
A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 2: CENTRAL LIMIT THEOREM
September 11th, 2013

Lecturer: Ryan O’Donnell Scribe: Yu Zhao

1 SUM OF RANDOM VARIABLES

Let X1, X2, X3, . . . be i.i.d. random variables (Here ”i.i.d.” means ”independent and iden-
tically distributed” ), s.t. Pr[Xi = 1] = p, Pr[Xi = 0] = 1 − p. Xi is also called Bernoulli
random variable.

Let Sn = X1 + · · · + Xn. We will be interested in the random variable Sn which is
called Binomial random variable (Sn ∼ B(n, p)). If you toss a coin for n times, and Xi = 1
represents the event that the result is head in the ith turn, then Sn is just the total number
of appearance of head in n times.

Recall some basic facts on expectation and variance, where Y, Y1, Y2 are random variables.

• E[Y1 + Y2] = E[Y1] + E[Y2]

• E[Y1Y2] = E[Y1] E[Y2] if random variables Y1 and Y2 are independent (Y1 ⊥ Y2)

• E[cY ] = cE[Y ], E[c+ Y ] = c+ E[Y ], where c is a constant

• If we denote µ = E[Y ], the variance of Y

Var[Y ] = E[(Y − µ)2] = E[Y 2 − 2µY + µ2]

= E[Y 2]− 2µE[Y ] + µ2 = E[Y 2]− E[Y ]2

• If Y1 ⊥ Y2

Var[Y1 + Y2] = E[(Y1 + Y2)
2]− E[(Y1 + Y2)]

2

= (E[Y 2
1 ] + 2 E[Y1Y2] + E[Y 2

2 ])− (E[Y1]
2 + 2 E[Y1] E[Y2] + E[Y2]

2)

= (E[Y 2
1 ]− E[Y1]

2) + (E[Y 2
2 ]− E[Y2]

2)

= Var[Y1] + Var[Y2]

• Var[cY ] = c2 Var[Y ], Var[c+ Y ] = Var[Y ]

• The standard derivation
σ = stddev[Y ] =

√
Var[Y ]
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For any Xi we have the expectation E[Xi] = 1 ·Pr[Xi = 1]+0 ·Pr[Xi = 0] = p, therefore

E[Sn] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = np

Since the variance of Xi Var[Xi] = E[X2
i ] − E[Xi]

2 = p − p2 = p(1 − p) and Xi’s are
independent, the variance of Sn is

Var[Sn] = Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] = np(1− p)

We would like to somehow normalize the random variable Sn s.t. its mean is 0 and its
variance is 1. Let

Zn :=
Sn − µ
σ

where µ and σ is the mean and standard derivation of Sn. It is easy to see that

E[Zn] = E[(Sn − µ)/σ] = (E[Sn]− µ)/σ = 0

and
Var[Zn] = Var[(Sn − µ)/σ] = Var[Sn]/σ2 = 1

Since Sn = σZn + pn, we have

Pr[Sn ≤ u] = Pr[σZn + pn ≤ u] = Pr

[
Zn ≤

u− pn
σ

]
So if we know the probability distribution of Zn, we may also know the probability

distribution of Sn, vice versa.

Example 1.1. Suppose p = 1
2
, E[Sn] = n

2
, Var[Sn] =

√
n
2
,

Zn =
X1 + · · ·+Xn − n

2√
n
2

=
(2X1 − 1) + · · ·+ (2Xn − 1)√

n

It can be seen as

2Xi − 1 =

{
+1 w.p.1

2

−1 w.p.1
2

Recall from Lecture 1, the probability that Zn is 0 is Pr[Zn = 0] = Θ( 1√
n
), when n is

even, as in Figure 1.
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Figure 1: Histogram of Zn for n = 60 and p = 1/2

2 GAUSSIAN DISTRIBUTION

Definition 2.1 (Gaussian Distribution). A random variable Z is Gaussian distributed with
parameters µ and σ2, (abbreviated N(µ, σ2)), if it is continuous with p.d.f. (probability
density function)

φ(z) =
1√
2π
e−

z2

2

where µ refers to the mean and σ2 refers to the variance of Gaussian. Particularly we call
Z ∼ N(0, 1) a standard Gaussian.

Fact 2.2. Let Z1, . . . , Zd be i.i.d. standard Gaussians,
−→
Z = (Z1, . . . , Zd). Then

−→
Z ’s distri-

bution is rotationally symmetric, which means for all ‖
−→
Z ‖ = r, the probability density of

−→
Z

is the same . Figure 2 shows the probability density of 2-dimension standard Gaussian.

