Lecture 5 — Computational models

Ryan’s personal draft notes

September 23, 2013

1 Get a scribe — warn him/her that there will be lots of talking,
little writing

2 Computational models — why they sometimes matter

Here are two basic algorithms problems:
Palindromes. Given as input x € {0,1}", is it a palindrome? (I.e., is it = ww® for some w?)
Sorting. Given as input n integers, sort them.

What running time is required to solve these problems? The naive answers are O(n) for Palin-
dromes and O(nlogn) for Sorting. Sophisticates might suggest O(n) time for Sorting (e.g., with
“Radix Sort”). On the other hand, other sophisticates might know an Q(nlogn) lower bound for
sorting. There are n! different input orders, and any comparison between two elements yields only
one “bit” of information; therefore, by a simple information theory argument, log(n!) = Q(nlogn)
comparisons are needed. What gives?

In fact, for both Palindromes and Sorting, the answer is:
It depends on the computational model.

Let’s briefly discuss Palindromes. The obvious algorithm is:

fori=1...n
if x[i] # x[n—i] then return NO
return YES

(I don’t care about the simplification of letting ¢ only go up to n/2; it’ll just confuse things.)
Looks like O(n) time, right? And indeed, if you implement it on a standard computer with n =
10°,10%,107, 108, I'm sure you’ll find the running time scales linearly. But if you try to justify that
“in theory”, things arguably get annoying. Writing down i takes logn bits. So does each increment
of i cost O(logn) time? Does it really take only time O(1) to access x[1] and x[n] in the first
iteration? (Certainly not on the basic TM you learned about as an undergrad!)

The running time of Sorting is an even more complex issue. In fact as we’ll see towards the end
of the lecture, it is fair to say “the optimal time complexity of sorting is unknown”. (Or at least



— “there are still open aspects to the problem”.)

This is a course about TCS, so it makes sense to get our models straight towards the beginning.
If you end up working on algorithms — especially highly efficient ones — you’ll need to know these
details. But even if you work on pure complexity, you still need to know these details. (E.g., what
is an NP-hardness result but an algorithm? And there are strong reasons to desire highly efficient
NP-hardness reductions. . .)

We're going to talk about three basic models of computation in this lecture:

1. Turing Machines (TMs);
2. Circuits;

3. The Word RAM.

3 Turing Machines

I hope you remember the basics of what a TM looks like and how it works.

picture of a basic one-tape TM goes here

Historical main advantage of TMs: It is extremely clear what their running time / space
usage is. (Number of steps till accept/reject state; number of tape cells accessed.)

Unfortunately, it’s quite unrealistic; it gives running times that are too slow compared to
standard computers. For example, how long does it take to solve Palindromes on a one-tape TM?
If you think about it, it seems clear you have to scan back-and-forth and back-and-forth — running
time O(n?). This is the truth.

Theorem 3.1. (Hennie, 1965.) Solving Palindromes on a one-tape TM requires time 2(n?).

This just goes to show the “memory access model” of one-tape TMs is kind of ridiculous. One
standard “solution” in complexity theory is to look at multitape TMs:

picture of a basic multitape TM goes here; indicate input tape, work tapes, output tape

Especially for space analysis, it’s standard to let the input be on a read-only “input tape”, let the
output be on a write-only “output tape”, and call the other tapes “work tapes”; only the space
usage on the work tapes “counts”.

Remark 3.2. Hennie-Stearns 1966 showed that an O(1)-tape machine running in time 7'(n) can
be simulated by a 2-tape machine running in time O(T'(n)logT'(n)) and a 1-tape machine in time

O(T(n)?).

Fact 3.3. On a two-tape machine, Palindromes can be solved in O(n) time: just copy the input in
reverse onto the work tape and check equality.

