
Fall 2009 version of Course 15-359,

Computer Science Department,

Carnegie Mellon University.

Acknowledgments:

 CMU’s course 15-359, Probability and Computing, was originally conceived and

designed by Mor Harchol-Balter and John Lafferty. The choice, order, and presentation of topics

in the latter half of the course is strongly informed by the work of Mor Harchol-Balter. Indeed,

you might like to buy her book! Performance Modeling and Design of Computer Systems:

Queueing Theory in Action, http://www.cs.cmu.edu/~harchol/PerformanceModeling/book.html

The choice, order, and presentation of topics in the earlier half of the course is informed by the

work of John Lafferty: http://galton.uchicago.edu/~lafferty/

Further, a very great deal of material in these lecture notes was strongly informed by the

outstanding book Probability and Computing by Michael Mitzenmacher and Eli Upfal,

http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-

computer-algebra-and-computational-g/probability-and-computing-randomized-algorithms-and-

probabilistic-analysis

Many thanks to Mor Harchol-Balter, John Lafferty, Michael Mitzenmacher, Eli Upfal (and many

other web sources from which I borrowed)!

15-359: Probability and Computing
Fall 2008

Lecture 1: Probability in Computing; Verifying matrix multiplication

1 Administrivia

The course web site is: http://15-359.blogspot.com. Please read carefully the Policies document
there, which will also be handed out in class. This is also a blog, so please add it to your RSS
reader, or at least read it frequently. Important announcements — and more! — will appear there.

2 Probability and computing

Why is probability important for computing? Why is randomness important for computing? Here
are some example applications:

Cryptography. Randomness is essential for all of crypto. Most cryptographical algorithms in-
volve the parties picking secret keys. This must be done randomly. If an algorithm deterministically
said, “Let the secret key be 8785672057848516,” well, of course that would be broken.

Simulation. When writing code to simulate, e.g., physical systems, often you model real-world
events as happening randomly.

Statistics via sampling. Today we often work with huge data sets. If one wants to approximate
basic statistics, e.g., the mean or mode, it is more efficient to sample a small portion of the data
and compute the statistic, rather than read all the data. This idea connects to certain current
research topics: “property testing algorithms” and “streaming algorithms”.

Learning theory. Much of the most successful work in AI is done via learning theory and
other statistical methods, wherein one assumes the data is generated according to certain kinds of
probability distributions.

Systems & queueing theory. When studying the most effective policies for scheduling and
processor-sharing, one usually models job sizes and job interarrival times as coming from a stochastic
process.

Data compression. Data compression algorithms often work by analyzing or modeling the un-
derlying probability distribution of the data, or its information-theoretic content.

Error-correcting codes. A large amount of the work in coding theory is based on the problem
of redundantly encoding data so that it can be recovered if there is random noise.

1

Data structures. When building, e.g., a static dictionary data structure, one can optimize
response time if one knows the probability distribution on key lookups. Even moreso, the time for
operations in hash tables can be greatly improved by careful probabilistic analysis.

Symmetry-breaking. In distributed algorithms, one often needs a way to let one of several
identical processors “go first”. In combinatorial optimization algorithms — e.g., for solving TSP
or SAT instances — it is sometimes effective to use randomness to decide which city or variable to
process next, especially on highly symmetric instances.

Theory of large networks. Much work on the study of large networks — e.g., social networks
like Facebook, or physical networks, like the Internet — models the graphs as arising from special
kinds of random processes. Google’s PageRank algorithm is famously derived from modeling the
hyperlinks on the internet as a “Markov chain”.

Quantum computing. The laws of physics are quantum mechanical and there has been tremen-
dous recent progress on designing “quantum algorithms” that take advantage of this (even if quan-
tum computers have yet to be built). Quantum computing is inherently randomized — indeed, it’s
a bit like computing with probabilities that can be both positive and negative.

Statistics. Several areas of computing — e.g., Human-Computer Interaction — involve running
experimental studies, often with human subjects. Interpreting the results of such studies, and decid-
ing whether their findings are “statistically significant”, requires a strong knowledge of probability
and statistics.

Games and gambling. Where would internet poker be without randomness?

Making algorithms run faster. Perhaps surprisingly, there are several examples of algorith-
mic problems which seem to have nothing to do with randomness, yet which we know how to solve
much more efficiently using randomness than without. This is my personal favorite example of
probability in computing.

We will see an example of using randomness to make algorithms more efficient today, in the
problem of verifying matrix multiplication.

3 About this course

This course will explore several of the above uses of probability in computing. To understand them
properly, though, you will need a thorough understanding of probability theory. Probability is
traditionally a “math” topic, and indeed, this course will be very much like a math class. The
emphasis will be on rigorous definitions, proofs, and theorems. Your homework solutions will be
graded according to these “mathematical standards”.

One consequence of this is that the first part of the course may be a little bit dry, because we
will spend a fair bit of time going rigorously through the basics of probability theory. But of course
it is essential that you go through these basics carefully so that you are prepared for the more
advanced applications. I will be interspersing some “computer science” applications throughout

2

this introductory material, to try to keep a balance between theory and applications.

In particular, today we’re going to start with an application, verifying matrix multiplication.
Don’t worry if you don’t understand all the details today; it would be a bit unfair of me to insist
you do, given that we haven’t even done the basic theory yet! I wanted to give you a flavor of
things to come, before we get down to the nitty-gritty of probability theory.

4 Verifying matrix multiplication

Let’s see an example of an algorithmic task which a probabilistic algorithm can perform much
more efficiently than any deterministic algorithm we know. The task is that of verifying matrix
multiplication.

4.1 Multiplying matrices

There exist extremely sophisticated algorithms for multiplying two matrices together. Suppose we
have two n× n matrices, A and B. Their product, C = AB, is also an n× n matrix, with entries
given by the formula

Cij =
n∑
k=1

AikBkj . (1)

How long does it take to compute C? Since C has n2 entries, even just writing it down in memory
will take at least n2 steps. On the other hand, the “obvious” method for computing C given by (1)
takes about n3 steps; to compute each of the n2 entries it does roughly nmany arithmetic operations.

Actually, there may be some extra time involved if the numbers involved get very large; e.g., if
they’re huge, it could take a lot of time just to, say, multiply two of them together. Let us eliminate
this complication by just thinking about:

Matrix multiplication mod 2. Here we assume that the entries of A and B are just bits, 0 or
1, and we compute the product mod 2:

Cij =
n∑
k=1

AikBkj (mod 2). (2)

This way, every number involved is just a bit, so we needn’t worry about the time of doing
arithmetic on numbers. The “obvious” matrix multiplication algorithm therefore definitely takes
at most O(n3) steps.1

As you may know, there are very surprising, nontrivial algorithms that multiply matrices in
time faster than O(n3). The first and perhaps most famous is Strassen’s algorithm:

Theorem 1. (Strassen, 1969.) It is possible to multiply two matrices in time roughly nlog2 7 ≈ n2.81.
1By the way, if you are not so familiar with big-Oh notation and analysis of running time, don’t worry too much.

This is not an algorithms course, and we won’t be studying algorithmic running time in too much detail. Rather,
we’re just using it to motivate the importance of probability in algorithms and computing.

3

Incidentally, I’ve heard from Manuel Blum that Strassen told him that he thought up his algo-
rithm by first studying the simpler problem of matrix multiplication mod 2. (Strassen’s algorithm
works for the general case, non-mod-2 case too.)

There were several improvements on Strassen’s algorithm, and the current “world record” is
due to Coppersmith and Winograd:

Theorem 2. (Coppersmith-Winograd, 1987.) It is possible to multiply two matrices in time
roughly n2.376.

Many people believe that matrix multiplication can be done in time n2+ε for any ε > 0, but
nobody knows how to do it.

4.2 Verification

We are not actually going to discuss algorithms for matrix multiplication. Instead we will discuss
verification of such algorithms.

Suppose your friend writes some code to implement the Coppersmith-Winograd algorithm
(mod 2). It takes as input two n × n matrices of bits A and B and outputs some n × n ma-
trix of bits, D. The Coppersmith-Winograd algorithm is very complicated, and you might feel
justifiably concerned about whether your friend implemented it correctly. How could you test this?

Well, to test AB ?= D (mod 2), you could write the “obvious” algorithm for multiplying A
and B, and check that the answer is D. But this takes time n3. You could also write your
own implementation of Coppersmith-Winograd really carefully, and use it to “double-check” your
friend’s results. But this still takes time n2.376, and is equally complicated. It only really makes
sense to have separate code for “verifying” AB

?= D (mod 2) if that code is simpler and more
efficient than just multiplying A and B.

Fact 3. The fastest known deterministic algorithm for checking AB
?= D (mod 2) takes time

about n2.376.

Theorem 4. (Rusins Freivalds, 1979.) There is a probabilistic algorithm which checks whether
AB

?= D (mod 2) in only O(n2) steps. On every input, the probability the algorithm gives the
wrong answer is at most 2−200.

Admittedly, this algorithm has a small probability of failure, unlike correct deterministic al-
gorithms. But please note that this probability is really, really small: far far smaller than the
probability of a computer’s hardware error, and indeed far smaller than the probability of a meteor
destroying the earth in the next second. If you ran this algorithm once every “Planck time” for the
entire age of the universe, it might fail around once :)

4.3 Freivalds’s algorithm

Freivalds’s algorithm is about as simple as possible:

4

Algorithm “Basic-Freivalds” On input A, B, and D:

1. Choose a random n-bit vector x, by making each bit xi either 0 or 1 “independently”, “with
probability 1/2” each.

2. Compute y = ABx and z = Dx. Output “yes” if y = z.

We will discuss later what is meant precisely by our choosing x “randomly” in this way. But
for now I will assume that you’ve seen a little bit of probability before, and you know intuitively
what this means.

Before getting to probability, let’s first confirm the running time:

Proposition 5. Basic-Freivalds can be executed in O(n2) steps.

Proof. Step 1 involves writing down the n bits of x: O(n) steps. What about Step 2? Let’s start
with computing z = Dx. This is a matrix-vector product; if we use the “obvious” formula,

zi =
n∑
j=1

Dijxj (mod 2),

the computation will take O(n2) steps — O(n) steps per entry of z.
To compute y = ABx, we think of it as y = A(Bx). We can compute w = Bx in O(n2) steps,

and then compute y = Aw in another O(n2) steps.

Note that this algorithm is faster than the n2.37 time to multiply two matrices, and also that it
is very very simple to implement correctly! That said, does Basic-Freivalds actually properly check
AB

?= D (mod 2)? There are two cases to check:

First: When AB = D (mod 2), does the algorithm output “yes”?

Second: When AB 6= D (mod 2), does the algorithm output “no”?

Proposition 6. When AB = D (mod 2), Basic-Freivalds always outputs “yes”.

Proof. This is obvious. If AB = D (mod 2), then ABx = Dx (mod 2) for any vector x, so the
algorithm will always have y = z.

Here is the amazing aspect of Basic-Freivalds:

Theorem 7. For any input matrices A, B, and D such that AB 6= D (mod 2), the Basic-Freivalds
algorithm will output “yes” with probability at most 1/2.

I.e., when AB 6= D (mod 2), the probability Basic-Freivalds gives the wrong answer is at most
1/2. Now this doesn’t look like what was promised, namely a failure probability of at most 2−200.
But there is a simple way to deliver on the promise: just repeat the Basic-Freivalds algorithm a
bunch of times.

5

Freivalds’s Algorithm: On input A, B, and D, run the Basic-Freivalds algorithm 200 times. If
it ever outputs “no”, then output “no”. If it always outputs “yes”, then output “yes”.

The total running time for Freivalds’s Algorithm is 200 × O(n2) ≤ O(n2) steps. Again, we
should check two cases when analyzing correctness:

Theorem 8. When AB = D (mod 2), Freivalds’s Algorithm always outputs “yes”. On any input
with AB 6= D (mod 2), Freivalds’s Algorithm outputs “yes” (i.e., acts incorrectly) with probability
at most 2−200.

Proof. The first case is clear: when AB = D (mod 2), Basic-Freivalds always outputs “yes”, so the
overall Freivalds Algorithm will output “yes”. As for the second case, suppose AB 6= D (mod 2).
By Theorem 7, the probability one run of Basic-Freivalds outputs “yes” is 1/2. Therefore, the
probability that all 200 runs output “yes” is at most

1
2
× 1

2
× · · · (200 times) · · · × 1

2
= 2−200.

Actually, justifying this proof requires understanding the basics of probability, and we will de-
velop these basics properly only over the next few lectures. I hope, though, that you’ve seen a little
probability before and that you intuitively agree with the above proof.

By the way, this repetition of the Basic-Freivalds test illustrates a common idea in probabilistic
computing: trading off running time and correctness probability.

5 Analyzing Basic-Freivalds, and other randomized code

Let’s now prove Theorem 7 — i.e., analyze the Basic-Freivalds algorithm when AB 6= D (mod 2).
In fact, this naturally leads to a basic theme for the first part of this course:

PROBABILITY THEORY = ANALYZING RANDOMIZED CODE.

This might look surprising, as the left-hand side seems to be a math topic and the right-hand
side seems to be a computer science topic. We’ll return to this.

Let’s write out the Basic-Freivalds code a little differently to highlight the randomized compo-
nent:

Input A, B, D
x[1]← Bernoulli(.5)
x[2]← Bernoulli(.5)
· · ·
x[n]← Bernoulli(.5)
Output ‘‘yes’’ if ABx = Dx (mod 2), output ‘‘no’’ if ABx 6= Dx (mod 2)

You might ask, what the heck is “Bernoulli(.5)”? This will be our notation for a built-in
function which returns 0 with probability .5 and 1 with probability .5. Basically, it’s a “fair coin

6

flip”. For some reason, the mathematicians named this basic built-in function after the 17th cen-
tury Swiss mathematician Jacob Bernoulli. We throw them a bone by using their terminology.

The analysis of Basic-Freivalds uses a fairly clever “trick”. The first step will be to rewrite the
last step a little:

ABx 6= Dx ⇔ ABx−Dx 6= ~0 ⇔ (AB −D)x 6= ~0
⇔ (AB −D)x (mod 2) has a 1 in at least one coordinate.

So we can rewrite the last line of the algorithm as

Output ‘‘no’’ if and only if (AB−D)x (mod 2) has a 1 in at least one coordinate.

Given A, B, D, let
E = AB −D (mod 2).

Remember, our goal is to prove Theorem 7; in other words:

Goal: show that when AB 6= D (mod 2), output is “no” with probability at least 1/2.

Of course,

AB 6= D (mod 2) ⇔ AB −D 6= 0 (mod 2) ⇔ E 6= 0 (mod 2)
⇔ Es,t = 1 (mod 2) for at least one pair 1 ≤ s, t ≤ n.

So to achieve the goal, it suffices to show the following:

Theorem 9. Let E be any nonzero n× n matrix of bits; say Es,t = 1. Then when the n-bit vector
x is chosen randomly as in the code,

Pr[the vector Ex mod 2 has a 1 in at least one coordinate] ≥ 1/2.

Proof. Just so we don’t get too much notation, let’s suppose that s = 5, t = 3, say. I leave it to
you to write out the proof for general s and t. So we know

E5,3 = 1.

We will actually show something stronger than what we need, namely,

Pr[the vector Ex mod 2 has a 1 in the 5th coordinate] = 1/2.

I.e., already the 5th coordinate has a 1/2 chance of being 1, and so the chance that at least one
coordinate has a 1 is at least 1/2.

Think about what the 5th coordinate of Ex (mod 2) is: it’s the 5th row of E dot-producted
with the vector x (mod 2). In other words:

(Ex)5 = E5,1 · x[1] + E5,2 · x[2] + E5,3 · x[3] + E5,4 · x[4] + · · ·+ E5,n · x[n] (mod 2).

We are assuming E5,3 = 1, so let’s put that in, and rearrange a little:

(Ex)5 =
(
E5,1 · x[1] + E5,2 · x[2] + E5,4 · x[4] + · · ·+ E5,n · x[n]

)
+ x[3] mod 2.

7

Now comes the main trick. Observe that the following two blocks of code clearly have the same
behavior:

x[1]← Bernoulli(.5)
x[2]← Bernoulli(.5)
· · ·
x[n]← Bernoulli(.5)
answer ← E5,1 · x[1] + E5,2 · x[2] + E5,3 · x[3] + E5,4 · x[4] + · · ·+ E5,n · x[n] (mod 2)

versus

x[1]← Bernoulli(.5)
x[2]← Bernoulli(.5)
x[4]← Bernoulli(.5)
x[5]← Bernoulli(.5)
· · ·
x[n]← Bernoulli(.5)
temp ← E5,1 · x[1] + E5,2 · x[2] + E5,4 · x[4] + · · ·+ E5,n · x[n] (mod 2)
x[3]← Bernoulli(.5)
answer ← temp + x[3] (mod 2)

In other words, it doesn’t actually matter what order we pick the x[i]’s in, so we can imagine
x[3] being picked last. The point now is that it doesn’t matter what temp turns out to be; just
based on the random choice of x[3] we’ll have that answer is 1 with probability exactly 1/2. This is
because both 0 + x[3] (mod 2) and 1 + x[3] (mod 2) are equally likely to be 0 or 1 when we choose
x[3]← Bernoulli(.5).

Neat trick, huh?

8

15-359: Probability and Computing
Fall 2009

Lecture 2: Discrete probability modeling; probability of events; conditioning

In this lecture we will learn the basics of probability — sample spaces, events, conditioning, etc.
Our basic framework will have a “computer science-y” slant. In my opinion, this is the right way
to think about probability — even if you’re a mathematician with no interest in computer science.

1 Probability Modeling

1.1 Modeling with computer code

Probability is all about modeling reality with math. (Actually, this is what all of math is about.)
But the way math people teach and model probability is often not so great. They do probability
modeling like this:

Description of reality → Math.

This often leads to vagueness (e.g., what exactly is a “random experiment”) or ambiguities (think
of the “Monty Hall Problem”).

The right way to do probability is the computer science way: always be analyzing randomized
code! This is how we will do all our probability modeling:

Description of reality → Computer code → Math

And often, the reality will be the computer code. The beauty of this is that any ambiguity in the
English-language description can be debated when doing the first step, modeling the real-world
situation with randomized code. But once the randomized code is decided on, there will be an
unambiguous and clear-cut way to analyze it mathematically.

Let’s explain. You know how all probability exercises start with something like, “A person flips
2 fair coins. . . ”? We will immediately model this with code:

coin1 ← Bernoulli(1/2)
coin2 ← Bernoulli(1/2)

(Well, I suppose Bernoulli(.5) returns 0 or 1, but you can add in statements like

if coin1 = 0 then coin1 ← ‘‘tails’’ else coin1 ← ‘‘heads’’

if you like. But we won’t care much about such niceties.)

1

1.2 “Built-in” random functions

Recall from last lecture we had the following:

ASSUMPTION: We have a built-in random function, Bernoulli(1/2) which returns 0 with
probability 1/2 and 1 with probability 1/2.

More implicitly, we also have the following:

ASSUMPTION: Multiple calls to built-in random functions like Bernoulli(1/2) behave “in-
dependently”; the return value of one call in no way affects the return value of any other call.

Are these assumptions “realistic”? For the purposes of doing math (and for the purposes of
this course, really), it doesn’t matter; these will be our basic, idealized, axioms. In the reality of
computer code, they are NOT really true. When you call the equivalent of Bernoulli(1/2) in your
favorite programming language, it will actually return a number from a stream of “pseudorandom
numbers”, whatever that means. You won’t be getting 0 or 1 with probability exactly 1/2 each, and
furthermore, the “independence assumption” is definitely wrong ; if you know the past history of
what the pseudorandom number generators have returned, this gives you partial information about
what the next return value will be. We will discuss pseudorandom number generators further in a
later lecture.

In fact, one may forget about computer code all together and go straight to the physical world.
Is there anything in nature which (according to the laws of physics) acts like Bernoulli(1/2)?
And does it satisfy the “independence” assumption? These are deep questions of physics, engineer-
ing, and philosophy. We can discuss them later — let’s get back to the basics of probability for now!

What about other basic probability exercise classics? E.g., “A person rolls a fair die. . . ”?1 To
model this, I will grant you:

ASSUMPTION: We have a built-in random function, RandInt(m), which given m ∈ N, returns
one of the integers {1, 2, . . . ,m}, each with equal probability 1

m .

You should immediately model the real-world event as though you were “simulating” it, with
code:

die ← RandInt(6).

As one more example, an old-school probability exercise might begin, “A patient has a 1 in 10
chance of having a certain disease. . . ” Again, write it like a computer simulation:

u ← RandInt(10)
if u = 1, patient.hasDisease ← 1
else patient.hasDisease ← 0

Actually, the above kind of thing comes up a lot; let’s assume we have a built-in function for it:
1Dice are some of probabilists’ favorite items. In case you didn’t know: one of these six-sided cubes is called a

“die”; multiple such cubes are “dice”.

2

ASSUMPTION: We have a built-in random function, Bernoulli(p), which given a real 0 ≤
p ≤ 1, returns

1 with probability p,

0 with probability 1− p.

Now the above code could simply be written as:

patient.hasDisease ← Bernoulli(.1)

1.3 “Discrete” randomness only for now

So far we’ve assumed access to two kinds of “built-in” random number generators: Bernoulli(p)
for any real 0 ≤ p ≤ 1, and RandInt(m) for any m ∈ N. On the homework, you will explore how,
using these tools, you can build up other random number-generating functions such as

Rand

 1 with probability .2
5 with probability .3
−3 with probability .5

 .

Really, anything where there are finitely many different outcomes with nonnegative probabilities
adding up to 1.

What we are absolutely disallowing for the first half of the course is the use of a random
number generator like “Unif([0, 1])”, which returns a uniformly random real number between 0
and 1 — whatever that means!

Why do we disallow this? As we are about to see, to analyze randomized code we will be drawing
trees, with a node for each call to a random number generator and a branch for each possible return
value it may have. It will be mighty hard to draw such a tree if it is to have infinitely (uncountably!)
many branches, as it would be with “Unif([0, 1])”. Seriously, random processes with uncountably
infinitely many different outcomes require significantly more complicated analysis, which it’s best
to postpone for later.

You might be disappointed, since every standard programming language (claims to) have a
random number generator like “Unif([0, 1])”. Of course, you also know that you can’t truly store a
real number in a computer, so actually, these random number generators do something like returning

RandInt(264)/264.

Indeed, as we will see in the second half of the class, it’s a good idea to think about analyzing
“Unif([0, 1])” in precisely this way — except we use “dx” rather than 2−64. . .

2 Analyzing randomized code & Basic definitions

So we’ve decided we will model probabilistic stuff with randomized code; for example, something
like the following:

flip1 ← Bernoulli(1/2)

3

flip2 ← Bernoulli(1/3)

This little block of code models a standard probability exercise beginning with, “You flip 2
coins, the first of which is fair, the second having bias 1/3 for heads. . . ” In mathematics, they
make the following definition:

Definition: An experiment is a block of randomized code.

Here is how you analyze experiments/code: You build a “probability tree”, with branching for
each call to a random number generator. For the above example:

Or, a probability exercise might begin, “An ophthalmology patient has a 5% chance of being
color blind if male, and a .5% chance otherwise. . . ”’ We first write the code:

isMale ← Bernoulli(1/2)
if isMale, isColorBlind ← Bernoulli(.05)
else isColorBlind ← Bernoulli(.005)

We then draw the probability tree (in which it is okay to use “meaningful” names rather than
0 and 1):

Definition: An outcome is a leaf in the probability tree of an experiment. Equivalently, it is a
possible sequence of all values returned by the random number generator calls.

For example, here is the above tree with its outcomes labeled:

4

Definition: The sample space of an experiment is the set of all outcomes; i.e., the set of leaves.
It is often written Ω.

So for example, in the ophthalmology example,

Ω = {(F, not-CB), (F, CB), (M, not-CB), (M, CB)}.

In the other experiment with the two coins, the sample space is Ω = {(0, 0), (0, 1), (1, 0), (1, 1)},
which we’d usually write with meaningful names as

Ω = {TT, TH, HT, HH}.

Definition: The probability of an outcome is defined as follows: Given an outcome (leaf) `, its
probability, denoted P[`] or Pr[`] is the product of the probabilities along the path to `.

For example, in the ophthalmology example we have

Pr[(F, CB)] = (1/2) · (.005) = .0025,

Pr[(M, not-CB)] = (1/2) · (.95) = .475.

Under this definition it is easy to see that we have the following two most basic facts about
probability:

Fact: For all outcomes ` we have Pr[`] ≥ 0.

Fact: The total probability is always 1: ∑
`∈Ω

Pr[`] = 1.

(The second fact is easy to see, right? It’s like you start with 100% of a universe at the top of a
probability tree, and then each branch breaks it into fractions summing up to 1. So each branching
maintains the fact that the sum of the probabilities at the leaves is 100%.)

3 Events

The next definition is a very important one, and perhaps one that takes a little getting used to:

Definition: An event is any collection of outcomes. I.e., it is a subset A ⊆ Ω.

We also overload the Pr[·] notation, so that the thing inside the [·] can be either an outcome
or an event (set of outcomes):

Definition: If A ⊆ Ω is an event, we define the probability of A by

Pr[A] =
∑
`∈A

Pr[`];

it’s the sum of all the probabilities of the outcomes in A.

5

3.1 Example

Let’s do an example. Here is the beginning of a typical probability exercise:

Flip a fair coin. If it comes up heads, roll a 3-sided die; if it comes up tails, roll a 4-sided die.

(Yes, we will talk about d-sided dice. These exist in real life for certain values of d, most notably
d = 6; in probability-land, they exist for all d. Actually, this just goes to show it’s simpler to talk
about RandInt(d).)

The very first thing you should do is write, “We model this with the following code:

flip ← Bernoulli(1/2)
if flip = 1, die ← RandInt(3)
else die ← RandInt(4).”

Great. Now you have an unambiguous random experiment to analyze. The next thing you
should do is write, “This gives the following probability tree:” And you should label the outcomes
and their probabilities.

Note that the sample space here, Ω, has cardinality 7. We computed the probabilities of the
outcomes by multiplying the probabilities along each path; e.g.:

Pr[(H, 1)] = (1/2) · (1/3) = 1/6,

Pr[(T, 3)] = (1/2) · (1/4) = 1/8

and so forth.

Now we go back and continue reading the exercise. Suppose it continues:

What is the probability that the die roll is at least 3?

Here is how you answer this problem. First, you write, “Let A be the event of rolling at least
3. We have

A = {(H, 3), (T, 3), (T, 4)}.”

It’s helpful to also circle this event on your probability tree. You then continue, “Therefore,

Pr[A] = Pr[(H, 3)] + Pr[(T, 3)] + Pr[(T, 4)] = 1/6 + 1/8 + 1/8 = 5/12. ”

Please memorize this fundamental process! It will be on your next quiz. . .

6

4 Basic facts

Here are some simple but important basic facts about the probabilities of events:

Facts:

• A ⊆ B ⇒ Pr[A] ≤ Pr[B]

• Pr[Ac] = 1−Pr[A].

• Pr[A ∪B] = Pr[A] + Pr[B]−Pr[A ∩B].

Here we have used some set theory notation: Ac denotes the complement of A, meaning Ω \A, or
“not A”; A∪B is the union of A and B, meaning “A or B”; A∩B is the intersection of A and B,
meaning “A and B”. All of these facts are easy to prove, just by the definition of the probability
of an event as the sum of the probabilities of the outcomes in it. The following diagram might be
helpful; it shows a sample space Ω, with the outcomes as dots. Remember, each of these has a
probability, and all the probabilities add up to 1. An event A is just a subset of outcomes, and its
probability is the sum of their probabilities.

The third fact above is important to remember, in light of the common

FALLACY: Pr[A ∪B] = Pr[A] + Pr[B].

Since Pr[A ∩B] ≥ 0, though, we do have the following:

Fact: Pr[A ∪B] ≤ Pr[A] + Pr[B].

More generally, we have the very trivial but extremely useful fact called the “Union Bound”:

Union Bound: Pr[A1 ∪A2 ∪ · · · ∪An] ≤
n∑

i=1

Pr[Ai].

It may seem indulgent to give a bold-faced name to such a simple fact, but please remember its
name; it really comes up over and over and over again.

7

5 Conditioning

Conditioning is actually one of the trickier concepts in basic probability, but it is utterly essential,
so it’s important to learn it carefully. Roughly speaking:

Conditioning = Revising probabilities based on “partial information”.

What is “partial information”?

Partial information = An event.

To illustrate, let’s go back to the example from Section 3.1. In this example, let’s “condition
on the event A, rolling at least 3”. Saying “condition on A” is like promising that you are in one
of the “roll ≥ 3” outcomes. Let’s circle those outcomes:

The idea now is that we want to revise our probabilities for all 7 outcomes, based on the “partial
information” that event A occurred. The definition is pretty natural. Let’s start with:

Pr[(H, 1) | A].

The “| A” part is pronounced “given A” or “conditioned on A” (these are synonyms). The whole
expression is pronounced “the probability of outcome (H, 1) given A”. And what should its value
be? Clearly:

Pr[(H, 1) | A] = 0,

since if I promise you A occurred, i.e., the roll was at least 3, then the outcome (H, 1) definitely
did not occur. Similarly,

Pr[(T, 2) | A] = 0.

On the other hand, what about, say, Pr[(H, 3) | A]? The way to think about it is as follows: Think
of each random branch in the tree as taking us into one of many worlds. We know that in 5/12 of
the worlds, the event A occurred. Now among those worlds, (1/6)/(5/12) of them correspond to
the outcome (H, 3). So we should have

Pr[(H, 3) | A] =
1/6
5/12

=
2
5
.

Similarly reasoning gives:

Pr[(T, 3) | A] =
1/8
5/12

=
3
10

,

Pr[(T, 4) | A] =
1/8
5/12

=
3
10

.

8

What’s happened is that “conditioning on A” has effectively given us a new “probability distribu-
tion” on the outcomes:

Ω = { (H, 1), (H, 2), (H, 3), (T, 1), (T, 2), (T, 3), (T, 4) }
Pr[·] = { 0, 0, 2

5 , 0, 0, 3
10 , 3

10 }
Now that we have new conditional probabilities for outcomes, we can define new conditional

probabilities for events. For example, let B be the event of flipping a head:

B = {(H, 1), (H, 2), (H, 3)} ⊆ Ω.

Now just as before, we calculate the “probability of B given A” by adding up the (conditional)
probabilities of the outcomes making up B:

Pr[B | A] = Pr[(H, 1) | A] + Pr[(H, 2) | A] + Pr[(H, 3) | A]

= 0 + 0 +
2
5

=
2
5
.

You may find it slightly weird to think about things like “B | A”, namely, “the probability you
flipped heads given that the roll was at least 3”, but you’ll get used to it :) If we’re interested in
the probability that you flipped tails given that the roll was at least 3, there’s no need to add up
conditional outcome probabilities: we can just use the “complement fact”:

Pr[tails | A] = Pr[Bc | A] = 1−Pr[B | A] = 1− 2
5

=
3
5
.

5.1 The official rules of conditioning

Having gone through an example, let’s now give the official rules and definitions for conditioning:

Definition: Given an event A ⊆ Ω with Pr[A] 6= 0, define the conditional probability of outcome `
(AKA the probability of ` given A) to be

Pr[` | A] =

{
0 if ` 6∈ A,
Pr[`]
Pr[A] if ` ∈ A.

What about the conditional probability of an event? Well, Pr[B | A] is the sum of conditional
probabilities of all outcomes in B. Hence we claim:

Corollary 1.

Pr[B | A] =
Pr[B ∩A]

Pr[A]
=

Pr[A ∩B]
Pr[A]

Proof. The second equality is of course just because B ∩A = A ∩B. As for the first,

Pr[B | A] =
∑
`∈B

Pr[` | A]

=
∑

`∈B∩A

Pr[` | A] +
∑

`∈B\A

Pr[` | A]

=
∑

`∈B∩A

Pr[`]
Pr[A]

+
∑

`∈B\A

0

=
1

Pr[A]

∑
`∈B∩A

Pr[`]

=
Pr[B ∩A]

Pr[A]
.

9

Of course, just by interchanging A and B, we have that (assuming Pr[B] 6= 0)

Pr[A | B] =
Pr[A ∩B]

Pr[B]
.

If you’re going to memorize this formula, the important thing is that the event you’re conditioning
on goes into the denominator on the right.

Let’s see these definitions in action one more time. Remember that we showed Pr[heads |
roll ≥ 3] = 2/5. What about the reverse, Pr[roll ≥ 3 | heads]? Well, if you think about it,
“obviously” the answer should be 1/3. Let’s check:

Pr[roll ≥ 3 | heads] =
Pr[heads ∩ roll ≥ 3]

Pr[heads]

=
Pr[(H, 3)]

Pr[(H, 1)] + Pr[(H, 2)] + Pr[(H, 3)]

=
1/6

1/6 + 1/6 + 1/6
= 1/3.

One other corollary of the conditioning formula is the following:

Formula: Pr[A ∩B] = Pr[A] ·Pr[B | A] (assuming Pr[A] 6= 0).

We often use this formula to calculate the probability of an intersection — i.e., the “and” of
two events. We use the following phraseology: “For A and B to happen, first A has to happen
(which has probability Pr[A]), and then also B has to happen given that A happened (which has
probability Pr[B | A]).]]

The above formula generalizes to what is occasionally called the “Chain Rule” or the “Multi-
plication Rule”:

Formulas:

Pr[A ∩B ∩ C] = Pr[A] ·Pr[B | A] ·Pr[C | A ∩B], and more generally,

Pr[A1 ∩A2 ∩ · · · ∩An] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] · · ·Pr[An | A1 ∩A2 ∩ · · · ∩An−1]

(assuming all the conditioned-on events have nonzero probability). We leave the proof of this as
an exercise for you.

10

15-359: Probability and Computing
Fall 2009

Lecture 3: Law of Total Probability, independence. Picking random primes.

In today’s lecture we will finish the “basic theory” of events, the last theory topic before we
move on to random variables in the next lecture. After this, we will discuss some applications of
probability in number theory and cryptography.

1 Law of Total Probability

Last lecture we introduced conditioning. When we discussed it then, it might have seemed that
first you figure out all the probabilities involved in a random experiment, and then you can start
calculating conditional probabilities. This is actually not at all how it works in practice; rather, in
practice, you use conditioning to help you calculate the basic probabilities of events.

The most important formula involved is sometimes called the “Law of Total Probability”. It’s
used all the time. To state it, we first need some setup:

Definition: We say that events A1, . . . , An form a “partition” of the sample space Ω if:

� They are “mutually exclusive”, meaning Ai ∩ Aj = ∅ for all i 6= j. In other words, at most
one event Ai ever happens.

� They are “collectively exhaustive”, meaning A1 ∪A2 ∪ · · · ∪An = Ω. In other words, at least
one Ai always happens.

Law of Total Probability: Suppose A1, . . . , An form a partition of Ω. Then for any event
B ⊆ Ω,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An].

(Note: Technically, we should also add “assume also that Pr[Ai] 6= 0 for all i”, because you are
not allowed to condition on an event with probability 0. Adding this caveat all the time is a bit
annoying, so we’ll stop doing it. Alternately, you can make the convention that 0 · (undefined) = 0,
and then the above formula holds with no caveat!) Here is a picture to help illustrate things, with
n = 3:

1

When I use this law, I always say something like the following:

What is the probability of B? Either A1 happens, in which case we have the probability of B given
A1; or, A2 happens, in which case we have the probability of B given A2; or, . . . ; or else An must

happen, in which case we have the probability of B given An.

The proof of this law is simply that the right-hand side equals Pr[A1 ∩ B] + Pr[A2 ∩ B] + · · · +
Pr[An∩B], which is easily seen to be Pr[B] (draw a Venn diagram if you don’t see it immediately).
An important special case is when we just have the partition A, Ac:

Special Case: Pr[B] = Pr[A] ·Pr[B | A] + Pr[Ac] ·Pr[B | Ac].

Again, when I use this special case, I always say a phrase like the following:

Regarding the probability of B, either A happens (with probability Pr[A]) in which case B occurs
with probability Pr[B | A]; or, A does not happen (with probability Pr[Ac] = 1−Pr[A]) in which

case B occurs with probability Pr[B | Ac]

It might not be obvious that the Law of Total Probability is actually helpful for calculating
probabilities — you might think that being able to compute quantities like Pr[B | A] and Pr[B | Ac]
might be strictly harder than just computing Pr[B]. But often this is not the case! Let’s see an
example. . .

1.1 Law of Total Probability — an example

This example is very similar to the key fact used in our analysis of Freivalds’s Algorithm which we
saw in Lecture 1: namely, the fact that if e is a nonzero vector of bits and x is a random vector of
bits (each xi being Bernoulli(1/2)) then Pr[e · x 6= 0 (mod 2)] = 1/2.

Problem: I roll 5 fair dice.1 What is the probability that their sum is divisible by 6?

You could draw the whole probability tree, with 65 outcomes, but that looks challenging. Here
is the “clever” solution:

Solution: The trick is to condition on the sum of the first 4 dice.2 For each possible sum, s =
4, 5, 6, . . . , 24, let As be the event that the first 4 dice sum to s. It’s easy to see that {A4, . . . , A24}
form a partition of Ω, and none has probability 0. Let B be the event that all 5 dice sum to a
multiple of 6.

By the Law of Total Probability,

Pr[B] = Pr[A4]Pr[B | A4] + Pr[A5]Pr[B | A5] + · · ·+ Pr[A24]Pr[B | A24].

Now the trick is to resist the temptation to calculate each Pr[As]! Instead, let’s ask ourselves, what
is Pr[B | A4]? Conditioned on the first four dice summing to 4, the final total will be either 5, 6,
7, 8, 9, or 10, each with probability 1/6. In exactly one case does B occur, when the total is 6.
Hence Pr[B | A4] = 1/6.

1If unspecified, a die has 6 sides.
2By the way, you might ask what “the first 4 dice” means — in the problem statement, the dice are indistin-

guishable. But implicitly, we are imagining that we have modeled the experiment by “die1 ← RandInt(6); die2 ←
RandInt(6); etc.”.

2

What about Pr[B | A5]? Conditioned on A5, the final total will be either 6, 7, 8, 9, 10, or 11,
each with probability 1/6. Again, in exactly one case does B occur, when the total is 6. So again,
Pr[B | A5] = 1/6.

Let’s do one more, Pr[B | A6]. Conditioned on A6, the final total will be either 7, 8, 9, 10, 11,
or 12, each with probability 1/6. Once more, in exactly one case does B occur, when the total is
12. So Pr[B | A6] = 1/6.

(Note: here we have moved slightly away from rigorous definitions-based reasoning, towards
more abstract reasoning. But you should always double-check arguments like this against the
actual definitions. In this case, imagine the probability tree just for the first 4 rolls. There may
be many several paths to outcomes in the event A6. For each such outcome, we are reasoning that
when the tree is extended to include the final roll, this final RandInt(6) splits into 6 outcomes,
exactly one of which is in B. Therefore, one can reason that Pr[B | A6] is indeed 1/6.)

Indeed, you can now probably see that for every value of s we have Pr[B | As] = 1/6, because
exactly one of the numbers s + 1, s + 2, . . . , s + 6 is divisible by 6. Therefore,

Pr[B] = Pr[A4] · (1/6) + Pr[A5] · (1/6) + · · ·+ Pr[A24] · (1/6)
= (1/6) · (Pr[A4] + Pr[A5] + · · ·+ Pr[A24])
= 1/6.

(We chose this problem because it is a good illustration of the Law of Total Probability. However,
we must admit that it relies very heavily on the “trick” that Pr[B | As] is always 1/6 because we
ask about divisibility by 6. What if we had asked for the probability that the final sum is divisible
by 5? In that case, the only way to solve the problem is through the very long slog of calculating
everything out!)

2 Independence of Two Events

Let’s now discuss one more key property of events: independence. Here is the “formal definition”:

Definition 1. Two events A, B ⊆ Ω are independent if and only if

Pr[A ∩B] = Pr[A]Pr[B]. (1)

This is actually a slightly obscure way to define independence. Assuming that Pr[B] 6= 0, we
can write

Pr[A ∩B] = Pr[A]Pr[B] ⇔ Pr[A ∩B]
Pr[B]

= Pr[A] ⇔ Pr[A | B] = Pr[A].