Proof. p.d.f. of |
−→
Z | at (Z1, . . . , Zd) with ‖

−→
Z ‖ = r is

φ(
−→
Z ) = φ(Z1)φ(Z2) . . . φ(Zd) =

(
1√
2π

)d d∏
i=1

e−
Z2
i
2

=

(
1√
2π

)d
e−

1
2
(Z2

1+···+Z2
d) =

(
1√
2π

)d
e−

1
2
‖(Z1,...,Zd)‖2 =

(
1√
2π

)d
e−r

2/2

Therefore the probability density of
−→
Z only depends on r, which means

−→
Z ’s distribution

is rotationally symmetric.

Corollary 2.3. ∫ ∞
−∞

φ(x)dx = 1
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Figure 2: Distribution of 2D-standard Gaussian is rotationally symmetric

Proof. Consider about the 2-dimension standard Gaussian
−→
Z = (Z1, Z2), which has p.d.f.

1
2π
e−

1
2
(Z2

1+Z
2
2 ). We can first integrate the p.d.f. in a natural way. The integral becomes∫ ∞
−∞

∫ ∞
−∞

1

2π
e−

1
2
(z21+z

2
2)dz1dz2 =

(∫ ∞
−∞

1√
2π
e−

1
2
z2dz

)2

=

(∫ ∞
−∞

φ(z)dz

)2

Therefore, in order to prove
∫∞
−∞ φ(x)dx = 1, it suffices to prove∫ ∞
−∞

∫ ∞
−∞

e−
1
2
(z21+z

2
2)dz1dz2 = 2π

since
∫∞
−∞ φ(x)dx > 0.

On the otherhand, as in Figure 3, we can intergrate the function e−
1
2
(z21+z

2
2) by height.

The height of each cylinder is dh, while the radium of it is r which satisfies e−r
2/2 = h.

Therefore we have

r2 = 2 ln
1

h

Since 0 < h = e−r
2/2 ≤ 1, we have∫ ∞

−∞

∫ ∞
−∞

e−
1
2
(z21+z

2
2)dz1dz2 =

∫ 1

0

πr2dh =

∫ 1

0

2π ln
1

h
dh = 2π

(
h ln

1

h
+ h

) ∣∣∣∣1
0

= 2π

Corollary 2.4 (Sum of Independent Gaussian). Suopose X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2)

are independent. We have

aX + bY ∼ (aµ1 + bµ2, a
2σ2

1 + b2σ2
2)
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Figure 3: Integration of 2D Gaussian by height

Proof. If µ1 = µ2 = 0, σ1 = σ2 = 1, then X, Y ∼ N(0, 1). We want to prove aX + bY ∼
N(0, a2 + b2), and we have

Z = aX + bY = (a, b) · (X, Y )

Because 2D standard Gaussian (X, Y ) is rotationally symmetric, we can rotate (a, b) to
(
√
a2 + b2, 0) as in Figure 4. Now Z = (

√
a2 + b2, 0) · (X, Y ) =

√
a2 + b2X = N(0, a2 + b2).

Suppose X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2). Since (X − µ1)/σ1, (Y − µ2)/σ2 ∼ N(0, 1), we

have

Z − aµ1 − bµ2 = a(X − µ1) + b(Y − µ2) = aσ1
X − µ1

σ1
+ bσ2

Y − µ2

σ2
∼ N(0, a2σ2

1 + b2σ2
2)

Therefore Z ∼ (aµ1 + bµ2, a
2σ2

1 + b2σ2
2).

3 CENTRAL LIMIT THEOREM

Theorem 3.1 (Central Limit Theorem). For any i.i.d. X1, . . . , Xn, Zn −−−→
n→∞

Z, where Z

is a standard Gaussian N(0, 1),
i.e. ∀u ∈ R,

lim
n→∞

Pr[Zn ≤ u] = Pr[Z ≤ u]

Remember the Central Limit Theorem is kind of useless since we don’t know how quickly
Zn will converge to a standard Gaussian.
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Figure 4: Rotating (a, b) to (
√
a2 + b2, 0) since (X, Y ) is rotationally symmetric

The name of the useful version is Berry-Esseen Theorem.

