
A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 8: Spectral Graph Theory III
October 2, 2013

Lecturer: Ryan O’Donnell Scribe: Jeremy Karp

1 Recap

Last time we showed that every function f : V → R is uniquely expressible as

f = f̂(0)φ0 + f̂(1)φ1 + . . .+ f̂(n− 1)φn−1

In this representation, the φis form an orgthogonal basis of the eigenvectors of L. We
can also compute the eigenvalues of L and order them as follows:

0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 ≤ 2

The number of eigenvalues that are 0 is the number of connected components in the
graph. Also recall that if we apply L to any function f :

Lf =λ0f̂(0)φ0 + λ1f̂(1)φ1 + . . .+ λn−1f̂(n− 1)φn−1

It also follows that

〈f, g〉 =
n−1∑
i=0

f̂(i)ĝ(i)

A corollary of this is

ξ(f) = 〈f, Lf〉 =
∑
i>0

λif̂(i)2

We also have

||f ||22 =
∑
i

f̂(i)2

and

E[f ] = 〈f, 1〉

From orthonormality, everything in the previous inner product drops out except the first
term, so Var[f ] = E[f 2]− E[f ]2 =

∑
i>0 f̂(i)2
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2 Conductance and the second eigenvalue

Now, we can observe that

min
V ar[f ]=1

{ξ(f)} = λ1

This comes from the observatrion that the variance is a sum of non-negative numbers that
add up to 1, but ξ(f) is the sum of these same numbers multiplied by the eigenvalues. Then,
the smallest this result could be is the smallest of these eigenvalues, λ1. Another way to
think of this idea is in the form of the Poincare inequality:

λ1Var[f ] ≤ ξ[f ]

Note that λ1 is referred to as the second eigenvalue, despite its index being 1.
We care about the relationship between Var[f ] and ξ[f ] because it relates to conductance.

Recall from last time the definition of conductance:

Definition 2.1. The conductance of S ⊆ V is

Φ(S) = Pru∼v[v /∈ S| u ∈ S]

=
ξ[1S]

||1S||22
We can relate these to the sparsest cut in the graph by defining the conductance of a

graph:

Definition 2.2. ΦG, the conductance of G is

min
S: 0<vol(S)≤ 1

2

{Φ(S)}

Note that a lower bound on the conductance is

1

2
min

S: 0<vol(S)≤ 1
2

{ ξ[1S]

Var[1S]
}

because Var[1S] = vol(S)(1− vol(S)) ≥ 1
2
vol(S) = 1

2
||1S||22.

As we saw in Section 1, we can similarly express the second eigenvalue as the following
minimization problem:

λ1 = min
f : u→R, V ar(f)6=0

{ ξ[f ]

Var[f ]
}

This is a relaxation of the optimization problem that we solved to determine the con-
ductance of G. Now, we can optimize over a larger range of functions. Interestingly, we can
compute λ1 efficiently, but it is NP -hard to determine the conductance of a graph. In the
next section, we relate these two values to each other using Cheeger’s inequality.
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3 Cheeger’s inequality

The following theorem is called Cheeger’s inequality:

Theorem 3.1 (Alon, 1986). 1
2
λ1 ≤ ΦG ≤ 2

√
λ1

Proof. The first inequality is a consequence of our phrasing of λ1 as a minimization problem.
Specifically, we have

1

2
λ1 =

1

2
min

f : u→R, V ar(f)6=0
{ ξ[f ]

Var[f ]
}

≤1

2
min

S: 0<vol(S)≤ 1
2

{ ξ[1S]

Var[1S]
}

≤ΦG

The second inequality is proved by Theorem 3.2.

Observe that a small λ1 means there exists a function f where ξ[f ] is small compared to
Var[f ]. Then, a natural question to ask is whether we can convert this function to a {0, 1}-
valued function, which would apply to ΦG. This process is where we lose a square-root factor
in the second inequality.