This is how we think about it a bit more frequently: A and B are independent if and only if
Pr[A | B] = Pr[A]; in other words, the probability of A doesn’t depend at all on B’s happening.
Sometimes you’ll hear this stated as “A is independent of B”, but really it’s a symmetric situation;
this phrase is equivalent to “A and B are independent”.

Similarly, assuming Pr[A] 6= 0 it holds that A and B are independent events if and only if
Pr[B | A] = Pr[B]. The reason the textbooks like to make the definition with equation (1) is so
that the edge case of 0-probability events is included. Technically, if A is an event with Pr[A] = 0,
then A is independent of every event. But really, who spends a lot of time discussing events with
probability 0?

3

2.1 A rant, and a new explanation of independence

Actually, we are of the opinion that there is something a bit bogus about the way textbooks make
Definition 1, the definition of independent events. Normally textbooks make this definition and
then ask you some exercises about it to “explain” the concept. For example, they often ask, “You
flip 2 coins. Let A be the event that the first coin is heads. Let B be the event that both coins
land the same way. Are A and B independent?” Well, it doesn’t sound like they’re independent:
both events seem to depend on how the first flip turns out. But if you go and do the calculation
you see that

Pr[A ∩B] = Pr[(H, H)] =
1
4

=
1
2
· 1

2
= Pr[A] ·Pr[B],

and hence according to the definition they are independent.

The fact that textbooks make this one of the first few exercises about independence is very
sneaky and a bit unfair because it’s not true to life. In real life, no probabilist spends their time
calculating Pr[A∩B], Pr[A], and Pr[B], checking equation (1) and then exclaiming, “Aha! A and
B are independent!” Because why would they? They know everything they want to know; who
cares if some numbers in their calculations happen to be equal?

No, in real life, what happens is that you have two events A and B and you want to know
Pr[A ∩ B]. You tell some kind of story in words, and then your story ends with the phrase,
“. . . which means that A and B are independent.” And then you say, “Therefore, we calculate that
Pr[A ∩B] = Pr[A]Pr[B]”.

Textbooks do this! And I’m sure you can see the circular logic. Or, rather, the invalid logic. How
can you prove that A and B are “independent” without first verifying that Pr[A∩B] = Pr[A]Pr[B]?

What’s going on is that these textbooks are cheating. They’re secretly using the following
principle:

Principle: Suppose you identify two parts of an experiment,

block 1:

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

block 2:

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

and you mathematically prove that they cannot affect one another. (E.g., you could run them in
the opposite order and it would be equivalent.) Let A be an event which you can prove depends
only on block 1’s execution, and let B be an event which you can prove depends only on block 2’s
execution. Then A and B are independent.

With some thought you should be able to convince yourself that the principle is correct; i.e., that
if A and B satisfy the conditions then indeed Pr[A∩B] = Pr[A]Pr[B]. (Think about rearranging
the probability tree. . .)

4

2.2 Independence of Multiple Events

You might think we’re done with defining independence by now, but we’re not. We’ve only defined
what it means for two events to be independent. Here’s the full definition:

Definition 2. Events A1, . . . , An ⊆ Ω are independent if and only if

Pr

[⋂
i∈S

Ai

]
=
∏
i∈S

Pr[Ai] (2)

for every subset S ⊆ {1, 2, . . . , n}.

Notice that this is a bit of a tricky definition. Here are some important remarks:

� Notice that it is not sufficient to check that Pr[A1 ∩A2 ∩ · · ·An] = Pr[A1]Pr[A2] · · ·Pr[An].
I.e., you really need to check equation 2 for all subsets S ⊆ {1, 2, . . . , n}, not just S =
{1, 2, . . . , n}.

� Further, it is not sufficient to check that Ai and Aj are independent for all pairs i, j with i 6= j.
(This corresponds to testing all S with |S| = 2.) When all pairs of events are independent,
the collection of all n events is called pairwise independent (naturally). But this does not
mean the whole collection of events is “independent”.

� If A1, . . . , An are indeed independent, then we have

Pr[A1 | any event based on A2, A3, . . . , An] = Pr[A1].

By “any event based on A2, A3, . . . , An”, we mean something like (A2 ∩A3) \A4 ∪A5.

You will see all of these points discussed on the homework.

Just as before, the real way people employ independence of multiple events is via the Principle
described above. The generalization is the obvious one: Suppose you have n blocks of randomized
code and you can prove that none of them can affect any other — i.e., you could completely reorder
them with no changes. Then if Ai is an event depending only on the ith block, the events A1, . . . ,
An are independent — and so you can conclude stuff like

Pr[A1 | (A2 ∩A3) \A4 ∪A5] = Pr[A1].

One final comment on independence: In a way, we’ve seen it already. One of our axioms/assumptions
about “randomized code”, with calls to RandInt and Bernoulli, is that the executions of all lines
in a “code path” are independent. E.g., any event depending on a call to RandInt is independent
of any event depending on a different call to RandInt.

3 Applications in cryptography and number theory

Before moving on to the next part of probability theory (random variables), let’s discuss some
basic applications in cryptography and number theory. Although almost every area of computer
science uses probability by choice, cryptography is one area where there is absolutely no option:
probability is utterly essential for cryptography, and you literally can’t do anything cryptographic
without it. All cryptographic protocols use randomness, so any time you buy something online,
any time you go to an htpps:// web page, any time you use RSA or SSL, you are relying on
probabilistic methods.

5

3.1 Factoring vs. primality testing

A typical cryptographic protocol looks something like this:

1. Pick two random k-bit prime numbers, p and q. (A typical value for k, the “security param-
eter”, is 1024.)

2. Let H = pq. The number H is your “secret key”.

3. (More steps. . .)

You have probably seen examples of protocols that start like this in 251; e.g., RSA. The security
of such protocols depends on the empirical fact that we do not know efficient algorithms for factoring
integers.

Fact 3. The fastest known algorithm for factoring integers is the “Number Field Sieve” algorithm
of John Pollard (with contributions from Buhler, H. Lenstra, Pomerance, and others). It factors
k-bit numbers in time3 approximately

21.9k1/3(log2 k)2/3
.

For k = 1024 this is about 290, which is pretty huge. I believe it currently takes something
like several hundred CPU-years to factor a 1024-bit number on a typical desktop computer. The
working assumption in cryptography is that malicious adversaries do not have this kind of time
(and do not secretly know faster factoring algorithms). As you might know, there would be efficient
factoring algorithms if we had large-scale “quantum computers”. . . But we digress.

The extreme difficulty of factoring might make you ask, “Wait a minute, how do we implement
the protocol described above? It requires getting your hands on prime numbers. How do we know
a number is prime is we can’t efficiently factor it?”

Fact 4. Strange but true: there are efficient algorithms for testing whether a number is prime.

3.2 A random prime (and the Most Useful Approximation Ever)

Suppose, for a moment, that we have such an algorithm, call it IsPrime(m). Suppose further that
it is a deterministic algorithm. We are still not done, because cryptographic protocols (such as the
one described above) require you to choose a random k-bit prime (two of them, actually), not just
find any old prime. (Having your secret key’s primes be random is, of course, an essential defense
against secrecy being broken.) There’s only one solution: Pick a random number of at most k bits
and hope/check it’s prime!

Let’s slightly simplify and assume we are looking for a random prime of up to k digits; i.e.,
between 0 and 2k − 1. (Really, this is just to make notation simpler.) In other words, if we define

P = {m : 0 ≤ m < 2k − 1 and m is prime},

we want our algorithm to choose a random number p from P , each with equal probability 1/|P |.
How do we do this?

3Heuristically, actually; the algorithm’s running time is not proven.

6

FindPrime(k):
m← RandInt(2k)− 1
if IsPrime(m) return m else return ‘‘fail’’.

For each p ∈ P , let Ap be the event that this code outputs p. Let S be the event that this code
outputs succeeds; i.e., does not output “fail”. We immediately have

Pr[outputs p | does not fail] = Pr[Ap | S] =
Pr[Ap ∩ S]

Pr[S]
.

Each p ∈ P is prime, so we have Ap ∩ S = Ap. We also have Pr[Ap] = 1/2k and Pr[S] = |P |/2k.
Hence

Pr[outputs p | does not fail] =
1/2k

|P |/2k
= 1/|P |.

Hence conditioned on the algorithm succeeding, the algorithm outputs each prime in P with equal
probability, 1/|P |.

Yes, but what is the probability of success, really? For this, we need to know |P |/2k; equivalently,
the number of primes less than 2k. The famous Prime Number Theorem says that:

primes ≤ N

N
∼ 1

ln N
as N →∞.

Note that when N = 2k we have ln N = Θ(1/k). Indeed, the following is pretty easy to prove (see
the homework!):

Weak Prime Number Theorem:

Pr[S] =
|P |
2k
≥ 1

2k
for all k > 1.

At first, this doesn’t look so great, at first: if k = 1024 then we may have as little as a 1/2048
chance that the random number we pick is prime.4 But as usual, we can boost our chances by
repetition. Suppose we do:

for i← 1 . . . t
if FindPrime(k) succeeds, break, returning the prime

If all t runs return “fail”, we declare an overall failure. First, it’s not hard to show (similar
to Problem 2e on Homework 1) that still, each p ∈ P is output with equal probability 1/|P |
conditioned on overall success. On the other hand, if we draw the probability tree for the above
code, with a branch for each call to FindPrime, we see that the event of overall failure consists of
a single outcome, which has probability(

1− |P |
2k

)
·
(

1− |P |
2k

)
· · · · (t times) · · · ·

(
1− |P |

2k

)
.

Hence by the Weak Prime Number Theorem we have

Pr[overall failure] ≤ (1− 1/2k)t.

Is that small? To analyze it, we need to use the Most Useful Approximation.
4It would of course be a little smarter to pick a random odd number, which of course increases the success

probability by a factor of 2.

7

Most Useful Approximation Ever: When x is a small real number near 0, possibly negative,
we have

ex ≈ 1 + x.

(Recall that ex = 1 + x + x2/2! + x3/3! + · · · .) In particular, ex ≥ 1 + x for all x ∈ R.

To use this, we take x to be the small real number −1/2k, we have

Pr[overall failure] ≤ (1− 1/2k)t ≤ (e−1/2k)t = e−t/2k.

Hence if we take t to be a large multiple of k we are in good shape; e.g., if t = 400k, we get

Pr[overall failure] ≤ e−(400k)/2k = e−200.

3.3 Testing primality

Next lecture we will return to the question of how to implement IsPrime(m).

8

15-359: Probability and Computing
Fall 2009

Lecture 4: Primality, Birthday Problem, Intro to Random Variables

1 Primality testing

Let’s conclude our discussion from last lecture by returning to the problem of primality testing. We
are given a number m, at most k bits long. How can we decide whether or not m is prime? Here
is one well-known idea:

For i = 2 . . .
√

m,
check if m is divisible by i.

You probably also know that this is a bad idea. The number of steps this little primality testing
algorithm takes is at least something like

√
m ≈

√
2k = 2k/2.

If, e.g., k = 1024 (a reasonable setting in the cryptographic protocols we discussed last lecture),
then 2k/2 = 2512. Of course, this number of steps is utterly infeasible. So we need a better idea.

CMU’s Professor Gary Miller had a better idea in 1975. He started by recalling the following
simple theorem from number theory:

Fermat’s Little Theorem: If m is prime and 1 ≤ a < m, then am−1 = 1 mod m.

This suggests a way to prove that a number is not prime (“composite”) without actually fac-
toring it:

if 1 ≤ a < m is such that am−1 6= 1 mod m then m is not prime.

Now you might worry about whether we can check this efficiently when m is a k-bit number. But
actually this is easy: first, compute

a (mod m), a2 (mod m), a4 (mod m), a8 (mod m), . . . , a2k
(mod m).

You can do this by starting with a (mod m) and then repeatedly doing: square-and-reduce-mod-
m. Since you are always working with k-bit numbers, doing one square-and-reduce-mod-m can be
done in time O(k2) with the standard multiplication algorithm, or time Õ(k) with a sophisticated
multiplication algorithm.1 You do k such square-and-reduces in total. Finally, having computed a
raised to every power of 2, you can get am−1 by multiplying together appropriate powers, based on
the binary expansion of m− 1 (think about it). In short, you can indeed compute am−1 (mod m)

1In 2007, Martin Fürer over at Penn State beat the 35-year-old Schönhage-Strassen algorithm for multiplying
k-bit integers. Fürer’s algorithm runs in time k log k2O(log∗ k), believe it or not!

1

efficiently, in time Õ(k2).

An obvious place to start is a = 2: if 2m−1 6= 1 (mod m) then you can output “composite”.
But if 2m−1 = 1 (mod m), you can’t be sure. So you could check if 3m−1 6= 1 (mod m) — if so,
output “composite”, if not, perhaps prime. It doesn’t make sense to go on forever, though:

Fact 1. The converse of Fermat’s Little Theorem is false. Robert Carmichael showed there exist
non-primes m such that am−1 = 1 mod m for all a 6= 0 (mod m). These are called Carmichael
numbers.

1.1 The Miller-Rabin Test

Prof. Miller was not discouraged, however. He added a twist to the Fermat’s Little Theorem test2:

Miller-Test(m, a):
1. Compute am−1 (mod m); if 6= 1 then output ‘‘composite’’.
2. Check if any of the intermediate powers constructed in the previous computation

are nontrivial square roots of 1 (i.e., satisfy b2 = 1 (mod m), yet b 6= ±1 (mod m)).
If so, output ‘‘composite’’.

Definition 2. If a number 1 ≤ a < m causes Miller-Test(m, a) to output “composite”, we say a is
a witness for M .

As this is a probability class, not a number theory class, let us content ourselves with stating
the following facts:

1. If a is a “witness” then m is definitely composite.

2. If m is composite, then the number of a’s in {1, 2, . . . ,m− 1} which are witnesses is at least
(3/4)(m− 1).

In other words, if m is composite, there are plenty of witnesses to this fact. So how should we
test if a given m is prime?

Since this is a probability class, you know the answer! Namely, pick a random a and test if it
is a witness. Probability and computing were not so famously together back in 1975, so it actually
took someone else, Michael Rabin, to point this out (he also proved Fact 2 above). The following
is thus known as the Miller-Rabin test:

Algorithm Miller-Rabin(m):
a← RandInt(m− 1).
if Miller-Test(m, a) determines a is a witness, output ‘‘composite’’
else output ‘‘prime’’

By Fact 2 above, we conclude the following:

Theorem 3. Miller-Rabin is an efficient (Õ(k2) time) randomized algorithm for primality testing
such that:

2This was all in his Ph.D. thesis, by the way.

2

� If m is prime, the algorithm always gives the correct answer.

� If m is composite, the probability the algorithm gives the wrong answer is ≤ 1
4 .

Of course, as we’ve seen several times now, if you don’t like a failure probability of 1/4, you
can repeat the algorithm 100 times and make the failure probability at most 4−100.

1.2 Remarks on primality and factoring

There are a lot of fascinating algorithms and theorems surrounding primality and factoring.

1. For a long time, primality-testing and the Miller-Rabin algorithm gave the most famous
example of a problem which could be solved efficiently with a probabilistic algorithm, but
for which there was no known efficient deterministic algorithm. After decades of research
(centuries, in some sense), this changed dramatically in 2002, when Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena gave a deterministic algorithm testing primality in polynomial time
(now called the “AKS Algorithm”). That said, the fastest known variant of their algorithm,
due to Pomerance and H. Lenstra, runs in time Õ(k6) for k-bit numbers, far slower than the
Miller-Rabin algorithm. Miller-Rabin is still by the algorithm of choice for testing primality
in practice.

2. Actually, although the converse of Fermat’s Little Theorem is false, just checking whether
2m−1 = 1 (mod m) is an excellent primality test if m is a randomly chosen k-bit number.
We know that Carmichael numbers (and others) will fool this test, but it turns out there are
extremely few k-bit Carmichael numbers. Indeed, suppose you pick a random k-bit number
and just check whether 2m−1 = 1 (mod m), outputting “prime” is this holds and “composite”
otherwise. Of course, if m is prime your output will be correct. But Pomerance showed that
if m is composite, the probability the algorithm wrongly outputs prime is roughly 2−k/ log k

— really small! So if you are only trying to find a random prime, just doing the “Fermat
Test” with a = 2 will almost certainly give the right answer.

3. For certain non-cryptographic applications, you don’t actually need a random prime. You
just need any k-bit prime. Some people have wondered if there is an efficient deterministic
algorithm for finding any old k-bit prime — I mean, we know how to test if a number is prime
deterministically (AKS) and we know from the Prime Number Theorem that the fraction of
k-bit numbers which are prime is pretty large: at least 1/2k. But in fact, no one knows
how to do this! The fastest known deterministic algorithm for finding a k-bit prime takes
time roughly 2

√
k. But things may change soon — perhaps even this week! There is a

large-scale, online, public mathematical collaboration working on this problem as we speak,
with several famous mathematicians and computer scientists participating! Check it out at
http://polymathprojects.org.

4. For some cryptographic problems, what you really want is a random number between 1 and
2k, along with its factorization. Now, this looks totally infeasible — on one hand, how can
you get a random number except by calling RandInt(2k). And then once you have it, how
can you get its factorization without running an extremely slow, 2k1/3

or so, time algorithm?
Shockingly, there is an efficient algorithm for this problem! You will prove it on Homework 2!

3

2 The Birthday Problem (or “Paradox”, or “Attack”)

You have probably seen the Birthday Problem before. Along with the Monty Hall Problem, it is the
ultimate probability chestnut. Whereas Monty Hall depends on the precise wording of the problem
(which is sometimes confusing) and is ultimately not especially interesting, the Birthday Problem
actually comes up a lot and has important consequences. It is sometimes called the Birthday
“Paradox” because it seems very surprising at first. And in cryptography, it’s called the Birthday
Attack, for reasons we’ll see.

Question: There are m students in a room. What is the probability they all have different
birthdays?

Modeling: We ignore Feb. 29 and possible seasonal variation in birthdays. More precisely, we
model the birthdays like this:

for i← 1 . . . m,
student[i].birthday ← RandInt(365)

For example, suppose m = 40. A common mistake is:

FALLACY: Pr[all different birthdays] = 1−Pr[2 with same birthday] = 1− 40
365 .

You can tell this is wrong almost by “type-checking”: If m = 366 the answer should be 0 (by
the Pigeonhole Principle), but the above fallacious argument would give a negative probability!
Here is the correct solution:

Answer: Imagine going through the loop. For each i = 1 . . . m, let Ai be the event that
student[i]’s birthday differs from all the previously chosen birthdays. Let D be the event that all
birthdays are different. Thinking carefully, we see that

D = A1 ∩A2 ∩A3 ∩ · · · ∩Am.

(Also note that A1 = Ω!) By the “Chain Rule”,

Pr[D] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] · · ·Pr[Am | A1 ∩A2 ∩ · · · ∩Am−1].

So what is, say, Pr[Ai | A1 ∩ · · · ∩ Ai−1]? The event being conditioned on, A1 ∩ · · · ∩ Ai−1 means
that the first i− 1 students all had different birthdays. So out of the 365 possible birthdays, some
i − 1 distinct dates are occupied. Given that, the probability that the ith birthday chosen differs
from all the previous ones, is

Pr[Ai | A1 ∩ · · · ∩Ai−1] =
365− (i− 1)

365
,

assuming m ≤ 365. Thus

Pr[D] =
365− 0

365
· 365− 1

365
· 365− 2

365
· · · 365− (m− 1)

365
.

This is the final answer.

Here is a plot of this probability as a function of m:

4

Here is a plot of “one minus this probability” — i.e., the probability of having at least one pair
of matching birthdays:

5

Perhaps surprisingly, as you can see from the second plot, once m ≥ 23, the probability of
having a birthday match is greater than 50-50. So in a class our size, there should be a reasonable
chance of a match. It is traditional in probability classes to try this out. It is also traditional for
it to backfire and not work :)

2.1 Generalized Birthday Problem, and approximations

Instead of fixing the magic number 365, let’s introduce the Generalized Birthday Problem. In the
Generalized Birthday Problem, each of m students has a random number (“birthday”) drawn from
RandInt(N). The Birthday Problem is the case N = 365. By the same analysis, the probability
that all m numbers are distinct is

Pm =
N − 0

N
· N − 1

N
· N − 2

N
· · · N − (m− 1)

N
= (1− 1/N) · (1− 2/N) · · · (1− (m− 1)/N).

This is hard to analyze, so we use the Most Useful Approximation Ever. Assuming m � N we
have that each i/N is “small”, and hence 1− i/N ≈ e−i/N . I.e.,

Pm ≈ e−1/Ne−2/N · · · e−(m−1)/N = e−1/N−2/N−···−(m−1)/N = e−
(m−1)m

2N ,

where we used that the sum of 1 through m− 1 is (m−1)m
2 . The above gives a very nice closed-form

approximation (which is accurate assuming m� N).

Given it, we can ask, what value of m is the 50-50 point? I.e., for what value of m do we have
Pm ≈ 1/2? Well, that’s

1/2 = e−
(m−1)m

2N ⇒ ln 2 =
(m− 1)m

2N
⇒ (2 ln 2)N = (m− 1)m ≈ m2

⇒ m ≈
√

2 ln 2
√

N = 1.18
√

N.

I.e., the break-even point is asymptotic to
√

N . The approximations we made, by the way, are
extremely accurate. Even for the relatively small N = 365 the approximation gives a break-even
of m ≈ 22.5, whereas the true 50-50 point is m ≈ 23.

2.2 The Birthday Attack

In Cryptography, a “Cryptographic Hash Function” is a map which “scrambles” long strings into
k-bit “hashes”. A good Cryptographic Hash Function f has two properties:

� Given the hash f(M) of a message string M , it’s computationally infeasible to recover M .

� It’s computationally infeasible to find a “collision”, meaning a pair of distinct messages M1 6=
M2 such that f(M1) = f(M2).

Cryptographic Hash Functions are used all the time, in authentication schemes, data integrity
schemes, digital signatures, e-cash, etc. Ron Rivest (of RSA) proposed the first popular Cryp-
tographic Hash Function, called MD5. Later, the NSA proposed one called SHA (also known as
SHA-0). Later, the NSA mysteriously decided that SHA was unsafe, and promoted a successor
called SHA-1. SHA-1 is used now quite widely, in SSL, PGP, and other protocols; it has a k value

6

of 160.

Suppose we try to “break” a hash function by finding a collision. (If we can do this, it’s possible
to, e.g., trick people into digitally signing stuff.) One way to do this is to just take a huge number
of messages M , hash them all, and hope to find two with the same hash value. If a hash function f
is really safe, it basically means that f(M) acts like a random number between 1 and 2k. Assuming
this, how many messages would you have to try before there was at least a 50% chance of finding
two with the same hash? This is precisely the Generalized Birthday Problem, with N = 2k. Thus
our above analysis says that we’d need to try about

√
2k = 2k/2 many messages. For SHA-1, this

is 280 messages.

In general, any Cryptographic Hash Function designer should be aware of the “Birthday At-
tack” — i.e., trying to find collisions by testing many random messages. A Cryptographic Hash
Function is typically thought of as “broken” in the crypto community if there is a way of finding
collisions much faster than by the Birthday Attack.

And indeed, SHA-1 is now considered broken! In February 2005, Xiaoyun Wang (and two
students) gave a method for finding SHA-1 collisions with about 269 tests. Note that this is about
2000 times faster than the Birthday Attack. Later, Wang (and two more coauthors) got it down to
263; i.e., about 130, 000 times faster than the Birthday Attack! Consequently, “SHA-2”, and indeed
“SHA-3” is on the way. . .

Xiaoyun Wang

3 Random Variables

That’s enough cryptography applications for now. We’ll now go back to our regularly scheduled
programming: basic probability theory. We move on from events to random variables. Random
variables have a slightly confusing nature, but are a very important concept. In fact, in the end
we’ll talk about them a lot more than we’ll ever talk about events.

Sort of the definition: Suppose you have an experiment (block of randomized code). Suppose
X is one of the variables used and suppose that its data type is “real”. If we consider X’s value at
the end of the execution, we call that a random variable.

(A tiny point: X should always be defined, so please make sure you initialize all your variables :)

Here is a “rolling two dice” kind of example:

7

S ← RandInt(6) + RandInt(6)
if S = 12,

I ← 1
else

I ← 0

As usual we draw the probability tree. Let’s also write down the variables’ values at the
outcomes. (Only partial details are shown in the below diagram.)

Here there are two random variables, S and I.

Math textbooks don’t normally define random variables this way. Actually, they don’t define
sample spaces and probabilities like we do either. For those, they often just tell you Ω and tell you
the probabilities (summing to 1) of each outcome — they don’t actually give a random experiment
generating these outcomes and probabilities. There’s a similar way to introduce random variables:
just associate a real number to each outcome.

Official math definition: A random variable X is a function Ω → R from outcomes to real
numbers.

In our example, we have

S((1, 1)) = 2, S((1, 2)) = 3, · · · S((6, 6)) = 12,

I((1, 1)) = 0, I((1, 2)) = 0, · · · I((6, 6)) = 1.

By the way, it is extremely standard practice for random variables to be denoted by capital
letters. So far this doesn’t look so great because we also denote events by capital letters, but there
you have it. Most frequently, capital letters will mean random variables — especially letters like
X, Y , Z.

8

15-359: Probability and Computing
Fall 2009

Lecture 5: Random variables, indicators, expectation and linearity thereof, PMFs

1 Random Variables

Today’s lecture will be all about random variables.

1.1 Recall from last lecture

Remember from last time, we essentially had two definitions of what a random variable is:

Sort of the definition: Suppose you have an experiment (block of randomized code). Suppose
X is one of the variables used and suppose that its data type is “real”. If we consider X’s value at
the end of the execution, we call that a random variable.

Official math definition: A random variable X is a function Ω → R from outcomes to real
numbers.

Let’s also recall the “rolling two dice” scenario we were discussing last time:
S ← RandInt(6) + RandInt(6)
if S = 12,

I ← 1
else

I ← 0

There are two random variables (so far), S and I. Here is the associated probability tree, with
the variables’ values at the outcomes. (Only partial details are shown in the below diagram.)

In the official way of looking at things, with random variables as functions from the sample
space to the reals, we have

S((1, 1)) = 2, S((1, 2)) = 3, · · · S((6, 6)) = 12,

I((1, 1)) = 0, I((1, 2)) = 0, · · · I((6, 6)) = 1.

1

1.2 Introducing Random Variables (r.v.’s)

We are already getting a little familiar with random variables, as you can tell from the fact that
we have started casually abbreviating them as “r.v.’s”. One thing about random variables that
takes some getting used to is that there are several ways to “introduce” them when you’re solving
a probability problem. E.g.,

1. Retroactively: For example, having shown the above “rolling two dice” experiment, one
might say, “Let D be the random variable given by subtracting the first roll from the second
roll.” In terms of r.v.’s as functions from the sample space into the reals, this of course means

D((1, 1)) = 0, . . . , D((5, 3)) = −2,

etc.

2. In terms of other r.v.’s: Again, after the example we may say something like, “Let
Y = S2 +D.” Then Y is a random variable, and, e.g., Y ((2, 3)) = 26 (i.e., on outcome (2, 3),
the r.v. Y takes the value 26). Sometimes, we don’t even bother to give a random variable
like this its own name! For example, we may just say, “The random variable S3 +2D−4. . . ”.

Let’s do a further example: Suppose you win $30 if the roll is double-sixes, and you lose $1
otherwise. Let W be the r.v. representing your winnings, in dollars. Then, to relate W to
r.v.’s already defined, we have

W = 31 · I − 1.

3. Without bothering to introduce an experiment: Finally, sometimes we take things so
far as to introduce a random variable without even explicitly giving an experiment (code)
which generates it. For example, it is very common to say something like, “Let T be a
random variable which is uniformly distributed on1 {1, 2, . . . , 100}.” Such an English-language
sentence should be translated to:

T ← RandInt(100).

Similarly, the English-language sentence “Let X be a Bernoulli random variable with param-
eter p.” should be translated to

X ← Bernoulli(p).

Note: People often call the parameter p the “success probability”. It’s a weird term, we agree,
but you’ll need to get used to it.

4. By PMF: We’ll see what this means later in the lecture.

1.3 From Random Variables to Events

You will often use r.v.’s to define events. For example, in our rolling-two-dice experiment, we might
say something like, “Let A be the event that S ≥ 10.” This means

A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)},

which in turn implies
Pr[S ≥ 10] = 6/36 = 1/6.

1“Uniform on” or “uniformly distributed on” means that each outcome is to have equal probability.

2

Note that in this second statement, the expression “S ≥ 10” denotes an event. It is shorthand for
the event

{` : S(`) ≥ 10}.

Similarly (recalling the r.v. D), we have

Pr[D = 1] = 5/36,

because D = 1 is shorthand for the event equal to {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}.

1.4 From Events to Random Variables: Indicator Random Variables

There is a very frequently used way of defining random variables from events, too:

Definition 1. Let A be an event. The indicator of A is the random variable X which is 1 if A
occurs and is 0 if A does not occur. More formally, if Ω is the sample space in which A lives, we
have the definition

X : Ω→ R, X(`) =

{
1 if ` ∈ A,
0 if ` 6∈ A.

Please don’t forget about indicator random variables; it seems like a somewhat useless little
definition, but it will come up a lot.

2 Expectation / Expected Value

The most common thing you will ever do with a random variable is calculate its “expected value”;
i.e., its “average value”. This is, by the way, the notion with the most aliases in all of probability!

Definition 2. The expected value AKA expectation AKA mean (occasionally AKA average) of
the random variable X : Ω→ R is defined by

E[X] =
∑
`∈Ω

Pr[`] ·X(`).

(Sometimes our sample spaces Ω will be countably infinite. In that case, there are potential
caveats about infinite sums. We will not worry about them for now.)

Intuitively, the expectation (AKA mean, AKA expected value. . .) is what you feel the average
value of X would be if you ran your experiment millions and millions of times. Let’s do some
examples:

� Let R← RandInt(6). Then

E[R] =
1
6
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 4 +

1
6
· 5 +

1
6
· 6 =

21
6

= 3.5.

Note here that the expected value, 3.5, is not actually a value that the random variable R
ever takes!

3

� Our “gambling winnings” example when we roll two dice:

W (`) =

{
+30 if ` = (6, 6),
−1 else.

Then

E[W] =
1
36
· (−1) +

1
36
· (−1) + · · ·+ 1

36
· (−1) +

1
36
· (30)

= −35
36

+
30
36

= − 5
36

= −13.9 cents.

� Let S ← RandInt(6) + RandInt(6). Then

E[S] =
1
36
· 2 +

1
36
· 3 +

1
36
· 4 + · · ·+ 1

36
· 12 = · · · = 7.

Here the terms corresponding to outcomes (1, 1), (1, 2), (1, 3), and (6, 6) are shown above,
and we’ve omitted some laborious arithmetic which leads to the answer 7.

2.1 Linearity of Expectation

The calculations involved in that last example, the expected value of the sum of two dice, are a bit
laborious. How can we simplify them?

The following is the #1 trick you will ever use in probability. It seems so obvious at first, but
weirdly enough, it’ll seem less obvious the more you use it! In any case, it’s the best probability
trick ever. It is called. . .

Linearity of Expectation: Let X and Y be any random variables at all (defined over the same
sample space Ω). Then

E[X + Y] = E[X] + E[Y].

Proof. The proof is a most straightforward calculation. Let Z = X + Y (a random variable,
remember). Then

E[Z] =
∑
`∈Ω

Pr[`] · Z(`)

=
∑
`∈Ω

Pr[`] · (X(`) + Y (`))

=
∑
`∈Ω

(Pr[`] ·X(`) + Pr[`] · Y (`))

=
∑
`∈Ω

(Pr[`] ·X(`)) +
∑
`∈Ω

(Pr[`] · Y (`))

= E[X] + E[Y].

The first, second, and last lines are “by definition”. The other two lines are just arithmetic.

4

Also: Also falling under the “Linearity of Expectation” is umbrella is the fact that

E[cX] = cE[X]

for any constant c ∈ R and any random variable X. The proof is similar and easier.

Let’s do some examples to try out this wonderful Linearity of Expectation trick. We’ll start with
the rolling two dice example. Let R1 be the first die’s value (a random variable) and let R2 be the
second die’s value. As we’ve seen before, we have E[R1] = 3.5 and E[R2] = 3.5. Let S = R1 + R2,
the random variable giving the sum of the two dice. Then by Linearity of Expectation,

E[S] = E[R1 + R2] = E[R1] + E[R2] = 3.5 + 3.5 = 7,

just as calculated before.

Linearity of Expectation also implies that for any random variables X1, . . . , Xn,

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

You can easily prove that yourself by induction, from the case of adding two random variables. As
a corollary, we get, e.g., that

E[sum of 100 dice] = 350.

You’d never make it to this result if you did, “With probability 1/6100, the outcome is (1, 1, . . . , 1),
and the sum is 100. With probability 1/6100 the outcome is. . . ”!

2.2 Another trick: the expectation of an indicator random variable

Let’s quickly look at another simple trick, which plays extremely nicely with our favorite trick,
linearity of expectation.

Trick 2: Let A be an event, and let I be the indicator random variable for A. Then

E[I] = Pr[A].

Proof. The proof is very simple:

E[I] =
∑
`∈Ω

Pr[`] · I(`) =
∑
`∈A

Pr[`] · 1 +
∑
` 6∈A

Pr[`] · 0 =
∑
`∈A

Pr[`] = Pr[A].

Simple, but useful; please remember it.

2.3 A formula for expectation

Here is a formula for the expected value of a random variable that you might have seen before. In
fact, you might have seen it as the definition of the expectation. However, we prefer to make the
definition we made, and treat this as a formula:

5

Expectation formula:
E[X] =

∑
u∈range(X)

Pr[X = u] · u.

Note here that the u’s are real numbers, the expression range(X) means the set of real numbers
that X might take on, and the expression X = u is an event.

Proof. The proof can be thought of as following the “counting two ways” technique. The idea is
to group together all the outcomes in which X takes the same value.

E[X] =
∑
`∈Ω

Pr[`] ·X(`)

=
∑

u∈range(X)

∑
` such that

X(`)=u

Pr[`] ·X(`) (here is the grouping step)

=
∑

u∈range(X)

∑
` such that

X(`)=u

Pr[`] · u

=
∑

u∈range(X)

u ·
∑

` such that
X(`)=u

Pr[`]

=
∑

u∈range(X)

u ·Pr[X = u].

In the second-to-last line here we pulled the u out of the inner summation, since this summation
does not depend on u. In the last line, we simply used the definition of Pr[X = u] = Pr[{` :
X(`) = u}].

Let’s see how this formula can speed up computations by doing an example. Remember the
random variable W , our winnings in dollars in the game where we get $30 for double-sixes and lose
$1 otherwise? Here range(W) = {30,−1}, so we can now compute as follows:

E[W] = Pr[W = +30] · 30 + Pr[W = −1] · (−1) =
1
36
· 30 +

35
36
· (−1) = − 5

36
,

just as before.

Here’s yet another way to compute E[W], using an indicator random variable. Remember we
noticed that W = 31 · I − 1, where I is the indicator random variable for the event of double-sixes,
i.e., {(6, 6)}. You can think of this as

W = 31 · I + L,

where L is the random variable which is always −1. This might seem like a weird random variable,
but it’s perfectly valid. Again, it’s the function which associates to each of the outcomes the

6

value −1. Now

E[W] = E[31 · I + L]
= 31 ·E[I] + E[L] (by linearity of expectation)
= 31 ·Pr[double-sixes] + (−1) (since the expectation of an indicator

is the probability of the associated event)

= 31 · 1
36
− 1

= − 5
36

.

As you become more comfortable with random variables, you will stop introducing a special name
like L for the random variable which is always −1; you’ll just refer to this random variable as −1.
And you’ll just write,

E[W] = E[31 · I − 1]
= 31 ·E[I]− 1

etc.

3 Probability Mass Functions (PMFs)

To introduce the concept of probability mass functions, let’s do another practice problem on com-
puting expectations:

Question: Suppose X is a uniformly random integer between 1 and 10 (i.e., X ← RandInt(10)).
What is E[X mod 3]?

Answer: The sample space here is Ω = {1, 2, . . . , 10}. Let Y be the random variable X mod 3.
Then Y ’s range is {0, 1, 2}, and

E[Y] = 0 ·Pr[Y = 0] + 1 ·Pr[Y = 1] + 2 ·Pr[Y = 2]
= Pr[Y = 1] + 2 ·Pr[Y = 2]
= Pr[{1, 4, 7, 10}] + 2 ·Pr[{2, 5, 8}]
= 4/10 + 2 · (3/10) = 1.

As you can see from this example, in computing E[Y] we didn’t care too much about how Y
was generated; really, we just needed to know Pr[Y = u] for each number u. Similarly, looking at
the expected value formula,

E[X] =
∑

u∈range(X)

Pr[X = u] · u,

you see that given an r.v. X it’s quite handy to know the value of Pr[X = u] for each real number
u that X might take on. Let’s give a definition for that:

Definition 3. Given a random variable X, its probability mass function (PMF) is the function
pX : R→ R defined by

pX(u) = Pr[X = u].

7

Note that a PMF is 0 on most inputs u; it’s only nonzero on the numbers which are in X’s range.2

Here are some easy-to-check facts about PMFs:

�
∑

u∈range(X) pX(u) = 1 always, since the events {X = u} partition Ω.

� Pr[X ∈ S] =
∑

u∈S pX(u) for any set S ⊆ R.

� Our formula for expected value can be rewritten as

E[X] =
∑

u∈range(X)

u · pX(u).

In fact, practically everything you want to know about a random variable X can be determined
from its PMF. You rarely need to know how X was generated, or what Ω is. Only if you’re literally
interested in the question, “how did we get X?” do you need to know anything beyond X’s PMF.
Because of this, very often a random variable is just specified by its PMF.

For example, we might say something like, “Let X be the random variable with pX(1) = 1/6,
pX(2) = 1/3, and pX(3) = 1/2.” You should try translating this into a simple piece of randomized
code which sets X as desired. To be a legal PMF, we must have the following three conditions:

� pX(u) ≥ 0 for all u ∈ R,

� pX(u) 6= 0 for at most countably many u ∈ R,

�
∑

u pX(u) = 1.

3.1 Joint PMFs

Let’s now talk about issues that come up when dealing with more than one random variable. We’ll
begin with an example experiment:

X ← RandInt(2)
Y ← RandInt(1 + X)

Here is the associated probability tree, with the values of the two random variables X and Y
given at each outcome:

2and there are at most countably infinite many such inputs

8

Let’s compute the PMFs of X and Y :

pX(1) = 1/2, pX(2) = 1/2

pY (1) = 1/4 + 1/6 = 5/12, pY (2) = 1/4 + 1/6 + 5/12, pY (3) = 1/6

Great! Now that we know the PMF of X, computing its expectation is no problem:

E[X] = (1/2) · 1 + (1/2) · 2 = 3/2.

Similarly, now that we know the PMF of Y , computing its expectation is no problem:

E[Y] = (5/12) · 1 + (5/12) · 2 + (1/6) · 3 = 7/4.

What about E[XY]? Easy: it’s E[X]E[Y] = 21/8, right? No!

FALLACY: E[XY] = E[X]E[Y].

What is the actual value of E[XY]? Well, let’s go right back to the definition:

E[XY] =
∑
`∈Ω

Pr[`]X(`)Y (`) = (1/4) ·1 ·1+(1/4) ·1 ·2+(1/6) ·2 ·1+(1/6) ·2 ·2+(1/6) ·2 ·3 = 11/4.

As you notice, 11/4 6= 21/8, demonstrating the fallaciousness of the fallacy. What we see here is
that to understand the expectations of expressions involving two random variables X and Y , it’s not
enough in general to know the PMF of X and the PMF of Y . You need to know the probabilities
of each pair of values they may take. This leads us to the following definition, a generalization of
PMFs:

Definition 4. The joint PMF of two random variables X and Y is the function

pXY : R2 → R

defined by
pXY (u, v) = Pr[X = u and Y = v].