Though that looks fine, it might look like “luck”; even two-tape TMs look like they are not
modeling “real” computers very accurately. In fact, there’s still a deficiency about this result for
Palindromes — the solution uses too much space! It uses n space, whereas the standard pseudocode
solution given at the beginning of the lecture seems to only use O(log n) space (to store the index 7).
Indeed, this is an insuperable problem even for two-tape machines:



Theorem 3.4. (Apparently Cobham, 1966, according to Duris—Galil ’84.) If an O(1)-tape TM
solves Palindromes with time T(n) and space S(n) then T(n)S(n) = Q(n?).

You might suggest that even this can be evaded if you allow two tape heads per tape, but
Duris—Galil proved similar results even for O(1) tape heads per tape. All of this suggests that
despite being a fairly common standard in complexity theory, multitape TMs are not really a great
choice for realistic modeling of resources.

These difficulties stem from the limited “memory access model” of Turing Machines, and are
alleviated by allowing for “random access memory”. To model this, we don’t want to get into x86
architecture or anything; we stick with TMs. Here is a standard definition:

Definition 3.5. A random access memory (RAM) TM is the usual multitape model except:

e Some of the work tapes can be “random access”. Means they have a corresponding “index
tape”. For each such tape, the TM can do a “jump” instruction, which moves the head on
the random access tape to the cell # written (in binary) on the associate index tape. The
contents of the index tape are also reset.

The RAM TM should be the standard model for complexity theory (and often is). It can solve
Palindromes in O(n) time and O(logn) space, as desired.

Remark 3.6. Recall the 2007 Williams theorem mentioned last lecture: SAT cannot be solved
simultaneously in time n2°(7/7)=¢ and space n°!) (for any € > 0). Thankfully, Williams indeed
showed this for RAM TMs! (Since already Cobham’65 had a much stronger result for multitape
TMs!)

Remark 3.7. For hardcore algorithms work, even the RAM TM is not quite realistic enough. For
example, consider:

FindMax. Given n positive integers, each less than n, find the maximum.
This “feels like” it should be O(n) time, but actually it requires time 2(nlogn) — because even just
the input length is nlogn. Here we’re quibbling about logn factors; complexity theorists probably
don’t care, but algorithmicists do. More on this at the end of the lecture.

4 Circuits

Circuits: a highly concrete, unambiguous measure of complexity when the input length, n, is fized.
Here instead of languages, we look at computing boolean functions, f : {0,1}" — {0,1}"™ (most
often m = 1). In some sense, circuits are pretty “realistic”; I mean, computer chips are circuits,
more or less.

A circuit looks like this:

draw a simple depth-3 de Morgan circuit

Definition 4.1. Let B be a set of “gate functions”; e.g., B might consist of {—, V, A} (unary, binary,
and binary functions). An n-input circuit C with basis B is a sequence of t > n boolean functions
(“gates”), g1,...,9¢. The first n are always the “input variables”: g1 = x1, g2 = 2, ..., gn = Tn.
Each subsequent g; is the application of some ¢ € B to some previous collection of g;’s (each j < i).

Note that the g;’s therefore form a directed acyclic graph (dag). The in-degree of each gate is
called its fanin. (Input gates have fanin 0; a ¢-gate has fanin equal to the arity of ¢.)



Some sequence g, , .. ., gi,, of gates are designated the output gates (most often m = 1).

Given circuit C, we identify it with the function it computes, so C' : {0,1}" — {0,1}"™.

The size of a circuit is ¢ — n: only the non-input gates count. The depth is the length of the
longest input-output path in the dag.

Twist: we also let gates use the constants 0 and 1 as inputs “for free”.

Definition 4.2. A formula is a circuit where all gates have fanout 1; i.e., the dag is actually a
tree. Here we usually do count the input gates toward the size.

Definition 4.3. Popular basis choices:
e Bs: all 16 2-bit functions.

o Uy: {—,V,A}, with fanin-2 AND and OR. These are called de Morgan circuits. Twist:
traditional to let — gates be “free” (w.r.t. size, depth).

e de Morgan circuits except that AND and OR can have arbitrary fanin.