Theorem 3.2. Let f be a non-constant function such that ξ[f ] ≤ λ1Var[f ]. Then, ∃S ⊆ V
such that 0 < vol(S) ≤ 1

2
and Φ(S) ≤ 2

√
λ1

Figure 1: An illustration of how S is determined by function f and value t

In fact, there exists a set S with these proterties where S = {u : f(u) ≥ t} or {u :
f(u) < t} for some value t. This result allows us to approximately solve the sparsest cut
problem. However, we need to do some more work before we are ready to prove Theorem 3.2.
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Definition 3.3. g : V → R is “convenient” if g ≥ 0 and vol({u : g(u) 6= 0}) ≤ 1
2

We claim without proof that we can assume f is convenient in our proof of Theorem 3.2,
losing only a factor of 2 in the inequality ξ[f ] ≤ λ1Var[f ].

A reasonable question to ask, regarding the cut-off value t we discussed earlier is, for a
value t, what is the expectation of the set you obtain, S. This question is answered by the
following Lemma:

Lemma 3.4. [Coarea formula] For a non-negative function g : V → R+

ˆ ∞
0

(Pru∼v[(u, v) crosses g>t boundary)dt = Eu∼v[|g(u)− g(v)|]

where g>t = {u : g(u) > t}.

Proof.

ˆ ∞
0

(Pru∼v[(u, v) crosses g>t boundary)dt =

ˆ ∞
0

(Pru∼v[t is between g(u), g(v)])dt

= Eu∼v[

ˆ ∞
0

1T{t is between g(u), g(v)}dt]

= Eu∼v[|g(u)− g(v)|]

Figure 2: We see in this illustration that the proof of the Coarea formula relies on the
non-negativity of g

We also have the following:

Corollary 3.5. Let g be convenient. Then, E[|g(u)− g(v)|] ≥ 2ΦGEu∼v[g(u)].

In this proof, note that ξ[1S] = Pru∼v[u ∈ S, v /∈ S].
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Proof.

E[|g(u)− g(v)|] =

ˆ ∞
0

2ξ[1g>t ]dt

= 2

ˆ ∞
0

Φ(g>t)vol(g>t)dt

≥ 2ΦG

ˆ ∞
0

Pru∼π[u ∈ g>t]dt

= 2ΦG

ˆ ∞
0

Pru∼π[g(u) > t]dt

= 2ΦGEu∼v[g(u)]

Note that the first inequality in the previous proof relies on the fact that g is convenient.
We can now use this corollary to prove Theorem 3.2.

Proof. [Proof of Theorem 3.2]
Assuming g is convenient and not always 0, we see that

ΦG ≤
Eu∼v[|g(u)− g(v)|]

2Eu∼v[g(u)]

We have a convenient function f such that ξ[f ]
Var[f ]

≤ 2λ1. Then, let g = f 2. g is still
non-negative and its support is the same as the support of f , so g is also convenient.

Eu∼v[|f(u)2 − f(v)2|] = Eu∼v[|f(u)− f(v)| · |f(u) + f(v)|]
≤

√
Eu∼v[(f(u)− f(v))2]

√
Eu∼v[(f(u) + f(v))2]

≤
√

2ξ[f ]
√

Eu∼v[2f(u)2 + 2f(v)2]

≤
√

4λ1Eu∼v[f(u)2]2
√

Eu∼v[f(u)2]

= 4
√
λ1Eu∼v[f(u)2]

We then combine this calculation with the previous one to prove the theorem:

ΦG ≤
Eu∼v[|g(u)− g(v)|]

2Eu∼v[g(u)]

=
Eu∼v[|f(u)2 − f(v)2|]

2Eu∼v[f(u)2]

≤ 4
√
λ1Eu∼v[f(u)2]

2Eu∼v[f(u)2]

= 2
√
λ1
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Before moving on, let’s consider more specifically how we can use Theorem 3.1 to compute
an approximately-minimal conductance set S in G efficiently.

Given G, it is possible to compute a value λ̃1 and a function f : V → R such that:
a)

|λ̃1 − λ1| ≤ ε

,
b)

E [f ] ≤ λ̃1Var[f ]

in time either:
i)

Õ(n) · 1

ε

using “The Power Method”, or
ii)

poly(n) · log
1

ε

using “more traditional linear algebra methods”.
Note that in some sense, (i) above is not a polynomial time algorithm, since the input

length of ε is roughly log 1
ε
. That said, since the “Cheeger algorithm” only gives an approx-

imation to the sparsest cut anyway, maybe you don’t mind if ε is rather big. (ii) is actually
a polynomial time algorithm, but the polynomial on the n isn’t very good (perhaps n4) so
in practice it might not be a great algorithm to run.