I.e., for each pair of real numbers (u, v) that (X, Y) can take on, the joint PMF tells us the
probability of this occurring. It’s good to think of joint PMFs in a table,

with the possible X values as rows, the possible Y values as columns, and the probabilities of (X,Y)
pairs in the cells. For example, the above table for pXY tells us that pXY (2, 3) = 1/, pXY (1, 3) = 0,
etc. Or, one can think of showing the PMF as a bar chart,

9

Given a joint PMF of X and Y , it’s easy to get the (single) PMF of each of them: to get the
PMF of X sum the rows; to get the PMF of Y sum the columns. From the above table we see that
this indeed gives

pX(1) = 1/4 + 1/4 = 1/2, pX(2) = 1/6 + 1/6 + 1/6 = 1/2,

and

pY (1) = 1/4 + 1/6 = 5/12, pY (2) = 1/4 + 1/6 = 5/12, pY (3) = 0 + 1/6 = 1/6,

just like we calculated before.

More importantly, with the joint PMF of X and Y , you can calculate more easily the expectation
of any “function of X and Y ”; here’s the formula, just like the formula for the expectation of one
random variable:

Formula: Given any function of X and Y , say f(X, Y), we have

E[f(X, Y)] =
∑
u,v

pXY (u, v) · f(u, v).

In the case f(X, Y) = XY , you can see how this formula gives us E[XY] = 11/4 as in our previous
calculation. It’s important that you get a lot of practice in working with joint PMFs, so let’s do
another example.

Question: What is E[Y
X]?

Answer: In light of the fallacy, you can be sure it’s not E[Y]
E[X] ! Instead, using the formula and

then the table for the joint PMF pXY of X and Y , we have:

E
[

Y

X

]
= pXY (1, 1) · 1

1
+ pXY (1, 2) · 2

1
+ pXY (1, 3) · 3

1
+ pXY (2, 1) · 1

2
+ pXY (2, 2) · 2

2
+ pXY (2, 3) · 3

2

= (1/4) · 1 + (1/4) · 2 + 0 · 3 + (1/6) · 1
2

+ (1/6) · 1 + (1/6) · 3
2

=
5
4
.

10

Finally, of course, all of this joint PMF theory generalizes to the case of 3 or more random
variables. For example, given three random variables X, Y , and Z, they have a joint PMF

pXY Z(u, v, w) = Pr[X = u and Y = v and Z = w];

and, if you are interested in E[g(X, Y, Z)] for some function g of the three random variables, the
formula is

E[g(X, Y, Z)] =
∑
u,v,w

pXY Z(u, v, w) · g(u, v, w).

11

15-359: Probability and Computing
Fall 2009

Lecture 6: Independent r.v.’s, conditional expectation, Binomial and Geometric r.v.’s,
Linearity of Expectation + Indicators method, Max-Cut

In this lecture we will begin by reviewing the PMFs (or “distributions”) of random variables
and do some more theory of multiple random variables. Then we’ll see your two favorite kinds of
random variables, plus one of your favorite techniques for solving expectation problems. . .

1 Multiple random variables

1.1 Joint PMFs

We ended the last lecture discussing joint PMFs of random variables, and how to compute expec-
tations of quantities depending on several random variables. Let’s recall the definition:

Definition 1. The joint PMF of random variables X1, . . . , Xn is the function

pX1X2···Xn : Rn → R

defined by

pX1X2···Xn(u1, . . . , un) = Pr[X1 = u1 and X2 = u2 and · · · and Xn = un].

E.g., last time we discussed the case of two random variables, X and Y , generated as follows:

X ← RandInt(2)
Y ← RandInt(1 + X)

When you have just two random variables, it’s always a good idea to think of their joint PMF
in a table — in this case,

with the possible X values as rows, the possible Y values as columns, and the probabilities of (X,Y)
pairs in the cells. For example, the above table for pXY tells us that pXY (2, 3) = 1/, pXY (1, 3) = 0,
etc. Or, one can think of showing the PMF as a bar chart,

1

Given a joint PMF of X and Y , it’s easy to get the (single) PMF of each of them: to get the
PMF of X sum the rows; to get the PMF of Y sum the columns. From the above table we see that
this indeed gives

pX(1) = 1/4 + 1/4 = 1/2, pX(2) = 1/6 + 1/6 + 1/6 = 1/2,

and

pY (1) = 1/4 + 1/6 = 5/12, pY (2) = 1/4 + 1/6 = 5/12, pY (3) = 0 + 1/6 = 1/6,

as we calculated in the last lecture.

With the joint PMF of random variables, you can calculate the expectation of any function of
them. For example, suppose you have two random variables X and Y . Then:

Formula: Given any function of X and Y say f(X, Y), we have

E[f(X, Y)] =
∑
u,v

pXY (u, v) · f(u, v).

The analogous formula of course holds when you have 3 random variables, or n random variables.
Let’s do an example with our specific X and Y from above:

Question: What is E[Y
X]?

Answer: Using the formula and then the table for the joint PMF pXY of X and Y , we have:

E
[

Y

X

]
= pXY (1, 1) · 1

1
+ pXY (1, 2) · 2

1
+ pXY (1, 3) · 3

1
+ pXY (2, 1) · 1

2
+ pXY (2, 2) · 2

2
+ pXY (2, 3) · 3

2

= (1/4) · 1 + (1/4) · 2 + 0 · 3 + (1/6) · 1
2

+ (1/6) · 1 + (1/6) · 3
2

=
5
4
.

2

1.2 Independence of random variables

We talked about events being independent — there is also a definition of random variables being
independent. As with events, we’ll start with the case of two random variables.

Remember the Principle which let us infer that two events were independent? Let’s imagine
a similar scenario. Suppose you have two provably non-interacting blocks of randomized code.
Suppose X is a random variable whose value provably depends only on block 1, and Y is a random
variable whose value provably depends only on block 2. Then for each real u ∈ R, the event
“X = u” only depends on block 1; and similarly, for every v ∈ R, the event “Y = v” only depends
on block 2. Therefore by the Principle, these two events are independent. It follows (by definition)
that

Pr[(X = u) ∩ (Y = v)] = Pr[X = u]Pr[Y = v].

Recalling the definition of PMFs and joint PMFs, this can be equivalently stated as

pXY (u, v) = pX(u)pY (v). (1)

We take equation (1) as our definition of independence for random variables.

Definition 2. X and Y are independent random variables if and only if

pXY (u, v) = pX(u)pY (v) ∀u, v ∈ R.

Just as with events, the way things work in the real world is that you argue that X and Y are
independent using the Principle, and then you use equation (1).

Let us mention that one obvious-seeming fact is indeed a fact: Suppose X and Y are inde-
pendent random variables. Then f(X) and g(Y) are also independent random variables, for any
real functions f, g : R → R. For example, if X and Y are independent random variables, then
V = X2 − 1 and W = sin Y are also independent random variables. Of course, if the Princi-
ple was the reason X and Y were independent, then this is obvious — once the non-interacting
blocks of code compute X and Y , then can non-interactingly compute X2 − 1 and sin Y . But if
X and Y are independent for some other reason — i.e., if (1) holds merely “by a fluke” — then
it’s not immediately obvious. Still, it’s not too hard to prove, and you will do this on the homework.

We’ve seen the definition for two random variables. What about multiple random variables? As
you remember, the definition for a collection of events being independent is slightly complicated.
The one for multiple random variables is actually easier:

Definition 3. Random variables X1, . . . , Xn are independent if and only if

pX1X2···Xn(u1, . . . , un) = pX1(u1)pX2(u2) · · · pXn(un) ∀u1, . . . , un ∈ R. (2)

As you can see, it’s not exactly analogous — there’s none of that subset stuff. Why not? Ac-
tually, the above definition implies the analogous product rule for subsets — we’ll let you think
about why, giving partial illustration in a homework problem.

By the way, one ridiculously common way to introduce random variables is to state their
distributions (i.e., PMFs) and to state that they are “independent”. In that case, you are being told
that the joint PMF of the random variables is given by the formula (2). In our world of randomized
code, this is also equivalent to just saying the random variables are generated by noninteracting
blocks of code.

3

1.3 E[XY] when X and Y are independent

Perhaps the most important fact of all about independent random variables is the following:

Theorem 4. If X and Y are independent random variables then

E[XY] = E[X]E[Y]

is true.

Proof. Using the formula,

E[XY] =
∑

u∈range(X)
v∈range(Y)

pXY (u, v) · uv

=
∑
u,v

pX(u)pY (v) · uv (by independence)

=
∑
u,v

upX(u) · vpY (v)

=
∑

u

upX(u)
∑

v

vpY (v)

=
∑

u

upX(u)E[Y]

= E[Y] ·
∑

u

upX(u)

= E[Y]E[X]

which of course also equals E[X]E[Y].

The analogous statement for more than 2 random variables is also true:

Theorem 5. If X1, X2, . . . , Xn are independent random variables then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].

Finally, bear in mind that if, e.g., X, Y , and Z are independent, then so are f(X), g(Y), and
h(Z); hence, you can deduce things like

E[X2(Y − 1) sin Z] = E[X2]E[Y − 1]E[sin Z].

1.4 Conditional Expectation

We can condition expected values on an event. The definition is the “obvious” one:

Definition 6. Let A be an event (with Pr[A] 6= 0) and X a random variable. Then the conditional
expectation of X given A is

E[X | A] =
∑
`∈Ω

Pr[` | A]X(`).

4

We can also use the formula

E[X | A] =
∑

u∈range(X)

u ·Pr[X = u | A].

Here is a ridiculously important fact for calculation method, analogous to the Law of Total
Probability:

Theorem 7. Let A1, . . . , An be a partition of Ω. Then

E[X] =
n∑

i=1

Pr[Ai]E[X | Ai].

Recall that given another random variable Y and a value v ∈ R, the expression “Y = v” is an
event. As a corollary, we have:

Corollary 8. Let X and Y be random variables. Then

E[X] =
∑

v∈range(Y)

Pr[Y = v] ·E[X | Y = v].

This is because the collection of all events Y = v partition Ω.

2 Our favorite kinds of random variables

Let me tell you about your two favorite kinds of (discrete) random variables. Perhaps you did not yet
know what your favorites are, but you will soon :) Right now we are pretty familiar with Bernoulli
random variables and random variables which have the uniform distribution on {1, 2, . . . ,m}. But
these random variables are a bit boring. Let’s see some more fun ones.

2.1 Binomial random variables

Definition 9. Let X1, . . . , Xn be independent Bernoulli random variables with parameter p. Let
X = X1 + X2 + · · ·+ Xn. We say that X is a binomial random variable with parameters n and p.
We write this as X ∼ Binomial(n, p).

The parameter n is a natural number; the parameter p is a real in the range [0, 1].

The first thing you should always ask yourself on encountering a random variable X is, “what is
the PMF of X?” Let’s answer that. In the natural experiment generating X there are 2n possible
outcomes; each is a string of 0’s and 1’s (representing the Xi values). For example, if n = 9, one
possible outcome is 001011100. The r.v. X has value u if and only if the outcome has u many 1’s,
and therefore n− u many 0’s. The probability of such an outcome is

pu · (1− p)n−u,

and the number of such outcomes is
(
n
u

)
. Therefore:

5

Formula: If X is a Binomial(n, p) random variable, its PMF is given by

pX(u) =
(

n

u

)
pu(1− p)n−u, u = 0, 1, 2, . . . , n.

As a quick check, we know that the sum of a PMF’s values should be 1. And indeed,

n∑
u=0

(
n

u

)
pu(1− p)n−u = (p + (1− p))n (by the “Binomial Theorem”)

= 1n = 1.

The second thing one tends to ask oneself after seeing a random variable is “what is E[X]?”
We could try to start computing

E[X] =
n∑

u=0

u ·
(

n

u

)
pu(1− p)n−u = · · ·

but of course, the smart way to compute E[X] is to use linearity of expectation:

E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = p + · · ·+ p = np.

Formula: If X ∼ Binomial(n, p), then E[X] = np.

As a small point, we often think of a Binomial(n, p) random variable X per se, with no reference
to any independent Bernoulli Xi’s summing to it; it’s just a random variable with the PMF given
above. Of course, if you want you can introduce the Xi’s and act as though they existed all along.

2.2 Geometric random variables

Definition 10. Suppose we repeatedly draw independent Bernoulli random variables with parame-
ter p > 0 until we get a 1. Let X denote the number of trials up to and including the first 1. We then
say that X is a geometric random variable with parameter p. We write this as X ∼ Geometric(p).

In other words, we are considering the following experiment:

X ← 1
while Bernoulli(p) = 0,

X ← X + 1

Please note that the range of possible values for X is {1, 2, 3, . . . }.1 This is our first example
of a random value whose range is not finite (it is countably infinite). Do not be alarmed! It’s cool.
Here is the associated probability tree for the above experiment; at each outcome we’ve written the
probability of the outcome and also X’s value:

1Do not think that “∞” is a possible value for X. “∞” is not a number.

6

It’s easy to see the PMF from this tree:

Formula: If X is a Geometric(p) random variable, its PMF is given by

pX(u) = (1− p)u−1p, u = 1, 2, 3, . . .

Again, let’s check that those values sum to 1:
∞∑

u=1

pX(u) =
∞∑

u=1

(1− p)u−1p = p · (1 + (1− p) + (1− p)2 + (1− p)3 + · · ·) = p · 1
1− (1− p)

=
p

p
= 1.

In the second-to-last step there we used the formula for the sum of a geometric series. This is where
the Geometric random variable gets its name.

Just as we sometimes “forget” how a Binomial-distributed r.v. X was generated (summing inde-
pendent Bernoullis), sometimes we “forget” about the experiment generating a Geometric random
variable X, and just remember its PMF, as given above. Once again, you can imagine introducing
the experiment if you want to.

What about the expected value of X, when X ∼ Geometric(p)? If I told you I was flipping a
coin with a 5% chance of heads and asked what the average number of flips required was to get a
head, well, you’d probably guess 20. And you’d be right!

Formula: If X ∼ Geometric(p), then E[X] = 1/p.

There are many fun and instructive ways to prove this; we encourage you to try to come up
with your own proof. Here is a fairly straightforward one. By definition, we have

E[X] =
∞∑

u=1

u · pX(u) = 1 · p + 2 · (1− p)p + 3 · (1− p)2p + 4 · (1− p)3p + · · · (3)

How do we evaluate this infinite series?2 Here’s a trick that works:
2For the worry-mathers among you: You might be concerned about infinite sums here. First, when a random

variable X has countably infinitely many possible outcomes, we make the following convention: E[X] is only defined
if E[|X|] < ∞: i.e.,

∑
u∈range(X) pX(u)|u| converges. In the particular case of a geometric random variable, this

means that before we declare E[X] = 1/p, we first have to verify that the series in (3) converges (note that |X| = X
already here). This justification is a straightforward application of the Ratio Test, assuming p 6= 0!

7

Take equation (3),

E[X] = 1 · p + 2 · (1− p)p + 3 · (1− p)2p + 4 · (1− p)3p + · · ·

and multiply it by 1− p, giving

(1− p)E[X] = 1 · (1− p)p + 2 · (1− p)2p + 3 · (1− p)3p + · · ·

Now subtract the second equation from the first, yielding

pE[X] = p + (1− p)p + (1− p)2p + (1− p)3p + · · ·

and we saw that this last sum is 1, when checking the PMF of X. Hence pE[X] = 1; i.e., E[X] = 1/p,
as claimed.

3 Linearity of Expectation + Indicators method

Now that we have a good amount of theory of random variables/expectation down, let’s solve some
problems.

One outstanding problem-solving technique is what we call the “Linearity of Expectation +
Indicators method’:

Linearity of Expectation plus Indicators method: Suppose that there are m different events
A1, . . . , Am that might occur, and you want to know the expected number/count that occur. Let
X be a random variable counting the number of events occurring, and write

X = X1 + X2 + · · ·+ Xm,

where Xi is the indicator random variable for event Ai. Use Linearity of Expectation to deduce

E[X] = E[X1] + E[X2] + · · ·+ E[Xm],

and then use the fact that the E[Xi] = Pr[Ai] to deduce

E[X] = Pr[A1] + Pr[A2] + · · ·+ Pr[Am].

Let’s do an example. The method is so great, we’ll do a couple more examples in the next
lecture.

3.1 The Enemybook Schism Problem

Do you know about Enemybook? Enemybook is an anti-social utility that disconnects you to the
so-called friends around you.3 It’s just like Facebook, except with “enemyships” connecting people,
rather than friendships.

Suppose that there are n students using Enemybook, and there are m enemyships among them.
(Enemyships are between pairs of students.) It’s natural to illustrate the state of Enemybook with
a graph: the nodes are students, the edges are enemyships. Here’s an example with n = 5, m = 6:

3Actually, Enemybook is a Facebook app created by Prof. O’Donnell’s colleague Kevin Matulef. Now with
SuperFlipOff app!

8

We’re interested in devising a schism in Enemybook: we want to split the students into two “teams”
so that many enemyships are “broken”. We’re trying to get really cohesive teams here, so we are
happy when two enemies get split up.

Here’s a really simple thing we can do: just divide the students into two teams at random. By
this we mean precisely:

for i← 1 . . . n
team[i]← RandInt(2)

Question: We say an enemyship is broken when the two enemies are put into different teams.
Let X be the number of broken enemyships when we pick two random teams as described above.
What is E[X]? I.e., how many enemyships do we break up on average?

Example division into two teams. Broken enemyships shown in red.

Let us tell you, it is pretty impossible to solve this by calculating the PMF of X, when you aren’t
given any specific information about the Enemybook graph. But, whenever you get a problem that
asks about the expected number of events (of a certain type) that occur, you should think about
using the Linearity of Expectation plus Indicators method.

Answer: As suggested by the method, the trick is to write X as a sum of indicator random
variables. Specifically, for each enemyship e in the graph, introduce an indicator random variable
Xe for the event Be that enemyship Be is broken. Recall this means that Xe = 1 if Be happens —
i.e., edge e is broken — and Xe = 0 if e is unbroken. The key observation is that

X =
∑

e in graph

Xe.

Remember, this is a fact about random variables: whatever the actual outcome is, if you add up
all the indicator variables (for an outcome), this gives the number of enemyships broken (for that
outcome). Hence by Linearity of Expectation,

E[X] = E

[∑
e

Xe

]
=
∑

e

E[Xe] =
∑

e

Pr[Be],

9

where the last step used the fact we saw in the last lecture, that the expectation of an indicator
random variable equals the probability of the event it indicates. But, for each edge e, we claim that
Pr[Be] = 1/2. This is just because this enemyship e gets broken up if and only if the two enemies
go to different teams, which clearly happens with probability 1/2. Hence we get

E[X] =
∑

e

(1/2) =
m

2
.

So the expected number of enemyships broken up is exactly half of the number of enemyships. Not
too bad!

3.2 Non-independence

Please note that in general, the collection of Be events is not independent. (Of course, the above
argument never suggested they were.) Let’s investigate this statement, since it will give us some
practice in analyzing independence.

Suppose we have two “disjoint” enemyships as shown below:

e joins students i and j and e′ joins students k and `. Are Be and Be′ independent events? Actually,
yes. To argue this, it suffices to say, “Be is completely determined by the team coin flips for i and
j. Be′ is completely determined by the team coin flips for k and `. And these pairs of coin flips do
not at all affect one another.”

What about the following case:

Are Be and Be′ independent? Actually yes — and this is a bit of a “trick”. The point is that you
can easily convince yourself that Pr[Be ∩Be′], the probability that both enemyships get broken, is
1/4. (Basically, regardless of i’s team, j and k have to be on different teams — 1/2 chance each,
independently.) And 1/4 is indeed Pr[Be] ·Pr[Be′]. So indeed Be and Be′ are independent here.

Finally, what about this case:

10

Are Be, Be′ , and Be′′ independent here? Finally, the answer is “no”, justifying our early statement
that the Be events are not in general independent. One way to see this is that Pr[Be∩Be′∩Be′′] = 0!
There’s just no way for all three enemyships to be simultaneously broken. But Pr[Be] · Pr[Be′] ·
Pr[Be′′] = 1/8 6= 0, so the three events are not independent.

3.3 Max-Cut

You might think that the Enemybook Schism problem is a bit silly, but it’s actually a dressed-up
version of an extremely well-known and basic algorithmic task called “Max-Cut”. Here you are
given a graph G and the task is to partition the vertices into 2 parts so that as many edges as pos-
sible are “cut” (broken). This problem comes up in practical applications, in circuit design, vision,
and statistical mechanics. There is a great deal of contemporary algorithmic work on coming up
with good Max-Cut algorithms.

Now it is known that the Max-Cut problem is actually “NP-complete”. (Indeed, it was one of
the very first problems to be shown NP-complete, by Karp in 1972.) This means it is highly unlikely
there is an efficient algorithm guaranteed to always find the cut-maximizing partition in an input
graph. But what if we don’t care about finding the absolute maximizing partition? What if we
are interested in just finding a pretty good partition that cuts a decent fraction of edges? Believe
it or not, the completely brain-dead-seeming randomized method just described (proposed first in
the mid 1970’s) was the best known efficient algorithm for about 20 years! It was not until the mid
1990’s that Michel Goemans and David Williamson came up with a better efficient algorithm (also
a randomized algorithm) whose expected-number-of-cut-edges was significantly better than m/2!
Specifically, the Goemans-Williamson algorithm guarantees finding a partition cutting at least .878
times as many edges as whatever the maximizing partition cuts.

11

15-359: Probability and Computing
Fall 2009

Lecture 7: Linearity + Indicators applications:
Max-Cut, Changes to the Minimum, Quicksort

This lecture is devoted to some applications illustrating the power of the “Linearity of Expec-
tation + Indicators” Method.

1 Max-Cut

Recall the “Enemybook Schism” problem from last time. You might think it a bit silly, but it’s
actually a dressed-up version of an extremely well-known and basic algorithmic task called “Max-
Cut”. Here you are given a graph G = (V,E) and the task is to partition the vertices into 2 parts
so that as many edges as possible are “cut”; i.e., go between part 1 and part 2. This problem comes
up in several practical applications, in circuit design, vision, and statistical mechanics. There is a
great deal of contemporary algorithmic work on coming up with good Max-Cut algorithms.

As we saw last time, the almost brain-dead algorithm of putting each vertex randomly into
either part 1 or part 2 has the property that if there are m edges, then the expected number of cut
edges is m/2; that is, half of them.

This is actually pretty good! It is known that the Max-Cut problem is actually “NP-complete”.
(Indeed, it was one of the very first problems to be shown NP-complete, by Karp in 1972.) This
means it is highly unlikely there is an efficient algorithm guaranteed to always find the cut-
maximizing partition in an input graph. So giving an efficient algorithm for cutting half of the
edges is pretty good!1

In fact, this completely trivial algorithm, first proposed in the mid 1970’s, was the best known
efficient Max-Cut algorithm for about 20 years! It was not until the mid 1990’s that Michel
Goemans and David Williamson came up with a better efficient algorithm (also a randomized
algorithm) whose expected-number-of-cut-edges is significantly better than m/2! Specifically, the
Goemans-Williamson algorithm guarantees finding a partition cutting at least .87856 times as many
edges as whatever the maximizing partition cuts.

1.1 Non-independence

Before going on, it’s nice to point out that in our analysis of the random algorithm for Max-Cut,
the events Be we introduced are not in general independent. Recall that Be was the event that the
particular edge e was cut. Let’s look carefully:

Suppose we have two “disjoint” enemyships/edges as shown below:
1You might like to prove that the natural greedy algorithm always cuts at least half the edges too, and does so

deterministically.

1

e joins students i and j and e′ joins students k and `. Are Be and Be′ independent events? Actually,
yes. To argue this, it suffices to say, “Be is completely determined by the team coin flips for i and
j. Be′ is completely determined by the team coin flips for k and `. And these pairs of coin flips do
not at all affect one another.”

What about the following case —

— are Be and Be′ independent? Actually yes — and this is a bit of a “trick”. The point is that you
can easily convince yourself that Pr[Be∩Be′], the probability that both enemyships/edges get cut is
1/4. (Basically, regardless of i’s team, j and k have to be on different teams — 1/2 chance each, in-
dependently.) And 1/4 is also equal to Pr[Be] ·Pr[Be′]. So indeed Be and Be′ are independent here.

Finally, what about this case?

Are Be, Be′ , and Be′′ independent here? Finally, the answer is “no”, justifying our early statement
that the Be events are not in general independent. One way to see this is that Pr[Be∩Be′∩Be′′] = 0!
There’s just no way for all three enemyships/edges to be simultaneously cut. But Pr[Be] ·Pr[Be′] ·
Pr[Be′′] = 1/8 6= 0, so the three events are not independent.

2 Changes to the Minimum

Here is another elegant problem that can be solved with the Linearity of Expectation + Indicators
method. Let’s say we have an array of N numbers, “data[]”. For simplicity, assume all the num-
bers in the array are distinct. We would like to compute the minimum of the numbers. Of course,
there’s nothing to do but the following:

Compute-Min:
min ←∞
for t← 1 . . . N

if data[t] < min

2

min ← data[t]
print "The new minimum is ", min (*)

Let’s assume that line (*) is very expensive. Indeed, output operations usually are far slower
than simple logical/arithmetic/assignment operations. Or, you might imagine that every time the
minimum changes, you have to go update a web page; or, every time the minimum changes, you
have to go rebuild a data structure. We will see an example of this last possibility on an upcoming
homework.

The question then becomes:

Question: How many times does line (*) get executed?

Answer: Well, it depends data[], naturally! Actually, let’s make one additional observation:
It doesn’t actually depend on the magnitudes of the values in data[]; it just depends on their
comparative magnitudes; i.e., which t corresponds to the smallest value, which t corresponds to the
second-smallest value, etc.

So what are the possibilities? Let’s think about two natural cases:

Worst case: It’s not too hard to see that the “worst case” is when the data array is sorted in
descending order. Then the minimum will change (i.e., we’ll execute (*)) for every single value of t.
I.e., in the worst case, there are N changes to the minimum.

Average case: What does this mean? Let’s assert that it means that each of the N ! different
possible orderings is equally likely. At the formal level of modeling, you can imagine you insert an
“experiment” (i.e., randomized code) at the beginning of the Compute-Min code which randomly
permutes data[]. Now sometimes (as we will see), it can be time-saving to literally do this, de-
pending on how expensive (*) really is. But even if we don’t, we can imagine scenarios in which
the data actually can be assumed randomly ordered. For example, suppose data[] was generated
by choosing each entry from RandInt(264). If you think about it, then each possible ordering of
data[] becomes equally likely (conditioning on no equal entries). Or at a less formal level, you
might just say, “Hey, in my application I don’t really expect anything in particular about the initial
ordering of data[], so I choose to model things probabilistically as if each possible ordering had
probability 1/N !.”

In any case, under this assumption, let X be the random variable giving the number of times
that line (*) is executed. What is E[X]?

As promised, we use the Linearity of Expectation + Indicators method. The obvious way to do
this is to first let At be the event that (*) is executed on step t. This introduces N events. Next,
let Xt be the indicator random variable for At. We now make the important observation that

X =
N∑

t=1

Xt.

3

Thus by linearity of expectation,

E[X] = E

[
N∑

t=1

Xt

]
=

N∑
t=1

E[Xt] =
N∑

t=1

Pr[At], (1)

where in the last step we used the fact that the expectation of an indicator random variable equals
the probability of the event it indicates.

Okay, now what is Pr[At]. If we think carefully about what At means, we see that

At = event that “data[t] is the minimum among {data[1], . . . , data[t]}”. (2)

We claim that the probability of this is precisely 1/t. We will give an argument for this which is
a bit informal compared to the arguments we’ve made in the class so far. (Indeed, as we all “get
used” to probability, we’ll start making more and more informal arguments. However, we should
all take the time once in a while to really check such statements 100% rigorously. We strongly
encourage you to do this here, with probability trees and combinatorics. . .) One can think of the
experiment of randomly permuting the N data items in the following nonstandard-but-equivalent
way: First, t out of the N data items are chosen, with equal probability 1/

(
n
t

)
of choosing each

possible subset. These items are then randomly permuted, forming the first t elements in the array.
Finally, the remaining N − t are randomly permuted, forming the last N − t elements of the array.

Take some time to convince yourself that this is equivalent to simply choosing a random per-
mutation of the N items.

Given this alternate way of looking at the experiment, one sees that the event At only depends
on the choice of the first t elements and how they’re permuted, not on how the remaining N − t
elements are permuted. Further, suppose we condition on which t elements get chosen to be the
first t. Then one of these elements is smallest, and when we do the permutation this smallest item
is equally likely to go into each of data[1], . . . , data[t]. Hence the probability the smallest item goes
into data[t] — which is Pr[At] — is precisely 1/t.

Again, please take some time to rigorously justify the overall argument to yourself.

Done? Great. Now we can continue from (1), knowing that Pr[At] = 1/t. We get

E[X] =
N∑

t=1

(1/t) = HN .

You may be asking, “What is HN?” Well, it’s defined to be
∑N

t=1(1/t). It’s called the “Nth
harmonic number”. It’s known to be quite close to lnN , the natural logarithm of N . More
precisely,

HN = lnN + γ ±O(1/N),

where γ = .577 · · · is the “Euler-Mascheroni constant”. Sometimes computer scientists get a little
slacky and just remember

HN ≤ O(logN).

4

You should definitely remember at least this. By the way, the reason that HN ≈ lnN is

N∑
t=1

(1/t) ≈
∫ N

1
(1/t) dt = ln t |t=N

t=1 = lnN − ln 1 = lnN.

So anyway, we have that the expected number of changes to the minimum, E[X], is about lnN .

Conclusion: The “average case” (O(logN) changes on average) is exponentially cheaper than
the “worst case” (N changes) for the number of changes to the minimum.

3 Quicksort

Let’s do an even more interesting — and also more complicated — example: Quicksort. “In prac-
tice” (whatever that means, exactly), it seems that Quicksort is one of the fastest and most popular
general sorting algorithms. One reason for this is that it is an “in-place” algorithm requiring no
additional storage. Another reason is that the code is pretty simple and operates well with respect
to the cache. The funny thing is, though, Quicksort is actually a very poor sorting algorithm from
the point of view of “worst-case” theoretical guarantees. But as we’ll see, Randomized Quicksort
has very good “average case” or “typical case” performance.

Here is the pseudocode for Quicksort, omitting implementation details:

Quicksort: Input is a list S = (x1, . . . , xn) of numbers (assumed distinct, for simplicity).
if n ≤ 1, return S
pick, somehow, a “pivot”, xm

compare xi to all other x’s (**)
let S1 = the list of x’s which are < xm

let S2 = the list of x’s which are > xm

recursively Quicksort each of S1, S2

return [S1, xi, S2]

Without formally doing the details (even though they are simple to do), please believe this:

Fact: The running time of Quicksort is proportional to the total number of comparisons made
across all executions of line (**).

How many comparisons Quicksort actually makes depends on two things: (i) the rule (not yet
specified) for how the pivot is chosen; (ii) the initial ordering of the data in the list. Intuitively,
good things happen when the pivot divides the list S into roughly equal-sized halves: then the
divide-and-conquer paradigm kicks in. But bad things can happen if this fails. Before doing some
analysis, let’s make the following assumption:

Assumption: The initial list consists of the values 1O, 2O, 3O, . . . , nO in some unknown order.

Really, we’re assuming here that the list consists of the value 1, 2, 3, . . . , n, but we’ll draw circles
around them to remind ourselves that these are data elements in the list. For analysis purposes,

5

this assumption is without loss of generality. The reason is that, just like with the Changes-to-the-
Minimum problem, the algorithm/analysis does not depend on the actual magnitudes of the data,
just the comparative magnitudes. So it’s like we’re just using 1O to mean “the smallest number
in S”, using 2O to mean the “second-smallest number in S”, etc.

Okay, on to the analysis of Quicksort!

Worst case analysis: Quicksort may make Ω(n2) comparisons, in the worst case. For example,
suppose the pivot-choosing rule is “always pivot on x1” and that the initial input list is in descending
order, [nO, . . . , 3O, 2O, 1O]. Then it’s easy to see that the algorithm’s “recursion tree” is actually a
path, and it repeatedly splits the list [iO, . . . , 1O] into [i-1O, . . . , 1O] and []. Thus the total number
of comparisons is

(n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
= Ω(n2).

Pretty bad, since of course we all know several different sorting algorithms which use O(n log n)
comparisons/time in the worst case.

Randomized Quicksort: Like with the Changes-to-the-Minimum problem, we could imagine
that the initial list S is randomly ordered and see what happens. But the beautiful observation
here is that we don’t have to — we can effectively convert to this case by doing the following:

always choose the pivot uniformly at random.

The intuition behind this is that if you pick a pivot element at random, there should be a good
chance that you pick an element which is somewhat in the middle of the sorted order, and thus
your division will be into two roughly equal-sized lists. In fact, if you work at it you can analyze
this intuition, but we can give a far slicker analysis using the Linearity of Expectation + Indicators
method.

3.1 Analyzing Randomized Quicksort

Let the initial list S consist of 1O, . . . , nO in some order, and suppose we do Randomized Quicksort,
meaning we always choose the pivot uniformly at random from among all elements in the current
list. Let C be the random variable equal to the total number of comparison made over the course
of the algorithm. Our goal is to compute E[C]. Interestingly, it will turn out that E[C] does not
depend on the initial ordering of the list.

To use the Linearity of Expectation + Indicators method, we want to express C as a sum of
indicator random variables. You might consider different ways of doing this, but here is one that
works. Define Aij be the event that iO and jO ever get compared. Here we have an event for each
1 ≤ i < j ≤ n. Let Cij be the indicator r.v. for Aij . Notice that any two elements in the array
either get compared zero times or one time — never two or more times. This is because if we ever
compare iO and jO, it’s because one of them is the pivot, and the pivot never participates in any
future comparisons. Thus we have

C =
∑

1≤i<j≤n

Cij ,

6

and we conclude (by linearity of expectation and the fact that the expectation of an indicator is
the probability of the event)

E[C] =
∑

1≤i<j≤n

Pr[Aij]. (3)

Let’s do an example, as that will significantly clarify the picture. Suppose that the initial list
S is [6O, 5O, 4O, 3O, 2O, 1O]. (This is a nice case to think about, since it was the bad case for our
deterministic Quicksort example.) Recall now that in each (recursive) call to Quicksort, we’re
imagining that the entry to pivot on is chosen uniformly at random. In our example, the three
rounds of pivots might look like this:

6O 5O 4O 3O 2O 1O
↑ ↑ ↑ ↑
| (i) | |

(ii) | (ii)
(iii)

Let’s explain. Here, at level (i) in the recursion we randomly chose to pivot on the third entry,
which happens to contain 4O. So S1 becomes [3O, 2O, 1O] and S2 becomes [6O, 5O]. At level (ii)
in the recursion, we randomly chose to pivot on the third entry in [3O, 2O, 1O] (i.e., on the entry
containing 1O), and to pivot on the second entry in [6O, 5O] (i.e., on the entry containing 5O). So
[3O, 2O, 1O] splits into [] and [3O, 2O]; and, [6O, 5O] splits into [] and [6O]. In level (iii) of the
recursion, everything is done except for the sublist [3O, 2O]; here we randomly choose to pivot on
the first entry, 3O. We recurse on [2O] and [], and no further comparisons are made. So in this
example we have:

(i) C14 = C24 = C34 = C45 = C46 = 1, because we compared 4O against everything else;
(ii) C12 = C13 = 1 and C56 = 1;
(iii) C23 = 1;

and all other Cij ’s are 0.

So much for the example; back to the analysis. Given equation (3), all we have to do is compute
Pr[Aij] for each i < j. To do this, consider the set of data elements

Y ij = { iO, i+1O, . . . , jO}.

Initially, all the elements in Y ij are hanging out together in the list S. (They’re not necessarily
in order, or even contiguous, of course.) Think about what happens to the set when the pivot is
chosen.

� If the pivot’s value is not in the set Y ij then it’s either bigger than everything in Y ij or else
it’s smaller than everything in Y ij . Either way, all the elements in Y ij will be together in one
of the two sublists recursed on.

� If the pivot’s value is strictly between iO and jO then:

– iO and jO are not compared in this level of the recursion;
– and in fact they will never be compared, because iO will go into S1 and jO will go into
S2, which are sorted separately.

� Finally, if the pivot is actually iO or jO then these two elements are compared, because the
pivot gets compared to everything.

7

Conclusion: Event Aij occurs if and only if the first pivot chosen from Y ij is iO or jO.

But: Think about the probability of this. The first time a pivot is chosen from Y ij , all of these
elements are hanging out together in some sublist. Conditioned on one of them being chosen as
the pivot, it’s clear from symmetry that each of them is equally likely to be the chosen pivot. Since
there are j − i+ 1 elements in Y ij , we conclude

Pr[Aij] =
2

j − i+ 1
. (4)

Let’s quickly sanity-check this claim. It should make sense that the probability that iO and jO
are compared is bigger the closer i and j are together as numbers. If i and j are far apart numbers,
probably they will never get directly compared; probably they’ll get split apart at some stage when
an intermediate pivot is chosen. On the other hand suppose i and j are really close together as
numbers; e.g., i = 7, j = 8. Equation (4) is claiming that 7O and 8O are compared with probability

2
8−7+1 = 1 — i.e., always! But indeed, this is true. Any sorting algorithm has to compare 7O and
8O at some point, because otherwise it has no way of knowing which of the two should come first

in sorted order. Think about it.

In any case, we’re now home free.

3.2 Finishing the calculation

Combining equations (3) and (4), we get that the expected number of comparisons made is

E[C] =
∑

1≤i<j≤n

2
j − i+ 1

= 2
∑

1≤i<j≤n

1
j − i+ 1

. (5)

Let’s compute the sum on the right. If we imagine first adding up all the terms with i = 1, then
with i = 2, etc., we get

1
2 + 1

3 + · · · + 1
n−1 + 1

n

+ 1
2 + 1

3 + · · · + 1
n−1

+ · · ·
+ 1

2 + 1
3

+ 1
2

If we’re being lazy, we can just say that the first row adds up to Hn − 1 ≤ lnn, and each of the
other rows adds up to something even smaller. Hence the total sum is at most

(n− 1) lnn ≤ n lnn,

and (remembering the factor of 2 in equation (5)) we have

E[C] ≤ 2n lnn.

In other words, Randomized Quicksort makes at most 2n lnn comparisons on average. Not only
is this O(n log n), the constant out front is extremely small!

By the way, if you’re a little more fastidious, you can sum up the table of fractions above in a
column-wise fashion, do some tiny arithmetic rearrangement, and conclude that

E[C] = 2(n+ 1)Hn − 4n.

So indeed, as mentioned earlier, the expected number of comparisons Randomized Quicksort does
is always the same, 2(n+ 1)Hn − 4n, regardless of the initial ordering in S.

8

15-359: Probability and Computing
Fall 2009

Lecture 8: Markov’s Inequality, Variance, Standard Deviation, Chebyshev’s Inequality

1 The expected value of an r.v. doesn’t always tell you too much
about it

Let’s play a gambling game. Er, we probably shouldn’t encourage you to gamble, so let’s imagine
a gambling game. Here is the gamble: With probability 99%, you owe me $10. With probability
1%, I owe you $1000.

Do you want to play?

Seriously. I’m not sure what you’d say. Perhaps it depends how risk-averse you are. Perhaps
it depends if I assent to play the game multiple times. Perhaps your beloved puppy has been
dognapped and the ransom, due tomorrow, is exactly $1000.

Some people automatically think, “Calculate the expected winnings — if it is positive you
should play; if it’s negative you shouldn’t.” But the expectation of a random value does not tell
you everything there is to know about a random variable.

Still, it’s a start. Let X represent your winnings in dollars, in one play of this gamble. We can
easily calculate

E[X] = .99 · (−10) + .01 · (+1000) = −9.9 + 10 = .1 = 10 cents.

The gamble is thus sort of in your favor — you win 10 cents “on average” when you play. But
this number is deceptively small compared to the actual values that X can take on. Indeed, in
deciding whether or not to play this gamble, it’s probably not so germane to you that your expected
winnings is 10 cents. You’re probably more interested in the probability with which you win various
amounts. For example, clearly

Pr[X ≥ E[X]] = Pr[X ≥ .1] = .01

(since the only case where you win more than 10 cents is when you win the $1000). Restating this
with emphasis, the probability that you win at least your expected winnings is only 1%. This is a
far cry from the naive (false) intuition that you ought to win at least your average winnings with
probability 1/2. Actually, things are even rougher for you: the probability you win any money at
all, Pr[X ≥ 0], is only 1%.

By contrast, let’s look at the random variable for my winnings, in dollars. Obviously, Y = −X,
so clearly E[Y] = −E[X] = −.1. I lose 10 cents on average. But,

Pr[Y ≥ E[Y]] = Pr[Y ≥ −.1] = .99.