Notice that the difference between Us and By (or even Bo(l)) just affects size/depth by constant
factors, but allowing arbitrary fanin makes a larger difference. For example, the function AND :
{0,1}™ — {0,1} has size 1 and depth 1 with arbitrary fanin but requires depth about logn and
size about n over Uy or By (make a binary tree of ANDs).

An advantage of circuit complexity is it’s even easier to be brutally concrete/unambiguous. For
example:

Theorem 4.4. (Meyer—Stockmeyer 197}.) Let WS1S be the problem of deciding if a sentence in
a certain weak form of 2nd-order logic over N is true. Note: WS1S is decidable. Any circuit over
By which correctly decides all sentences of 3660 input bits requires size at least 10125,

4.1 Palindromes

Let’s solve Palindromes with circuits. Actually, inputs to Palindromes can be of any length, so
what does that mean?

Definition 4.5. A circuit family is a sequence of circuits (Cy),, one for each input length. It
solves a problem P if C), solves P N {0,1}".

So how will we solve length-n Palindromes? We just need to check equality of all the pairs
(z1,2n), (x2,THn—1), etc., and AND them together.

draw a little OR of AND of x1,x, and AND of —x1,—~x,; then a big AND

Remark 4.6. This has size n + 1 as an unbounded fanin circuit. Actually, it’s a formula, too.
It has depth 3, but can you see how to make it depth 27 Just use CNFs, not DNFs to check
equality. ... Gives you AND(OR(z1, —xy), OR(—z1,zy), ... ).

That’s quite nice/realistic.



4.2 More on circuits

Definition 4.7. Here are the (ridiculous) names of some “circuit classes”:

e ACY: all languages L C {0, 1}* such that there’s a constant d such that L is computed by (a
family of) unbounded fanin de Morgan circuits of depth d and size poly(n).

e NC!: O(logn)-depth, poly(n)-size over Us. Note: AC® C NC.
e NC: poly log n-depth, poly(n)-size over U, for some d € N.
e P/poly: poly(n)-size over Us.

Never mind what “AC” and “NC” stand for.!

Remark 4.8. How do circuits compare with TMs? Very roughly, circuit size corresponds to time.
For example, you can evaluate a circuit of size s > n in time O(slogs) on a RAM TM. Conversely:

Theorem 4.9. (Pippenger—Fischer "79): A multitape TM running in time T'(n) can be simulated
on length-n inputs by a circuit of size O(T(n)logT(n)). [O(T(n)?) is easy.]

And very roughly, depth corresponds to parallel time — imagine being able to put a processor on
each gate. E.g., any problem not in NC probably doesn’t have a highly efficient parallel algorithm.

Given the above it may seem like polynomial time and polynomial-size circuits are the same.
There is one catch, though, illustrated by the following:

Fact 4.10. The Halting Problem can be solved by circuits. Why? Because the Halting Problem
restricted to m-bit inputs is just some function f : {0,1}" — {0,1}, and for every function there
exists a Us-circuit of size n2" computing it. (In fact, Shannon 49 gave an easy argument for

0(2"/n).)

This fact illustrates something slightly ridiculous about circuits, which is that you get to reason
existentially about each input length. You don’t have to worry about the time it takes to construct
the circuit. This issue is called non-uniformity. One can alleviate it by requiring “uniformity”:

Definition 4.11. A circuit family (C,,) is called uniform if there is an algorithm (TM) which on
input “n”, outputs a description of C), in poly(n) time.

Remark 4.12. The set of languages decided by uniform, polynomial-size circuit families is the
same as those decided by polynomial time TM algorithms.

In the '80s people thought maybe you would show P # NP by showing that even NP Z P/poly;
i.e., by showing SAT does not have poly-size circuits. This plan does not look too hopeful. On one
hand:

Proposition 4.13. There exist functions f: {0,1}™ — {0, 1} which require circuits of size Q(2"/n).

Proof. It’s easy to estimate that the number of distinct size-s circuits is s2*). The number of n-bit
functions is 22". The former is smaller unless s = Q(2"/n). O

On the other hand:

! Alternating Circuits and Nick’s Class, respectively.