4 Convergence to the stationary distribution

So far, we have proved Cheeger’s inequality, which provides us with a method to find the
sparsest cut in a graph up to a square root factor. Cheeger’s inequality also implies that λ1
is “large” if and only if there does not exists a set with small conductance. This observation
relates to the speed of convergence to π, the stationary distribution. By this we mean, if
we are to start at any vertex in the graph and take a random walk, how long does it take
for the probability distribution on our location to converge to π? We will see that if λ1 is
large, then convergence occurs quickly. These graphs where λ1 is large are called expander
graphs. If we want to determine the speed of convergence, we might ask what it means for
two distributions to be “close”. We first observe that

(I − L)φi = φi − λiφi = (1− λi)φi

Then, let κi = (1− λi) which gives us the ordering 1 = κ0 ≥ κ1 ≥ . . . ≥ κn−1 − 1. Then,
if λ1 is large, κ1 has a large gap from 1.
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4.1 Lazy graphs

Unfortunately, when a graph is bipartite we never converge to the stationary distribution
because the number of steps we have taken determines which side of the bipartition we are
necessarily on. Fortunately, we can fix this issue by introducing “lazy” graphs.

Definition 4.1. The lazy version of graph G = (V,E) is GL = (V,E ∪ S) where S is a set
of self-loops such that each degree d node has d self-loops in set S.

Lazy versions of graphs have the property that at each step of the random walk, with
probability 1

2
we stay at the same vertex and with probability 1

2
we take a random step

according to the same probability distribution as in the original graph. This fixes the issue
we had with bipartite graphs, while keeping many of the important properties of the original
graph.

Now, in the lazy version of our graph, we have the operator (1
2
I + 1

2
κ) and if we apply

this operator to φi we get

(
1

2
I +

1

2
κ)φi =

1

2
φi +

1

2
κiφi

= (
1

2
+

1

2
κi)φi

In the lazy version of the graph, φ0, . . . , φn−1 are still eigenvectors, but each eigenvalue
κi now becomes 1

2
+ 1

2
κi which is between 0 and 1. Similarly, the eigenvalues of the new

Laplacian are also between 0 and 1.

4.2 Closeness of two distributions

We now return to the question of how to measure closeness of distributions.

Definition 4.2. A probability density ψ : V → R is such that ψ ≥ 0 and Eu∼π[ψ(u)] = 1

This probability density is sort of like the relative density with respect to π. More
formally, a probability density function corresponds to a probability distribution Dψ where
Pru∼Dψ := ψ(u)π(u). For example, if ψ ≡ 1 then Dψ = π.

Fact 4.3.

〈ψ, f〉 = Eu∼π[ψ(u)f(u)]

=
∑
u

π(u)ψ(u)f(u)

=
∑
u

Dψ(u)f(u)

= Eu∼Dψ [f(u)]
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Additionaly, the density corresponding to the probability distribution placing all proba-
bility of vertex u is ψu = 1

π(u)
1u.

We can now ask is Dψ “close” to π?

Definition 4.4. The χ2-divergence of Dψ from π is

dχ2(Dψ, π) = Varπ[ψ]

= Eu∼π[(ψ(u)− 1)2]

= ||ψ||22 − 1

=
∑
i

ψ̂(i)2 − ψ̂(0)2

=
∑
i>0

ψ̂(i)2

This definition makes some intuitive sense because the distance ψ is from 1 at each point
is an indicator of how similar the Dψ is to π. Goin forward, we will use χ2-divergence
as our measure of closeness, even if it has some strange properties. One unusual feature,
in particular, is that this measure of closeness is not symmetric. We will also present an
alternative closeness metric, total variation distance.