1

So the probability I win at least my expected winnings is 99%, just the opposite. In conclusion,
we’ve seen that a random variable (e.g., X) might be almost never at least its expectation, and
also that a random variable (e.g., Y) might be almost always at least its expectation.

2 Markov’s inequality

2.1 A worry about our Changes-to-the-Minimum analysis

Remember last time we talked about the Changes-to-the-Minimum problem. We were feeling quite
pleased about ourselves because X, the number of changes to the minimum when the data was per-
muted randomly, satisfied E[X] = Hn ≈ lnn — and this is much much smaller than the worst-case
possibility of n.

But now you should be feeling a little queasy about things. True, E[X] ≈ lnn, but if it were
the case that 99% of the time the number of changes to the minimum was n, that would be no
good at all.

Question: Could it really be that X ≥ n has probability .99?

Answer: Well, no, because it’s pretty easy to see that X ≥ n iff X = n iff the data is in descending
order. Since the data is randomly ordered, this only happens with probability 1/n!� .99.

Question: Okay, but could it be that, say, Pr[X ≥ n/2] ≥ .99?

Your intuition is probably that the answer is “no” — and you’d be right. But why? How is it
different from the situation with my gambling winnings, above, where we had a 99% chance that
Y is far far bigger than its expectation?

The difference is that X, the number of changes to the minimum in the algorithm, only takes
on nonnegative values (which is not true of my gambling winnings Y).

This is the first illustration of a theme for this lecture — kind of a “The More You Know”
theme. The more you know about a random variable — e.g., that it is always nonnegative — the
more you can “tame” it.

Coming back to this Changes-to-the-Minimum problem, suppose by way of contradiction that
99% of the time we have X ≥ n/2. Intuitively, it seems clear that the average value of X, i.e. E[X],
should be at least .99 · (n/2), since there are no possible negative values of X to bring it lower. But

.99 · (n/2) = .495n� lnn ≈ Hn = E[X],

a contradiction. To make this more formal,1 we can note that (since the two events X ≥ n/2,
X < n/2 partition the sample space)

E[X] = Pr[X ≥ n/2] ·E[X | X ≥ n/2] + Pr[X < n/2] ·E[X | X < n/2]. (1)

Let’s look at the expressions on the right; three of them are easy to reason about, and the fourth
is the one we care about. It’s easy to see (and intuitively obvious) that E[X | X ≥ n/2] ≥ n/2.

1But not 100% formal, because we will ignore for now the issue of conditioning on 0-probability events.

2

Further, Pr[X < n/2] ≥ 0 being a probability, and E[X | X < n/2] is also nonnegative since X is
always nonnegative. Therefore from equation (1) we can deduce

E[X] ≥ Pr[X ≥ n/2] · (n/2) + 0 ⇒ Pr[X ≥ n/2] ≤ (2/n)E[X] ≈ 2 lnn
n

.

Of course, (2 lnn)/n is a very small number if n is large, so we conclude that it is very unlikely
that X ≥ n/2. Phew!

2.2 Markov’s Inequality

Andrey Andreyevich Markov lived from 1856 to 1922; he was a contemporary of Tolstoy. Markov
was a pretty cool guy and a powerful mathematician. You might recognize his name from, e.g.,
“Markov Chains” (which we will talk a lot about later in this course). Today we will talk about
“Markov’s Inequality”.2 By the way, the early history of probability was dominated by French
mathematicians (although Bernoulli, whose name sounds French, was actually Swiss). Starting in
the late 19th century and early 20th century, it came to be dominated by Russian mathematicians;
for example, Kolmogorov (1903–1987) pretty much invented rigorous probability theory. We’ll hear
about two more Russians today, Markov and Chebyshev.

Anyway, here is Markov’s Inequality, which generalizes the example we just did with the
Changes-to-the-Minimum problem:

Theorem 1. (“Markov’s Inequality”) Let X be a random variable which is always nonnegative.
Then ∀ a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

Proof. Let’s first deal with some extreme technicalities: If Pr[X ≥ a] = 0 then we are done (be-
cause E[X]/a ≥ 0, because a > 0 and clearly E[X] ≥ 0). Otherwise, it is legal to condition on the
event X ≥ a. Relatedly, if Pr[X < a] = 0 then X ≥ a always, and hence E[X] ≥ a; thus there is
nothing to prove, since the right-hand side is at least 1. So we can assume Pr[X < a] 6= 0, and it
is legal to condition on the event X < a.

With these technicalities out of the way, we have the following easy observation:

E[X] = Pr[X ≥ a] ·E[X | X ≥ a] + Pr[X < a] ·E[X | X < a]
≥ Pr[X ≥ a] · a+ Pr[X < a] · 0,

where we’ve used E[X | X ≥ a] ≥ a, and E[X | X < a] ≥ 0 because X is always nonnegative. Thus
we have

E[X] ≥ aPr[X ≥ a] ⇒ Pr[X ≥ a] ≤ E[X]
a

.

Pretty straightforward. We can also deduce:
2Not to be confused with the “Markov Brothers Inequality”, which Markov proved with his brother. Also, don’t

confuse Andrey Andreyevich Markov with his son, also a mathematician called Andrey Andreyevich Markov. Markov
fils lived from 1903 to 1979.

3

Corollary 2. Let X be a nonnegative random variable, and let t > 0. Then

Pr [X ≥ t ·E[X]] ≤ 1
t
.

The proof of this corollary is easy: just take t = a/E[X] and use Markov’s Inequality.

I personally tend to remember/use the Corollary much more than the original statement. You
can think of it as saying, “The probability a nonnegative r.v. is much bigger than its expectation
is small.” Note that it’s pointless to use a t < 1 in the Corollary.

A good example of Markov’s Inequality is when X represents the running time of a randomized
algorithm (which is of course always nonnegative). For example, suppose you prove your algorithm’s
running time satisfies E[X] = lnn. As we’ve seen before, you can often prove such a statement
while knowing extremely little about the PMF of X; the linearity + expectation method works
wonders. Nevertheless, by Markov’s Inequality you automatically know:

Pr[X ≥ 2 lnn] ≤ 1/2,

Pr[X ≥ 10 lnn] ≤ 1/10,

Pr[X ≥ 100 lnn] ≤ 1/100,

etc. So we do learn from E[X] = lnn that it is pretty rare for the running time X to be far greater
than lnn. Now this is not a great bound, because often the behavior is even better than this. But
Markov’s Inequality has the merit that it applies in extremely general situations — all you need is
that the random variable is nonnegative.

Let’s do an example illustrating that Markov’s Inequality is not always very useful. Suppose
X ∼ Binomial(n, 1/2) (remember, this means X counts the number of heads in n fair coin flips).
By Markov’s Inequality,

Pr
[
X ≥ 3

4
n

]
≤ E[X]

3
4n

=
(1/2)n
(3/4)n

=
2
3
.

This is indeed true, but it’s a pretty horrible bound, since it’s obvious from symmetry that even
Pr[X > 1

2n] ≤ 1
2 .

3 Variance

Let X be a random variable. Let’s denote its mean, E[X], by µ. (This is a very common convention,
by the way. µ is chosen because µ is the Greek version of m, which is the first letter in “mean”.)
A natural question to ask is, “What is typical amount by which X deviates from its mean?” I.e.,
what is

E[|X − µ|]?
Interesting and natural though this question is, it turns out to be very hard to analyze and work
with, in general. Weirdly enough, things become much simpler and cleaner if you ask about the
square of the deviation from the mean. . .

Definition 3. The variance of a random variable X, denoted Var[X], is

Var[X] = E[(X − µ)2], (2)

where µ = E[X].

4

Here are some of the most important facts about the variance of a random variable:

� Var[X] ≥ 0 always. This is because the thing inside the expectation, (X − µ)2, is always
nonnegative.

� Var[X] = 0 if and only if X is a constant random variable. The “if” is easy to see: If X is
always equal to some number c, then µ = c of course, and hence (X − µ)2 = (c − c)2 = 0
always. As for the “only if” direction, if E[(X−µ)2] = 0, then the thing inside the expectation
has to always be 0 (otherwise, the expectation would be strictly positive). In other words,
X = µ with probability 1; i.e., X is a constant random variable.

� If c is a constant, Var[cX] = c2Var[X]. Note that it is not cVar[X]; don’t be fooled by this
common fallacy!

Here is the easy proof of this last item:

Proof.

Var[aX] = E
[
(aX −E[aX])2

]
= E

[
(aX − aE[X])2

]
= E

[
(a(X −E[X]))2

]
= E

[
a2(X −E[X])2

]
= a2E

[
(X −E[X])2

]
= a2Var[X].

We never (or at least, rarely) calculate the variance of a random variable directly from the
defining equation (2). Instead, we almost always use the following:

Formula: Var[X] = E[X2]−E[X]2.

Proof.

Var[X] = E[(X − µ)2] = E[X2 − 2µX + µ2]
= E[X2]− 2µE[X] + µ2 (linearity of expectation)
= E[X2]− 2µ · µ+ µ2

= E[X2]− µ2 = E[X2]−E[X]2.

Corollary 4. If X is any random variable, E[X2] ≥ E[X]2.

Proof. E[X2]−E[X]2 = Var[X] ≥ 0.

Let’s do a simple example, for practice.

Example: Suppose you win $100 with probability 1/10 and you win $0 otherwise. Let X denote
your winnings in dollars. What is Var[X]?

5

Answer: First, E[X] = (1/10) · 100 = 10. Therefore, E[X]2 = 100. Next, E[X2] = (1/10) ·
(100)2 = 1000. Therefore, Var[X] = 1000− 100 = 900.

3.1 Standard Deviation

Suppose that, like a physicist, we decided to carry around units in the preceding calculation. Then
E[X]2 = 100$2, and E[X2] = 1000$2, so Var[X] = 900$2. So although variance indeed measures
spread/dispersion of the random variable, the scale is, in a way, off. It would be more logical to
measure the spread/dispersion in units, not squared-units. Also, there is something a little funny
about the formula Var[aX] = a2Var[X]. This observation motivates the following definition:

Definition 5. The standard deviation of a random variable X, denoted stddev[X], is

stddev[X] =
√

Var[X].

Much like µ is usually used to denote the mean of x, it is quite traditional to denote the stan-
dard deviation by σ (again, because σ is Greek for s, the first letter in ‘standard deviation’). We
can therefore conclude that it is traditional to denote the variance by σ2.

So in the above gambling example, stddev[X] =
√

900 = 30 (with units $).

The standard deviation actually has a pretty reasonable name; it kind of does give a reasonable
quantification of the amount by which a random variable deviates from its mean.

4 Chebyshev’s Inequality

Pafnuty Lvovich Chebyshev (1821–1894) was also an interesting character (with a very unusual
name — Pafnuty?). He kind of invented the notions of random variables and expected value. He
also lived before Markov did, so it’s funny that his inequality comes second in the natural progres-
sion.

If you’re able to compute the standard deviation σ of a random variable, you can give a stronger
bound than Markov can for the probability that a random variable deviates from its mean (again,
“The More You Know”. . .):

Theorem 6. Let X be a random variable (it need not be nonnegative) with mean µ and standard
deviation σ > 0. Then for any t > 0,

Pr[|X − µ| ≥ tσ] ≤ 1
t2
.

You should remember this theorem in words:

The probability a r.v. is at least t standard deviations away from its mean is at most 1/t2.

For example,

Pr[|X − µ| ≥ 6σ] ≤ 1
36
.

If you know about the business management strategy called “Six Sigma”, you may now call into
question how much sense its name makes. (Hint: none. Read the Wikipedia entry for a laugh.)

The proof of Chebyshev’s Inequality is easy: use Markov’s Inequality!

6

Proof. We apply Markov’s Inequality to the random variable (X −µ)2. (This is legal, because this
random variable is indeed always nonnegative.)

Pr[|X − µ| ≥ tσ] = Pr[|X − µ|2 ≥ t2σ2]

≤ E[(X − µ)2]
t2σ2

=
Var[X]
t2Var[X]

=
1
t2
.

Here the first step is because “|X − µ| ≥ tσ” and “|X − µ|2 ≥ t2σ2” are identical events, so of
course they have the same probability. The second step is Markov. The last step is by definition
of Variance.

Here is an equivalent statement of Chebyshev’s Inequality (you can check the equivalence your-
self). This is how it’s more usually stated, but it’s almost always used in the above form, so that’s
why we stated it thus.

Also Chebyshev’s Inequality: ∀ a > 0,

Pr[|X − µ| ≥ a] ≤ Var[X]
a2

.

5 More on variance, covariance, and an example

We will now build up to an example of Chebyshev’s Inequality in action, with our random variable
being a Binomial random variable. Of course, to use Chebyshev’s Inequality, you need to know
the variance. So indeed, let’s think about computing the variance of a Binomial random variable.
It’s natural to start with the n = 1 case of a Binomial random variable — i.e., a Bernoulli random
variable:

Formula: Let X ∼ Bernoulli(p). Then Var[X] = p(1− p).

Proof. Var[X] = E[X2]−E[X]2 = (p · 12 + (1− p) · 02)− p2 = p− p2 = p(1− p).

It’s pointless to use Chebyshev’s Inequality on Bernoulli random variables because, well, you
already know all there is to know about Bernoulli random variables — they’re 1 with probability
p, 0 with probability 1− p. Case closed!

Binomials are sums of Bernoullis, so what’s going on with the variance of the sum of two random
variables? Something very much like what’s going on with the expectation of the product of two
random variables, that’s what.

Fallacy: Var[X + Y] = Var[X] + Var[Y]. (“Linearity of variance” is false.)

Theorem 7. If X and Y are independent, then Var[X + Y] = Var[X] + Var[Y].

7

Proof. We have the following straightforward computation, using linearity of expectation:

Var[X + Y] = E[(X + Y)2]− (E[X + Y])2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y])2

= E[X2] + 2E[XY] + E[Y 2]−E[X]2 − 2E[X]E[Y]−E[Y]2

= E[X2]−E[X]2 + E[Y 2]−E[Y]2 + 2(E[XY]−E[X]E[Y])
= Var[X] + Var[Y] + 2(E[XY]−E[X]E[Y]) (*)

But now the last term in (*) is 0, because E[XY] = E[X]E[Y] by independence of X and Y .

You can also easily prove the following extension:

Theorem 8. If X1, . . . , Xn are independent, Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn].

Fallacy: If X and Y are independent, stddev[X + Y] = stddev[X] + stddev[Y].

The correct statement (by definition) is of course:

Fact: If X and Y are independent, stddev[X + Y] =
√

stddev[X]2 + stddev[Y]2.

5.1 Covariance

Based on line (*) in the above proof, we see that E[XY] − E[X]E[Y] sort of measures the extent
to which “linearity of variance” fails, for non-independent r.v.’s.

Definition 9. The covariance of two random variables, X and Y , denoted Cov[X,Y], is

Cov[X,Y] = E[XY]−E[X]E[Y].

Exercise: Prove for yourself that we also have

Cov[X,Y] = E[(X −E[X])(Y −E[Y])].

Obvious Fact: If X and Y are independent then Cov[X,Y] = 0.

Fallacy: If Cov[X,Y] = 0 then X and Y are independent.

We’ll see counterexamples for the fallacy on the homework.

5.2 Variance of a Binomial r.v.

Finally, let’s get back to the variance of a Binomial r.v.

Formula: Let X ∼ Binomial(p). Then Var[X] = np(1− p).

Proof. We can write X = X1 + · · · + Xn, where the Xi’s are independent Bernoulli(p) random
variables. Thus we have Var[X] =

∑n
i=1 Var[Xi] = np(1− p), where we used independence.

We can now give an interesting example of Chebyshev’s Inequality.

8

Question: Suppose we flip n independent fair coins. Upper-bound the probability that the
number of heads is 3

4n or more.

Answer: Let X be the number of heads, so X ∼ Binomial(n, 1/2). We have µ = E[X] = n/2.
We’ve just seen that σ2 = Var[X] = n/4. Hence σ = stddev[X] =

√
n/2. Using t =

√
n/2 in

Chebyshev’s Inequality, we have

Pr[|X − n/2| ≥ n/4] = Pr[|X − µ| ≥ (
√
n/2)(

√
n/2)] = Pr[|X − µ| ≥ tσ] ≤ 1/t2 = 4/n.

Note that the event |X − n/2| ≥ n/4 is equal to

(X ≥ (3/4)n) ∪ (X ≤ (1/4)n).

The two events X ≥ (3/4)n and X ≤ (1/4)n are disjoint, and it’s clear by symmetry that they
have the same probability. We just showed that the sum of their probabilities is at most 4/n, so
the event X ≥ (3/4)n must have probability at most 2/n.

This is a pretty good bound: it goes to 0 as n gets large. (Remember that Markov’s Inequality
only told us that this probability was at most 2/3!) For example, it says that the probability of
getting at least 750 heads when you flip 1000 coins is at most .002.

But Chebyshev isn’t always so strong: as we’ll see in the next lecture, the true probability of
getting 750 or more heads in 1000 flips is at most 10−54. Indeed, it’s roughly

.0067.

In other words, it’ll never happen in anyone’s lifetime. In the universe’s lifetime, even.

9

15-359: Probability and Computing
Fall 2009

Lecture 9: The Chernoff Bound

1 Chernoff Bounds

Today you will learn the Chernoff Bound. Or rather, a Chernoff Bound. There are actually very
many slightly different statements that people call “Chernoff Bounds” You will be required to
memorize two such bounds. The first of these is a special case we will call:

Chernoff Bound 1: Let X ∼ Binomial(n, 1/2). Then for any 0 ≤ t ≤
√
n,

Pr
[
X ≥ n

2
+ t

√
n

2

]
≤ e−t

2/2,

and also Pr
[
X ≤ n

2
− t
√
n

2

]
≤ e−t

2/2.

We’ll tell you

Chernoff Bound 2 in the next lecture.

Chernoff Bounds extend the theme we saw in the last lecture: Trying to show that it is unlikely
a random variable X is far away from its expectation. As we saw last class, you can make better
and better statements to this effect the “more you know” about X. If you know nothing about X,
you can’t really say anything. If you know that X is nonnegative, Markov’s Inequality tells you it’s
unlikely to be far bigger than its expectation. If you manage to compute stddev[X], Chebyshev’s
Inequality tells you the chance that X is t standard deviations or more from its expectation is at
most 1/t2.

Chernoff Bounds can be used when you know that X is the sum of many independent random
variables. The prototypical example of such an X is a Binomial(n, 1/2) random variable, which is
the sum of n independent Bernoulli random variables. As we’ll see later in this class, whenever you
add up many independent random variables, the sum acts like a “bell curve”, and in particular is
extremely, indeed exponentially unlikely to be t standard deviations away from its mean. We can
see this in the statement of Chernoff Bound 1, where E[X] = n

2 and stddev[X] =
√
n

2 , as we saw
last time. Chernoff Bound 1 tells us that the probability that X is t standard deviations or more
away from its mean is at most 2 exp(−t2/2).1

1By the way, we will sometimes use this “exp” notation: exp(x) means ex, and is used whenever x is really
complicated and therefore you’d rather not have to scrunch it up into a superscript.

1

1.1 Herman Chernoff

The Chernoff Bound is named after Herman Chernoff. You’d think that this extends the Russian
theme of Markov and Chebyshev, but actually, Chernoff is American. He’s a prof at Harvard. Oddly
enough, he’s perhaps better known now for his idea to use pictures of human faces to illustrate
multivariate statistical data. Here’s an example we found on the Internet:

Chernoff Faces Chernoff’s face

Actually, Chernoff wasn’t even really the first to prove the Chernoff Bounds we’ll see. Rather,
Sergei Bernstein proved our “Chernoff Bounds” almost 30 years before Chernoff, in 1924. (Another
Russian after all? Nope. Ukrainian.) Chernoff himself proved generalizations of Bernstein’s work.
But it seems the first computer scientists to use these bounds mistakenly attributed them to
Chernoff rather than Bernstein. Subsequently, Chernoff Bounds got used like crazy, all the time,
in computer science research — and the originally-bestowed name, “Chernoff Bounds”, stuck.

2 Chebyshev bounds reviewed

Let X ∼ Binomial(n, 1/2). As we all remember/know by now, we have

E[X] = n/2, Var[X] = n/4 ⇒ stddev[X] =
√
n/2.

2

So Chebyshev’s Inequality gives us, for example,

Pr[|X − n/2| ≥ 5
√
n] = Pr[|X −E[X]| ≥ 10stddev[X]] ≤ 1/102 = 1/100

(here we used “t” equal to 10). In other words,

Pr
[n

2
− 5
√
n ≤ X ≤ n

2
+ 5
√
n
]
≥ .99.

So, “most” of the time, a Binomial(n, 1/2) random variable is within a few factors of
√
n of its mean.

A few standard deviations is considered to be a “small deviation” from the mean. What about
a large deviation? As we saw last time using Chebyshev’s Inequality and t =

√
n/2 we have

Pr
[
X ≥ 3

4
n

]
≤ 2
n
.

This is indeed true, but it’s actually far from being sharp. For example, it tells us that in 1000 coin
flips (X ∼ Binomial(1000, 1/2)), the probability of getting at least 750 heads is at most 0.2%. But
in fact, using Maple we calculated

Pr[X ≥ 750] =
1000∑
u=750

pX(u) =
1000∑
u=750

(
1000
u

)
2−1000 ≈ .67× 10−58.

So 0.2% is extraordinarily far from the truth! So it behooves us to figure out a better bound,
exploiting the fact that X is not just any old random variable — it’s the sum of many independent
random variables.

Chernoff Bound 1, given above, is just such a bound. By taking n = 1000 and t =
√

1000/2 in
it, we get

Pr[Binomial(1000, 1/2) ≥ 750] ≤ e−(
√

1000/2)2/2 = e−1000/8 = .52× 10−54.

That’s more like it!

3 Intuition for the proof

For the rest of this lecture, we will see the proof of Chernoff Bound 1. This will be one of the
hardest proofs we do in this class. Also, we are going to cheat very slightly near the very end; not
in a fundamental way, just in a way to save some time by avoiding some painful arithmetic. In this
(long) section of the notes, we will give intuition for the proof. The formal proof will come in the
next section of the notes.

In fact, we just have to prove the first bound in the statement of Chernoff Bound 1. The other
bound follows immediately by the symmetry of X; i.e., the fact that

pX(u) = pX(n− u) for all u = 0 . . . n.

In a way, the proof is a lot like the proof of Chebyshev’s Inequality — you take X, consider a
different random variable based on X, and then apply Markov’s Inequality to that random variable.

3

3.1 Switching to Rademachers

So let’s begin with our random variable X,

X = X1 + · · ·+Xn,

where the Xi’s are independent Bernoulli(1/2) random variables, equally likely to be 0 or 1. Actu-
ally, since what we care about is the deviation of X from its mean, it’s a bit nicer if this mean is
0, rather than n/2. Let’s define

Yi = −1 + 2Xi,

so Yi is −1 with probability 1/2 and Yi is +1 with probability 1/2. (These Bernoulli-like random
variables are called Rademacher random variables, named after the German mathematician Hans
Rademacher who taught at UPenn for most of his life.) Define

Y = Y1 + · · ·+ Yn = (−1 + 2X1) + · · ·+ (−1 + 2Xn) = −n+ 2X.

This is just a shifted version of X which is more convenient to work with. The key point is that
the event we’re interested in is:

X ≥ n/2 + t
√
n/2 ⇔ −n+ 2X ≥ −n+ 2(n/2 + t

√
n/2) = t

√
n.

We haven’t done anything fundamental here, we’ve just changed the problem to upper-bounding

Pr[Y ≥ t
√
n],

where

Y = Y1 + · · ·+ Yn, where Yi’s are independently ±1 with prob. 50% each.

Notice the event “Y ≥ t
√
n” is again the event that Y is at least t standard deviations above its

mean: this is because it’s easy to see

E[Yi] = 0 ⇒ E[Y] = 0;

Var[Yi] = [(1/2) · 12 + (1/2) · (−1)2]− 02 = 1 ⇒ Var[Y] = n ⇒ stddev[Y] =
√
n.

3.2 Intuition

Now that we’ve switched to adding up these Yi’s, let’s reflect a little about what’s going on. As we
add up Y1, Y2, Y3, . . . , it’s like we’re taking a “random walk” on the integers.

We start at 0, and at each “step” we go either 1 unit to the right or 1 to the right, at the flip of
a fair coin. The position we end up in after n steps gives the random variable Y . We’re trying
to bound the probability that Y ends up very high. Note that Y is not a nonnegative random
variable, so we can’t use Markov’s Inequality.

4

Idea: Let’s take our inspiration from one of the top mathematicians of our time:

“Near 1, multiplication is the same as addition.”

— Fields Medalist Terence Tao, 2007

What Tao meant was the following:

“If λ1 and λ2 are tiny numbers (positive or negative), then

(1 + λ1)× (1 + λ2) ≈ 1 + (λ1 + λ2).”

This is simply because
(1 + λ1)(1 + λ2) = 1 + λ1 + λ2 + λ1λ2,

and if λ1 and λ2 are tiny, then λ1λ2 is supertiny, and thus, perhaps, negligible. Another way to see
the validity of this maxim is to use The Most Useful Approximation Ever:

ex ≈ 1 + x if x is tiny.

Thus, using the approximation twice,

(1 + λ1)(1 + λ2) ≈ eλ1eλ2 = eλ1+λ2 ≈ 1 + (λ1 + λ2).

3.3 The multiplicative random walk

Instead of starting at 0 and adding ±1 at each step in the random walk, let’s start at 1 and
multiply/divide by 1 + λ at each step. (Think of λ as a tiny number to be named later.)

So now, it’s like being at position (1+λ)u in this “multiplicative” random walk is equivalent to being
at position u in the old “additive” random walk. Note that the final position of the multiplicative
random walk is precisely

1 · (1 + λ)Y1(1 + λ)Y2 · · · (1 + λ)Yn = (1 + λ)Y1+···+Yn = (1 + λ)Y .

By Tao’s maxim (equivalent, our approximation ex ≈ 1 + x) we know that

(1 + λ)u ≈ 1 + uλ,

at least, as long as uλ is small. I.e., if we zoom in, our walk kind of looks like this:

5

But this approximation breaks down once uλ is no longer “small”; say, when uλ is around 1. In
fact, it’s starts to go extremely haywire once uλ gets much bigger than 1.

We know the “standard deviation” of Y is
√
n, so we expect that it’s reasonably likely Y will

end up around
√
n. Therefore, let’s consider choosing λ so that the “haywire” point is right around

u =
√
n; i.e., let’s consider choosing λ = 1/

√
n.

(This is all still intuition for the proof, by the way.)

3.4 The haywire point

If we choose λ = 1/
√
n, then the final location of the multiplicative random walk is

(1 + 1/
√
n)Y1(1 + 1/

√
n)Y2 · · · (1 + 1/

√
n)Yn = (1 + 1/

√
n)Y .

If Y itself ends up being, say,
√
n, this is

(1 + 1/
√
n)
√
n ≈ (e1/

√
n)
√
n = e.

So when Y ends up at this relatively reasonable random, the multiplicative random walk ends up
near the number e, which is still reasonably in the vicinity of 1. Similarly, if Y ends up at, say,
−
√
n, the multiplicative random walk ends up at

(1 + 1/
√
n)−

√
n ≈ (e1/

√
n)−
√
n = e−1,

also reasonably in the vicinity of 1.

But, if Y ends up somewhat bigger than this — say, at 5
√
n — that is equivalent to the

multiplicative random walk ending up at

(1 + 1/
√
n)5
√
n ≈ e5 ≈ 150.

And if Y were to end up at, say, 100
√
n, that would be equivalent to the multiplicative random

walk ending up at e100, an unimaginably huge number.

This is the key for the whole proof — Markov’s Inequality can upper-bound the probability
that a random variable ends up unimaginably huge.

6

4 The formal∗ proof

(We put an asterisk by “formal” because, as mentioned, we’ll cheat very slightly at one point.)

Let Y = Y1 + · · ·+ Yn be the sum of n independent Rademacher random variables (each is ±1
with probability 1/2 each). Our goal is to upper-bound the probability that Y is at least t standard
deviations about its mean, Pr[Y ≥ t

√
n].

Define Zi = (1 + λ)Yi , where λ is a small positive number we’ll define later. Of course,

Zi =

{
1 + λ with probability 1/2,

1
1+λ with probability 1/2.

Since the Y1, . . . , Yn are independent, we also have that Z1, . . . , Zn are independent. Define

Z = Z1Z2 · · ·Zn,

which is the final position of the “multiplicative random walk”. All of the Zi’s are nonnegative
random variables, and hence Z is also always nonnegative. Thus, we can use Markov’s Inequality
on it. To do this, we will need to calculate the expectation of Z. We have

E[Z] = E[Z1Z2 · · ·Zn] = E[Z1]E[Z2] · · ·E[Zn], (1)

using the fact that the Zi’s are independent. As for the expectation of the Zi’s, we have

E[Zi] = (1/2)(1 + λ) + (1/2)
1

1 + λ
=

(1 + λ)2 + 1
2(1 + λ)

=
2 + 2λ+ λ2

2 + 2λ
= 1 +

λ2

2 + 2λ
≤ 1 +

λ2

2
. (2)

(The mean of Zi is very very slightly bigger than 1, meaning that the “multiplicative random walk”
“drifts” slightly to the right.) Substituting this into (1) yields

E[Z] ≤
(

1 +
λ2

2

)n
. (3)

Now we use Markov. The event we are interested in is

Y ≥ t
√
n ⇔ (1 + λ)Y ≥ (1 + λ)t

√
n ⇔ Z ≥ (1 + λ)t

√
n.

So
Pr[Y ≥ t

√
n] = Pr[Z ≥ (1 + λ)t

√
n] ≤ E[Z]

(1 + λ)t
√
n
,

using Markov’s Inequality. Substituting (3), we get

Pr[Y ≥ t
√
n] ≤ (1 + λ2/2)n

(1 + λ)t
√
n
.

So far we haven’t actually specified what λ will be. We can take it to whatever is our best
advantage. Before we thought about taking λ = 1/

√
n; turns out it’s a bit better to take it to be

t/
√
n. So continuing the above, taking λ = t/

√
n:

Pr[Y ≥ t
√
n] ≤ (1 + t2/(2n))n

(1 + t/
√
n)t
√
n
. (4)

7

Now we do a slight cheat, by using The Most Useful Approximation Ever, 1 + x ≈ ex. Now
1 + x ≤ ex for all x, so it’s completely valid to use this approximation in the numerator of the
above, but it’s invalid to use it in the denominator. Well, let’s do it anyway. We promise, you can
make this proof correct.2 So using our favorite approximation in (4) we get

Pr[Y ≥ t
√
n] ≤ (et

2/2n)n

(et
√
n)t
√
n

=
et

2/2

et2

= e−t
2/2,

which is what is claimed in Chernoff Bound 1.

2The trick is to keep around the exact expression from (2), and to choose λ = et/
√

n − 1, rather than λ = t/
√
n.

8

15-359: Probability and Computing
Fall 2009

Lecture 10: More Chernoff Bounds, Sampling, and the Chernoff + Union Bound method

1 Chernoff Bound 2

Last lecture we saw the following:

Chernoff Bound 1: Let X ∼ Binomial(n, 1/2). Then for any 0 ≤ t ≤
√
n,

Pr
[
X ≥ n

2
+ t

√
n

2

]
≤ e−t

2/2,

and also Pr
[
X ≤ n

2
− t
√
n

2

]
≤ e−t

2/2.

This bound tells us that if X is the sum of many independent Bernoulli(1/2)’s, it’s extremely
unlikely that X will deviate even a little bit from its mean. Let’s rephrase the above a little. Taking
t = ε

√
n in Chernoff Bound 1, we get

Pr[X ≥ (1 + ε)(n/2)]
Pr[X ≤ (1− ε)(n/2)]

}
≤ e−ε2n/2.

Okay, that tells us about deviations for Binomial(n, 1/2). Turns out that similar bounds are
true for Binomial(n, p). And similar bounds are true for, say,

U = U1 + · · ·+ Un

when the Ui’s are independent random variables that are

Ui =

0 w.p. 1/3,
1/2 w.p. 1/3,
1 w.p. 1/3.

Actually, there are a dozens of versions of Chernoff bounds, covering dozens of variations; in other
texts, you might see any of them. But as promised, you will only be required to memorize one
more :) This one covers 95% of cases pretty well.

Chernoff Bound 2:
Let X1, . . . , Xn be independent random variables.
They need not have the same distribution.
Assume that 0 ≤ Xi ≤ 1 always, for each i.
Let X = X1 + · · ·+Xn.
Write µ = E[X] = E[X1] + · · ·+ E[Xn].

1

Then for any ε ≥ 0,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ

)
and, Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.

(Remember the notation exp(x) = ex.)

1.1 What’s up with the ε2

2+ε
?

Chernoff Bound 2 takes some memorizing, we admit it. But it’s a truly indispensable tool, so it’s
very much worth it. Actually, the second statement, the probability of going below the expectation,
isn’t so bad to remember; it’s clean-looking at least. The first statement is, admittedly, slightly
weird. By symmetry you were probably hoping that we were going to write

exp
(
−ε

2

2
µ

)
on the right side of the first statement, like in the second statement. Unfortunately we can’t; turns
out, that’s simply not true. Notice that

ε2

2
is slightly bigger than

ε2

2 + ε
,

and therefore

−ε
2

2
µ is slightly more negative than − ε2

2 + ε
µ

(since µ ≥ 0 since all the Xi’s are nonnegative), and therefore

exp
(
−ε

2

2
µ

)
is slightly smaller than exp

(
− ε2

2 + ε
µ

)
.

So the bound for Pr[X ≥ (1 + ε)µ] is slightly bigger than the bound for Pr[X ≤ (1 − ε)µ], but
unfortunately, it cannot be improved to the smaller quantity.

Now, ε is a user-selected parameter, and most of the time you, the user, select ε to be pretty
small, smaller than 1. If indeed ε ≤ 1, we have

ε2

2 + ε
is bigger than

ε2

3
,

and so we could put this slightly simpler quantity into our bound. Indeed, sometimes people state
a simplified Chernoff Bound 2 like this:

Chernoff Bound 2′: Suppose we are in the setting of Chernoff Bound 2. Then for all 0 ≤ ε ≤ 1,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
−ε

2

3
µ

)
and, Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.

2

That’s a little easier to remember. And indeed, for the event X ≤ (1 − ε)µ you would never
care to take ε > 1 anyway! But for the event X ≥ (1 + ε)µ sometimes you would care to take ε > 1.
And Chernoff Bound 2′ doesn’t really tell you what to do in this case. Whereas Chernoff Bound 2
does; for example, taking ε = 8, it tells you

Pr[X ≥ 9µ] ≤ exp(−6.4µ).

1.2 More tricks and observations

Sometimes you simply want to upper-bound the probability that X is far from its expectation.
For this, one thing we can do is take Chernoff Bound 2, intentionally weaken the second bound to
exp(− ε2

2+εµ) as well, and then add, concluding:

Two-sided Chernoff Bound: In the setting of Chernoff Bound 2,

Pr[|X − µ| ≥ εµ] ≤ 2 exp
(
− ε2

2 + ε
µ

)
.

What if we don’t have 0 ≤ Xi ≤ 1? Another twist is that sometimes you don’t have that your
r.v.’s Xi satisfy 0 ≤ Xi ≤ 1. Sometimes they might satisfy, say, 0 ≤ Xi ≤ 10. Don’t panic! In this
case, the trick is to define Yi = Xi/10, and Y = Y1 + · · · + Yn. Then we do have that 0 ≤ Yi ≤ 1
always, the Yi’s are independent assuming the Xi’s are, µY = E[Y] = E[X]/10 = µX/10, and we
can use the Chernoff Bound on the Yi’s;

Pr[X ≥ (1 + ε)µX] = Pr[X/10 ≥ (1 + ε)µX/10] = Pr[Y ≥ (1 + ε)µY]

≤ exp
(
− ε2

2 + ε
µY

)
= exp

(
− ε2

2 + ε

µX
10

)
.

So you lose a factor of 10 inside the final exponential probability bound, but you still get something
pretty good. This is a key trick to remember!

Finally, one more point: Given that we have this super-general Chernoff Bound 2, why bother
remembering Chernoff Bound 1? The reason is, Chernoff 2 is weaker than Chernoff 1. If X ∼
Binomial(n, 1/2), Chernoff Bound 1 tells us

Pr[X ≤ n/2− t
√
n/2] ≤ exp(−t2/2). (1)

However, suppose we used Chernoff Bound 2. We have

“X ≤ n/2− t
√
n/2” ⇔ X ≤ (1− t/

√
n)(n/2),

and so Chernoff Bound 2 gives us

Pr[X ≤ n/2− t
√
n/2] ≤ exp

(
−(t/

√
n)2

2
· n

2

)
= exp(−t2/4).

This is only the square-root of the bound (1).

3

1.3 The proof

We will not prove Chernoff Bound 2. However the proof is not much more than an elaboration on
our proof of Chernoff Bound 1. Again, the idea is to let λ > 0 be a small “scale”, pretty close to ε,
actually. You then consider the random variable (1 + λ)X , or relatedly, eλX . Finally, you bound,
e.g.,

Pr[X ≥ (1 + ε)µ] = Pr[eλX ≥ e(1+ε)µ] ≤ E[eλX]
e(1+ε)µ

,

using Markov’s Inequality, and you can compute E[eλX] as

E[eλX] = E[eλX1+···+λXn] = E[eλX1 · · · eλXn] = E[eλX1] · · ·E[eλXn],

using the fact that X1, . . . , Xn are independent.

2 Sampling

The #1 use of the Chernoff Bound is probably in Sampling/Polling. Suppose you want to know
what fraction of the population approves of the current president. What do you do?

Well, you do a poll. Roughly speaking, you call up n random people and ask them if they
approve of the president. Then you take this empirical fraction of people and claim that’s a good
estimate of the true fraction of the entire population that approves of the president. But is it a
good estimate? And how big should n be?

Actually, there are two sources of error in this process. There’s the probability that you obtain
a “good” estimate. And there’s the extent to which your estimate is “good”. Take a close look at
all those poll results that come out these days and you’ll find that they use phrases like,

“This poll is accurate to within ±2%, 19 times out of 20.”

What this means is that they did a poll, they published an estimate of the true fraction of people
supporting the president, and they make the following claim about their estimate: There is a 1/20
chance that their estimate is just completely way off. Otherwise, i.e., with probability 19/20 = 95%,
their estimate is within ±2% of the truth.

This whole 95% thing is called the “confidence” of the estimate, and its presence is inevitable.
There’s just no way you can legitimately say, “My polling estimate is 100% guaranteed to be within
±2% of the truth.” Because if you sample n people at random, you know, there’s a chance they all
happen to live in Massachusetts, say (albeit an unlikely, much-less-than-5% chance), in which case
your approval rating estimate for a Democratic president is going to much higher than the overall
country-wide truth.

To borrow a phrase from Learning Theory, these polling numbers are “Probably Approximately
Correct” — i.e., probably (with chance at least 95% over the choice of people), the empirical average
is approximately (within ±2%, say) correct (vis-a-vis the true fraction of the population).

2.1 Analysis

How do pollsters, and how can we, make such statements?

4

Let the true fraction of the population that approves of the president be p, a number in the
range 0 ≤ p ≤ 1. This is the “correct answer” that we are trying to elicit.

Suppose we ask n uniformly randomly chosen people for their opinion, and let each person be
chosen independently. We are choosing people “with replacement”. (I.e., it’s possible, albeit a very
slim chance, that we may ask the same person more than once.) Let Xi be the indicator random
variable that the ith person we ask approves of the president. Here is the key observation:

Fact: Xi ∼ Bernoulli(p), and X1, . . . , Xn are independent.

Let X = X1 + · · · + Xn, and let X = X/n. The empirical fraction X is the estimate we will
publish, our guess at p.

Question: How large does n have to be so that we get good “accuracy” with high “confidence”?
More precisely, suppose our pollster boss wants our estimate to have accuracy θ and confidence
1− δ, meaning

Pr
[
|X − p| ≤ θ

]
≥ 1− δ.

How large do we have to make n?

Answer: Let’s start by using the Two-sided Chernoff Bound on X. Since X ∼ Binomial(n, p),
we have E[X] = np. So for any ε ≥ 0, we have

Pr[|X − pn| ≥ εpn] ≤ 2 exp
(
− ε2

2 + ε
· pn

)
⇔ Pr[|X − p| ≥ εp] ≤ 2 exp

(
− ε2

2 + ε
· pn

)
.

