A Theorist’s Toolkit (CMU 18-859T, Fall 2013)
Lecture 2: CENTRAL LIMIT THEOREM

September 11th, 2013
Lecturer: Ryan O’Donnell Scribe: Yu Zhao

1 SUM OF RANDOM VARIABLES

Let Xy, X5, X3,... be ii.d. random variables (Here ”i.i.d.” means ”independent and iden-
tically distributed” ), s.t. Pr[X; = 1] = p, Pr[X; = 0] = 1 — p. X; is also called Bernoulli
random variable.

Let S, = X; +---+ X,,. We will be interested in the random variable S,, which is
called Binomial random variable (S,, ~ B(n,p)). If you toss a coin for n times, and X; = 1
represents the event that the result is head in the ¢th turn, then S, is just the total number
of appearance of head in n times.

Recall some basic facts on expectation and variance, where Y, Y7, Y5 are random variables.

e E[Y; + Y] = E[Vi] + E[Y)
e E[Y Y] = E[Y1] E[Y5] if random variables Y7 and Y, are independent (Y7 L Y5)

o E[cY] =cE[Y], E[c+Y] = c+ E[Y], where ¢ is a constant

If we denote 1 = E[Y], the variance of Y

Var[Y] = E[(Y — p)’] = E[Y? - 2uY + 4’|
= E[Y? - 2uE[Y] + p? = E[Y?] - E[Y]?

Ity LY,

Var[Y; + Yy = E[(Y] + Y2)’] = E[(Y1 + Y2)]?

(E[Y?] + 2E[Y1Ys] + E[YS]) — (E[V1]* + 2 E[Y1] E[Y] + E[Y3]?)
= (E[Y?] - EY1]?) + (E[Y] - E[Y2])

Var[Yy] + Var[Y)]

Var[cY]| = ¢® Var|Y], Var|c + Y| = Var[Y]

The standard derivation
o = stddev[Y]| = y/Var[Y]



For any X; we have the expectation E[X;] = 1-Pr[X; = 1]+ 0-Pr[X; = 0] = p, therefore

—E Zn:X] :Zn:E[X

Since the variance of X; Var[X;] = E[X?] — E[X;]?> = p — p* = p(1 — p) and X,’s are
independent, the variance of S, is

Var[S,] = Var [ZX] = ZVaI'[Xi] =np(l —p)

We would like to somehow normalize the random variable S,, s.t. its mean is 0 and its
variance is 1. Let

where 1 and o is the mean and standard derivation of S,,. It is easy to see that

E[Z,] = E[(Sn — p)/o] = (E[S,] — p)/o =0

and
Var[Z,| = Var[(S, — p)/c] = Var[S,]/c* =1

Since S,, = 0Z, + pn, we have

Pr[S, <u|=Pr[cZ, +pn <u|=Pr |:Zn < - pn]

o

So if we know the probability distribution of Z,, we may also know the probability
distribution of .S,,, vice versa.

Example 1.1. Suppose p = 1, E[S,] = %, Var[S,] = *,

It can be seen as

Recall from Lecture 1, the probability that Z, is 0 is Pr[Z, = 0]
even, as in Figure 1.
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Figure 1: Histogram of Z,, for n = 60 and p = 1/2

2 GAUSSIAN DISTRIBUTION

Definition 2.1 (Gaussian Distribution). A random variable Z is Gaussian distributed with
parameters p and o2, (abbreviated N(u,o?)), if it is continuous with p.d.f. (probability
density function)

|
8(2) = e

where p refers to the mean and o? refers to the variance of Gaussian. Particularly we call
Z ~ N(0,1) a standard Gaussian.

Fact 2.2. Let Zy,...,Z4 be i.i.d. standard Gaussians, ? = (Z1,...,%4q). Then ? s distri-

bution is rotationally symmetric, which means for all || Z || = r, the probability density of
1s the same . Figure 2 shows the probability density of 2-dimension standard Gaussian.

Proof. p.d.f. of ]7\ at (Z1,...,2Z4) with H?H =ris

2
Z;

¢(?) =W 20)d(Zs) ... 0(Zy) = (\/%) Hei?

1 d 1 d 1 d
= (—) e—é(zf+‘..+z§) — (_) 6—%|I(Z1 ----- Zol* _ < ) o T2/2
\ 2T \ 2T V2T

Therefore the probability density of 7 only depends on r, which means 7’8 distribution

is rotationally symmetric.
O

Corollary 2.3.
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Figure 2: Distribution of 2D-standard Gaussian is rotationally symmetric

Proof Consider about the 2-dimension standard Gaussian ? = (Zy, Zs), which has p.d.f.
Zi+73)  'We can first integrate the p.d.f. in a natural way. The integral becomes

/ / —e —3(:8+23) dz1dzy = ( me_;Zde)Z - (/Z ¢(2)dz>2

Therefore, in order to prove ffoo o(z)dz = 1, it suffices to prove

/ / e 3 Zl+z§)dzld22 =21
since [*°_¢(x)dz > 0.