Fact 4.14. The best circuit-size lower bound known for an “explicit”™ family of functions is:
e 3n —o(n) for basis By [Norbert Blum ’84];

e 5n —o(n) for basis Uy [lwama—Morizumi '02, building on Lachish—Raz ’01].

4.3 Sorting with circuits

We looked at Palindromes in the circuit model — what about Sorting? As mentioned before, there
is the slightly awkward fact that it seems like Sorting n integers may have input size Q(nlogn). So
let’s in fact look at a simpler problem: sorting bits. If you think about it for a second, you see that
sorting n bits just means counting the number of 1’s in the input and then outputting this count
in unary. Here are some slightly simpler problems:

Definition 4.15.
Majority : {0,1}"™ — {0,1}. (L.e., output the middle bit of the unary count.)
Parity : {0,1}" — {0,1}. (L.e., output the OR of the odd bits of the unary count.)

Output the number of 1’s in the input in binary. (If you can do this, you can do the other two, by
outputting the MSB/LSB, respectively.)

In fact it’s not hard to see you can do the last of these with size O(n). Either left as an
exercise, or here: “Do it recursively; split the input into two blocks, count, add up the two logn
bits numbers. The recursion is S(n) = 25(n/2) + O(logn), which solves to O(n).” You can also do
it in log-depth; this is a bit trickier to account for.

Here we implicitly considered circuits for addition. It’s easy to see that adding two m-bit
numbers can be done in O(1)-depth and O(n) size in the unbounded fanin model.

Oddly enough, here is a famous circuit lower bound:

Theorem 4.16. Majority, Parity, counting-in-binary, and Multiplication of two numbers cannot
be computed in AC°. (First proved by Furst-Saze-Sipser ‘81, the sharpest version due to Hdstad.)

5 The Word RAM model

It’s complexity theorists that mainly care about circuits, due to their extreme concreteness. Actual
algorithmicists would rather work in a model that’s closer to “a programming language, as inter-
preted by an actual compiler on actual hardware”. Here we return to the issue of, say, adding up n
integers between 0 and n — 1. This seems like it should take O(n) time. Can’t we just model, like,
basic “C” or “assembly language” programming? Call those integers int’s, and say you can add
two of them in O(1) time?

Sure, but things get slightly funny. You want to allow one integer to be stored in a “word”
of memory. Let’s say a “word” has w bits. Well, if w = O(1) then it’s not really different (up
to constant factors) then having single-bit words. Here’s another funny observation: you typically
think of indezing into the array of n words/integers with a single word (“i”). Doesn’t that imply
that we need w > logn?

2«Explicit” is usually taken to mean “in NP”, although: a) the lower bounds we state here are for function families
in P; b) we don’t know better lower bounds even for function families computable by exponential time algorithms
with access to an NP oracle.



Answer: Yes! And that’s a standard assumption! The first time you see this it may seem totally
weird: you're assuming the computer hardware size depends on the input size?! That seems to
make no sense. But once you calm down, it’s actually quite logical and cool. Of course you want
a single pointer to fit into a word. You should just think of w as a parameter of the model, and
w > logn as an assumption.

Here’s what is considered to be the best “standard model” for algorithms results:
Definition 5.1. The Word RAM model:
e Memory is divided into words of length w bits. For size-n inputs, we always assume w > logn.

e It costs time 1 to do “basic” operations on w bits. These always include: addition; sub-
traction;” bitwise AND, OR, NOT; “unlimited” cyclic shift left or right (with zero-padding),
meaning by any number of bits at most w.

e What about multiplication, you say? We’ll come to that. ..

e One can do “assembly+RAM language”-style instructions: conditional jumps, indirect mem-
ory access, etc. Note that if w > logn, you can theoretically do memory access into super-
polynomially many words. This is considered a bit tacky; usually one also insists that the
machine has at most S < 2% words, and for basic problems like Sorting or Shortest-Paths
one wants S = O(n).

Reference: Hagerup, “Sorting and searching on the Word RAM”.