Here the two events inside the Pr[·] are the same event; we just divided by n.

We want accuracy θ; i.e., we want X to be within θ of p with high probability. (In our original
example, θ = 2% = .02.) We need to get θ = εp, so we should take ε = θ/p.1 Doing so, we get

Pr[|X − p| ≥ θ] ≤ 2 exp
(
− θ2/p2

2 + θ/p
· pn

)
= 2 exp

(
− θ2

2p+ θ
· n
)
.

Okay, what about getting confidence 1− δ? Let’s look at that bound on the right. Having that
n inside the exp(−·) is great — it tells us the bigger n is, the less chance that our estimate is off by
more than θ. As for the θ2

2p+θ , well, the bigger that term is, the better. The bigger p is, the smaller
that factor is, but the biggest p could be is 1. I.e.,

θ2

2p+ θ
≥ θ2

2 + θ
,

and therefore we have

Pr[|X − p| ≥ θ] ≤ 2 exp
(
− θ2

2 + θ
· n
)
.

1Worried about p = 0? In that case, X will correctly be 0 100% of the time!

5

So if we want confidence 1− δ in the estimate (think, e.g., δ = 1/20), we would like the right-hand
side in the above to be at most δ.

δ ≥ 2 exp
(
− θ2

2 + θ
· n
)

⇔ exp
(

θ2

2 + θ
n

)
≥ 2

δ

⇔ θ2

2 + θ
n ≥ ln

2
δ

⇔ n ≥ 2 + θ

θ2
ln

2
δ
.

We have thus proved the following very important theorem. (NB: As is traditional, we’ve called
the accuracy “ε” in the below, rather than “θ”.)

Sampling Theorem: Suppose we use independent, uniformly random samples to estimate p,
the fraction of a population with some property. If the number of samples n we use satisfies

n ≥ 2 + ε

ε2
ln

2
δ
,

then we can assert that our estimate X satisfies

X ∈ [p− ε, p+ ε] with probability at least 1− δ.

Some comments:

� That range [p− ε, p+ ε] is sometimes called the confidence interval.

� Due to the slightly complicated statement of the bound, sometimes people will just write the
slightly worse bounds

n ≥ 3
ε2

ln
2
δ
,

or even

n ≥ O
(

1
ε2

ln
2
δ

)
.

� One beauty of the Sampling Theorem is that the number of samples n you need does not
depend on the size of the total population. In other words, it doesn’t matter how big the
country is, the number of samples you need to get a certain accuracy and a certain confidence
only depends on that accuracy and confidence.

� In the example we talked about earlier we were interested in accuracy ε = 2% and confidence
95%, meaning δ = 1/20. So the Sampling Theorem tells us we need at least

n ≥ 2 + .02
(.02)2

ln
2

1/20
= 5050 ln 40 ≈ 18600.

Not so bad: you only need to call 18600 or so folks! Er, well, actually, you need to get 18600
folks to respond. And you need to make sure that the events “person responds” and “person
approves of the president” are independent. (Hmm. . . maybe being a pollster is not as easy
as it sounds. . .)

� As you can see from the form of the bound in the Sampling Theorem, the really costly thing
is getting high accuracy: 1/ε2 is a fairly high price to have to pay in the number of samples.
On the other hand, getting really high confidence is really cheap: because of the ln, it hardly
costs anything to get δ really tiny.

6

3 The Chernoff + Union Bound method

Just as Linearity of Expectation and Indicator random variables often come together in glorious
marriage, so too do the Chernoff Bound and the Union Bound. You remember the humble Union
Bound, right?

Union Bound: Pr[B1 ∪B2 ∪ · · · ∪Bn] ≤
∑n

i=1 Pr[Bi].

The idea behind the Chernoff + Union Bound method is the following: The Chernoff Bound is
extraordinarily strong, usually showing that the probability a certain “bad event” happens is ex-
tremely tiny. Thus, even if very many different bad events exist, if you bound each one’s probability
by something extremely tiny, you can afford to just add up the probabilities. I.e.,

Pr[anything bad at all] = Pr[Bad1 ∪ · · · ∪ BadLarge] ≤
Large∑
i=1

Pr[Badi]

(this is a high-level picture :) and if the Chernoff Bound implies Pr[Badi] ≤ minuscule for each i,
we get

Pr[anything bad at all] ≤
Large∑
i=1

minuscule = (Large)× (minuscule) = small.

(Told you it was high-level.)

Let’s do an example to make this concrete.

3.1 Random load balancing

Suppose you are a content delivery network — say, YouTube. Suppose that in a typical five-minute
time period, you get a million content requests, and each needs to be served from one of your, say,
1000 servers. How should you distribute the requests (let’s call them ‘jobs’) across your servers
to balance the load? You might consider a round-robin policy, or a policy wherein you send each
job to the server with the lowest load. But each of these requires maintaining some state and/or
statistics, which might cause slight delays. You might instead consider the following extremely
simple and lightweight policy, which is surprisingly effective: assign each job to a random server.

Let’s abstract things slightly. Suppose we have k servers and n jobs. Assume all n jobs arrive
very quickly, we assign each to a random server (independently), and the jobs take a while to
process. What we are interested in the load of the servers.

ASSUMPTION: n is much bigger than k.

E.g., our YouTube example had n = 106, k = 103.

Question: The average “load” — jobs per server — will of course be n/k. But how close to
perfectly balanced will things be? In particular, is it true that the maximum load is not much
bigger than n/k, with high probability?

7

Answer: Yes! Let’s do the analysis.

Let Xi denote the number of jobs assigned to server i, for 1 ≤ i ≤ k.

Question: What is the distribution of the random variable Xi?

Answer: If you think a little bit carefully, you see that Xi is a binomial random variable:
Xi ∼ Binomial(n, 1/k). To see it, just imagine staring at the ith server. For each of n trials/jobs,
there is a 1/k chance that that job gets thrown onto this ith server.

Don’t be confused by notation, by the way — we used to use subscripted X’s like Xi to denote
Bernoulli random variables, and their sums were Binomial random variables denoted X. Here we
have that each Xi itself is a Binomial random variable.

Question: Are X1, . . . , Xk independent random variables?

Answer: No! Here is one non-rigorous but intuitive reason: we know that it will always be the
case that

k∑
i=1

Xi = n.

So in particular, if I tell you the value of X1, . . . , Xk−1, you know exactly what Xk is. Bear in mind
that this reasoning does not formally prove that X1, . . . , Xk are not independent. But it’s not hard
to do that either. Here’s one way: if X1, . . . , Xk were independent, we’d have

Pr[X1 = n ∩X2 = n ∩ · · · ∩Xk = n] = Pr[X1 = n] ·Pr[X2 = n] · · ·Pr[Xk = n].

Now the left-hand side above is 0, since there’s no way each server can have all n jobs! But the
right-hand side is nonzero; each Pr[Xi = n] = (1/k)n.

But you know what? It’s cool. We’re going to be using the Union Bound, and one beauty of the
Union Bound is that (like Linearity of Expectation), it does not care whether the events it involves
are independent or not.

The average load after doing random load balancing is clearly n/k, just because there are n
total jobs and k servers. Further, we have

E[Xi] = n/k

for each i (by the formula E[Binomial(n, p)] = np, e.g.). So, as is intuitive, each server is expected
to have n/k jobs. But we are interested in the maximum load among the k servers. . .

Let
M = max(X1, X2, . . . , Xk),

a random variable representing the maximum load. Our goal is to show a statement of the form

Pr[M ≥ n/k + c] ≤ small

8

where c is not too large. Then we’ll be able to say, “With high probability, the maximum load is
at most n/k + c.” We’ll let you in on a secret: we’re eventually going to be able to take

c = 3
√

ln k
√
n/k.

You might say to yourself, “uh, is that good?” Yeah, it’s pretty good, actually. The 3
√

ln k part is
really quite small, and the rest of the deviation,

√
n/k, is only the square-root of the average load.

So, in a concrete setting with n = 106 and k = 103, the average load is

n/k = 1000,

and our deviation here is
c = 3

√
ln 1000

√
1000 ≈ 250.

So our result will show, “With high probability, the maximum load is at most 1250.” We’ll see
what “high probability” means next lecture.

9

15-359: Probability and Computing
Fall 2009

Lecture 11: Load balancing concluded, Balls and Bins, Poisson r.v.’s

1 Chernoff + Union Bound Method: Load balancing concluded

In the last lecture we discussed the “Chernoff + Union Bound Method”, and in this lecture we’ll
see a very typical use of it. Remember the “load balancing” problem from last time. There are n
jobs that need to be assigned to k servers. We assume that n � k, with a typical example being
n = 106, k = 103. We use the random load balancing policy: each job is independently assigned to
one of the k servers uniformly at random.

Let Xi denote the number of jobs assigned to server i, for i = 1 . . . k. Recall that Xi ∼
Binomial(n, 1/k). Since we always have n jobs on k servers, the average load will be exactly n/k.
What about the maximum load?

Let M = max(X1, X2, . . . , Xk), a random variable. We will show that with high probability, M
is not much bigger than n/k.

Theorem 1.
Pr[M ≥ n/k + 3

√
ln k
√
n/k] ≤ 1/k2.

In the specific case of n = 106, k = 103, this translates into

Pr[M ≥ 1000 + 249.34] ≤ 10−6;

i.e., the maximum load will be less than 1250 except with probability one in a million. A pretty
comforting result! By the way, since each Xi is Bernoulli(n, 1/k), we have

Var[Xi] = n(1/k)(1− 1/k) ≈ n/k ⇒ stddev[Xi] ≈
√
n/k.

So even for one particular server we kind of expect the number of jobs to fluctuate from the mean,
n/k, by a few factors of

√
n/k. Indeed, if we just applied Chebyshev to a particular server, we’d

only conclude
Pr[Xi ≥ n/k + 3

√
ln k] ≤ 1/(3

√
ln k)2 = 1/(9 ln k),

and 1/(9 ln k) ≈ 1.6% when k = 103. So Chebyshev can only tell us that the probability, say, server
#7 has less than 1250 jobs is at most 1.6%. The Chernoff + Union Bound Method tells us that all
1000 servers have less than 1250 jobs except with probability one in a million!

Proof. Let c = 3
√

ln k
√
n/k. (We selected this quantity with considerable foresight! Indeed, when

you solve problems like this, you’ll need to let c remain a variable, and then select it at the very end.)

1

As promised, we use the Chernoff + Union Bound method. The first step when doing this is
to decide what the “bad events” are. Here it’s bad whenever Xi ≥ n/k + c. So let’s define k “bad
events”, B1, . . . , Bk, where

Bi = “Xi ≥ n/k + c”.

(This is a lot of bad events, by the way. But that’s the beauty of the Chernoff + Union Bound
Method; you can overcome even 1000’s of ways of things going wrong!) Let’s further define

B = B1 ∪B2 ∪ · · · ∪Bk,

our overall “bad event”. This is the event that at least one of the k servers gets load at least n/k+c.
This is exactly the event we care about. I.e.,

B = “M ≥ n/k + c” = “m ≥ n/k + 3
√

ln k
√
n/k”

Our goal is to show that B occurs with probability at most 1/k2. We will use the Union Bound for
this, telling us that

Pr[B] ≤
k∑
i=1

Pr[Bi].

Now if you think for a second, you’ll see that all these probability Pr[Bi] are the same, since the
situation is the same with respect to all the servers. We will show

Pr[B1] ≤ 1/k3.

Thus Pr[Bi] ≤ 1/k3 for all i, and so

Pr[M ≥ n/k + c] = Pr[B] ≤
k∑
i=1

Pr[Bi] ≤
k∑
i=1

(1/k3) = k/k3 = 1/k2.

So indeed it remains to show Pr[B1] ≤ 1/k3. For this we use the Chernoff Bound.

Specifically, we use Chenoff Bound 2. For this we need to be analyzing a random variable which
is the sum of many independent random variables. Why are we in this situation? Remember,
X1 ∼ Bernoulli(n, 1/k). In particular, we could write

X1 = I1 + I2 + · · ·+ In,

where Ij is the indicator random variable that job j gets assigned to server #1. The Ij ’s are
independent, and they are Bernoulli(1/k) which means they are between 0 and 1 as required by
Chernoff. We have

µ = E[X1] = n/k.

Hence, for any ε > 0, the Chernoff Bound implies

Pr[X1 ≥ (1 + ε)(n/k)] ≤ exp
(
− ε2

2 + ε
µ

)
. (1)

We are concerned with the event X1 ≥ n/k + c, so we need to take ε such that

ε(n/k) = c = 3
√

ln k
√
n/k ⇔ ε = 3

√
ln k/

√
n/k.

2

We’re assuming that n� k, which should imply ε� 1. Specifically, let’s assume1 that n ≥ 9k ln k,
which you can check implies ε ≤ 1. So

ε2

2 + ε
≥ ε2

3
=

(3
√

ln k/
√
n/k)2

3
=

9 ln k
3(n/k)

=
3 ln k
µ

.

Substituting this into (1) implies

Pr[X1 ≥ n/k + c] ≤ exp
(
−3 ln k

µ
µ

)
= e−3 ln k = k−3 = 1/k3,

as desired.

2 Balls & Bins

Balls.
• • • • • • • • — n of them

Bins.
t t t t t t t — m of them

Each ball is independently “thrown” into a uniformly random bin.

This is the scenario we mean when we say “Balls and Bins” — and say it we will.

2.1 Examples

Balls and Bins is one of the most commonly discussed and most important paradigms in all of
probability. And computing. It’s the model for hundreds of situations and the source of hundreds
of interesting problems. Here are some example situations it models:

� Load balancing: Balls = jobs, Bins = servers. Now Balls and Bins models the random load
balancing scenario we just discussed.

� Data storage: Balls = files, Bins = disks.

� Hashing: Balls = data keys, Bins = hash table slots. We will discuss this application in
detail next lecture.

� Routing: Balls = connectivity requirements, Bins = paths in a network.

� Beloved probability chestnuts:

a) Balls = students, Bins = birthdays ⇒ the Birthday Problem.

b) Balls = purchased coupons, Bins = coupon types

⇒ the “Coupon Collector Problem” (AKA “RetailMeNot” problem on the homework)

And here are some example questions one is often interested in:

� Question: What is the probability of a collision — i.e., getting more than 1 ball in some
bin? This is exactly what we’re interested in in the Birthday Problem.

1This should really go into the hypothesis of the theorem.

3

� Question: How many balls are thrown before each bin has at least 1 ball? This is exactly
what we’re interested in in the Coupon Collector Problem.

� Question: How many balls end up in the bin with maximum load? This is what we just
finished analyzing in the discussion of Randomized Load Balancing.

2.2 How to analyze — rules of thumb

Let Xi be the random variable counting the number of balls in the ith bin, 1 ≤ i ≤ m. Just as we
saw last before,

Xi ∼ Binomial(n, 1/m).

This is because each of the n balls has a 1/m chance of being thrown into the ith bin. As we noted
last time,

X1, X2, . . . , Xm are not independent random variables.

We of course have E[Xi] = n/m for each i. We will give a name to this:

Definition 2. The average load in a Balls and Bins scenario is

λ =
n

m
.

How do we analyze the various questions mentioned above? In some sense, we know everything
is to know; we know the distribution of each Xi and in some sense we know how they are jointly
distributed. However, the situation is a bit complicated, and to get a handle on it you often have
to use various approximations and bounding inequalities. Here is the key rule of thumb:

Rule of Thumb:
a) If n� m, i.e., λ is huge, then it’s a good idea to do analysis with Chernoff Bounds.
b) If n ≈ m, i.e., λ is on the order of a “constant”, Chernoff Bounds are not so powerful —

instead, use the Poisson Approximation.

We’ll discuss what exactly the Poisson Approximation is shortly. Just to say a few more words
here: It’s not like in part (b) that the Chernoff Bounds are wrong. It’s just that they tend not to
give very powerful statements — i.e., bounds that are close to being sharp. The reason is that if
you apply Chernoff Bound 2 to some Xi, you get a bound like

exp
(
− ε2

2 + ε
· µ
)
,

say, and here µ = λ. If λ is very large, this is a very strong (i.e., small) upper-bound. But if λ is
more like a constant. . . well, again, it’s not that it’s wrong, it’s just that it’s not very powerful.

3 Approximating the number of balls in a bin

Let’s start by investigating a few simple questions in the Balls and Bins scenario. Remember, we
have n balls, m bins, the average load is λ = n/m, and Xi denotes the number of balls landing in
bin i. Our main assumption for now is:

4

ASSUMPTION: The number of bins, m, is “large”. Also, the number of balls n is “large” but
comparable to m: i.e., λ is “constant”.

Using this assumption, let’s try to get a handle on the distribution of the number of balls in the
ith bin. You might protest that we’re already done: Xi ∼ Binomial(n, 1/m), we can write down
the PMF of Xi, and there’s not much more to know. True, but Binomial random variables can be
somewhat complicated to work with (think about their PMFs). Also, they act in a bit of a strange
way when the “p” parameter is really close to 0, and this is the case since our “p” is 1/m. Let’s
see what happens when we use the Most Useful Approximation Ever,

ex ≈ 1 + x when x is tiny.

Question: What is the probability the ith bin ends up empty?

Answer: We want to know Pr[Xi = 0]. Since we know Xi ∼ Binomial(n, 1/m) we can simply
write this down from the PMF of Xi. The answer is (1 − 1/m)n. This should be clear: each of n
balls has to evade the ith bin (which happens with probability 1− 1/m for each ball).

Question: How can we approximate Pr[Xi = 0]?

Answer: We use the Most Useful Approximation Ever with x = −1/m; this is valid as we are
assuming m is large.

Pr[Xi = 0] = (1− 1/m)n ≈ (e−1/m)n = e−n/m = e−λ.

Question: What is the expected number of empty bins, precisely and approximately?

Answer: Let Ui be the indicator random variable for the ith bin being empty. U =
∑m

i=1 Ui
denotes the number of empty bins. By linearity of expectation,

E[U] =
m∑
i=1

E[Ui] =
m∑
i=1

Pr[Xi = 0] = m(1− 1/m)n ≈ e−λm.

For example, if there are an equal number of balls and bins, n = m, then λ = 1, and we expect
about a 1/e fraction of bins to be empty.

Question: What is the probability that the ith bin contains exactly 1 ball?

Answer: We want to know Pr[Xi = 1], and again, we can just write this down from the PMF:

Pr[Xi = 1] = n · (1/m) · (1− 1/m)n−1.

Recall, this is because there are n choices for which will be the lone ball in bin i, this ball has to
go into the bin (probability 1/m) and the remaining n− 1 balls have to miss the bin (probability
1− 1/m each).

Question: How can we approximate Pr[Xi = 1]?

5

Answer: Rewrite the above as

Pr[Xi = 1] = (n/m) · (1− 1/m)n · (1− 1/m)−1.

As before we use (1−1/m)n ≈ e−n/m. We also use 1−1/m ≈ 1, which is valid since we’re assuming
m large. So we have

Pr[Xi = 1] ≈ λe−λ.

Amusingly, from this we see that if n = m and so λ = 1, then Pr[Xi = 1] ≈ 1/e again, and we
expect about a 1/e fraction of bins to have exactly 1 ball.

Question: What is the probability that the ith bin contains exactly 2 balls? What is it approx-
imately?

Answer: Again, we start by simply writing the Binomial PMF for 2:

Pr[Xi = 2] =
(
n

2

)
(1/m)2(1− 1/m)n−2

=
n(n− 1)

2!
· 1
m
· 1
m

· (1− 1/m)n−2

=
1
2!
· n
m
· n− 1

m
· (1− 1/m)n(1− 1/m)−2

=
1
2!
· n
m
· n
m

(
n− 1
n

)
· (1− 1/m)n(1− 1/m)−2

Now we use λ = n/m, the same approximations as before, and also

n− 1
n

= 1− 1
n
≈ 1.

Hence

Pr[Xi = 2] ≈ 1
2!
λ2 · 1 · e−λ · 1−2 =

e−λλ2

2!
.

Hmm. A little more complicated, yes, but think about an example, say, n = 2000, m = 1000:
Would you rather try to compute(

2000
2

)
(1/1000)2(1− 1/1000)1998 or

e−222

2!
?

The approximation is excellent, by the way; the true quantity on the left is .2708, the quantity on
the right is .2707.

Let’s do one more:

Question: What is the probability that the ith bin contains exactly 3 balls? What is it approx-
imately?

6

Answer: Using the same tricks and approximations:

Pr[Xi = 3] =
(
n

3

)
(1/m)3(1− 1/m)n−3

=
n(n− 1)(n− 2)

3!
· 1
m
· 1
m
· 1
m

· (1− 1/m)n−2

=
1
3!
· n
m
· n− 1

m
· n− 2

m
· (1− 1/m)n(1− 1/m)−3

=
1
3!
· n
m
· n
m

(
1− 1

n

)
· n
m

(
1− 2

n

)
· (1− 1/m)n(1− 1/m)−3

≈ 1
3!
λ · λ · 1 · λ · 1 · e−λ · 1−3

=
e−λλ3

3!
.

Again, when n = 2000, m = 1000, the truth and approximation are(
2000

3

)
(1/1000)3(1− 1/1000)1997 ≈ .1805,

e−223

3!
≈ .1804.

The approximation is pretty good, as you can see, and way easier to compute.

If you continue the above reasoning, you’ll find the following:

Summary: Assuming n/m = λ and that n,m� r, then

Pr[Xi = r] = Pr[Binomial(n, 1/m) = r] ≈ e−λλr

r!
.

4 The Poisson Distribution

Something a little funny is going on. We know the true PMF of Xi:

Pr[Xi = r] = pXi(r) =
(
n

r

)
(1/m)r(1− 1/m)n−r, r = 0, 1, 2, . . . , n.

However, if r is a smallish natural number, n and m are “large”, and λ = n/m is “constant”, we
just decided that

Pr[Xi = r] ≈ e−λλr

r!
.

And check this out:
∞∑
r=0

e−λλr

r!
= e−λ

(
1 + λ+

λ2

2!
+
λ3

3!
+ · · ·

)
= e−λeλ (Taylor expansion/definition of eλ)
= 1.

Whoa! What an amazing miracle! We have a sequence of nonnegative numbers, e−λλr/r!, one
for each natural number r, and we just showed that they add up to 1. Therefore, they form a
valid PMF! Let’s give the definition:

7

Definition 3. For any positive real number λ, random variable Y is said to have the “Poisson(λ)”
distribution if its PMF is

pY (r) =
e−λλr

r!
r = 0, 1, 2, 3,

There’s a lot to say about this definition!

� This is a prime instance of introducing a random variable by giving its PMF.

� In a sense we’ve said, “Forget about the Balls and Bins for a second. Consider this random
variable Y .”

� What we have seen is that in a Balls and Bins scenario with large m and n and average
load λ, the distribution on the number of balls in a particular bin is well-approximated by a
Poisson(λ) random variable Y .

� There is no natural experiment (randomized code) that generates a Poisson random variable.

� That’s not to say that you can’t generate a Poisson random variable with randomized code
(think about how you might do it. . .).

� A Poisson random variable takes values 0, 1, 2, 3,

� The distribution is named after the French mathematician Siméon Denis Poisson (1781–
1840). He invented it in an article called, no joke, “Research on the Probability of Judgments
in Criminal and Civil Matters”.2

4.1 The Poisson Approximation

The following is the “Poisson Approximation”: Suppose X ∼ Binomial(n, 1/m), where n is “large”
and n/m = λ is “constant”. Then for each r ∈ N, we have

Pr[X = r] ≈ e−λλr

r!

is a good approximation. More precisely,

lim
n,m→∞
n/m=λ

Pr[X = r] =
e−λλr

r!
.

More generally, if X ∼ Binomial(n, p), n is “large” and np is “constant”, we have that Y ∼
Poisson(np) is a good approximation to X, in the above sense.

There’s an extension to this. In the Balls and Bins scenario, where you have random variables X1, . . . , Xm counting the number of balls in

each bin, the Poisson Approximation says that pretending they are independent Poisson(λ) random variables is a close approximation of the truth.

We don’t want you to use this fact at will, though, because it’s “less true” than what we’ve said above. There are some rigorous theorems partially

justifying it, but we don’t want to get into them. We thought we’d let you in on the secret, though.

2Well, actually, “Recherches sur la probabilité des jugements en matière criminelle et en matière civile”.

8

5 Basics of Poisson r.v.’s

As always when introducing a new family of distributions, we should figure out their basic prop-
erties. The first thing is always the PMF of Y , but we know this already — indeed, it’s built into
the definition. Next thing is always expectation:

Theorem 4. Let Y ∼ Poisson(λ). Then E[Y] = λ.

Intuition: Y approximates Xi ∼ Binomial(n, 1/m) with n/m = λ. Since E[Xi] = n/m = λ, it
makes sense that E[Y] = λ.

Proof. Formally,

E[Y] =
∞∑
r=0

e−λλr

r!
· r

= e−λ
(
λ+

2λ2

2!
+

3λ3

3!
+

4λ4

4!
+ · · ·

)
= e−λ

(
λ+

λ2

1!
+
λ3

2!
+
λ4

3!
+ · · ·

)
= e−λλ

(
1 + λ+

λ2

2!
+
λ3

3!
+ · · ·

)
= e−λλeλ

= λ.

Next thing is always variance:

Theorem 5. Let Y ∼ Poisson(λ). Then Var[Y] = λ.

Intuition: Again, Y approximates Xi ∼ Binomial(n, 1/m) with n/m = λ. Since Var[Xi] =
n(1/m)(1− 1/m) = λ(1− 1/m) ≈ λ, it makes sense that Var[Y] = λ.

Proof. On the homework :)

5.1 Poissons are additive

Finally, we have the following important result:

Theorem 6. Let Y ∼ Poisson(λ), let Z ∼ Poisson(λ′), and assume Y and Z are independent.
Then the random variable Y + Z has the distribution Poisson(λ+ λ′).

Intuition: Y approximates the number of balls in bin 1 in a Balls and Bins process with m bins,
λm balls. Z approximates the number of balls in bin 1 in an independent Balls and Bins process
with m bins, λ′m balls. Now just imagine you use the same bins for both processes! So Y + Z
approximates the number of balls in bin 1 when there are m bins and (λ + λ′)m balls — i.e., it
ought to be (approximately) distributed like Poisson(λ+ λ′).

Proof. Again, on the homework :)

9

6 “Law of Rare Events”

Poisson(λ) random variables might look a little artificial at first — from the definition, it seems
like we just plunked down a strange sequence of numbers that happened to add up to 1. However,
they actually occur quite frequently “in nature”. Here are some things which empirically have a
Poisson distribution, according to the Internet:

� Per-year deaths by horse/mule kick in the late-19th-century Prussian army.

� Number of white blood cells in a blood suspension.

� Typos per page in printed books.

� Number of imperfections per square-inch in a piece of metal.

� Number of roadkill per mile on a highway.

� Number of bomb hits per .25km2 in South London during WWII.

� Geiger counter blips per minute when measuring a meteorite.

(Don’t know why the examples have so much negativity; sorry about that :)

The general idea for all of these is that if you have a large number n of objects that get
distributed randomly over some stretch of time/space, the number you see in a particular 1/m sub-
stretch is probably/possibly distributed like Binomial(n, 1/m). And if things are scaled so that the
average number per substretch is some constant λ, then it’s reasonable to think that the number
in a particular substretch has a Poisson(λ) distribution.

Take, for example, the number of typos per page in a book. Suppose you are editing a 200
page book; you proofread the manuscript super-carefully and find 500 total typos. So the average
number of typos per page is 2.5. Given this information, it’s reasonable to think that the typos
are distributed randomly, and therefore the number of typos on a particular page may well be
distributed like a Poisson(2.5) random variable.

By way of illustration, here is part of the PMF of a Poisson(2.5) random variable:

u 0 1 2 3 4 5 6 7 8 9 10
pY (u) .0820 .2052 .2565 .2137 .1336 .0668 .0278 .0099 .0031 .0008 .0002

10

15-359: Probability and Computing
Fall 2009

Lecture 12: Hashing, Fingerprinting, Bloom Filters

1 Hash Tables

The Hash Table is one of the greatest data structures. Hash Tables are “dictionary”, or “associative
array”, data structures that can have constant lookup time. (“Can” here is the key word; there
are sometimes caveats.) Remember that a “dictionary” data structure is just something you use
to store n data items, indexing them by a “key”. We all know various balanced binary search tree
data structures (Red-Black trees, AVL trees, etc.) which support lookup in O(log n) time. But
with appropriate use of Hash Tables, you can have O(1) time lookup and insertion.

1.1 Example — unacceptable passwords

One of the more common methods for password cracking is to just try each password on a list of
common passwords. This is (coincidentally) called the “Dictionary Attack”. It’s actually pretty
ridiculous how well it works. To guard against it, a lot of password systems prevent you from using
such “easy” passwords in the first place.

Assume we are trying to implement such a system and we have a list of n unacceptable pass-
words. When a user goes to change their password, or create a new one, we need to check their
proposed password against our list of unacceptable ones. How should we implement this?

Idea 1: Store the list in a sorted array. In this case we can do a lookup with binary search. This
will take O(log n) time.

Idea 2: Store the list in a “trie”. This is a popular data structure solution for the case of a
dictionary of strings. We will not discuss it, but see, e.g., Wikipedia for a nice description. The
main downside of a “trie” is that for, say, 32-byte passwords, a lookup will involve accessing up to
32 random memory locations (which can be bad if access to memory/disk is slow).

Idea 3: Use a hash table. For this we assume we have a “hash function” h, mapping strings into
numbers,

h : {strings} → {1, 2, . . . ,m}

which is somehow “random-seeming”. More on that later.

A “hash table” is then just an array with m cells. For each unacceptable password x, our
application will store x in the cell with index h(x). For example, "password" is a really bad
password, hence it would probably be on our list. Our hash function h might have h("password") =
132; so then it stores this string in cell 132 of the table.

1

Problem: Collisions. This is an obvious problem. If we’re trying to conserve space, we would
probably want to make m not too large (compared to n). But then there’s a chance that two
passwords on our list might “hash” to the same value. E.g., perhaps by chance h("secret") = 132
as well.

Solution: Actually, there are many solutions to this problem. For now we’ll just consider what’s
probably the simplest possible solution. It is called chaining. It just means that each cell of the
hash table actually stores a linked list. With chaining, the hash operations are implemented like
this:

Insert(x):

� Compute h(x).

� Insert x at the head of the linked list stored in cell h(x).

Lookup(x):

� Compute h(x).

� Sequentially search for x in the linked list in cell h(x).

How long do these operations take? Well, we tend to make the following assumptions:

Assumptions:

� Computing h(x) takes O(1) time. This is a pretty reasonable assumption; most hash functions
used in practice do some kind of basic bit-level arithmetic, and output a single “word” (4
bytes, say). We’re assuming also here that x itself is of constant size.

� Accessing a given location in an array takes O(1) time. This is a standard assumption for
random access machines.

With these assumptions it’s clear that doing an Insert takes O(1) time. As for doing a Lookup,
the time required depends on how long the linked list in the cell indexed by h(x) is. The time
required is

O(1) +O(load of that cell).

Naturally, then, we really hope that all cells have small load!

2 “Random-seeming” hash functions, and SUHA

Before we get into hash table analysis, we need to clarify what we meant by saying that the hash
function is “random-seeming”. Specifically, we want two things out of a hash function: for each
x, h(x) should act like a uniformly random number in {1, 2, . . . ,m}. And, h(x) should be easy to
compute — “constant time”. Here are two things you could try:

Try 1: Make h a truly random function. Specifically, for each possible string x, choose h(x) ←
RandInt(m). Of course, this makes all analysis based on h being random perfectly correct. However,
it’s completely infeasible for practice, since it requires storing in advance an integer for every possible
string x!

2

Try 2: Some ad-hoc, randommy, scrambly, xor-this, mod-that function. For example, here’s how
python hashes a string:

h = ord(x[0]) << 7
for char in x:

h = c mul(1000003, h) ̂ ord(char)
h = h ̂ len(x)

This kind of thing has the advantage of being fast to compute. But the hash values really aren’t
random. Maybe they’re “random enough”, but you have to worry about what happens if some evil
person is choosing the strings to be hashed. . . Such a person might try to attack your program and
make it run slowly by giving it a bunch of strings that all hash to the same value.

Hmm. What to do? Well, the thing most people to is just cheat :) We’ll cheat too and use the
“Simple Uniform Hashing Assumption”:

Simple Uniform Hashing Assumption (SUHA): Do “Try 2”, but analyze it as though it
was Try 1.

There is a great deal of work done by researchers on how to construct hash functions that are
efficient to evaluate but have sufficient “random-like” behavior. There’s also some recent rigorous
work on why the SUHA is actually essentially valid under certain assumptions about “real-world
data”. We may say more about that on the blog. But for now, let’s just assume SUHA :)

By the way, there’s an intermediate “Try 3” you might think about — that’s to use a crypto-
graphic hash function like SHA-1. We feel very strongly that SHA-1 acts almost indistinguishably
from a truly random function, so that’s good. But we still don’t use this solution very much because
computing SHA-1 is actually fairly slow. And in many uses of hash tables — e.g., in routers — we
really require blazing speed for the computation of the hash function.

2.1 Using SUHA

Under SUHA, the analysis of hash tables is just Balls and Bins! Say you insert n keys into a hash
table of size m. Under SUHA, each key hashes to a uniformly random cell. So balls = keys and
bins = cells.

Let’s go to the password example. Assume we’ve stored all n unacceptable passwords in a hash
table of size m. Now we can think about the expected time of looking up a user’s proposed new
password.

First, let’s think about an “unsuccessful find” (meaning the user’s password is actually accept-
able). Remember, lookups take O(1) + O(load) time. Under SUHA, if we hash a string which is
not in the hash table, this leads you to a uniformly random cell. So the expected value of that
cell’s load is just λ = n/m. In other words:

E[time of an unsuccessful find] = O(1 + λ).

Now what about a “successful find” (meaning the user’s password is on the blacklist)? What is
the expected time for this lookup? Focus on this particular bad password x. Its hash h(x) is some
cell in the table. Conditioned on that; say it is cell i. Now how many more bad passwords do we

3

expect to hash to cell i? Well, there are n − 1 more bad passwords, and by SUHA we have that
each hashes to cell i with probability 1/m. So the expected load of x’s cell is 1 + n−1

m ≤ 1 + λ. So
we also have

E[time of a successful find] = O(1 + λ).

2.2 The tradeoff

Thus we get a natural tradeoff between space utilization and Lookup time: Taking λ large we get
a smaller table, since the table size is m = n/λ. However, this leads to slower Lookup times on
average. A popular choice is m = n; i.e., λ = 1.

In several applications you get really concerned about Lookup time. In these cases, it makes
sense to also worry about the maximum load, since this dictates the worst-case time of a Lookup.
You might remember that we analyzed the maximum load in a balls and bins scenario in Lectures 8
and 9: n “jobs”, k “servers”. That, however, was in the case where n� k; in the hashing scenario
the number of balls and bins is roughly equal (i.e., λ is a constant). As it turns out, when m = n,
the maximum load is actually Θ(log n/ log log n), with high probability. You will prove this on the
homework!

3 Saving space: Fingerprinting

Let’s go back and talk about the bad-passwords example. There we saw that with a hash table, we
could get Lookups in expected time O(1) by using a table of size m = n. However, in some ways
this is not such a great use of space. There are two problems:

� First, you have a lot of empty hash table slots. As we saw in the last lecture, if you have a
Balls and Bins process with n = m and hence λ = 1, the expected fraction of empty bins is
1/e.

� Second, you are storing the whole password in each bin.

As an example, if you have n passwords, each 32 bytes long, then you’re using up at least 256n
bits of space here (more, actually, due to linked list overhead). Suppose you care greatly about
using very little space, and you’re not too worried about the time issue — think of implementing
the system a cell phone, for example. Then fingerprinting might be the solution for you.

To explain fingerprinting, first notice that if space is a big concern but time isn’t, then you
probably wouldn’t use a hash table at all. For one, it’s probably a bit better to go back to the
simple solution of just storing all the bad passwords in a sorted array and doing lookups via binary
search. Then the time for lookups is not too bad, O(log n), and the space usage is precisely 256n
bits.1

However, with fingerprinting you can save a factor of, say, 8 on space. It might seem impossible
at first to save any space here, but we’ll do it by trading space for error.

1This might be improvable by a small factor with a trie, depending on the exact set of passwords.

4

3.1 Saving a factor of 8

Specifically, we’ll fingerprint each string, meaning we’ll hash it from a 256-bit string to a 32-bit
string, called the “fingerprint”. We’ll then store the fingerprints in a sorted array. We will not
store the actual 256-bit bad passwords themselves. This reduces space down to 32n bits, a factor
of 8 as promised.

To check a user-proposed password, we hash it to a fingerprint and use binary search to check
whether this fingerprint is in our sorted list. If it is, we reject the password.

Problem: false positives. Something has to give, of course, and it is false positives — it may
be that a perfectly acceptable password happens to have the same fingerprint as a bad password.
This will cause it to be improperly rejected.

But you know what, that may not be so bad. Okay, the user gets a bit annoyed and has to
pick a new password. But you’re saving space by a factor of 8! Well, before we get too excited we
should analyze the probability of a false positive; if it’s really high then this will be a bad idea. But
as it turns out, it’s not very high at all.

How can we compute the probability that a user’s good password will be improperly rejected?
At first this looks slightly difficult to analyze, but with a simple trick it becomes easy. Instead of
imagining all the bad passwords are first fingerprinted, and then the user selects a good password,
think of the random experiment happening in the opposite (but equivalent) order. Imagine you
start with the good password. It gets fingerprinted, and by SUHA it goes to some 32-bit string —
call that y. Now the probability of a false positive is the probability that one of the bad passwords
gets fingerprinted to the same string y.

By SUHA, each bad password has a 1/232 chance of having its hash value be y, and these events
are independent. So

Pr[not a false positive] = Pr[everything has a fingerprint 6= y] = (1− 1/232)n.

Perhaps a plausible value for n is 214 = 16384. Then we would have

Pr[not a false positive] = (1− 1/232)2
14 ≥ 1− 214/232 = 1− 1/218,

and hence
Pr[false positive] ≤ 1/218 ≈ 4× 10−6.

which is nice and tiny. Here in the previous line we used the fact that (1− x)t ≥ 1− xt whenever
x ≤ 1 (“Bernoulli’s Inequality”, it’s called). This is close to be an equality when x is small, by the
way, by the Most Useful Approximation Ever:

(1− x)t ≈ (e−x)t = e−xt ≈ 1− xt.

3.2 In general: bits per item vs. false positive rate

More generally, suppose we have a set of n items (strings, e.g.) we want to store. We don’t mind
having lookup time O(log n), and we don’t mind having a small chance of a false positive.

5

Question: With fingerprinting, if we’re willing to use b bits of space per item, how low can we
get the false positive rate?

Answer: We will be hashing each item to a fingerprint of length b bits. So as in the calculation
above, if we are looking up some item, the probability we don’t have a false positive is

(1− 1/2b)n ≥ 1− n/2b,

and hence the probability of a false positive is at most n/2b. Clearly we will need to take b to be
at least log2 n, or else this bound is bigger than 1! On the other hand, with each extra bit we use
beyond log2 n, we get an exponential decrease in the probability of a false positive.

Summary: By fingerprinting to log2 n+ c bits per item, you can store a set of n items and have

Pr[false positive on lookup] ≤ 2−c.

4 Saving even more space: Bloom Filters

Although fingerprinting is a nice idea, it’s more of a warmup for an even nicer idea: Bloom Filters.
As we just saw, fingerprinting is quite useless unless you store at least log2 n bits per key. Can we
get away with even less?! Could we somehow store just a constant number of bits per key, 5 or
10 say, and still have low false-positive rate? It turns out that Bloom Filters let you do precisely this.

Bloom Filters are a very interesting data structure, for a couple of reasons. First, they are
far less widely known than they ought to be, given that they’re very simple and very useful in
practice. Here is an example straight from real-life: it’s how Google’s “Bigtable” works (or HBase
in Hadoop). Suppose you are managing a truly gigantic spreadsheet, so gigantic that you have to
store it on many many disks. The spreadsheet is somewhat sparsely populated though, so if a user
requests an entry from a certain cell, that cell may well be empty. Because hitting the disk is so
slow, you’d like to keep track (in memory, say) of the locations of all the nonempty cells. Naturally,
space is at a premium here, but also it’s not the end of the world if you have a false positive. So
indeed, Google’s Bigtables use Bloom Filters to store the nonempty cell locations. Bloom Filters
also get used a lot in web caching, and many other networking applications.

