz and Zippel, as well as by oth-
ers such as Lipton and Orr. We state a general form of it below (more general than the ones
commonly found).

Schwartz–Zippel Lemma [Sch80, Zip79]:
Let P ∈ Fq[x1, . . . , xn] be a reduced polynomial (that is not the 0 function) with total degree ≤ d.
Then:

Pr
α1,...,αn∼Fq

[P(α1, . . . , αn) 6= 0] ≥ 1

q
b d
q−1
c
·
(

1− d mod (q − 1)

q

)
The above might look scary (and it is!), but fortunately, we can reduce it in two common cases.

Case 1: q = 2
The right hand side simplifies to be 2−d.

Case 2: d < q − 1
This corresponds to there being lots of choices for the α’s. In other words, we have a big field to
choose from. The right hand side simplifies to 1− d

q in this case, which means that the probability

that the polynomial evaluates to 0 is ≤ d
q .

In fact, if we choose the α’s from a subset S ⊂ F, we have the more commonly stated version:

Pr[P(α1, . . . , αn) = 0] ≤ d

|S|

The Schwartz–Zippel Lemma can be proved by induction. For the base case n = 1, this is just the
Degree Mantra. The induction is left as an exercise.

A small note: one should be careful in applying the Schwartz–Zippel Lemma. It only holds if the
random point is chosen from a sufficiently large set. For example, consider the following polynomial
in F2[x1, . . . , xn]

x1 · x2 · . . . · xn =

{
1 if xi = 1, ∀xi
0 otherwise
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This non-zero polynomial is most likely zero for a randomly chosen point. However, it does not
contradict the Schwartz–Zippel Lemma. Therefore it is important to consider the size of the field
in relation to d before applying the lemma.

12 Perfect matching in bipartite graphs

We now present an application of the Schwartz–Zippel Lemma. Given a graph G, a perfect matching
is a subset S of the edges such that every vertex appears in S exactly once. Furthermore, we have
the restriction that G is bipartite.

In the 60’s, Karp showed that this problem could be solved in O(mn) time, where m = |E| and
n = |V |. This includes both the decision problem (does a perfect matching exist?) and the function
problem (the problem of finding the perfect matching).

An open problem is the following: Can this be done in polylog(n) time “in parallel”? That is, is
it in NC? Recall that NC is the set of problems that can be solved by circuits that are poly(n) in
size with polylog(n) depth. (It is also not known if GCD can be done this way either).

If randomization is allowed, this problem is known to be in RNC. [Lov79]

Let U, V be the two sets of nodes in a bipartite graph. Clearly, |U | = |V |, otherwise there could
not be a perfect matching. We can construct a square matrix with the nodes of U labeling the
rows, and the nodes of V labeling the columns.

Let ei,j be the entry in the ith row and jth column of U × V matrix M . ei,j


Define the entry ei,j =

{
Xij if (i, j) ∈ E
0 otherwise

.

Here, we’ve emphasized with the capital X that Xij is a variable, not a value.

Recall that the determinant of a matrix A is defined as:

det(A) =
∑
π∼Sn

sign(π) ·
n∏
i=1

Ai,π(i)

Then the determinant of our matrix M can be interpreted as a polynomial. That is, det(M) is a
polynomial in Q[Xij : i ∈ u, j ∈ v] For our matrix M , we have:

det(M)

{
= 0 if there is no perfect matching
6= 0 if there is a perfect matching
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To see this, note that the determinant chooses exactly one entry from every row and column. These
can be interpreted as the matchings for those nodes (if the entry eij is chosen, then (i, j) is included
in the perfect matching). Since the values are multiplied and assuming there is no cancellation (we
don’t show this here, but there is none), then the determinant is non-zero if and only if there is at
least one permutation for which all the edges exist.

There’s one caveat to this—we can’t compute this determinant efficiently (to see if it is identically
0), since there are an exponential number of terms. Instead, we can use the Schwartz–Zippel Lemma
to evaluate the determinant at a random point, choosing each Xij ∈ {1, . . . , n2}. By computing
the numeric determinant on a random point, we have:

@ a perfect matching =⇒ det(M) is always 0

∃ a perfect matching =⇒ Pr[det(M) evaluated on random point = 0] ≤ n

n2
=

1

n

Lastly, the problem of computing the determinant over Q is in NC. [Csa76]

Additional note by scribe: The above matrix is called a Karp matrix. It can be generalized to
non-bipartite graphs by constructing a matrix with |V | rows and |V | columns, where the entries
are defined as:

ei,j =


Xij if (i, j) ∈ E, and j > i
−Xji if (i, j) ∈ E, and i < j
0 otherwise

The relationship between the determinant of this matrix and the existence of a perfect matching
is exactly the same as the Karp matrix (this is called Tutte’s matrix).

13 Recommended reading

For further reading, the following are recommended:

http://people.csail.mit.edu/madhu/ST12/scribe/lect03.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-of-digital-
communication-ii-spring-2005/lecture-notes/chap7.pdf

http://shoup.net/ntb/ntb-v2.pdf
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