Remark 5.2. I personally find it natural to assume that we also have w = O(logn).* 1 don’t really
see that it makes much sense to allow storing superpolynomial-sized integers in a single word, and
doing unit-cost operations on them. Still, quite a few people are interested in allowing larger w;
when you allow for arbitrary w = w(n) > logn and try to get a running time which is independent
of w, this is called (believe it or not) the Transdichotomous Word RAM model.”

Remark 5.3. What about multiplication? On one hand, it seems basic and occurs in most pro-
gramming languages/architectures. On the other hand, note that the other basic operations (addi-
tion, AND, cyclic shift, etc.) are implementable in AC® (meaning by poly(w)-size, constant-depth
unbounded fanin circuits). Whereas multiplication provably isn’t.

For algorithms that are not hyper-concerned about efficiency, and have arithmetic as key com-
ponents, people usually don’t mind if you allow yourself unit-time multiplication (two w-bit words
get multiplied, output into two w-bit words).

On the other hand, if you're more hard-core, you work in the AC’-Word RAM model, where
the only allowed unit-cost instructions are the AC® ones. (This is sometimes called the Practical
RAM model.)

So now the problem of adding up n numbers, each of which fits into O(1) words, indeed takes
O(n) time. Finally, what about Sorting?

3both mod 2%

4Note that constant factors on w don’t make any real difference; you can do, e.g., add two 5-word numbers in
O(1) time still. So we can allow intermediate results that are O(1) words.

5There’s also some ridiculousness wherein you have to allow the algorithm to know certain constants related to w;
e.g., w. These can be computed in O(logw) time, which is usually negligible, but technically might not be if w is
enormous. I don’t want to elaborate further.



5.1 Sorting

Let’s assume for a while that w = O(logn).
Suppose we want to sort n integers in the range 0...n — 1. How can we easily do this in O(n)
time?

Counting sort: Allocate an array for each key (size: n words), and count the number of times
each integer occurs. Then you can easily reconstruct the sorted array.

Unfortunately, this doesn’t work very well if the range is, say, 0...n% — 1 (each representable
using 50 words of length logn, or 1 word of length 50logn). Why not? (It uses space n°°
that much time, I think). Instead, there is...

, and also

Radix sort: Suppose you sort all the numbers first by least significant bit, then by second-least
significant bit, etc., up to most significant bit. Then assuming you are using a “stable sort” (two
numbers that are tied never get their positions reversed), this actual sorts the numbers. (Takes a
minute to think about why.) Note that here we are sorting bits, so we can easily do Counting Sort.
This looks like it will take time O(nw).

However, one could then imagine sorting byte-wise, rather than bit-wise. This can also be done
by counting sort (needs an array of size 2°), and saves you a factor of 8. You can then go up to a
radix of k-bits, for k& < w; you'll need extra space 2%, and it’ll take time O(nw/k). Consequence:

Theorem 5.4. Radiz Sort can sort n words using O(n) space and O(
setting of w = O(logn), this is O(n) time.

oam W) time. For the standard
gn

Great! As you can see, though, if you are hard-core and care about w > logn then Radix
Sort is actually terrible; for w > log? n you may as well just use a classic nlogn comparison-based
sorting algorithm. Still, there are improvements for large w (all of the following use linear space).

e Using the classic “van Emde Boas priority queue” (1974): O(nlogw) time. This is O(n loglogn)
time whenever w = polylog(n) (and I think larger w is kind of ridiculous). Also can be im-

proved to O(nlog(y5;7)) to match Radix [Kirkpatrick—Reisch '84].

e Fredman-Willard ’90: O(nlog)fgo gn) for all w. (Heavily uses multiplication.)

e Signature Sort [Andersson-Hagerup-Nilsson-Raman ’95]: O(n) time (randomized, no multi-
plication) whenever w > 10g2+6 n.

e Thorup: an equivalence between sorting and nx priority queues.
e Han ’04: Deterministic O(nloglogn) time for all w, no multiplication.

e Han—Thorup ’02: Randomized O(n+/loglogn) time, uses multiplication. Also improvable to

O(n,/log lolg”n)

Thus in a sense (the transdichotomous model), whether or not we can sort in O(n) time is open.