The other, even more interesting thing about Bloom Filters is that their eponym is truly a man
of mystery. Bloom Filters were first described in a 1970 paper in Communications of the ACM by
one Burton H. Bloom. In addition to his name, the paper contains an affiliation:

Computer Usage Company, Newton Upper Falls, Mass.

Bloom apparently wrote one other paper, 7 years earlier, in AI Memo 47 on heuristics for computer
chess. He is otherwise a complete mystery. No one knows exactly who he is, or indeed whether he’s
alive or not. No less an authority than Don Knuth has publicly pleaded for someone who knows
him to come forward. (Knuth probably really just wants to know what the H stands for.) Even
“Computer Usage Company” seems to be little known; it’s claimed on the Internet that it was the
world’s first software company, founded in 1955. It IPO’d in 1960 for $186,681, but folded in 1986.

6

4.1 Bloom Filters

So what are Bloom Filters? We can at least answer this :)

As the user, we first select k, a small constant integer such as 6. We then set (with some
foresight that will be explained later)

m =
1

ln 2
kn.

Well, we round this number off, since m should be an integer too. This m is the number of storage
bits we will use; therefore we will be using essentially

b =
1

ln 2
k ≈ 1.44k bits per item.

In our example with k = 6, this is just 8.66 bits per item.

We next make the Bloom Filter:

� Allocate an array A[] (the Bloom Filter) of m bits. Initialize all bits to 0.

� Choose k “independent” hash functions,

h1, . . . , hk : {items} → {1, 2, . . . ,m}.

� “Insert” each of the n items into the Bloom Filter as follows: to insert x,

set A[h1(x)]← 1, A[h2(x)]← 1, . . . , A[hk(x)]← 1.

Note that in the course of doing this, some of these bits may already be set to 1. That’s okay.

That’s it. Note that creating the Bloom Filter takes time O(n), assuming k is constant.

Here’s how to do a Lookup:

� Lookup(y): Check whether A[h1(y)], . . . , A[hk(y)] are all set to 1. If so, report that y is in
the set. If not, report that it’s not.

Analysis: First, note that this algorithm has no false negatives; if y is really in the set, the Bloom
Filter will really report it as in there. Next, note that Bloom Filters have O(1) lookup time (again,
assuming that k is constant). So they’re even faster than fingerprinting! The main question is, of
course, what is the probability of a false positive?

In answering this, we will cheat a little bit. Sorry, but to do it carefully requires some approxi-
mation arguments which are too painful to give in a single lecture.

Let’s start by thinking about the following:

Question: What fraction of bits in A will be 1 after we insert the n items?

7

Answer: Inserting the n items is (under SUHA2) like throwing kn balls into m bins. The average
load here is

λ =
kn

m
=

kn

(1/ ln 2)kn
= ln 2,

by our choice of λ. Under the Poisson Approximation, the distribution of the number of balls in
bin i is thus Poisson(ln 2). Since bit A[i] is set in the Bloom Filter if and only if the corresponding
bin i gets at least 1 ball, we conclude that

Pr[A[i] = 1] ≈ 1−Pr[Poisson(ln 2) = 0] = 1− exp(− ln 2) = 1− 1/2 = 1/2.

So the expected number of bits set to 1 in the Bloom Filter is exactly 1/2 (assuming the Poisson
Approximation).

In fact, we claim that there is an extremely high probability that the fraction of bits set to 1 is
extremely close to 1/2. If the events A[i] = 1 were independent, we could prove this easily using
the Chernoff Bound. Unfortunately, they’re not.3 It is possible to overcome this and still get a
Chernoff-like bound; however, it’s a little complicated and we will avoid getting into it.4 So let us
simply assume (with some cheating) that the fraction of bits A[i] which are 1 is precisely 1/2.

Now think about what happens when we do a Lookup on some item y which is not in the set we
stored. The positions we look up, h1(y), . . . , hk(y), are independent random numbers in {1, . . . ,m}
(by SUHA). Since we’re assuming exactly 1/2 the bits in A[] are 1, the probability that all k
positions contain a 1 is just 2−k.

Summary: Using a Bloom Filter with k hash functions, you can store a set of n items using
b = 1

ln 2k ≈ 1.44k bits per item, and have

Pr[false positive on lookup] ≤ 2−k.

This is great because it’s exponentially small in k (and in b)! If you want to halve the probability
of a false positive, you only need to increase your storage by about 1.44n bits. In our example with
k = 6, you use 8.66n bits of storage and have false-positive probability 2−6 = 1.6%. So you see it’s
still a tradeoff versus fingerprinting: less storage by a significant factor, faster storage and lookup,
but higher false-positive probability by quite a bit. (And Bloom Filters do not support deletions!)

2Actually, an extension which allows us to get multiple “independent” hash functions.
3Although they are if we use the “extended” Poisson Approximation mentioned last lecture, wherein we pretend

that the numbers of balls in each bin are independent ;)
4Here is one sketch for why it’s okay: Really, we don’t care that the fraction of 1’s is exactly 1/2, we just care that

it’s at most 1/2. That’s because we are trying to show that the chance of a false positive is low, so we are hoping
that A[] has few bits set to 1. The events A[i] = 1 are not independent, which is too bad, since if they were we could
use Chernoff. But actually, intuitively speaking, they are negatively correlated. E.g., if I tell you that A[7] = 1, it
means that some balls went into bin 7, which makes you feel like it’s even less likely than usual that, say, A[36] = 1.
Intuitively speaking, having this negative correlation between the events A[i] = 1 should be even better than having
independence, for the purposes of proving that not more than 1/2 of the events happen. This intuition can be made
rigorous.

8

15-359: Probability and Computing
Fall 2009

Lecture 13: Random Graphs

In this lecture we will discuss three random graph models: (i) the Erdős–Rényi model Gn,p;
(ii) the Given Degree Sequence model of Bollobás; (iii) the Barabási–Albert Preferential Attachment
model.

1 Gigantic Graphs

Gigantic graphs are everywhere these days. Here are some examples:

� The Web: nodes = pages, arcs1 = links.

� Social networks: nodes = people, edges = acquaintanceships. (This may be informal, or
formalized, as in Facebook.)

� Collaboration networks: nodes = researchers, edges = coauthorships.

� Movies: nodes = actors, edges = costars.

� The Internet: nodes = ISPs, edges = connections.

� Peer-to-peer file sharing systems: nodes = computers, edges = connections.

� Chain mail: nodes = recipients, arcs = forwards.

� Telephone grids: nodes = phones, edges = lines.

� Power (electricity) grids: nodes = transmission towers, edges = transmission lines.

� Neural networks: nodes = neurons, nodes = synapses.

These graphs have a number of vertices, “n”, and number of edges “m” ranging from the thousands
to the billions (or more). It’s not surprising that many of the examples are computer science-related,
since it’s hard to keep track of gigantic masses of data without computers.

What do these graphs “look like”? They’re clearly far to big to draw, so it’s hard to actually
“look” at them. It’s not easy to say what this question even means. One thing you could at least
do is look at various statistics; e.g.:

� What is the “density” of edges, m/n? (Relatedly, what is the “average degree”, 2m/n?)
Is it “sparse”, meaning the density is like a small constant? Is it “dense”, meaning that
m = Ω(n2)? Something in between?

1I.e., directed edges

1

� Is the graph “connected”? I.e., is there a path between every pair of vertices? Is it “very
connected”? I.e., are there many paths between every pair of vertices?

� If the graph isn’t connected, how many vertices are in the largest component?

� If the graph is connected, what is the “diameter”, i.e., the maximum distance between a pair
of nodes?

� What is the “degree distribution”? How many vertices have degree 0, have degree 1, have
degree 2, etc.?

� What is the “girth”, i.e., the length of the shortest cycle? How many “triangles” (i.e., 3-cycles)
does the graph have?

If you just have a single graph you’re interested in (the Movie network, the Web) then per-
haps you could try to determine these statistics and be done. But that’s not very scientific! It’s
important to ask, do various gigantic graphs out there have common statistical features? What is
it about how the graph is created that determines these features? Can you predict how a newly
created giant graph will behave? Can you predict one statistical feature based on some others?

Perhaps most interestingly, how do these features affect algorithms? Think, e.g., of a routing
protocol for the Internet, or a viral marketing strategy for a social network. What properties of
gigantic graphs make various algorithms do better or worse?

To try to answer these questions, we need some models for gigantic graphs — and there’s no
better model than random graphs.

2 Random Graphs

Really, what we’re interested in is a fixed block of randomized code whose output is a graph (an
undirected graph, say). This randomized code is sometimes called a “random graph process”. Al-
most always, the number of vertices in the graph is decided on in advance. Here is the simplest
possible random graph process: it’s called Gn,1/2:

Gn,1/2: input is n, the desired number of vertices:
for i← 1 . . . n
for j ← i+ 1 . . . n
A[i, j], A[j, i]← Bernoulli(1/2).

Here A[] gives the adjacency matrix of the graph. In plain words, Gn,1/2 randomly makes a
graph by taking each “potential edge” (i, j) to be present with probability 1/2 and absent with
probability 1/2, independently for each potential edge. (We often say that Gn,1/2 generates a “ran-
dom graph”, but remember that this is a bit of a misnomer; rather, Gn,1/2 randomly generates a
graph.)

The “1/2” in the name Gn,1/2 indeed comes from the fact that each “potential edge” is present
with probability 1/2. We can of course generalize this to any probability p ∈ [0, 1]. The resulting
random graph process is called the Erdős–Rényi random graph model because, of course, it was
first introduced by Edgar Gilbert in 1959 :) Gilbert worked at Bell Labs and was motivated by the

2

phone network. Around the same time, Austin, Fagen, Penney and Riordan introduced (basically)
the related Gn,m model described below. Anyway, Paul Erdős and Alfréd Rényi were Hungarian
mathematicians who independently introduced the model in 1960; they get the naming credit
because they studied it much, much more extensively.

Definition 1. The Erdős–Rényi random graph model, denoted Gn,p, is to randomly make a graph
on n vertices by choosing each potential edge (i, j) to be present with probability p and absent with
probability 1− p, independently for all

(
n
2

)
potential edges.

Here is an illustration.2

There is a related Erdős–Rényi random graph model, called (slightly weirdly) Gn,m. In the Erős–
Rényi Gn,m model, you randomly make a graph on n vertices with exactly m edges, by choosing
each of the

((n
2)
m

)
possibilities with equal probability. The Gn,m model produces graphs which are

extremely similar to those produced by Gn,p with p = m/
(
n
2

)
. However it’s more of a pain to work

with Gn,m, so we will stick Gn,p.

2.1 More on Gn,1/2
We’ll talk about the Gn,p model more later in the lecture, but now let’s start with the simplest case,
Gn,1/2. Actually, this is a particularly special and simple case, because of the following:

Observation: Choosing a graph from Gn,1/2 is equivalent to choosing a graph on vertices 1, 2,

. . . , n uniformly at random from all 2(n
2) possible such graphs.

You should be able to easily convince yourself of this.

So what do Gn,1/2 graphs look like? Or, perhaps more accurately, what do they “tend” to look
like? Let G ∼ Gn,1/2 denote a “random graph” drawn from the model Gn,1/2.

Question: What is the expected number of edges in G?
2Thanks to Prof. Lafferty for this.

3

Answer: For each potential edge (i, j), let Xi,j be the indicator that this edge is present in G.
The total number of edges is thus

∑
i<j Xi,j , so by linearity of expectation, the expected number

of edges is
(
n
2

)
· (1/2) = n(n− 1)/4 ≈ .25n2.

You can use a Chernoff Bound to show that the number of edges will be between, say, .24n2

and .26n2 with extremely high probability. (The probability of deviating outside this range will
be exponentially small in n. We’ll do a related calculation shortly.) So these graphs tend to be
extremely dense.

Question: What is the expected degree of vertex i in G?

Answer: Vertex i has n− 1 potential neighbors, and each is an actual neighbor with probability
1/2. Hence the degree of vertex i has distribution Binomial(n − 1, 1/2) and hence expectation
(n− 1)/2.

In fact, every vertex will have degree extremely close to n/2 “with high probability”:

Theorem 2. Let G ∼ Gn+1,1/2, where we’ve used “n + 1” vertices instead of “n” for future typo-
graphic simplicity. Then “with high probability”, all vertices have degree between n/2−

√
n lnn and

n/2 +
√
n lnn. Here “with high probability” means with probability at least 1−O(1/n).

Proof. We use the Chernoff + Union Bound method. Let Di denote the degree of vertex i. As we
saw, the random variable Di has distribution Bernoulli(n, 1/2). Using Chernoff Bound 1 we have

Pr[Di ≥ n/2 +
√
n lnn] = Pr[Di ≥ n/2 + (2

√
lnn)
√
n/2]

≤ exp(−(2
√

lnn)2/2) = exp(−2 lnn) = 1/n2.

Similarly,
Pr[Di ≤ n/2−

√
n lnn] ≤ 1/n2.

Thus
Di ∈ [n/2−

√
n lnn, n/2 +

√
n lnn] except with probability at most 2/n2.

Taking a Union Bound over all n+ 1 vertices, we get

Pr[any vertex has degree outside this range] ≤
n+1∑
i=1

(2/n2) = 2(n+ 1)/n2 = O(1/n).

2.2 With high probability

By now you’ve seen us toss around the phrase “with high probability” a few times — the phrase
comes up a lot in the discussion of balls and bins, and random graphs. For any given problem,
“with high probability” means “with probability at least 1 − O(1/nc) for some constant c > 0”,
whatever “n” happens to be in your problem (usually this is obvious). For example, in the above
Theorem the probability that some vertex failed to have degree in the given range was at most 2/n
(so here “c” is 1). The expression “with high probability” is often abbreviated “whp”.

4

3 Degree distribution, and other models

We’ve already seen two (families of) models for random graphs, Gn,p and the very related Gn,m.
The Gn,1/2 model is well-studied in mathematics, but is not always very appropriate for practice.
This is because gigantic graphs arising in practice are rarely so dense; if n = 109, then a Gn,1/2
graph will typically have on the order 1018 edges, which is astronomical. “Sparsish” random graphs
are much more common in practice.

Example: Social networks. A reasonable first model for a “sparsish” random graph might be
Gn,p with p = 150/n, say. The number of edges in this graph is Binomial(

(
n
2

)
, p) and thus has

expectation
(
n
2

)
p ≈ (n2/2)(150/n) = 75n. The degree of a particular vertex in this model has

distribution Binomial(n− 1, 150/n) and thus, by the Poisson Approximation has distribution very
close to Poisson(150).

However, this too might not be very realistic. Imagine modeling the friendship network on
Facebook. It might indeed be the case that the average number of friends a person has is 150
(“Dunbar’s Number”). But the Poisson(150) PMF looks like this:

That doesn’t look so good. For example,

Pr[Poisson(150) = 25] =
e−150 · 15025

25!
≈ 10−36.

That means that the expected number of people with exactly 25 friends would be 10−36n, which is
basically 0. But surely there are plenty of people on Facebook with exactly 25 friends! In general,
the “degree distributions” you get out of sparse Gn,p models have the property that they are very
concentrated around their expectation, which often does not match reality.

5

3.1 Degree sequences

Given a particular graph G with n vertices, its “degree sequence” is just a list of numbers,
d0, d1, d2, . . . , dn, where

dj = # of vertices in G with degree exactly j.

Of course,
d0 + d1 + · · ·+ dn = n

and
n∑
j=0

dj · j = 2m,

where m is the number of edges in G.

Consider again modeling the Facebook graph, which has approximately n = 108 nodes. Face-
book certainly knows the degree sequence of its graph, and if they weren’t so sucky about pub-
lishing data, we would probably know it too. But assume we start with some degree sequence
d0, d1, d2, . . . , dn, where

∑
dj = n and

∑
dj · j is even. Is there a reasonable random graph model

which creates a graph with this exact degree sequence?

Béla Bollobás introduced the following method around 1980:

Random graph with given degree sequence:

1. First, decide what degree each vertex will have: Randomly order the vertices 1, . . . , n. Then
decide that the first d0 vertices in the ordering will have degree 0, the next d1 vertices in the
ordering will have degree 1, the next d2 in the ordering will have degree 2, etc.

2. Next, for each vertex i, if is supposed to have degree ci, blow it up into a group of ci “mini-
vertices”.

3. There are now
∑
dj ·j = 2m mini-vertices. Pick a uniformly random perfect matching on these

vertices. (This is easy: take any mini-vertex; match it with a uniformly random unmatched
mini-vertex; repeat.)

4. Now merge n groups of mini-vertices back into “vertices”.

Here is a picture, with n = 5 and given degree sequence:

d0 = 0, d1 = 1, d2 = 2, d3 = 0, d4 = 1, d5 = 1

6

As you can see, this method might not be 100% satisfactory because it can generate “non-simple”
graphs — i.e., graphs with multiple edges and self-loops. However: a) if you only have low (constant)
degrees and n is large, you are unlikely to get any multiple edges or self-loops; b) there are ways
to sort of fix this problem, although they are significantly more complicated.

3.2 Preferential attachment/Power laws

This degree-sequence model may be good if you want to model a complex gigantic graph, and you
know something about the desired degree statistics. But this sort of modeling in some way misses
the point. The graph was itself formed organically by some kind of “randomish” process — think
about the various ways the Web, or the power grid, or Facebook got formed. Can we model that
somehow, and if we do, does the model produce graphs with statistics close to those seen in practice?

This is a pretty hard question that people are still working on; ideas are different for different
gigantic graphs. The problem may have been worked on most thoroughly for the case of the Web.
An influential early model for generating “Web”-like graphs in was given in 1999 by Albert-László
Barabási and Réka Albert, who called it “preferential attachment”:

Preferential Attachment — the Barabási-Albert (“BA”) Model:

1. Start with 0 nodes and 0 edges.

2. Add a new node and stick one end of an edge into it.

3. Stick the other end of this edge into a random node, chosen with probability proportional to
its degree.

4. Repeat Steps 2–4 n times in total.

This process generates a graph with n nodes and n edges (multiple edges and self-loops are
possible). To clarify Step 3, suppose we have repeated the process t times. We then do the (t+1)th
iteration of Step 2. At this point there are t+ 1 vertices. In the first t vertices there are t edges, so
the sum of the degrees of the first t vertices is 2t. The (t+ 1)th iteration of Step 2 yields a (t+ 1)th
node with degree 1. So the “other end of the (t+ 1)th vertex’s edge” goes into:

vertex 1 ≤ i ≤ t with probability deg(i)/(2t+ 1),

vertex t+ 1 itself with probability 1/(2t+ 1).

E.g., after the first step you always have a single node with a self-loop. After the second step,
vertex 2 gets attached to vertex 1 with probability 2/3 and to itself with probability 1/3.

The idea behind this simple model is that when a new web page comes along it adds a link from
itself to some random web page, but the more “authoritative” or “popular” web pages are more
likely to be linked to. Of course, this is a very simplistic model. For one thing, on the Web links
are directed, not undirected. For another, new web pages often include more than one link when
they get started! This second objection is incorporated into a variant on the BA Model:

7

BA Model with average degree 2c: First, do the BA Model to produce a graph with cn nodes
and cn edges. Then merge nodes 1 . . . c, c + 1 . . . 2c, 2c + 1 . . . 3c, etc, to produce a graph with n
nodes and cn edges.

The BA Model’s simplicity can be a virtue too; the model produces fairly “realistic”-looking
graphs. Here is a picture with n = 1000:

The BA Model is just simple enough that proving things about it is possible, albeit hard. Here
is one example theorem, proved by Bollobás, Riordan, Spencer, and Tusnády:

Theorem 3. Assume c = O(1) is a constant. Then with high probability, the fraction of vertices
having degree d is Θ(d−3). (This holds for all d ≤ n.05, say.)

If a graph has the property that the fraction of vertices with degree d is Θ(d−α) for some con-
stant α, its degree distribution is said to have a power law with exponent α. Such graphs are
also called scale-free networks. In practice, it seems like many gigantic graphs are scale-free in
this way, although this fact is still disputed. Various sources claim the power law exponent for
the Web is anywhere between 1.5 and 3, and similar claims are made for social network power law
exponents. Different tweaks on the BA Model can make it give power laws with exponents other
than 3.

(Amazingly, a similar preferential attachment graph model, along with an empirical observation
of a power law, was made by Scottish statistician Udny Yule in 1925. 1925! Yule was studying
evolution, in the context of plants.)

4 Threshold phenomena in Random Graphs

One notable phenomenon that occurs again and again in the study of random graphs is threshold
behavior — “Tipping Points” as the Canadian journalist Malcolm Gladwell might call them, or
“phase transitions” as the physicists call them. This threshold behavior has been studied most

8

extensively in the Erdős-Rényi model, and that’s where it’s easiest to analyze too. So that’s what
we’ll talk about now.

There is an interesting “stochastic process” way of looking at the Gn,p model:

Gn,p as a stochastic process: Each “potential edge” (i, j) independently picks a random real
number Xij uniformly in the range [0, 1].3 Now imagine that we “start” p = 0 and slowly crank it
up to p = 1 over time. Initially all potential edges are “off” (think of them like neon lights). As
soon as p gets up to Xij , the edge (i, j) turns “on”. In particular, eventually p = 1 and all edges
are on.

Key observation: Fix a particular value 0 ≤ p0 ≤ 1. Imagine the graph derived by this stochas-
tic process when p = p0. It consists of precisely those edges whose number Xi,j is at most p0. The
probability Xi,j ≤ p0 is4 p0, and the events Xi,j ≤ p0 are independent. So the distribution of the
graph when p = p0 is just Gn,p0 .

So the interesting thing about this process is that we can sort of “watch” a graph gain more
and more edges, going from the empty graph to the complete graph; and when the “time” is at
p, the graph is distributed precisely like Gn,p. Actually, the “stochastic process” version of Gn,m is
even more natural: in this, you start with the empty graph and for each of m time steps you add
in one more uniformly random edge.

Let’s now look at various graph properties; e.g., the property of being connected. Suppose we
plot the probability that a graph G ∼ Gn,p is connected, as a function of p. The plot turns out to
look something like this (but we haven’t drawn things to scale):

Theorem 4. If p ≤ .99 lnn
n then a graph G ∼ Gn,p is not connected with high probability. If

p ≥ 1.01 lnn
n then a graph G ∼ Gn,p is connected with high probability. In other words, lnn

n is a
“sharp threshold” for connectivity.

3Granted, we have not said what this means yet, but you can probably handle it for the purposes of this discussion.
If you really want to be a stickler, imagine that we do Xij ← RandInt(10100) · 10−100.

4We think you can agree.

9

In fact, the threshold is much much sharper than illustrated in the picture :) We have the tools to
prove this theorem, but it takes some effort, so we will skip it.

Another example of a threshold phenomenon occurs if you look at the size of the largest con-
nected component. We’ve just seen that if p ≥ 1.01 lnn

n , the size of the largest component is exactly
n with high probability. What about for smaller values of p?

Theorem 5. If p ≤ .99/n then a Gn,p graph has largest component of size O(log n), with high
probability. If p ≥ 1.01/n then a Gn,p graph has largest component of size Ω(n), with high probability.

Now that’s a real tipping point! It’s nice to think about this theorem in the context of the
stochastic process. As you slowly crank p up from 0, for a little while the graph you get will (with
high probability) look like many scattered tiny clumps, each of size at most O(log n). This holds
for p almost as large as 1/n. Then boom! As soon as p becomes larger than 1/n suddenly almost
all of these clumps “clump together” and you get one “giant component” consisting of a constant
fraction of all vertices!

10

15-359: Probability and Computing
Fall 2009

Lecture 14: Finite, discrete-time Markov chains

In the next few lectures we will discuss Markov Chains. Markov Chains are ubiquitous in
computer science, and indeed almost all of science. They arise especially in statistical physics, ge-
netics, statistics, computational geometry, optimization, algorithms, performance analysis, natural
language processing, you name it. Today we’ll give a toy example and start the basic theory.

1 Basics of finite, discrete-time Markov chains

1.1 An example: my day at work

Let’s start with a Markov Chain related to my daily life. Every day I wake up and try to get a lot
of work done. When I’m working, I look like this:

I am easily distracted though. After each minute of work, I only keep working with probabil-
ity .4. With probability .6, I begin surfing the web:

Surfing the web is very addictive. After each minute of surfing the web, I only return to working
with probability .1. With probability .6 I continue surfing the web. With probability .3 I feel kind
of guilty, so I check my email, which is sort of like working.

After each minute of email-checking, I have probability .5 of coming to an action item which
causes me to go back to work. With probability .5 I continue checking my email (I have virtually
unending amounts of email).

1

This last diagram is my daily life. It is a classic example of a (discrete-time) Markov Chain with
a finite number of states. Markov Chains are named after our old friend and hero of probability,
Andrey Andreyevich Markov (senior), who also gave his name to Markov’s Inequality. Markov
Chains are very frequently drawn as finite-state diagrams like the one above; the key property is
that the sum of the probabilities coming out of each state should be 1.

An alternative way to describe a Markov Chain is by a square “transition matrix” K. The
rows and columns of K are indexed by the “states” of the Markov Chain. The entry in the (u, v)
position, which we write as either Kuv or K[u, v] is equal to the probability of taking a “step” from
state u to state v. All the entries need to be filled in, so when there is no arrow from state u to
state v in the diagram, the entry Kuv should be 0. Here is the transition matrix for my working
Markov Chain:

K =
⎛
⎜
⎝

¼ W S E

W .4 .6 0
S .1 .6 .3
E .5 0 .5

⎞
⎟
⎠

A legal Markov Chain transition matrix has nonnegative entries, and all the row-sums are 1.

1.2 Definition

A (discrete-time) finite Markov Chain (MC) with finite state set S is defined by a finite-state
diagram with states S and probabilities on the arrows. We often assume (by relabeling) that the
state set is S = {1,2,3, . . . , r}. Equivalently, one can define a finite MC by any r × r transition
matrix K satisfying:

� Kuv ≥ 0 for all 1 ≤ u, v ≤ r;

�

r

∑
v=1

Kuv = 1 for all 1 ≤ u ≤ r.

We won’t talk about “continuous-time Markov Chains” until later in the course, so we will stop
writing “(discrete-time)” all the time for now. Also, in this lecture we will only talk about MC’s
with finite state sets. (Countably) infinite state sets will be discussed in the next lecture.

We also always associate to a Markov Chain the following experiment (randomized code):

// the initial state, X0, is some random variable with values in {1,2, . . . , r}
for t = 1,2,3, . . .

2

Xt ←

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 with probability K[Xt−1,1],
2 with probability K[Xt−1,2],
⋯
r with probability K[Xt−1, r].

In other words, given some initial random (or deterministic) state X0, we generate a sequence
of random states X0,X1,X2,X3, etc., according to the given transition probabilities. We always
describe the index t as the time.

Now is good time to make a definition which gives a fancy name to a simple concept:

Definition 1. A collection of random variables {Xt ∶ t ∈ T} is called a stochastic process with time
set T . Often T = N, as in discrete-time Markov Chains. The random variable Xt is called the state
at time t.

1.3 The Markov property

The essential property of Markov Chains, which is both a limitation and a feature, is the following:

Limitation/feature: The state of a Markov Chain at time t is determined only by its state at
time t − 1.

This is the so-called Markov/Markovian/memoryless property. At time t− 1, the process essen-
tially “forgets” how it got into its present state Xt−1. All that matters in generating the tth state
is what the (t − 1)th state is.

Question: Does this mean that the random variable Xt is independent of random variables
X0,X1, . . . ,Xt−2?

Answer: No! You can prove this rigorously for yourself, but consider my work Markov Chain, for
example. You should find it intuitive that Pr[Xt = ‘Surf’ ∣ Xt−2 = ‘Surf’] is noticeably higher than
just Pr[Xt = ‘Surf’]. What is true the following: Although Xt is dependent on X0,X1, . . . ,Xt−1,
all of the dependency is captured by Xt−1.

Markov Chains are sometimes defined differently, in terms of the Markov property:

Equivalent Definition: A Markov Chain with finite state set S is a stochastic processX0,X1,X2, . . .
with the following property:

∀t, ∀u0, u1, . . . , ut ∈ S, Pr[Xt = ut ∣Xt−1 = ut−1,Xt−2 = ut−2, . . . ,X1 = u1,X0 = u0]
= Pr[Xt = ut ∣Xt−1 = ut−1]
=∶ K[ut−1, ut].

2 Limiting probabilities

2.1 State at time t: matrix powers

I should probably cut down on my web surfing. In fact, I wonder: if you walk into my office some
t minutes into the work day for some large value t, what is the probability I’m surfing?

3

When we discussed whether Xt was independent of X0, . . . ,Xt−2, we said that Pr[Xt = ‘Surf’ ∣
Xt−2 = ‘Surf’] is noticeably higher than just Pr[Xt = ‘Surf’]. Actually, this not quite clear, because
Pr[Xt = ‘Surf’] isn’t completely defined. It depends on the random variable X0 giving the starting
state! If we care about the probability I’m surfing at some late time t minutes into the day, we’re
really asking:

Question: What is Pr[Xt = ‘Surf’ ∣ X0 = ‘Work’]? What is Pr[Xt = ‘Surf’ ∣ X0 = ‘Surf’]? What
is Pr[Xt = ‘Surf’ ∣X0 = ‘Email’]?

We might as well try to answer this question in a little more generality; assume a MC with r
states and transition matrix K. We’ll start slow:

Question: What is Pr[X1 = v ∣X0 = u]?

Answer: By definition, it’s K[u, v].

Question: What is Pr[X2 = v ∣X0 = u]?

Answer: We solve this by the Law of Total Probability, conditioning on the the state X1:

Pr[X2 = v ∣X0 = u] =
r

∑
w=1

Pr[X1 = w ∣X0 = u]Pr[X2 = v ∣X1 = w,X0 = u]

=
r

∑
w=1

Pr[X1 = w ∣X0 = u]Pr[X2 = v ∣X1 = w,] (Markov property)

=
r

∑
w=1

K[u,w]K[w, v].

We hope this expression leaps out to you as familiar: it is exactly the (u, v)-entry in the matrix
product K ×K. I.e.,

Pr[X2 = v ∣X0 = u] =K2[u, v].

In my daily work Markov Chain, we have:

K2 =
⎛
⎜
⎝

W S E

W .4 .6 0
S .1 .6 .3
E .5 0 .5

⎞
⎟
⎠

×
⎛
⎜
⎝

W S E

W .4 .6 0
S .1 .6 .3
E .5 0 .5

⎞
⎟
⎠

=
⎛
⎜
⎝

W S E

W .22 .6 .18
S .25 .42 .33
E .45 .3 .25

⎞
⎟
⎠
.

For example, the probability I am surfing at time 2 given that I start out working is .6 (a bit of
a coincidence): either I do Work, Work, Surf (probability .4 × .6 = .24) or I do Work, Surf, Surf
(probability .6 × .6 = .36), and that sums to .24 + .36 = .6. Notice that the row sums are still 1 in
K2, which makes sense (the probability I am in some state given that X0 = u is 1).

You might now be able to guess the answer to the following:

Question: What is Pr[X3 = v ∣X0 = u]?

4

Answer: Again, by the Law of Total Probability, conditioning on the the state X2:

Pr[X3 = v ∣X0 = u] =
r

∑
w=1

Pr[X2 = w ∣X0 = u]Pr[X3 = v ∣X2 = w,X0 = u]

=
r

∑
w=1

Pr[X2 = w ∣X0 = u]Pr[X3 = v ∣X2 = w]

=
r

∑
w=1

K2[u,w]K[w, v],

= K3[u, v],

where again we noticed that we were getting the expression for the (u, v) entry in the matrix
product K2 ×K. By induction, you can now easily prove:

Theorem 2. Pr[Xt = v ∣X0 = u] =Kt[u, v]. More generally, Pr[Xs+t = v ∣Xs = u] =Kt[u, v].

2.2 Probability vectors

In general, instead of fixing each possible initial state, we usually just allow X0 to be a random
variable itself. For example, perhaps when I begin my day, I start with Work with probability
.5, start with Surfing with probability .1, and start with Email with probability .4. It’s quite
convenient to write these probabilities in a probability vector : a row vector where the entries are
indexed by states. In my example, the starting probability vector is

π0 = (
W S E

.5 .1 .4)

(Really, this is just the PMF of X0, written out.) It’s usual to use th letter π (for ‘p’ for ‘probabil-
ity’) for probability vectors. Probability vectors always have nonnegative entries which add up to 1.

So if this is the distribution of my state at time 0, what is the distribution of my state at time t?
Again, we can write the probabilities in a probability vector, call it πt. Then conditioning on X0

using the Law of Total Probability, we have

πt[v] = Pr[Xt = v] =
r

∑
u=1

Pr[X0 = u]Pr[Xt = v ∣X0 = u] =
r

∑
u=1

π0[u]Kt[u, v].

This formula should also leap out at you:

Theorem 3. If π0 is the probability vector representing the initial distribution on states, and πt is
the probability vector representing the distribution on states at time t, then

πt = π0K
t.

More generally,
πs+t = πsK

t.

In my work day example, given my initial distribution π0, the probability vector representing
my distribution at time 1 is

π1 = (
W S E

.5 .1 .4) ×
⎛
⎜
⎝

W S E

W .4 .6 0
S .1 .6 .3
E .5 0 .5

⎞
⎟
⎠

= (
W S E

.41 .36 .23).

5

2.3 My long-term day

Given Theorem 2, we can figure out the probability I’m surfing at some late minute t given that I
started out working; or more generally, all the probabilities Pr[Xt = v ∣ X0 = u]. We just need to
compute K2, K3, K4, etc. For this we fire up Matlab and conclude:

K2 =
⎛
⎜
⎝

W S E

W .22 .6 .18
S .25 .42 .33
E .45 .3 .25

⎞
⎟
⎠

K3 =
⎛
⎜
⎝

W S E

W .238 .492 .270
S .307 .402 .291
E .335 .450 .215

⎞
⎟
⎠

K10 ≈
⎛
⎜
⎝

W S E

W .2940 .4413 .2648
S .2942 .4411 .2648
E .2942 .4413 .2648

⎞
⎟
⎠

That’s interesting. After 10 minutes, the rows are almost identical. . .

K30 ≈
⎛
⎜
⎝

W S E

W .29411764705 .44117647059 .26470588235
S .29411764706 .44117647058 .26470588235
E .29411764706 .44117647059 .26470588235

⎞
⎟
⎠

K60 ≈
⎛
⎜
⎝

W S E

W .294117647058823 .441176470588235 .264705882352941
S .294117647068823 .441176470588235 .264705882352941
E .294117647068823 .441176470588235 .264705882352941

⎞
⎟
⎠

Wow! It’s maybe not too surprising that the matrix powers appear to be converging to a limit,
but it surely can’t be a coincidence that all the rows in the limit are virtually identically. If you
think about it, it makes some sense though:

Interpretation: In the long run, the starting state doesn’t really matter. For large t, we basically
have Pr[Xt = ‘Work’] ≈ .294, Pr[Xt = ‘Surf ’] ≈ .441, Pr[Xt = ‘Work’] ≈ .265. Hence in a long
stretch of time, the average fraction of my minutes that I’m surfing the web is 44.1%.

3 Stationary distributions

Suppose we believe (and it seems pretty reasonable, based on the evidence!) that after I run
my daily Markov Chain for many steps, my distribution on states converges towards some fixed
probability vector π. In fact, from the numerical evidence it seems clear that

π = (
W S E

.294 .441 .265).

6

Is there any way we could have figured out what π is just by looking at the transition matrix K?
After all, it’s kind of a drag to raise a matrix to the power of 60 by hand!

Here’s one way to think about it. Suppose I start my day in any distribution on states π0, and
I follow the Markov Chain for a large number of minutes, T . At that point, my the distribution on
states should basically be π,

πT ≈ π.

Well, T + 1 is also a large number, so my distribution on states at time T + 1 should also basically
be π,

πT+1 ≈ π.

But we know from Theorem 3 that
πT+1 = πTK,

and hence we should have
π = πK.

In other words, π should be a distribution on states which doesn’t change when you do a step.

Definition 4. A probability vector π is called a stationary distribution or steady-state for a Markov
Chain if it satisfies the stationary equations

π = πK.

Notice that this really is a system of equations, if we think of the entries of π as variables and
the entries of K as known constants.

3.1 An example

Let’s consider my daily work MC example:

π = πK ⇔ (π[W] π[S] π[E]) = (π[W] π[S] π[E])
⎛
⎜
⎝

.4 .6 0

.1 .6 .3

.5 0 .5

⎞
⎟
⎠

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π[W] = .4π[W] + .1π[S] + .5π[E]
π[S] = .6π[W] + .6π[S] + 0π[E]
π[E] = 0π[W] + .3π[S] + .5π[E]

Let’s solve this system! Focusing in on my favorite variable, π[S], the second equation gives

.4π[S] = .6π[W] ⇒ π[W] = 2
3
π[S].

The third equation gives

.5π[E] = .3π[S] ⇒ π[E] = 3
5
π[S].

Finally, plugging these results into the first equation gives

2
3
π[S] = 2

5
⋅ 2
3
π[S] + 1

10
π[S] + 3

10
π[S] = 2

3
π[S].

7

Wait a minute. We don’t get anything out of this last equation. Is the system of equations under-
determined?

No! We forgot, there’s one more equation: since π is supposed to be a probability vector,

π[W] + π[S] + π[E] = 1 ⇒ 2
3
π[S] + π[S] + 3

5
π[S] = 1 ⇒ 34

15
π[S] = 1.

Hence
π[S] = 15

34
, π[W] = 10

34
, π[E] = 9

34
.

And this checks out, since 10
34 ≈ .294, 15

34 ≈ .441, 9
34 ≈ .265.1

Reminder: When solving the stationary equations, also include the equation that the entries of
π add up to 1.

1In fact, we could have figured this out with Maple. Try typing identify(.441176470588235) into Maple; it will
respond with 15

34
.

8

15-359: Probability and Computing
Fall 2009

Lecture 15: Conclusion of Finite-State Markov Chain theory

1 Stationary Distributions

In the previous lecture we introduced Markov Chains and saw an example illustrating that powers
of the transition matrix Kt seemed to converge to a limiting matrix, where all the rows were the
same. We also saw that in such a case, we expect that row π to represent a stationary distribution,
or steady-state, for the Markov Chain, and saw that we could try to solve for π via the stationary
equations,

π = πK

along with the equation saying that π’s entries add up to 1,

r∑
u=1

πu = 1.

Let’s take a look at stationary distributions in the general case.

1.1 In general

In the general case of a Markov Chain with r states and transition matrix K, the stationary
equations

π = πK

are r equations over the r unknowns π1, . . . , πr:

πv =
r∑

u=1

Kuvπu ∀ 1 ≤ v ≤ r.

As we saw in the previous lecture’s example, one of these r equations is redundant. To see this,
add up all equations: you get

r∑
v=1

πv =
r∑

v=1

r∑
u=1

Kuvπu =
r∑

u=1

r∑
v=1

Kuvπu =
r∑

u=1

πu

r∑
v=1

Kuv =
r∑

u=1

πu,

since all the row-sums
∑r

v=1Kuv in K are 1. On the other hand, we always include the equation

r∑
u=1

πu = 1.

So this gets us back to r equations in r unknowns. Basic linear algebra tells us that such a system
either has a unique solution, or infinitely many solutions (in the undetermined case, where still
some of the equations are redundant). So it looks like there is always at least one (and possibly
infinitely many) stationary distributions. This is actually true, but. . .

1

Question: Suppose the solution to the system π has some negative values. Then that would not
be a valid probability vector!

Answer: True. But it is a theorem (a somewhat tricky one) that this will not happen. We will
see the essence of the proof of this later, but for now, please take the following on faith:

Theorem 1. Every Markov Chain on a finite set of states has either one stationary distribution
or infinitely many.

We like it very much when there is a unique stationary distribution, and tend to view the other
case as “irregular”. We will now discuss the somewhat “annoying” ways in which a Markov Chain
can be irregular.

2 Irregularities in Markov Chains

As mentioned, we like when our Markov Chains have unique stationary distributions, and the
property that Kt tends to a limit with all the rows are the same. These things mean that the chain
is not really “sensitive to the initial conditions”. Let’s now look at some examples where this goes
wrong.