Definition 4.5. The total variation distance between Dψ and π is

dTV (Dψ, π) =
1

2

∑
u∈V

|Dψ(u)− π(u)|

Note that total variation distance is symmetric and between 0 and 1. The following fact
illustrates that the previous two measures of closeness are related

Fact 4.6.

dTV (Dψ, π) =
1

2

∑
u∈V

|Dψ(u)− π(u)|

=
1

2

∑
u∈V

π(u)|Dψ(u)

π(u)
− 1|

=
1

2
Eu∼π[|ψ(u)− 1|]

≤ 1

2

√
Eu∼π[(ψ(u)− 1)2]

=
1

2

√
dχ2(Dψ, π)

We are now interested in the question of how close are we to π if we take a random
walk for t steps from some pre-determined starting vertex u. To answer this, suppose ψ is a
density. Then Kψ is some function.
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Fact 4.7.

〈Kψ, 1〉 = 〈ψ,K1〉
= 〈ψ, 1〉
= E[ψ]

= 1

Then, Kψ is also a density because it’s expectation is 1 and it’s non-negative.

Theorem 4.8. DKψ is equivalent to the probability distribution where we drew a vertex from
Dψ, then take one random step.

Proof. [Proof sketch] We use the fact about 〈ψ, f〉π:

〈Kψ, f〉 = 〈ψ,Kf〉
= Eu∼ψ[(Kf)(u)]

= Eu∼Dχ [Ev∼u[f(u)]]

= Eu∼DKψ [f(u)]

It is also true that DKtψ corresponds to taking t random steps.
Note also that the operator Kt satisfies Ktφi = κtiφi; i.e., the eigenvectors of Kt are still

1 = φ0, φ1, . . . , φn and the associated eigenvalues are κti. Let us henceforth assume that G is
“made lazy” so that κi ≥ 0 for all i. Thus we have 1 = κt0 ≥ κt1 ≥ · · · ≥ κtn−1. (Note that if
we hadn’t done that then maybe κn−1 = −1 and so κtn−1 = 1!)

We also saw that the “χ2-divergence” of Dψ from π was Var[ψ], and that this was also
an upper bound on

√
2dTV (Dψ, π); i.e., it’s indeed a reasonable way to measure closeness to

π.
Now we can do a simple calculation:

dχ2(DKψ , π) = Var[Ktψ]

=
∑
i>0

K̂tψ(i)2

=
∑
i>0

κti · ψ̂(i)2

≤ max
i>0
{κti}

∑
i>0

ψ̂(i)2

= κt1Var[ψ]

= κt1dχ2(DKψ, π)

Thus if we do a random walk in G with the starting vertex chosen according to Dψ, the
χ2-divergence from π of our distribution at time t literally just goes down exponentially in
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t, with the base of the exponent being κ1. In particular, if κ1 has a “big gap” from 1, say
κ1 = 1− λ1 where λ1 (the second eigenvalue of L) is “large”, then the exponential decay is
(1−λ1)tdχ2(DKψ , π). We may also upper-bound this more simply as exp(−λ1)tdχ2(DKψ, π) =
exp(−λ1t)dχ2(DKψ, π).

Finally, what is the “worst possible” starting distribution? It seems intuitively clear
that it should be a distribution concentrated on a single vertex, some u. As we saw, this
distribution has density ψu = 1

π(u)
1u. It satisfies

dχ2(ψu, π) = Var[ψu] ≤ E[ψ2
u] = π(u) · 1

π(u)2
=

1

π(u)
.

Note that in the case of a regular graph G, all of the π(u)’s are 1/n, so this distance is
upper-bounded by n. In general, we’ll just say it’s at most 1

π∗ , where π∗ is defined to be
minu{π(u)}.

Finally, it is an exercise (use convexity!) to show that divergence from π after t steps
starting from any distribution is no bigger than the maximum divergence over all single-
vertex starting points.

We conclude with a theorem.

Theorem 4.9. For a lazy G, if we start a t-step random walk from any starting distribution,
the resulting distribution D on vertices satisfies

dχ2(D, π) ≤ exp(−λ1t)
1

π∗

where π∗ = minu{π(u)}, which is 1/n in case G is regular.

Inverting this, we may say that we get ε-close to π (in χ2-divergence) after t = ln(n/ε)
λ1

steps when G is regular. Typically, we might have λ1 equal to some small absolute constant
like .01, and we might choose ε = 1/n100. In this case, we get super-duper-close to π after
just O(log n) steps!
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