5.2 Dictionary problem

Here we want a data structure that maintains a set of integers (numbers between 0 and 2% — 1)
and supports Insert, Delete, Successor, Predecessor.

e Balanced binary tree (classic solution): O(logn) time/op, O(n) space.
e van Emde Boas tree [1974]: O(logw) time/op, O(2") space (not great).
o y-fast trees [Willard '83]: O(logw) time/op whp, O(n) space.

e Fusion trees [Fredman-Willard *93]: O(128%) time/op, O(n) space, AC? only.

log w

5.3 Single-source shortest paths

[Thorup ’99] O(m) time in the undirected case. (Uses multiplication, have to throw in Ackermann
factor if you want to ditch it.)

6 Multiplication, and other arithmetic

Finally, let’s come back to multiplication. Forget multiplying “words”; let’s just try to get a bead
on multiplying two n-bit numbers. For simplicity now, let’s work in either the RAM TM or in the
Us-circuit model. How long does it take? You may know:

e Grade school: O(n?) time.

Karatsuba ’62:) Using divide-and-conquer (Strassen-like): O(n!°823) = O(n!5%%).

quickly) as € — 0.

(

e (Toomey-Cook, mid-'60s) — a souped version: for each € > 0, time f(e)-n'*¢ where f(¢) — oo
(

‘. (

Schonhage-Strassen algorithm, 1971): O(nlognloglogn) using FFT.

At this point, we’re into the realm where logs matter. In fact, if we now go to the Word RAM
model. ..

Corollary 6.1. (Appears in Knuth TAOCP2.) In the Word RAM model with w = logn and
multiplication (of w-bit words) allowed, two n-bits numbers can be multiplied in O(n) time.

38 years after the SS algorithm, there was a startling improvement:

Theorem 6.2. (Firer 2009): In the circuit/multitape-TM models, two n-bit integers can be mul-
tiplied in time O(nlogn2'°8 ™).

(Recall: log* n is the number of times you need to take log to get down to 2 from n.)

6.1 Other arithmetic

The reference for this entire section is the Brent—Zimmermann book “Modern Computer Arith-
metic”, 2010.

What about...division? Now you start to enter the realm of questions about real numbers.
The simplest way to talk about floats is to say that they are represented in the form m2¢ where
m,e € 7.



Goal: get n bits of precision for m in output, given n bits of precision in input.

Definition 6.3. Let M(n) denote the time two multiply two n-bit integers. We know M (n) =
O(nlogn2'°8” ™) in the circuit/TM models.

Known facts:

e Time to divide one n-bit integer by another: O(M(n)). Technique: find 1/y via Newton’s
method, solving xy — 1 = 0. (By adjusting e, can nail down m to a factor of 2. Then to get a
close starting point for Newton, use lookup tables. ... These lookup tables being wrong were
the source of the Pentium division bug!)

e Square-root, kth root: time O(M (n)). Technique: Newton’s method.

e (Extended) GCD: O(M(n)logn). Technique: NOT Euclid’s algorithm. Knuth was the first
to get O(n).

e Base conversion: O(M(n)logn).

e In: O(M(n)logn). Technique: Arithmetic-Geometric Mean iteration.

e cxp: O(M(n)logn). Technique: inverse of In, using Newton’s method.

e “Any” elementary functions (e.g., sin): also O(M (n)logn), also based off of doing In.

e Computing 7, or e: O(M(n)logn), also based of In and other techniques.

10



	Get a scribe — warn him/her that there will be lots of talking, little writing
	Computational models — why they sometimes matter
	Turing Machines
	Circuits
	Palindromes
	More on circuits
	Sorting with circuits

	The Word RAM model
	Sorting
	Dictionary problem
	Single-source shortest paths

	Multiplication, and other arithmetic
	Other arithmetic