2.1 Periodicity

Here is one annoying Markov Chain:

You can see that this chain just goes back and forth on each time step. In particular, the long-term
behavior is sensitive to the initial state: If X0 ≡ 1, then you will be in state 1 on the even time
steps and state 2 on the odd time steps. The reverse is true if X0 ≡ 2. This is also borne out by
the transition matrix:

K =
(

0 1
1 0

)
⇒ K2 =

(
1 0
0 1

)
,K3 =

(
0 1
1 0

)
,K4 =

(
1 0
0 1

)
, etc.

In this case, we immediately see that

lim
t→∞

Kt does not exist.

That’s a shame. There is an upside though: there is a unique stationary distribution. The
stationary equations π = πK yield π1 = π2, and if we combine this with π1 + π2 = 1 we get:

π =
(

1
2

1
2

)
is the unique stationary distribution.

This makes sense: if you start this annoying random chain in the distribution

X0 =

{
1 w.p. 1/2,
2 w.p. 1/2,

2

it’s easy to see that distribution is maintained for all time. We will later see that this is related to
the fact that in this Markov Chain, the long-term fractional time spent in each state is 1/2.

Another example of the same phenomenon occurs in, e.g., this Markov Chain:

Suppose you start at time 0 in state 1. At time 1 you will be in state 2. At time 2 you will be
either in state 3 or 4. Either way, at time 3 you will be back in state 1. And then the cycle repeats.
In fact, it’s easy to see that whatever state you’re in at time t, you’ll be in the same state at time
t+3k for all k ∈ N. This “periodicity” means that the Markov Chain is sensitive to the initial state.
You can check that again, the limit of Kt does not exist, although there is a unique stationary
distribution. This periodicity annoyance will be discussed further on the homework.

2.2 Reducibility

Here’s a Markov Chain illustrating a different kind of irregularity:

It’s pretty clear this Markov Chain is also sensitive to the initial state. If you start in state 1, you
never leave, and the same with state 3. If you start in state 2, you have a 50-50 chance of being
“absorbed” into each of the other two states. This Markov Chain is sort of the opposite of the
previous one: the limit of Kt does exist (but the rows are not all the same), and there are infinitely
many stationary distributions. To see the first statement, simply observe

K =

1 0 0
.5 0 .5
0 0 1

 ⇒ K2 =

1 0 0
.5 0 .5
0 0 1

 ⇒ Kt =

1 0 0
.5 0 .5
0 0 1

 ∀t.
This makes sense: it says that if you start at state 2, then for every future time step you have a .5
chance of being in state 1 and a .5 chance of being in state 3 (this is entirely determined by your
first step); and, if you start in state 1 or state 3, you’ll stay there forever. Clearly, limt→∞Kt exists
and equals K, but the fact that not all rows are the same illustrates the sensitivity to the initial
conditions.

3

Let’s try to solve the stationary equations:

π = πK ⇔
(
π1 π2 π3

)
=
(
π1 π2 π3

)1 0 0
.5 0 .5
0 0 1

⇔

π1 = π1 + .5π2

π2 = 0
π3 = .5π2 + π3

⇔ π2 = 0

Adding in the equation π1 + π2 + π3 = 1 only means that π1 + π3 = 1. So we have infinitely many
stationary distributions: anything of the form

π =
(
p 0 1− p

)
.

Again, if you think about it, it makes sense: you can’t have any probability on state 2 in a steady-
state, but you could have any split in the probability mass, p and 1 − p, between states 1 and 3,
and this would stay in steady state.

The “problem” with this Markov Chain is essentially that you have two states, 1 and 3, which
don’t “communicate”; whichever one you get to first, you get stuck in, and you can never get to
the other one. More generally, you might have something like this:

Effectively, studying this MC reduces to studying “Markov Chain 1” and “Markov Chain 2” sepa-
rately. This “reducibility” annoyance will be discussed further on the homework.

Actually, here is the absolute simplest Markov Chain illustrating this issue:

Yeah, it’s not even connected! So it’s a silly Markov Chain to study, but it’s technically allowed.
Here we just have

K =
(

1 0
0 1

)
.

Again, Kt = K for all t, and the limit exists, but the rows are not the same, and any probability
vector of the form

π =
(
p 1− p

)
is a stationary distribution.

4

3 The repair shop Markov Chain

There’s a single, simple Markov Chain that illustrates all three kinds of behavior. It is called the
Repair shop Markov Chain. In this Markov Chain, you have a computer, and it is either working
or broken. Each day that it’s working, it breaks with probability p, in which case it’s sent to the
repair shop. Each day that it’s in the repair shop, it has a probability q of getting fixed.

K =
(

1− p p
q 1− q

)
.

Let’s first look at the t-step transition matrices; i.e., the powers Kt.

Exercise 2. For each t ∈ N,

Kt =

(
q

p+q + p
p+q (1− p− q)t p

p+q −
p

p+q (1− p− q)t

q
p+q −

q
p+q (1− p− q)t p

p+q + q
p+q (1− p− q)t

)
.

(Hint: proof by induction, of course!)

What happens in this case as t → ∞? Let’s first consider the “generic” case where 0 < p < 1
and 0 < q < 1. In this case, we have

−1 < (1− p− q) < 1,

with strict inequality on both sides. Then we of course know that (1−p− q)t → 0 as t→∞. Thus
it is evident that

Kt t→∞−−−→W :=

(
q

p+q
p

p+q
q

p+q
p

p+q

)
.

This is a situation we like! The limiting matrix has its rows the same, and the resulting stationary
distribution

π =
(

q
p+q

p
p+q

)
makes perfect sense: if p is the “breaking” probability and q is the “fixing” probability, it seems
quite plausible that in the long-term limit, the computer will spend q

p+q of its time working and
the remaining p

p+q of its time broken.
We can also solve the stationary equations easily:

πW = (1− p)πW + qπB, πB = pπW + (1− q)πB ⇔ pπW = qπB,

πW + πB = 1.

Since neither p nor q is 0, we easily solve these to get πW = q
p+q , πB = p

p+q , as expected.

What about the “irregular cases”? For example, if p = q = 1, we get precisely the “back-
and-forth” periodic Markov Chain, where Kt does not converge, but there is a unique stationary

5

distribution (1
2

1
2). Or, if p = q = 0, we get the silly Markov Chain where you just always stay

Working/Broken: Kt = K for all t, but there are infinitely many stationary distributions.

We also have one more somewhat degenerate case, which falls into the “reducible” category:
0 < p < 1, but q = 0 (or the other way around). In this case, whenever your computer breaks, it
breaks permanently and is never fixed! Here we have the kind of conclusion we normally like:

Kt t→∞−−−→W :=
(

0 1
0 1

)
, π =

(
0 1

)
.

The powers of K converge to a matrix with the same rows, and there is a unique stationary
distribution. Still, it’s a bit degenerate — it just says that eventually your computer is broken!

4 The Fundamental Theorem for Finite-State Markov Chains

As we saw from the previous examples, a recurring feature of cases where things go poorly is when
the matrices K, K2, K3, etc. contain 0’s. Somehow, it’s problematic when your Markov Chain has
the feature that it’s “impossible to go from u to v in a number of steps divisible by 3” (“period-
icity”), or “impossible to go from u to v in at all” (“reducibility”). It’s not necessarily so bad if
K has 0’s in it; after all, my daily work Markov Chain from last lecture had some 0’s in it and it
turned out fine. But when Kt has 0’s for large t’s, it’s annoying.

Here’s a nice observation:

Proposition 3. If KT has no 0’s, then neither does KT+t for any t > 0.

In other words, if some transition matrix power is 0-less, so are all higher powers.

Proof. It suffices to prove this for t = 1. But just imagine the matrix product

KT+1 = KKT .

Each entry in KT+1 is the dot-product of a row in K with a column in KT . We know that each
row in K adds up to 1, and doing a dot-product with a vector with sum 1 is like doing a “weighted
average”. We also know, by assumption, that each column in KT has no 0’s. So we’re doing a
weighted average of a bunch of strictly positive numbers. So each result will be strictly positive;
i.e., not 0.

These observations motivate the following definition:

Definition 4. We say a Markov Chain with a finite number of states1 is regular if there exists a
t such that Kt[u, v] > 0 for all u, v.

You will often need to prove that a Markov Chain is regular, and this can be a nice puzzle: You
need to show there is some fixed number of steps t such that for every pair of states u and v, it is
possible to go from state u to state v in exactly t steps.

Regular Markov Chains are the kind we like, due to the following:
1This is important.

6

Theorem 5. (Fundamental Theorem for Finite-State Markov Chains.) Suppose we have a regular
Markov Chain with finitely many states. Then W = limt→∞Kt exists and has all its rows equal to
some vector π with π[u] > 0 for all states u. Further, π is the unique stationary distribution for
the chain.

The first sentence of the Fundamental Theorem is the hard part. You will see one proof of it
in the recitation, and one on the homework. The “Further, . . . ” part of the proof is easy:

Proposition 6. Suppose Kt → W where W has all rows equal to the same vector π. Then π is
the unique stationary distribution.

Proof. Suppose ρ is any stationary distribution. We will show it must equal π. Since ρ is stationary
we have ρK = ρ by definition. Multiplying this equation on the right by K we get ρK2 = ρK = ρ.
Similarly, one can show ρK3 = ρ, and indeed ρKt = ρ for all t. Since Kt → W , it follows that
ρW = ρ.

But think about the vector-matrix product

ρW = ρ

—π—
—π—
· · ·

—π—

 .

The vth entry of the product is just

r∑
u=1

ρuπv = πv

r∑
u=1

ρu = πv,

since ρ’s entries add up to 1. So ρW = π. But we just decided ρW = ρ, so we must have ρ = π, as
claimed.

5 Mean first passage and first recurrence

Suppose we have a Markov Chain with r states which is regular. Let π be the (unique) stationary
distribution. It turns out that π has another nice interpretation. Let’s ask:

Question: Suppose the Markov Chain is in state u. What is the expected number of steps until
it reaches state u again?

Definition 7. This quantity is called the expected first recurrence time for u, and is denoted Muu.

Intuitive Answer: In the long-term limit, we expect to be in state u a πu fraction of the time.
Thus it seems plausible that the expected time between visits to state u should be 1/πu.

We will now show this is true! To do that, though, we also need to consider the expected time
to go from one state u to a different state v.

Definition 8. The expected time to go from state u to state v 6= u is called the expected first
passage time from u to v, and is denoted Muv.

7

Actually, you now see that we have defined a full r × r matrix M which contains the expected
first recurrence times on the diagonal and the first passage times off the diagonal.

Theorem 9. In a regular MC with finitely many states and (unique) stationary distribution π,

Muu =
1
πu
.

Proof. Let u and v be any two states (possibly the same). The idea of the proof is to think about
what Muv is, using the Law of Total Probability and Linearity of Expectation. Use the Law of
Total Probability, conditioning on the first step from u:

Muv = E[time to go from u to v] =
r∑

w=1

Kuw ·E[time to get from u to v | first step u→ w].

There are two cases here for w: if w = v, then the expected time to go from u to v conditioned on
the first step being v is just 1! Otherwise w 6= v. At that point, you have taken 1 step and you are
at w. By the Markovian property, it doesn’t matter than you came from u; it just matters that
you are at w now. Hence:

Muv = Kuv +
∑
w 6=v

Kuw · (1 + E[time to get from w to v]).

(Technically, we used Linearity of Expectation here to pull the “1+” out of the expectation.)2 But
the last expectation here is just Mwv! So for each pair (u, v), we have the equation

Muv = Kuv +
∑
w 6=v

Kuw(1 +Mwv).

It’s a bit annoying to have a sum over w 6= v, so let’s add in the missing term w = v, and also
subtract it:

Muv = Kuv −Kuv(1 +Mvv) +
r∑

w=1

Kuw(1 +Mwv) = −KuvMvv +
r∑

w=1

Kuw(1 +Mwv). (1)

Notice the sum on the right looks a bit like a matrix multiplication is going on. Let’s introduce
the matrix r × r matrix of all 1’s and call it J . Then by definition,

1 +Mwv = (J +M)[w, v],

and hence
r∑

w=1

Kuw(1 +Mwv) =
r∑

w=1

K[u,w](J +M)[w, v] = (K · (J +M))[u, v].

That nicely takes care of the sum term in (1): it’s the (u, v) entry of the matrix K(J + M). The
left-hand side of (1) is also the (u, v) entry of a matrix, M . Can we get the last term, −KuvMvv,
to also be the (u, v) entry of matrix?

2Super-duper-hyper-technically, for this whole calculation to be valid we need to justify in advance that all these
expectations are not infinite. This follows fairly easily from regularity.

8

To do that, let’s introduce one more (!) matrix, D, which is the r × r matrix which is mostly
0’s except that the diagonal entry Dvv equals Mvv. Then it’s easy to see that

KuvMvv = (K ·D)[u, v].

Substituting all of this into (1) gives

M [u, v] = −(K ·D)[u, v] + (K · (J +M))[u, v].

This holds for all entry pairs (u, v); i.e., it’s really an equation on matrices:

M = −KD +K(J +M) = −KD +KJ +KM.

Finally, we get π into the picture by a lovely trick: just multiply both sides of this equation on
the left by π:

πM = −πKD + πKJ + πKM.

But π is the stationary distribution, and the stationary equation is πK = π! Hence:

πM = −πD + πJ + πM ⇔ πD = πJ.

Remember now J is the matrix of all 1’s. Since π’s entries add up to 1 we get that πJ is just the
all-1’s row vector:

πD =
(
1 1 · · · 1

)
.

On the other hand, D is just a diagonal matrix where the Duu entry is Muu. So

πD =
(
π1M11 π2M22 · · · πrMrr

)
.

We conclude that πuMuu = 1 for all states u; i.e., Muu = 1/πu.

6 Time reversibility

We know that for a regular Markov Chain, the limit of Kt is a matrix where all rows are the same,
π. We also saw that there was a relatively easy way to calculate π (easier than computing the limit
Kt): solve the stationary equations. What if we’re super-lazy: is there an even easier way? Turns
out that sometimes, there is!

Let’s take a look at the following Markov Chain. We haven’t labeled the arcs with probabilities,
but assume they have some nonzero probabilities. The Markov Chain will then be regular (you can
try to prove this), and hence have a unique stationary distribution π.

9

I want you to focus on the red arc from state 2 to state 3. Suppose I ran the chain for 106 steps.
How many times, in expectation, would you expect to move along the red arc?

Well, fix a t which is somewhat large. The probability of being in state 2 at time t will be close
to π2. And conditioned on being in state 2, the probability you step along the red arc is K23. In
other words, for all decently large t we have

Pr[t→ (t+ 1) step is the red arc] ≈ π2K23.

Hence by the Linearity of Expectation + Indicators Method, we expect

π2K23 · 106 transitions along the red arc. (2)

Fine, that’s some number. Suppose it’s 135, 524.

Question: If there are 135, 524 transitions along the red arc, what can you say about the number
of transitions along the green arc, from state 3 to state 2?

Answer: If you think about if for a second, you see it must be either 135, 523, 135, 524, or
135, 525; i.e., it has to be within 1. The reason is simple. Suppose you take a “red step”. Now
it’s impossible for you to take another “red step” again unless you take (exactly) one green step.
You just can’t get back to state 2 without going through state 3. Similarly, you can’t take multiple
“green steps” without taking a “red step” between each one. So the number of red steps and green
steps has to differ by either 0 or 1 in any run of the chain!

But wait. The exact same reasoning that led us to (2) would lead us to expect

π3K32 · 106 transitions along the green arc. (3)

But we know that on any run, the number of green and red transitions differs by at most 1. Thus
it seems we must have

π2K23 · 106 ≈ π3K32 · 106,

which seems to force
π2K23 = π3K32. (4)

It’s actually quite easy to make this argument completely rigorous; indeed, in this Markov Chain, (4)
must hold. This equation is saying, “in steady-state, the rate of transitions from 2 to 3 equals the
rate of transitions from 3 to 2”.

In fact, if you look at the picture of the MC you can see that the same reasoning holds for every
pair of adjacent states, hence (4) holds for every pair of adjacent states. Indeed, (4) also holds
(trivially) for every other pair of states (for a state and itself, it’s trivial; for disconnected states
it’s trivial because both sides are 0). I.e.:

πuKuv = πvKvu ∀ u, v. (5)

Definition 10. For Markov Chains having a unique stationary distribution π, we say that the
Markov Chain is time reversible if the equations (5) hold.

10

The reason for the terminology is that runs of time reversible Markov Chains are indistinguish-
able from runs in reverse!

Please note that not every chain is time reversible. For example, this one is not :

.6

The reasoning about red and green transitions breaks down in this case, because by going around
the cycle, you can do many red transitions without doing any green transitions (and vice versa).
Please note that the fact that our reasoning broke down does not prove the chain is not time re-
versible. For that, you’d first need to prove that π =

(
1
3

1
3

1
3

)
is the unique stationary distribution,

and then observe that, e.g., π2K23 = .2 6= .1333. . . = π3K32.

Finally, why the interest in time reversibility? If the time reversibility equations hold for some
probability vector π, then π must be a stationary distribution! This is easy to prove:

Theorem 11. Suppose we have an r-state Markov Chain with transition matrix K. Suppose that
π is a probability vector satisfying the time reversibility equations (5). Then π is a stationary
distribution.

Proof. All we need to do is check that the stationary equations hold:

(πK)[v] =
r∑

u=1

π[u]K[u, v] (formula for vector-matrix multiplication)

=
r∑

u=1

π[v]K[v, u] (time reversibility equations (5))

= π[v]
r∑

u=1

K[v, u]

= π[v] (row-sums of a transition matrix equal 1),

and hence indeed πK = π.

Hence as a practical matter:

Recipe: Suppose you are given a finite-state Markov Chain and asked to find a stationary distri-
bution. First try solving the time reversibility equations (5) (along with equation

∑r
u=1 π[u] = 1.

These equations are very frequently much easier to solve than the stationary equations. However,
not all Markov Chains are time reversible. So if there is no solution to the time reversibility equa-
tions (i.e., you encounter a contradiction), then you have to fall back on the stationary equations
(which are always solvable).

11

15-359: Probability and Computing
Fall 2009

Lecture 16: Markov Chain applications: PageRank and Metropolis

In this lecture we will discuss some applications of Markov Chains in computing. One great
application comes from queueing theory, an important area of operations research and performance
modeling.1 For now, we will only talk about queueing on the homework. But because the most
natural basic scenario in queuing theory involves an infinite-state Markov Chain, we will talk a
little bit about the theory of infinite-state Markov Chains

1 Finite versus infinite Markov Chains

1.1 Finite MC theory recap

Let’s recall what we know about finite-state Markov Chains. First, they look something like this:

Associated to each one is a square transition matrix ; in the above case,

K =

W S E

W .4 .6 0
S .1 .6 .3
E .5 0 .5

The tth power of this matrix is called the t-step transition matrix :

Kt[u, v] = Pr[going from state u to state v in exactly t steps].

Alternative, a Markov Chain is defined as a sequence of random variables X0, X1, X2, . . . satisfying
the Markov property,

∀t, ∀u0, u1, . . . , ut ∈ S, Pr[Xt = ut | Xt−1 = ut−1, Xt−2 = ut−2, . . . , X1 = u1, X0 = u0]
= Pr[Xt = ut | Xt−1 = ut−1]
=: K[ut−1, ut].

1The hardest part of queueing theory? Spelling ‘queueing’.

1

The random variable Xt represents the state at time t.

In many cases, the Markov Chain is not sensitive in the long run to the initial distribution on
states; i.e., on the distribution of X0. This occurs when limt→∞K

t converges,

Kt t→∞−−−→W,

to a matrix in which each row is equal to the same (probability) vector π. This π is a stationary
distribution; in general, a stationary distribution is any probability vector π satisfying the stationary
equations

π = πK (and
r∑

u=1

π[u] = 1, of course).

We identified a number of conditions on a Markov Chain which could prevent this limiting case
from happening:

� “Periodicity”: e.g., you can only go from u to u in a number of steps which is divisible by 7.

� “Reducibility”: e.g., it is impossible to get from u to v.

These terms will be defined more precisely on the homework. We also identified a condition which
ensures the limiting case will happen:

Definition 1. We say a Markov Chain with a finite number of states is regular if there exists a t
such that Kt[u, v] > 0 for all u, v.

Theorem 2. (Fundamental Theorem for Finite-State Markov Chains.) Suppose we have a regular
Markov Chain with finitely many states. Then W = limt→∞K

t exists and has all its rows equal to
some vector π with π[u] > 0 for all states u. Further, π is the unique stationary distribution for
the chain.

Finally, we also saw other potential features of the stationary distribution:

Theorem 3. Suppose we have a regular finite-state MC with (unique) stationary distribution π.
The “mean first recurrence time for u”, i.e., the expected number of steps to go from state u back
to state u, is

Muu =
1
πu
.

Theorem 4. Suppose π is a probability vector satisfying the “time reversibility equations”,

πuKuv = πvKvu ∀ u, v.

Then π is a stationary distribution.

1.2 Infinite-state Markov Chains

What about Markov Chains with a countably infinite number of states? The theory of these, un-
fortunately, gets a little complicated.2 Still, it will be very useful to allow this case, just as we find
it very useful to allow countably infinite sample spaces in basic probability theory.

At first it doesn’t look so bad. An infinite-state Markov Chain might look something like this:
2Though still vastly simpler than the case of uncountably infinite states, something we will not discuss in this

class.

2

(I haven’t specified the probabilities on the arcs here, but the sum of the probabilities going out of
each node should be 1, as usual.) The transition “matrix” K is a little strange in this case because
it has infinitely many rows and columns — that might be a tiny bit worrisome, but it doesn’t
immediately cause any problems. Indeed, you can still calculate the powers Kt in the usual way,
and they have the usual interpretation.

An infinite-state Markov Chain can have the usual annoying properties. For example, it can be
“reducible” (for example, if the arrow from state 0 to state 1 above has probability 0) or “periodic”
(for example, if the self-loop on state 0 above has probability 0, then you can only go from 0 to 0
in an even number of steps). However, there are additional ways in which an infinite-state Markov
Chain can go haywire. For example, suppose that in the above MC, all the right-ward transitions
have probability .9 and all left-ward transitions have probability .1. In this case, when you run the
Markov Chain you’ll tend to wander further and further off to the right. For any fixed state u,
in the limit of the run you will have 0 probability of being at u, because you’ll eventually wander
off to the right of u. But you having probability 0 for every state is not a valid limiting distribution!

In short, stationary distributions do not always exist. We need a more complicated condition
to get nice limiting properties:

Definition 5. An infinite-state Markov Chain is called regular if it is “aperiodic”, “irreducible”,
and you can prove that the mean recurrence time Muu for each state u is finite.

For infinite-state Markov Chains which are regular, the Fundamental Theorem
holds, as does Theorem 3.

However, I promise not to harass you about whether infinite-state Markov Chains are regular.
In this course, I will only give you regular infinite MC’s, and you can assume the conclusion of the
Fundamental Theorem.

2 Google and PageRank

2.1 On search engines

The year was 1997. Bill Clinton was in the White House. A computer (Deep Blue) beat the chess
world champion (Garry Kasparov) for the first time ever. Tubthumping by Chumbawamba was
topping the charts. And the Internet kind of sucked.

More precisely, finding anything on the Internet was pretty painful. You probably don’t re-
member a time before Google, but trust me, it was bad. You had your Infoseek, your Excite, your
Lycos3, your AltaVista. There was also Yahoo!, which at the time wasn’t really a search engine;
rather, it was a huge, human-categorized directory of a fraction of all web pages (of which there
were maybe 50 million back then).

3Created by Michael Mauldin of CMU, it was still the #1 most visited site on the web in 1999.

3

AltaVista was probably the biggest search engine (it answered about 20 million queries per day
back then) and the best, but it was still pretty bad. Let me put it to you this way: in November
1997, only one of the top four commercial search engines actually found itself when you searched
for it. No joke.

Question: What was the problem?

Answer: The problem was that search engines worked pretty much exclusively by matching
words. If you searched for ‘Harvard’, would you get www.harvard.edu? No. Instead you would
get the web pages that contained the word ‘Harvard’ the most times. Perhaps www.harvard.edu
contained the word ‘Harvard’ 5 times, whereas some other random pages might have it 50 times for
some bizarre reason. So www.harvard.edu would be buried in the results. As another example, the
top search result for ‘Bill Clinton’ back then was the “Bill Clinton Joke of the Day” website. More
seriously, spammers and advertisers could easily exploit this system, by making pages containing
key words and phrases hundreds of times.

Question: How could one fix this?

Answer: An obvious improvement is to instead collect up all of the pages which have a decent
textual match, and then rank all of these pages by some measure of “quality” or “authority”. Ya-
hoo! was kind of doing this by hand back then, but that approach is obviously not scalable.

Enter two groups: 1. Jon Kleinberg, a computer science professor at Cornell, who had spent
some time thinking about the problem while visiting IBM Research. 2. Larry Page and Sergey
Brin, two computer science Ph.D. students at Stanford with an interest in information retrieval.

These two groups simultaneously and independently came up with (roughly) the same brilliant
idea for solving the problem. (In fact, they met and compared notes in the summer of 1997.) Larry
Page and Sergey Brin took the idea and founded Google, making billions. Kleinberg took the idea,
wrote a number of academic papers, and won the MacArthur Genius Prize and the Nevanlinna
Prize (i.e., the Fields Medal for Computer Science). So you see, it was a pretty good idea.4 We
will discuss Google’s variant, which is called PageRank.

Question: It’s called PageRank because it’s about ranking web pages, right?

Answer: No. It’s because Larry Page named it after himself!

2.2 PageRank

How can we try to measure the quality or authority of a web page in an automatic way? Simple
textual analysis had hit a limit, and it was a bad one. The basic idea of Kleinberg and Brin–Page
is to use hyperlink analysis; i.e., take into account the directed graph structure of the World Wide
Web. Maybe a (piece of) the Web looks like this:

4As Kleinberg wrote in his original paper, the idea was not even completely new. Social scientists studying the
graph of research papers/citations had been thinking of the same issues, and one 1976 paper on the topic by Pinski
and Narin had roughly the same idea. Larry Page was also influenced by the Pinski–Narin paper.

4

How can these links tell you something about the importance of a page?

Idea 1: “Citations”. Maybe, as in academic publishing, it’s a good idea to think of each link
to a page y as a “citation”, or a “vote of quality”. Perhaps we should rank the web pages by their
in-degree.5

Problems: One immediate problem with this is spamming. If you want to make your web page
very highly ranked, just create 100 bogus web pages and have them all link to yours. Somehow,
the method needs to detect the fact that the 100 bogus pages’s votes shouldn’t count (much).

A less obvious equally important problem is this: Suppose a web site on a specialty topic has
in-degree only 1, but the web page linking to it is a high-level page on Yahoo!’s directory. Yahoo!
had a pretty authoritative directory at the time, and that single link should somehow be worth
more than 5 links from more obscure web sites.

More along the lines of the first problem is that a web page might be a little to non-discriminating
in its taste. For example, maybe you can’t obtain 100 web pages, but you can easily add a link to
each of your 100 friends’ websites. It seems like a website being able to give a whole “point” to
each of its friends so easily is not desirable.

Idea 2: Fractional votes. One way to at least solve the last problem here is to switch to
“fractional” citations, or votes. Specifically, if a web page has d outgoing links, perhaps each page
it links to should only get 1/d of a citation. Take the above example, and suppose we are concerned
with the importance of page y. Idea 2 suggests we should look at all the pages that link to y, and
let each of them give it a fractional vote. In the above picture, r, m, u, and p would contribute
1/2, 1, 2/3, and 1, respectively. This idea of fractional votes is a good one, but it does not solve
the other two problems mentioned.

Idea 3: A recursive definition. Here’s a crucial idea that seems to take care of most problems.
Let’s say we want to decide on the “importance” of web page y. Idea 2 suggests that if web page x
has d outgoing links, one of which goes to y, then this should contribute 1/d to the importance of
x. But we ought to take into account the importance of x! I.e., we should weight x’s contribution
by its importance.

5Larry Page called the links coming into a web page its “back links”. And indeed, he originally called the Google
project “BackRub”. What a terrible name!

5

This is a recursive definition, which seems like it could be a problem! But with some suggestive
notation, we’ll know just what to do. Suppose we try to write πv for the importance of web page
v. For each other page u, it has some fraction of its outlinks which point to v. Let’s call this Kuv.
Then our recursive definition requires

πv =
∑

u

πuKuv.

Look familiar?!

2.3 The random surfer model

Obviously, the diagram of the Web and the equation above are very suggestive. The interpretation
is clear: We have a (finite-state) Markov Chain, where the states are web pages and the transitions
are links. At each time step, we transition according to a random link on the page. This became
dubbed the “random surfer model”. The importance, or “PageRank” of a page is nothing more
than its probability mass under the stationary distribution; i.e., the long-term fraction of time a
random surfer is at the page.

There are still a few problems with the model!

Problem 1: Dangling nodes. Actually, the Web cannot be thought of as a Markov Chain,
because some pages have no outgoing links. Such pages are called “dangling nodes”, or “dead
ends”. They are an important issue in practice, because they actually also occur when a page has
outgoing links which haven’t been crawled yet. The way this issue is handled is the following: for
each dangling node, we pretend that it has a link to every other web page. Alternatively, you can
imagine that when the random surfer gets “stuck”, s/he goes to the URL bar and hops to a random
page on the Web. Notice that this fix hardly changes anything; if there are 100 billion pages on
the web, the dead end now contributes only 1/1011 importance to each of them.

Problem 2: Rank sinks. Another problem the random surfer might encounter is a rank sink.
This is a group of pages which only have links to each other; once you go in, there is no way to
escape. This is actually a major pitfall in practice: if a spammer plunks down a big “clique” of
pages and gets at least one in-link from the rest of the web, it can generate major importance. The
Brin–Page solution to this is:

Scaling/damping. Google has a parameter “α” called the scaling parameter (originally called
the damping parameter). In the original paper, Brin and Page said they used α = .85. Roughly, the
importance a page derives from its in-links is damped by the factor α. More precisely, we change
the random surfer model as follows:

Random surfer model:
On each step, with probability α follow a random link on the current page,

and with probability 1− α go to a uniformly random page on the web.
(If you are on a dead-end, always go to a uniformly random page.)

In other words, at each step, the surfer gets bored with probability 1 − α and hops to a totally
random page.

6

In addition to fixing practical problems, the scaling technique is extremely helpful theoretically.
Notice that the effect of scaling is to replace transition probability Kuv with αKuv +(1−α)/r, where
r is the total number of pages (states). In particular, every entry of K becomes positive; i.e., K
becomes regular! Thus the Fundamental Theorem applies: there is a unique stationary distribution
π, giving the ranks of web pages; and, the random surfer’s distribution on pages converges to π in
the limit.

2.4 In practice

That’s it! That’s the whole PageRank idea, which got Google started and made them billions. Un-
surprisingly, there were subsequently hundreds of tweaks to it, most of which became trade secrets
we don’t know about. But the originally method proved to give outstandingly good ranking of
search results, and to be surprisingly resistant to spam attacks.

One obvious thing we’ve overlooked:

Question: How does Google compute the PageRank? Assume they’ve crawled the whole web
and know the entire link structure. Do they. . . solve the stationary equations?

Answer: No. The standard way of solving a system of equations in r variables takes O(r3) time.
If r = 1011 as is it now, this is 1033 time, which is completely infeasible. Instead, they simply
simulate the random surfer, starting from a uniformly random state. I.e., they start out π as
uniform, πu = 1/r for each u, and then compute πK, πK2, πK3, etc. These are matrix-vector
multiplications, which you would think take O(r2) time. But in practice, K is a sparse matrix;
each web page only has a few links, so the number of nonzero entries in K is more like O(r), not
O(r2).6 So you can compute each new vector πKt in linear time.

But how large does t need to be before this πKt converges to close to the stationary distribu-
tion? There is a great deal of theoretical work on this issue, but in practice, the answer seems to
be that the convergence is extremely fast, and only 50 to 100 powers are necessary.

Still, the whole process might take 1014 steps, then. The original Brin–Page paper reported that
computing the PageRank for their 20 million page data set took about 3 hours on a fast computer.
Of course, there are way more pages on the web now, and even today it is reputed that Google
only (re)computes PageRank every week or two weeks.

3 The Metropolis Algorithm

Here’s a seemingly backwards question: Suppose you have a set of states S, and you are given a
desired stationary distribution π for them. Can you construct a Markov Chain on S which has the
desired stationary distribution?

The “Metropolis Algorithm” is designed to do just this. It was not named after Superman’s
home town, but rather after physicist Nicholas C. Metropolis, who coauthored a paper about it in
1953.

6We mean here, before you do the scaling/damping. You can account for the effect of scaling separately, easily.

7

3.1 Cryptanalysis of simple substitution ciphers

Let’s discuss a real-world example, reported by eminent Stanford probabilist Persi Diaconis. One
day, a psychologist from the California state prison system came to Diaconis’s office. The psycholo-
gist had some coded messages the prisoners had written and asked for Diaconis’s help in deciphering
them. Each message was a long sequence s1, . . . , sn of funny symbols, like so:

Diaconis noted that there were 28 distinct symbols7, and correctly guessed that the messages were
“simple substitution ciphers”. This means that the message was encrypted with some one-to-one
map

u : {code symbols} → {a, b, c, d, . . . , z, .,t},

where t means space. How did Diaconis and his students decode the messages?

Idea 1: Letter frequencies. (Not the actual solution.) Get some huge corpus of English text;
Diaconis’s student downloaded War and Peace from Project Gutenberg.8 Compute the frequency
of each letter: p(a) is the fraction of a’s in the text, p(b) the fraction of b’s, etc., up to p(t), the
fraction of t’s (spaces). Based on this, you might try to pick out the “likeliest” encryption u, which
is the one maximizing

n∏
i=1

p(u(si)).

It’s pretty obvious that you maximize this by having u map the most frequent symbol to the highest
frequency letter (probably t), the second most frequent symbol to the second-highest frequency
letter (probably e), etc.

The problem with this solution is that it just won’t work. You’ll surely get gibberish.

Idea 2: Bigram frequencies. (This is the actual solution Diaconis and his students used.)
Using the English corpus, compute the frequency of each bigram; i.e., pair of consecutive letters.
I.e., p2(c, h) should be the fraction of consecutive letter pairs in the corpus which are c followed by
h. There are 282 numbers p2(`1, `2) to compute here. Based on this, try to pick out the “likeliest”
encryption u, which is the one maximizing

z(u) =
n−1∏
i=1

p2(u(si), u(si+1)).

This actually works amazingly well, as it turns out. There are a couple of issues, though:

Issue 1: Now how do you compute the likeliest u; i.e., the mapping with highest z(u)? If you
think about it for a while, you can solve it using dynamic programming in O(n2) time. That’s
slightly tricky, though, and if you want to do trigrams it’ll take O(n3) time. . .

7Okay, actually, there were actually about 40, but let me simplify things slightly here.
8If you’re going to read War and Peace, by the way, don’t download it form Project Gutenberg; you’ll get the

horrible translation by Maude & Maude.

8

Issue 2: It might be that the likeliest u is not correct, but some pretty likely u is correct. So
we might not want to find the likeliest u per se; instead, we might want to sample from the pretty
likely u’s. I don’t believe this can be done with dynamic programming.

Ideal: What would be great, then, would be to find an algorithm which outputs u with proba-
bility proportional to z(u). If we had that, we could run it a bunch of times and eyeball the answers.

Luckily, the Metropolis Algorithm can do exactly this task. Diaconis and his students coded it
up, and cracked the messages. E.g.,

to batrb. con todo mi respeto. i was sitting down playing chess with danny de
emf and boxer de el centro was sitting next to us. boxer was making loud and loud
voices so i tell him por favor can you kick back homie cause im playing chess a minute
later the vato starts back up again...

3.2 Optimization and sampling with Metropolis

Let’s generalize slightly. The task we have is the following: We have a huge set S of possible
solutions. In the cryptanalysis scenario, there are 28! possible solutions, u. Each solution u ∈ S has
some positive value, which we denote z(u). In the cryptanalysis scenario, this was the “likelihood”
defined in terms of bigram frequencies. It should be easy to compute z(u) given u. One natural
goal is to try to find the u maximizing z(u). But as described, we’d rather focus on a slightly
different goal:

Goal: Sample from the solutions u, with probabilities proportional to the values. I.e., find a way
of drawing a random sample according to the probability vector π defined by

π[u] = z(u)/Z, where Z =
∑
u∈S

z(u);

i.e., output u with probability π[u].

Observation 1: The vector π is hugely long; it has 28! entries in the cryptanalysis scenario. So
you’re never going to be able to store it. You still might somehow be able to sample from it, though.

Observation 2: For a particular solution u, you have no hope of computing π[u]. The reason is
that computing the normalization factor Z is almost certainly intractable. I mean, if there are 28!
different solutions u, it would take forever to add up all their values.

Observation 3: On the other hand, given two solutions u and v, it’s easy to compute the ratio
π[u]/π[v]. That’s because this is just z(u)/z(v), and you can easily compute z(u) and z(v).

So we have very little to go on here; there is some huge mystery probability vector π, we want
to sample a u with probability π[u], but we can only compute ratios like π[u]/π[v]. The idea behind
the Metropolis Algorithm is to set up (implicitly) a Markov Chain with state set S, and somehow
ensure that its stationary distribution is π. If we can do this, we can (approximately) sample from
π just by running the Markov Chain for a decent number of steps. (In the cryptanalysis problem,
Diaconis and co. cracked the ciphers after running the chain for just a few thousand steps.)

We said “implicitly” above because the state set S is so huge, we won’t actually be able to store
it. Still, we need some way of getting around in S.

9

Assumption: There is an implicit navigation graph9 G whose vertex set is S. The graph G
should be undirected and connected, and all its vertices should have the same degree. (We will
relax these assumptions in the homework.) Finally, give a vertex/state u ∈ G, it should be easy to
figure out the neighbors of u.

In the cryptanalysis example, Diaconis and students used the following simple navigation graph:
For each state (i.e., encoding) u, the neighbors of u are all encodings you get by switching a pair
of symbols. I.e., each encoding u has

(
28
2

)
neighbor-encodings v.

Given a navigation graph, the Metropolis Algorithm is nothing more than the following Markov
Chain:

The Metropolis Algorithm:
Start in some arbitrary state U0.
for t = 1, 2, 3, . . .

Pick a random neighbor v of Ut−1 in the navigation graph.
Compute the “acceptance ratio” A = π[v]/π[Ut−1] = z(v)/z(Ut−1).
If A > 1, set Ut ← v.
If A ≤ 1, set Ut ← v with probability A. Otherwise, set Ut ← Ut−1.

Remark 1: In the algorithm, if the neighbor you choose has a higher value, you go to it. But
even if it has a lower value, you have a positive probability of going to it (since all values z(u) are
positive). Since G is connected, it follows that every state in this chain can reach every other state.
If you’re worried about periodicity, you can slap a self-loop onto every vertex in the navigation
graph. In this way, the resulting Markov Chain will be provably regular.

Remark 2: Notice that we only needed to be able to compute ratios of values. This compu-
tation is often extremely easy, especially if Ut−1 and v are somehow “close” or “similar”. In the
cryptanalysis scenario, e.g., you are only changing the mapping on two symbols, so the ratio of the
values only depends on the counts of bigrams in the message that use those two symbols.

Remark 3: Often you can be smart about how you choose the initial state U0. In the crypt-
analysis scenario, e.g., it makes sense to start with the mapping u which is likeliest from the
single-letter-frequency point of view.

So we have a nice, regular Markov Chain; all we want to do now is make sure its (unique)
stationary distribution is π. We could try to check that π satisfies the stationary equations, but
we can check something easier:

Theorem 6. The probability vector π solves the time reversibility equations.

As we saw last lecture, this proves that π is the unique stationary distribution.

Proof. Suppose u and v are different states. If π[v] ≥ π[u], then K[u, v] = 1, but then also
K[v, u] = π[u]/π[v]. Hence π[v]K[v, u] = π[u] = π[u]K[u, v], as required. The case that π[v] ≤ π[u]
is very similar.

9Note: nonstandard terminology.

10

15-359: Probability and Computing
Fall 2009

Lecture 17: Intro to Continuous Random Variables

Today’s lecture is very exciting: we finally get to talk about picking a random real number
between 0 and 1; more generally, about continuous random variables.