Theorem 3.2 (Berry-Esseen Theorem). Let X1, . . . , Xn be independent r.v.s, Assume (W.O.L.O.G.)
E[Xi] = 0. we write σ2

i = E[X2
i ] = Var[Xi] and assume

∑n
i=1 σ

2
i = 1.

Let
S = X1 + . . . Xn

so E[S] = 0,Var[S] = 1. Then ∀u ∈ R,

|Pr[S ≤ u]−Pr[Z ≤ u]| ≤ O(1) · β

where Z ∼ N(0, 1), β =
∑n

i=1 E[|Xi|3]

Remember β is not always small. Here is an example.

Example 3.3. Let X1 =

{
+1 w.p.1

2

−1 w.p.1
2

and X2, . . . , Xn ≡ 0. In this scenario, S just has the

same distribution as X1. Then β = 1 is a big number.

On the other hand, this theorem does work in some cases.

Example 3.4. Xi =

{
+ 1√

n
w.p.1

2

− 1√
n

w.p.1
2

,

E[X2
i ] =

1

n
,E[|Xi|3] =

1

n−
3
2

,∀i

Therefore β = 1/
√
n. In this case β is small, and

|Pr[S ≤ u]−Pr[Z ≤ u]| = O

(
1√
n

)
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The most recent upper bound of O(1) is O(1) ≈ .5514 [She13]. In this scenario, we have

|Pr[S ≤ u]−Pr[Z ≤ u]| ≤ .56√
n

We can find that Pr[Z ≤ u] ≈ 0.001 when u = −3 by computer or in standard normal
table. Suppose H is the number of appearance of head when tossing a coin for n times. As
in Example 1.1, we have

2H − n√
n

= S ≤ u

which means

H ≤ n

2
+ u

√
n

2

Assign u = −3, we have Pr[H ≤ n/2− 1.5
√
n] ≈ 0.001, which is quite small.

Sometimes β might be extremely large.

Example 3.5. Let

X1 =


+n w.p. 1

2n2

−n w.p. 1
2n2

0 otherwise

and X2, . . . , Xn ≡ 0.
∑n

i=1 E[X2
i ] = E[X2

1 ] = 1. In this scenario, Pr[S = 0] → 1, which
means S does not converge to a normal distribution. In this case β → +∞.

From this example, we can see that the constraint on β =
∑n

i=1 E[|Xi|3] capture two
things: The r.v.s will not become extremely huge with small probability; The sum does not
only depend on finite number of random variables.

Notice that Berry-Esseen Theorem is good because it does not care about the value of
u. We have

Pr

[
H ≤ n

2
+ u

√
n

2

]
O( 1√

n
)

≈
∫ u

−∞
φ(z)dz

even though u = −0.2
√
n which is supertiny.

4 CUMULATIVE DISTRIBUTION

Definition 4.1 (Cumulative Distribution Function of Standard Gaussian). We denote Φ(u)
as the c.d.f. (cumulative distribution function) of standard Gaussian N(0, 1)

Φ(u) = Pr[Z ≤ u] =

∫ u

−∞
φ(z)dz

and define

Φ̄(u) =
+∞∑
u

= Pr[Z ≥ u] = Φ(−u)
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It is trivial that Φ(u) = Φ̄(u) = 1
2
.

Fact 4.2.

Φ̄(u) = O

(
φ(u)

u

)
when u > 0.
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Figure 5: Find a δ s.t. φ(u+ δ) ≈ c · φ(u), where c is a constant and less than 1

Proof. We want to find a δ s.t. φ(u + δ) ≈ c · φ(u), where c is a constant and less than 1
(Figure 5). δ = 1/u satisfies our conditions.

φ(u+
1

u
) =

1√
2π
e−(u+

1
u
)2/2 = e−1φ(u) · e−

1
2u2 ≤ e−1φ(u)

In general, we have φ(u+ k
u
) ≤ e−kφ(u) where u > 0 and k ≤ N. Since φ(u) is descreasing

when u > 0, using the method in Lecture 1, we have

Φ̄(u) =

∫ +∞

u

φ(u)du ≤
∞∑
k=0

1

u
φ(u+

k

u
) ≤ φ(u)

u

∞∑
k=0

e−k =
e

e− 1
· φ(u)

u
= O

(
φ(u)

u

)

Proposition 4.3.

Φ̄(u) ∼ φ(u)

u
when u→ +∞.

In fact,

(
1

u
− 1

u3
)φ(u) ≤ Φ̄(u) ≤ 1

u
φ(u)

when u→ +∞.
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