On the otherhand, as in Figure 3, we can intergrate the function e~3(t+23) by height.
The height of each cylinder is dh, while the radium of it is r which satisfies e " /2 = h.
Therefore we have

Lemal

1
2

=2In-
T nh

Since 0 < h = e~"*/2 < 1, we have
el e ! ! 1 1
/ / e 21T 2) 42 dzy = / mridh = / orln —dh = 27 <h In— + h)
—o00 J —00 0 0 h h

Corollary 2.4 (Sum of Independent Gaussian). Suopose X ~ N(u1,0%), Y ~ N(ug,03)
are independent. We have

1
=27
0

]

aX +bY ~ (apy + bug, a*a? + b%a3)
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Figure 3: Integration of 2D Gaussian by height

Proof. 1f puy = po = 0, 0y = 09 = 1, then X, Y ~ N(0,1). We want to prove aX + bY ~
N(0,a? + b?), and we have

Z =aX +bY =(a,b)- (X,Y)
Because 2D standard Gaussian (X,Y) is rotationally symmetric, we can rotate (a,b) to
X,Y) = Va1 B2X = N(0,a? + b?).

(vVa? +1%,0) as in Figure 4. Now Z = (va? + b%,0) - (

Suppose X ~ N(p1,01),Y ~ N(p2,03). Since (X — p1)/o1, (Y — pg)/oa ~ N(0,1), we

have
X — M1 Y — 125)

Z —apy —bus = a(X — p1) +o(Y — p2) = aoy ~ N(0,a*0] + b%03)
g1 g9

Therefore Z ~ (apy + buo, a’o? + b*03).

3 CENTRAL LIMIT THEOREM

Theorem 3.1 (Central Limit Theorem). For any i.i.d. Xy,...,Xpn, Zn — Z, where Z

n—o0

is a standard Gaussian N(0,1),
1.e. Yu € R,
lim Pr[Z, < u] =Pr[Z <]

n—oo

Remember the Central Limit Theorem is kind of useless since we don’t know how quickly

Z, will converge to a standard Gaussian.



Figure 4: Rotating (a,b) to (vVa? + b2,0) since (X,Y) is rotationally symmetric

The name of the useful version is Berry-Esseen Theorem.

Theorem 3.2 (Berry-Esseen Theorem). Let Xy, ..., X, be independent r.v.s, Assume (W.0.L.0.G.)
E[X;] = 0. we write 0? = E[X?] = Var[X;] and assume Y, 02 = 1.
Let
S=X1+...X,

so E[S] = 0, Var[S] = 1. Then Yu € R,
|Pr[S <u] —Pr[Z <u]| <O(1)-5
where Z ~ N(0,1), 8 =>"", E[|X;]*]
Remember [ is not always small. Here is an example.

+1 w.p.%

-1 w.p.%

same distribution as X1. Then =1 is a big number.

Example 3.3. Let X| = and X, ..., X, = 0. In this scenario, S just has the

On the other hand, this theorem does work in some cases.

1

4+ L
Example 3.4. X; = \/f 1

1 .
B[ X)) = 5, Vi

n-2

B[X?] =

S|

Therefore B = 1/+/n. In this case ( is small, and

Pr[S < u] — Pr[Z < u]| = O (%)

6



The most recent upper bound of O(1) is O(1) ~ .5514 [Shel3]. In this scenario, we have

.56
|Pr[S <u] —Pr[Z <ul]| < 7
We can find that Pr[Z < u] =~ 0.001 when v = —3 by computer or in standard normal
table. Suppose H is the number of appearance of head when tossing a coin for n times. As
in Example 1.1, we have
2H —n

vn

=5S<u

which means

2 2

Assign u = —3, we have Pr[H < n/2 — 1.5\/n| ~ 0.001, which is quite small.
Sometimes § might be extremely large.

Example 3.5. Let
+n w.p.gs
Xi1=<-n w.p.#

0 otherwise

and X, ..., X, = 0. Y | E[X?] = E[X}] = 1. In this scenario, Pr[S = 0] — 1, which
means S does not converge to a normal distribution. In this case f — +00.

From this example, we can see that the constraint on g = 7" | E[|X;[*] capture two
things: The r.v.s will not become extremely huge with small probability; The sum does not
only depend on finite number of random variables.

Notice that Berry-Esseen Theorem is good because it does not care about the value of

u. We have
Pr[H<2—|—u—n] %f/ (2

even though u = —0.24/n which is supertiny.

4 CUMULATIVE DISTRIBUTION

Definition 4.1 (Cumulative Distribution Function of Standard Gaussian). We denote ®(u)
as the c.d.f. (cumulative distribution function) of standard Gaussian N (0, 1)

B(u) = Pr[Z < u] = /_u o(2)d

and define



It is trivial that ®(u) = ®(u) = 1.

Fact 4.2.

when u > 0.
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Figure 5: Find a ¢ s.t. ¢(u+ d) = ¢ - ¢(u), where ¢ is a constant and less than 1

Proof. We want to find a § s.t. ¢(u+ ) ~ ¢ ¢(u), where ¢ is a constant and less than 1
(Figure 5). 6 = 1/u satisfies our conditions.

1 1
Ut =)= ——
dlut )= 7=
In general, we have ¢(u+%) < e™"¢(u) where u > 0 and k < N. Since ¢(u) is descreasing
when u > 0, using the method in Lecture 1, we have

e = el g(u) e nr < e Mg(u)

+00 o0 00
D(u) = : P(u)du < ;id’(“*a) < %;e—k _ efl . @ e (#)
[
Proposition 4.3.
B(u) ~ 2
when u — +00.
In fact,
(5~ -2)0(w) < B(u) < —6(w)

when © — +00.
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