1 Continuous random variables: a brave new world

Almost every programming language has a built-in (pseudo)random number generator that sup-
posedly returns a random real number between 0 and 1. We will now have one too, and will allow
experiments (randomized code) containing lines such as

X ← Unif[0, 1].

This random number X is supposed to be “uniformly” distributed on the interval [0, 1].1 Intuitively,
what this means is that

Pr[X ≤ .3] = .3, Pr[X ≥ .9] = .1, Pr[a ≤ X ≤ b] = b− a, (1)

etc.

Unfortunately, once you have random variables with uncountably many values, it’s quite tech-
nical if you want to give formal, non-contradictory definitions. Fortunately, for 99% of cases, things
are not so bad; it’s only some extremely wild and wacky obscurities that make trouble. For this
course, I promise not to harass you about any super-bizarre mathematical arcana. In
exchange for this, you’ll have to let me cheat at the math ever-so-slightly on some occasions.

Still, even to handle the 99% normal cases, things get a little counterintuitive (for example,
events with probability 0 can happen!) and a little mathematically more advanced (hello, calcu-
lus!). For example, we can’t really draw probability trees anymore: even a single call to Unif[0, 1]
would produce a tree with uncountably many branches.

Why bother with continuous random variables, then? Well for one, it’s quite natural to want to
have them: it seems reasonable and desirable to be able to say things like, “The time it takes for a
packet to be transmitted is a uniformly random number of milliseconds between 0 and 1.” (On the
other hand, a picky quantum physicist might say, “Actually, although time seems continuous, it
actually occurs in discrete, Planck Time steps.”) But the real reason is this: despite their difficulties,
continuous random variables ultimately actually simplify reasoning about discrete random variables!
Let’s see this observation in action. . .

1Please recall “interval” notation. [a, b] means the set {x ∈ R : a ≤ x ≤ b}. Also (a, b) = {x ∈ R : a < x < b},
(a, b] = {x ∈ R : a < x ≤ b}, [a,∞) = {x ∈ R : a ≤ x}, etc.

1

2 Uniform random variables

Let’s think about “uniform random variables”, and build up slowly to what the right definitions
should be.

2.1 Discrete approximation and events

As mentioned, almost every programming language claims to implement the random number gen-
erator Unif[0, 1]. Of course it doesn’t; setting aside the question of pseudorandomness, computers
simply do not store or work with real numbers of unbounded precision. So really, every such
program language is doing something like this:

X ← RandInt(N) · 1
N

for some unbelievably huge number N ; e.g., N = 264.

It seems like for almost all intents and purposes, such an X should act like the desired “uniform
on [0, 1] random variable”. And since we know how to reason about with discrete random variables,
why not just work with these discrete approximations? you might say.

Let’s first check that the events we looked at in (1) are as expected.

Pr[X ≤ .3] = Pr
[
X ∈ { 1

N ,
2
N ,

3
N , . . . ,

b.3Nc
N }

]
= Pr [RandInt(N) ∈ {1, 2, 3, . . . , b.3Nc}]

=
b.3Nc
N

.

Hmm. That ‘floor’ is slightly annoying, but we certainly know that

.3N − 1 ≤ b.3Nc ≤ .3N,

and so
.3− 1

N ≤ Pr[X ≤ .3] ≤ .3.

That’s just about right! Since 1/N is unimaginably small if N = 264, say, we can feel good about
saying Pr[X ≤ .3] ≈ .3. We will more casually say

Pr[X ≤ .3] = .3±O(1
N).

As a little exercise, I encourage you to check that

.1 ≤ Pr[X ≥ .9] ≤ .1 + 1
N ; i.e., Pr[X ≥ .9] = .1±O(1

N).

When you analyze Pr[a ≤ X ≤ b], you will get both an annoying ceiling and an annoying floor,
but still:

b− a− 1
N ≤ Pr[a ≤ X ≤ b] ≤ b− a+ 1

N ; i.e., Pr[a ≤ X ≤ b] = b− a±O(1
N).

So everything looks approximately fine, although these floors and ceilings and O(1/N)’s are a bit
annoying.

2

2.2 Probability 0?

On the other hand, suppose u is a real number and we ask about Pr[X = u]. There are two cases:
i) u is not of the form w/N for an integer 0 < w ≤ N ; in this case, the probability is 0. ii) u
is of this form; in this case the probability is 1/N . But this is exactly the quantity we’ve been
neglecting! This seems to suggest that for U ∼ Unif[0, 1], we ought to have

Pr[U = u] = 0 ∀u.

This seems contradictory! How can a random variable take on each number with probability 0?
If you make a draw from Unif[0, 1] you’ll surely get some number u. How could that happen if
Pr[U = u] = 0?!

Well, I’m sorry to say that’s the way it will be. Strange but true. It’s actually not that weird
if you think about it. For our random variable X, if N = 264 then we have Pr[X = u] ≤ 2−64 for
all u. And this number is truly basically 0 in practice. The point is that if you fix a number u and
then ask, what’s the chance a draw from RandInt(N) · 1

N is u, it really is essentially 0. You’d never
see it happen in your lifetime, or likely the universe’s lifetime. Nevertheless, every time you do a
draw, you do get some number!

To understand this a bit better, it will help to look at expectations related to the random
variable X.

2.3 Discrete approximation and expectations

Let’s continue to think about
X ← RandInt(N) · 1

N
,

and associated expectations. To begin, it seems clear that we ought to have E[X] ≈ 1/2, and
indeed

E[X] =
N∑
w=1

w

N
·Pr

[
X =

w

N

]
=

N∑
w=1

w

N
· 1
N

=
1
N2

N∑
w=1

w2

=
N(N + 1)

2N2
=

1
2

+
1

2N
=

1
2
±O(1

N).

So far so good, although doing that sum required a trick. What about variance? For that we’ll
need:

E[X2] =
N∑
w=1

(w
N

)2
· 1
N

=
1
N3

N∑
w=1

w2.

3

This is slightly tricky. If you know a lot of elementary math tricks, you might know that
∑N

w=1w
2 =

N(N + 1)(2N + 1)/6. Hence

E[X2] =
1
N3
·
(
N3

3
+
N2

2
+
N

6

)
=

1
3

+O(1
N),

and so

Var[X] ≈ 1
3
−
(

1
2

)2

=
1
12
.

Fine, I guess, but this process is starting to look tricky.

What if we wanted to know E[sin(X)]? Not sure why you would want to know this, but still:
for discrete random variables we theoretically know how to compute this.

E[sin(X)] =
n∑

w=1

sin
(w
N

)
· 1
N
.

Hmm.

2.4 Calculus to the rescue

I don’t know how to compute that last sum exactly. But whenever you’re adding up a huge number
of tiny quantities, you should think calculus. Let’s “plot it” in the case N = 25; in the figure on
the left, for each of the 25 horizontal segments, we need to add up 1

25 times its height.

I.e., we need to compute the area under the “curve” on the left. The figure on the right also includes
the plot of the curve sin(u) between u = 0 and u = 1. You can see that the areas should be almost
the same. Hence:

E[sin(X)] ≈
∫ 1

0
sin(u) du.

And this is an easy thing to calculate! It’s just

(− cos(u))
∣∣∣1
0

= (− cos(1))− (− cos(0)) ≈ .46.

4

(In fact, we can easily bound the error between the integral and the true sum. From the plot, you
can see that the error is equal to the sum of areas of some slightly curved right triangles. If you
push these triangles all the way to the left in the plot, you see that they all fit disjointly into a sin-
gle column, which has width 1

N and height sin 1 ≈ .84. Hence the total error is at most .84
N = O(1

N).)

This idea also simplifies the previous calculations we did:

E[X] ≈
∫ 1

0
u du =

1
2
u2
∣∣∣1
0

=
1
2
· 12 − 1

2
· 02 =

1
2

;

E[X2] ≈
∫ 1

0
u2 du =

1
3
u3
∣∣∣1
0

=
1
3
.

Also, if we let I(u) be the function which is 1 when a ≤ u ≤ b and is 0 otherwise, then

E[I(X)] ≈
∫ 1

0
I(u) du =

∫ b

a
du = b− a,

which agrees with the idea that this quantity should also equal Pr[a ≤ X ≤ b].

2.5 Tentative definition

As you can see, even though “in practice” our computer might do something like

X ← RandInt(N) · 1
N
,

it’s actually more convenient and simpler to make and use a definition for Unif[0, 1]. We haven’t
quite come to the definition yet, but it seems like we’ll want that if U ∼ Unif[0, 1], then for any
function h : [0, 1]→ R,

E[h(U)] =
∫ 1

0
h(u) du.

3 Exponential random variables

Our ideas for the “Unif[0, 1] random variable” were based on making a “continuous” version of
RandInt. We will now try to come up with a continuous version of Geometric random variables.
Once we do this, the general nature of a continuous random variable will become clear, and we’ll
be able to make formal definitions.2

As before, we will take a Geometric random variable with an “extreme” parameter, but then
rescale it so that its mean is not extreme. Specifically, let λ > 0 be a nice medium number such as
1 or .5 or 10, and again take N to be some incredibly huge number. Let’s define

Y ∼ Geometric(λN) · 1
N .

This actually corresponds to several real-world phenomena. For example, suppose we are simulating
radioactive decay. We have a single atom of Nobelium-251. Every λ

N of a second, it has a 1
N chance

of “decaying”. Thus the random variable Y gives the number of seconds till it decays. We of course
have

E[Y] =
1
λ
N

· 1
N

=
1
λ
.

2By the way, if you try to make a continuous version of our other favorite discrete random variables, Binomials,
you’ll end up with the definition of Gaussian random variables. We’ll do exactly this in a later lecture!

5

3.1 Probabilities

As with our discrete approximation to uniform X, we have Pr[Y = u] ≈ 0 for every number u.
E.g.,

Pr[Y = w
N] = 0 if w 6∈ Z+, Pr[Y = 1

N] = λ
N ≈ 0, Pr[Y = 5

N] = λ
N (1− λ

N)4 ≤ λ
N ≈ 0,

etc. On the other hand, the probability that Y is in various intervals is quite reasonable:

Pr[Y ≤ 1] = Pr[Geometric(λN) ≤ N]

= 1−Pr[Geometric(λN) > N]

= 1− (1− λ
N)N

≈ 1− exp(− λ
N)N = 1− e−λ.

(The last step here used the Most Useful Approximation Ever. The second-to-last step was just
because if you are flipping a coin until you get a heads, and the heads-probability is λ

N , then the
probability it takes you more than N flips is the same as the probability that the first N flips are
all tails.) E.g., if λ = 1, so the nobelium atom has an average lifetime of 1 second, the probability
it decays in at most 1 second is (about) 1− 1/e.

Similarly, we could calculate:

Pr[Y ≤ 5] = Pr[Geometric(λN) ≤ 5N]

= 1−Pr[Geometric(λN) > 5N]

= 1− (1− λ
N)5N

≈ 1− exp(− λ
N)5N = 1− e−5λ.

In general, we have
Pr[Y ≤ t] ≈ 1− e−λt.

A plot when λ = 1.

6

As we’ll see soon, this is actually a good way to define a new continuous random variable. Because
of the e−λt, it is called an exponential random variable with parameter λ. The defining property
of Y ∼ Exponential(λ) is the equation

Pr[Y ≤ t] = 1− e−λt.

3.2 Expectations

Before we get to that, let’s again try to compute some expectations. We saw that E[Y] = 1
λ . Since

we know the variance of Geometric, we know that our discrete random variable Y has

Var[Y] =
1− λ

N(
λ
N

)2 · 1
N2

=
1
λ2
− 1
λN

=
1
λ2
±O(1

N).

(Hence we expect that an Exponential(λ) random variable, when we define it, will have variance
1/λ2.) But you can surely see that we’ll have to resort to calculus to handle more complicated
expectations. For example:

E[sin(Y)] =
∞∑
w=1

sin
(w
N

)
· λ
N

(
1− λ

N

)w−1

=
∑

u=
1
N ,

2
N ,

3
N ,...

sin(u) · λ
(

1− λ

N

)Nu−1

· 1
N

≈
∑

u=
1
N ,

2
N ,

3
N ,...

sin(u) · λe−λu · 1
N

(Again, the approximation is the Most Useful one Ever.) And we can approximate this by an
integral:

E[sin(Y)] =
∫ ∞

0
sin(u) · λe−λu du.

This is a tidy formula; you can have your computer evaluate it.3

4 Probability density functions

4.1 Our expectation formulas

It seems that for our potential “continuous” random variablesX ∼ Unif[0, 1] and Y ∼ Exponential(λ)
we had different formulas for expectations:

E[h(X)] =
∫ 1

0
h(u) du,

E[h(Y)] =
∫ ∞

0
h(u) · λe−λu du.

3Or, if you are a real calculus whiz, you can show by hand that it is precisely λ/(1 + λ2).

7

What’s going on? If you look at how we derived these expressions, you see that we essentially we
had a tiny quantity 1

N — which we might call “du” — and we computed

Pr[u ≤ X ≤ u+ du] ≈ du,

Pr[u ≤ Y ≤ u+ du] ≈ λ

N

(
1− λ

N

)Nu−1

≈ λe−λu du.

E.g., the probability of Y being in a tiny interval near u is about λe−λu times the width of the in-
terval. The probability of X being in a tiny interval near u is about 1 times the width of the interval.

If we add these probabilities up over all intervals, we would expect to get 1. This is also borne
out by the expectation formulas:

1 = E[1] =
∫ 1

0
1 du = 1,

1 = E[1] =
∫ ∞

0
1 · λe−λu du = (−e−λu)

∣∣∣∞
0

= 0− (−1) = 1.

4.2 Probability density functions

In general, we can imagine having a continuous random variable Z where the probability of Z being
in the interval [u, u+ du] is some fZ(u)du, so long as these quantities are 0 and “add up to” (i.e.,
integrate to) 1. This leads to:

Official definition: A function f : R→ R is called a probability density function (PDF) if:

� f(u) ≥ 0 for all u ∈ R,

�

∫∞
−∞ f(u) du = 1.

We associate to any valid PDF a continuous random variable, Z. We sometimes write fZ for the
PDF of Z.

This is just like the method of “introducing a discrete random variable by stating its PMF”.

Unofficial interpretation: If fZ is the PDF of the continuous random variable Z, then
Pr[u ≤ Z ≤ u+ du] ≈ fZ(u)du for “tiny” du > 0.

NOTE: Please note that unlike PMFs, a PDF f does not in general satisfy f(u) ≤ 1.

Definition 1. If Z is a continuous random variable with PDF fZ , and h : R → R is a function,
then we define

E[h(Z)] =
∫ ∞
−∞

h(u)fZ(u) du,

the expectation of h(Z).4

4Provided the integral
∫∞
−∞ |h(u)|fZ(u) du is well-defined.

8

One case of this definition is when h : R→ R is the “indicator function” of the interval [a, b]:

h(u) =

{
1 if a ≤ u ≤ b,
0 otherwise.

By the principle that the expectation of an indicator equals the probability of the event, we have
the following:

Definition/Fact: Pr[Z ∈ [a, b]] =
∫ b

a
fZ(u) du.

Notice that it doesn’t matter in the integral whether the endpoints are “included” or not. Hence

Pr[Z ∈ [a, b]] = Pr[Z ∈ (a, b)],

which is consistent with the notion that Pr[Z = a] = Pr[Z = b] = 0. This holds for every
continuous random variable.

4.3 Examples

Definition 2. We say X is a uniform random variable on the interval [0, 1], written X ∼ Unif[0, 1],
if its PDF is

fX(u) =

{
1 if 0 ≤ u ≤ 1,
0 otherwise.

Notice that it doesn’t really matter if we write 0 ≤ u ≤ 1 or 0 < u < 1.

More generally, suppose we want a random variable W which is “uniform on the interval [a, b]”.
If you think about it for a moment, you decide that for a < u < b this should mean

Pr[u ≤W ≤ u+ du] ≈ 1
b− a

du.

Alternately, it makes sense that the PDF fZ(u) should be the same (“uniform”) on the interval
[a, b], and 0 outside it. Then for the PDF property

∫
fZ(u) du = 1 we need fZ(u) = 1

b−a .

Definition 3. We say W is a uniform random variable on the interval [a, b], written X ∼ Unif[a, b],
if its PDF is

fW (u) =

{
1
b−a if 0 ≤ u ≤ 1,
0 otherwise.

Let’s do a basic calculation with this W . Using the function h(u) = u,

E[W] = E[h(W)] =
∫ ∞
−∞

ufW (u) du =
∫ b

a
u

1
b− a

du =
1

b− a
· 1

2u
2
∣∣∣b
a

=
b2 − a2

2(b− a)
=
b+ a

2
,

just as we would expect.

Let’s now do Exponentials:

9

Definition 4. We say Y is an exponential random variable with parameter λ > 0, written X ∼
Exponential(δ), if its PDF is

fY (u) =

{
λe−λu if u ≥ 0,
0 if u < 0.

Let’s calculate the mean and variance to make sure they are what we expect:

Proposition 5. If Y ∼ Exponential(λ) then E[Y] = 1
λ and Var[Y] = 1

λ2 (hence stddev[Y] = 1
λ).

Please remember these formulas!

Proof.

E[Y] =
∫ ∞

0
u · λe−λu du.

You need to use integration by parts to do this integral:∫ ∞
0

u · λe−λu du = −
∫ ∞

0
u d(e−λu) = −ue−λu

∣∣∣∞
0

+
∫ ∞

0
e−λu du = 0− 1

λ
e−λu

∣∣∣∞
0

=
1
λ
.

As for the variance: on the homework!

5 Cumulative density functions

5.1 Current shortcomings

We now have an acceptable theory of “continuous random variables”. There are a few ways in
which it could be better, though. One issue so far is that it is “unrigorous” and somewhat difficult
to reason about PDFs by reasoning about “infinitesimal” quantities du. Here is an example of this:

Question: Suppose X ∼ Unif[0, 1], and let Z = X2. What is the PDF of Z?

Non-rigorous answer: We believe that for 0 < u < 1,

Pr[u ≤ Z ≤ u+ du] = Pr[u ≤ X2 ≤ u+ du] = Pr[
√
u ≤ X ≤

√
u+ du].

But what is
√
u+ du when u is a normal number and du is “tiny”? You can reason as follows:

√
u+ du =

√
u(1 + du

u)1/2 =
√
u(1 + (1/2)duu −

(1/2)2

2
du2

u2 + · · ·) ≈
√
u(1 + du

2u) =
√
u+ 1

2
√
u
du,

where in the middle we used the Generalized Binomial Theorem, or Taylor’s Theorem. Thus

Pr[u ≤ Z ≤ u+ du] ≈ Pr[
√
u ≤ X ≤

√
u+ 1

2
√
u
du] ≈ 1

2
√
u
.

So we expect

fZ(u) =
1

2
√
u

for u ∈ [0, 1]. But this is not really rigorous math.

Another disappointing aspect of the picture so far is that we seem to need to treat continuous
and discrete random variables totally separately: PMFs and PDFs are totally different beasts.

10

5.2 Cumulative distribution functions

Both of these shortcomings can be overcome by introducing a simple new notion:

Definition 6. The cumulative distribution function (CDF) of a random variable X is the function
FX : R→ R defined by

FX(t) = Pr[X ≤ t].

Alternatively, a CDF is a function F with the following properties:

� FX(t) is a monotonically nondecreasing function of t.

� FX(t)→ 1 as t→∞ and FX(t)→ 0 as t→ −∞.

Hence the plot of a CDF will look something like the plot at the bottom of page 6 (except that
you should also think of this plot extending leftward to −∞, having value 0 for t ≤ 0).

Remark 7. If X is a discrete random variable then FX is a “step function” (piecewise constant).
On the other hand, if FX is a continuous function, we say that X is a continuous random variable.
(It is possible that neither is true.)

For a continuous random variable X, we have the following simple relationship between the
CDF and PDF:

Proposition 8. If X is a continuous random variable5 with CDF FX , then its PDF fX is the
derivative: F ′X(t) = fX(t).

Proof. This is the Fundamental Theorem of Calculus:

FX(t) = Pr[X ≤ t] =
∫ t

−∞
fX(u) du,

so d
dtFX(t) = fX(t).

5.3 Examples

If X ∼ Unif[0, 1] then we know Pr[X ≤ t] = t when t ∈ [0, 1]. (Check: d
dt t = 1, the PDF of X on

[0, 1].) More precisely:

Proposition 9. The CDF of X ∼ Unif[0, 1] is

FX(t) =

0 if t ≤ 0,
t if 0 ≤ t ≤ 1,
1 if t ≥ 1.

As for exponential random variables, we know to expect the following from our original analysis
of the discrete analogue:

Proposition 10. The CDF of Y ∼ Exponential(λ) is

FY (t) =

{
0 if t ≤ 0,
1− e−λt if t ≥ 0.

5Math nerd technicality: let’s say that X should have a piecewise continuously-differentiable CDF.

11

Proof. For t ≥ 0,

FY (t) = Pr[Y ≤ t] =
∫ t

−∞
fY (u) du =

∫ t

0
λe−λu du = −e−λu

∣∣∣t
0

= −eλt − (−1) = 1− e−λt.

Check: F ′Y (t) = λe−λt = fY (t) for t ≥ 0.

5.4 Derived distributions

You can use CDFs to (properly, rigorously) determine the PDFs of “derived distributions”. Let’s
do the previous example properly.

Question: Suppose X ∼ Unif[0, 1], and let Z = X2. What is the PDF of Z?

Answer: We compute the CDF of Z. Clearly FZ(t) = 0 for t < 0 and FZ(t) = 1 for t > 1. For
0 ≤ t ≤ 1,

FZ(t) = Pr[Z ≤ t] = Pr[X2 ≤ t] = Pr[X ≤
√
t] = FX(

√
t) =

√
t.

The derivative of the constant 0 is 0, as is the derivative of the constant 1. For 0 ≤ t ≤ 1 we have

fZ(t) =
d

dt

√
t =

1
2
√
t
.

Hence the PDF of Z is given by

fZ(t) =

0 if t ≤ 0,

1
2
√
t

if 0 ≤ t ≤ 1,

0 if t ≥ 1.

12

15-359: Probability and Computing
Fall 2009

Lecture 18: Joint continuous random variables

1 One continuous random variable: a review

Let’s review the basic definitions for continuous random variables we saw last time. Generally,
continuous random variables are introduced by their PDF (probability density function):

Definition 1. A continuous random variable X is defined by its probability density function (PDF)
fX : R→ R, which has the properties:

� fX(u) ≥ 0 for all u ∈ R,

�

∫∞
−∞ fX(u) du = 1.

The unofficial interpretation is

“Pr[u ≤ X ≤ u+ du] ≈ fX(u) du”.

Our basic examples are the Uniform distribution on the interval [a, b] and the Exponential distri-
bution with parameter λ > 0:

X ∼ Unif[a, b], fX(u) =

{
1

b−a if a ≤ u ≤ b,
0 else.

Y ∼ Exponential(λ), fY (u) =

{
λ exp(−λu) if u ≥ 0,
0 else.

We define expectations as usual:

Definition 2. Given a continuous random variable X and a function h : R→ R,

E[h(X)] =
∫ ∞
−∞

h(u)fX(u) du.

We can also define events straightforwardly:

Definition 3. In an experiment with one continuous random variable X, an event is a subset
A ⊆ R, often an interval. We have

Pr[A] = Pr[X ∈ A] =
∫

A
fX(u) du.

1

For example, if Y ∼ Exponential(1), then

Pr[1 ≤ Y ≤ 2] =
∫ 2

1
exp(−u) du = − exp(−u)

∣∣∣2
1

=
1
e
− 1
e2
.

Definition 4. The cumulative density function (CDF) of X is

FX(t) = Pr[X ≤ t].

Its derivative is the PDF:
d

dt
FX(t) = fX(t).

It has the property that it increases from FX(t) = 0 to FX(t) = 1 as t goes from −∞ to ∞.

For our canonical examples,

X ∼ Unif[a, b], FX(t) =

0 if t < a,
t−a
b−a if a ≤ t ≤ b,
1 if t > b.

Y ∼ Exponential(λ), FY (t) =

{
0 if t < 0,
1− exp(−λt) if t ≥ 0.

Finally, it’s easy to describe conditioning a random variable on an event:

Definition 5. Given a continuous random variable X and an event A ⊆ R with Pr[A] 6= 0, the
random variable X | A, “X conditioned on A”, has PDF

fX|A(u) =

{
fX(u)
Pr[A] if u ∈ A,

0 else.

We define conditional expectations,

E[h(X) | A] =
∫ ∞
−∞

h(u)fX|A(u) du

as usual.

2 Two continuous random variables

Let’s now discuss experiments where there is more than one continuous random variable. We’ll
mainly discuss the case of two continuous random variables, the generalizations to three or more
being the obvious ones.

2.1 Joint PDFs

The simplest way to define an experiment with two continuous random variables is to simply state
their joint PDF :

2

Definition 6. A pair of continuous random variables X and Y is defined by its joint (“bivariate”)
probability density function fXY : R2 → R, which has the properties:

� fXY (u, v) ≥ 0 for all u, v ∈ R,

�

∫∫
fXY (u, v) du dv = 1, where the double integral is over the whole plane R2.

As you might guess, the unofficial interpretation is

“Pr[u ≤ X ≤ u+ du & v ≤ Y ≤ v + dv] ≈ fXY (u, v) du dv”.

It is very helpful to draw pictures when dealing with pairs of random variables. Let’s have a
nontrivial running example:

Running Example: Let fXY (u, v) =

{
u+ v + 1 if 0 ≤ u ≤ 1 and 0 ≤ v ≤ u,
0 else.

Here the joint PDF is nonzero only on the triangle with corners (0, 0), (1, 0), and (1, 1), and its
value slopes upwards in the direction of (1, 1):

We should check that this is a valid PDF. It’s definitely nonnegative everywhere, so that condition
is fine. To check that it integrates to 1, you need your basic calculus skills:∫∫

fXY (u, v) du dv =
∫ 1

0

∫ u

0
(u+ v + 1) dv du.

The inner integral is∫ u

0
(u+ v + 1) dv =

1
2
v2 + (u+ 1)v

∣∣∣u
0

=
1
2
u2 + (u+ 1)u =

3
2
u2 + u.

Thus the whole integral is∫ 1

0

(
3
2
u2 + u

)
du =

1
2
u3 +

1
2
u2
∣∣∣1
0

=
1
2

+
1
2

= 1,

as needed.

3

2.2 Expectations, events, and CDFs

Expectations, events, and CDFs for joint random variables are defined in a straightforward way.

Definition 7. Given joint continuous random variables X and Y , and a function h : R2 → R,

E[h(X,Y)] =
∫∫

R2

h(u, v)fXY (u, v) du dv.

In our running example, if we wanted to compute the expected value of, say, Y/X, we would
need to evaluate the integral ∫ 1

0

∫ u

0

v

u
· (u+ v + 1) dv du.

Exercise: Show that this integral equals 19
36 .

Definition 8. In an experiment with two continuous random variables X and Y , an event A is a
subset of the plane, R2. Its probability is

Pr[A] = Pr[(X,Y) ∈ A] =
∫∫

A
fXY (u, v) du dv.

In our running example, let’s consider the event A = {(u, v) : u + v ≤ 1}, which we would
more casually call “X + Y ≤ 1”. To find its probability, we would compute — with the help of the
following diagram

4

— the integral∫∫
u+v≤1

fXY (u, v) du dv =
∫ 1/2

v=0

∫ 1−v

u=v
(u+ v + 1) du dv

=
∫ 1/2

0

(
1
2
u2 + (v + 1)u

∣∣∣1−v

v

)
dv

=
∫ 1/2

0

(
1
2

(1− v)2 − 1
2
v2 + (v + 1)(1− v)− (v + 1)v

)
dv

=
∫ 1/2

0

(
3
2
− 2v − 2v2

)
dv

=
3
2
v − v2 − 2

3
v2
∣∣∣1/2

0
=

5
12
.

Definition 9. The joint CDF of continuous random variables X and Y is FXY : R2 → R defined
by

FXY (s, t) = Pr[X ≤ s & Y ≤ t].

It satisfies the following relation with the joint PDF:

∂2

∂s∂t
FXY (s, t) = fXY (s, t).

We could calculate this for our running example, although it is a bit of a chore. Having done
so, the plot of FXY (s, t) would look like this:

3 Marginals and independence

Remember that if you have two discrete random variables X and Y , with joint PMF pXY (u, v),
you can get determine the PMF pX(u) for X by summing over (“columns in the table”) v, and
similarly you can get the PMF pY (v) for Y by summing over (“rows in the table”) u? We can do
a very similar thing for continuous random variables; these are called the marginals.

5

Definition 10. Let X and Y be continuous random variables with joint PDF fXY (u, v). The PDF
for X alone, called the marginal density for X, is

fX(u) =
∫ ∞
−∞

fXY (u, v) dv.

Similarly, the marginal density for Y is

fY (v) =
∫ ∞
−∞

fXY (u, v) du.

Remark 11. It’s easy to check that this really is a proper PDF. For example, fX(u) is clearly
nonnegative for all u, since it is the integral of a nonnegative function. And

∫
fX(u) du = 1,

because this is just the integral of the joint PDF fXY over the whole plane R2.

In our running example, the marginal density for X is

fX(u) =
∫ ∞
−∞

fXY (u, v) dv =
∫ u

0
(u+ v + 1) dv =

3
2
u2 + u,

for u ∈ [0, 1] (and 0 outside this interval). You can check that this is a valid single PDF.

This definition extends to multiple PDFs in the obvious way:

Definition 12. If X, Y , and Z are continuous random variables with joint PDF fXY Z(u, v, w),
then the joint (marginal) PDF of X and Y is

fXY (u, v) =
∫ ∞
−∞

fXY Z(u, v, w) dw,

the marginal PDF of Y is

fY (v) =
∫∫

fXY Z(u, v, w) du dw,

etc.

We define independence (e.g., for 3 random variables) as follows:

Definition 13. Continuous random variables X, Y , and Z are independent if and only if

fXY Z(u, v, w) = fX(u)fY (v)fZ(w).

3.1 Familiar facts regarding expectations

Linearity of expectation holds as usual for continuous random variables. E.g., we can check
the simple case of the sum of two random variables:

E[X + Y] =
∫∫

(u+ v)fXY (u, v) du dv

=
∫∫

ufXY (u, v) dv du+
∫∫

vfXY (u, v) du dv

=
∫
u

(∫
fXY (u, v) dv

)
du+

∫
v

(∫
fXY (u, v) du

)
dv

=
∫
ufX(u) du+

∫
vfY (v) dv = E[X] + E[Y].

6

Expectation of a product equals product of expectations for independent random vari-
ables continues to hold for continuous random variables. We leave it as an exercise for you to
show that

E[XY] = E[X]E[Y] when X and Y are independent.

4 Conditional distributions

Given two random variables X and Y , we can define the conditional distribution given an event in
the natural way:

Definition 14. Given continuous random variables X and Y and an event A ⊆ R2 with Pr[A] 6= 0,
the conditional PDF of X and Y given A is

fXY |A(u) =

{
fXY (u,v)

Pr[A] if (u, v) ∈ A,

0 else.

It’s also natural to want to condition on an event like “Y = v”. Using the above definition
is problematic, because of course Pr[Y = v] is always 0 if Y is a continuous random variable.
Nevertheless, we can still make an appropriate definition:1

Definition 15. Given continuous random variables X and Y , the conditional PDF of X given
Y = v is

fX|Y =v(u) =
fXY (u, v)
fY (v)

,

provided that the marginal density fY (v) 6= 0.

Again, it’s easy to check this is a valid PDF; if you integrate it over u, you’ll get fY (v)
fY (v) = 1. The

following fact is also immediate from the definitions:

Fact 16. fXY (u, v) = fY (v)fX|Y =v = fX(u)fY |X=u.

4.1 An example

It is only now with all these definitions in place that we can properly analyze what looks like a
basic example. Suppose:

X ← Unif[0, 10]
Y ← Unif[0, X].

Question: What is the joint PDF of X and Y ? What is the marginal density of Y ?

Answer: We have

fX(u) =

{
.1 if 0 ≤ u ≤ 10,
0 else.

We then have (for u 6= 0)

fY |X=u =

{
1
u if 0 ≤ v ≤ u,
0 else.

1Things are getting mathematically a little shady at this point; please believe me that it’s possible to make all of
our definitions 100% mathematically rigorous.

7

Thus we get

fXY (u, v) = fX(u)fY |X=u(v) =

{
.1
u if 0 ≤ v ≤ u ≤ 10,
0 else.

Hence the marginal density on Y is, for 0 ≤ v ≤ 10,

fY (v) =
∫ 1

v

.1
u
du = .1 ln(u)

∣∣∣1
v

= .1 ln(10)− .1 ln v = .1 ln(10/v).

fY (v) = .1 ln(10/v)

You can check that indeed
∫ 1
0 0.1 ln(10/v) dv = 1. It’s both logical, and evident from the picture,

that Y tends to be on the smaller side of the range [0, 10].

8

4.2 Law of Conditional Expectation

We can use conditional densities in the Law of Conditional Expectation (and also the Law of Total
Probability) in the natural way:

Proposition 17. If X and Y are continuous random variables, and h : R→ R, then

E[Y] =
∫

E[Y | X = u]fX(u) du.

Let’s try this out for the example of

X ← Unif[0, 10]
Y ← Unif[0, X].

It is not hard to check the intuitively obvious statement E[Y | X = u] = u/2. Hence

E[Y] =
∫

E[Y | X = u]fX(u) du =
∫ 10

0
(u/2) · .1 du = .1

1
4
u2
∣∣∣10

0
= 2.5.

We could alternatively have calculated∫ 10

0
(u/2) · .1 du =

1
2

∫ 10

0
u · .1 du =

1
2
E[X] = 5/2 = 2.5.

If your calculus skills are good, you can also check that this jives with our calculation fY (v) =
.1 ln(10/v):

E[Y] =
∫ 10

0
v · .1 ln(10/v) dv = · · · = 2.5.

9

15-359: Probability and Computing
Fall 2009

Lecture 19: The Poisson Process

In this lecture we’ll see the very neat “Poisson Process”, which is the basis of continuous-time
Markov Chains and queueing theory.

1 Wonderful properties of the exponential distribution

Understanding the Poisson Process requires learning some wonderful properties of the exponential
distribution. Let’s begin with the basic facts about this distribution. Let X ∼ Exponential(λ),
where λ > 0.

Fact 1.

� The PDF is fX(u) = λ exp(−λu).

� The CDF is FX(u) = 1− exp(−λu).

� Intuitively, X is like the time till the first ‘heads’ when you flip a coin with heads-probability
λδ every δ-length time tick. . . in the limit as δ → 0.

� E[X] = 1/λ.

� Var[X] = 1/λ2.

On Homework 9, Problem 2b, you also proved the memoryless property of exponential random
variables:

Theorem 2. For all s, t ≥ 0, Pr[X > s+ t | X > s] = Pr[X > t].

(By the way, it doesn’t matter if we write > or ≥ here, because for continuous random variables,
Pr[X = u] = 0.) Since knowing Pr[X > t] for each t means you know the CDF, which uniquely
defines the distribution, this is precisely saying that if you condition on an Exponential(λ) random
variable being greater than s, its conditional distribution is just s+ Exponential(λ).

Puzzle: Customer A and Customer B are being served at a bank with two tellers. Then Cus-
tomer C comes in and waits for the first available teller. Assume all service times for the customers
are independent Exponential(λ) random variables. What is the probability Customer C is the last
to leave?

1

Answer: This is a simple version of the “batteries” problem on the homework. At the time
Customer C comes in, the conditional distribution of A’s and B’s remaining service times is still
Exponential(λ) (independently), by memorylessness. Now whichever of A or B is served first, and
how long that takes, doesn’t matter: when the first of them leaves, the other has Exponential(λ)
remaining service time, as does Customer C. Hence by symmetry, the probability C leaves last is 1/2.

Another wonderful property you proved in Homework 9, Problem 4a is that the minimum of
independent exponentials is exponential:

Theorem 3. Let Xi ∼ Exponential(λi) for i = 1 . . . n, and assume these random variables are
independent. Let Y = min(X1, . . . , Xn). Then Y ∼ Exponential(λ1 + · · ·+ λn).

It is pretty easy to prove this using the CDFs. Here is another ‘pseudo-proof’, using the fact
that exponentials are the continuous analogues of geometrics:

Proof. (Pseudo.) It’s enough to prove it for n = 2; you can then use induction. For X1 we imagine
flipping a coin with heads-probability λ1δ, every δ-length time tick, until we get a heads. For X2

it is the same, except the heads-probability is λ2δ. If we imagine flipping the coins together each
tick, then Y represents the time till we get a heads on either coin. The probability of getting heads
on either when we flip both coins is

1−Pr[TT] = 1− (1− λ1δ)(1− λ2δ) = λ1δ + λ2δ − λ1λ2δ
2.

Since we think of δ as tiny, δ2 is super-tiny and thus negligible. I.e.,

Pr[either is heads] ≈ (λ1 + λ2)δ.

Thus Y is like an exponential random variable with parameter λ1 + λ2.

Let’s extend this fact to answer the following question: Given X1, . . . , Xn, what is the proba-
bility that the minimum is Xi?

Theorem 4. In the setting of Theorem 3,

Pr[min(X1, . . . , Xn) = Xi] =
λi

λ1 + · · ·+ λn
.

Proof. We’ll just do the case n = 2 again, and leave to you the extension to general n via induction.
It also suffices to do the case i = 1 (because then the i = 2 case follows by symmetry, or by
subtracting from 1). Hence we need to prove

Pr[min(X1, X2) = X1] = Pr[X1 ≤ X2] =
λ1

λ1 + λ2
.

We can compute this probability in a couple of different ways. One is to simply note that it is the
probability of the event (X1, X2) ∈ A = {(u, v) : 0 ≤ u ≤ v}, and compute it by integrating the

2

joint PDF. Another way is to use the Law of Total Probability (“conditioning on the value of X1”):

Pr[X1 ≤ X2] =
∫ ∞

u=0
Pr[X1 ≤ X2 | X1 = u]fX1(u) du

=
∫ ∞

0
Pr[X2 ≥ u]fX1(u) du (since X1 and X2 are independent)

=
∫ ∞

0
exp(−λ2u)λ1 exp(−λ1u) du (using the CDF and PDF of exponentials)

= λ1

∫ ∞

0
exp(−(λ1 + λ2)u) du

=
λ1

λ1 + λ2

∫ ∞

0
(λ1 + λ2) exp(−(λ1 + λ2)u) du

=
λ1

λ1 + λ2
· 1,

as needed. In the last step, we used the fact that (λ1 + λ2) exp(−(λ1 + λ2)u) is the PDF of a
random variable (namely, an Exponential(λ1 + λ2)) and hence integrates to 1. (This trick is a
useful shortcut in probability calculations — try to be on the lookout for it!)

2 The Poisson Process

The Poisson Process is a very widely used model for the arrival times of jobs at a processor, or
packets at a router, or threads at a critical section, or requests at a web server, or phone calls at a
cell tower, or beta particles at a geiger counter, or customers at a cashier, or raindrops at a patch
of ground, or. . .

2.1 Definition based on interarrivals

There are several equivalent ways to define the Poisson Process. Most books choose the hardest-
to-understand to give first. I will give the easiest to understand first:

Definition 5. A Poisson Process with rate/ intensity/ parameter λ > 0 consists of a sequence
of interarrival time random variables, S1, S2, S3, Each Si ∼ Exponential(λ), and these ran-
dom variables are independent. This gives us a sequence of arrival times (AKA waiting times)
T0, T1, T2, T3, . . . , where T0 is always 0, and T` =

∑`
i=1 Si.

We always like to think of the following picture for a Poisson Process: we have a timeline going
from 0 to ∞, and the points represent “arrivals”. Remember, the fundamental definition is that
the interarrival times are independent Exponential(λ)’s. (You might be wondering, therefore, why
it’s called the Poisson Process! We’ll see shortly.)

3

Intuitive interpretation: Given the Exponential(λ) interarrival times, it’s as though you are
dividing time up into tiny segments of length δ, and flipping a coin with head-probability λδ for
each segment. Every time you get a ‘heads’, you treat it as having an arrival at that tiny segment.

Observation: Given this interpretation, you can see that in some sense you do not have to flip
the coins “in order”. Rather, you can imagine each tiny segment of width δ has its own coin, and
decides to be an arrival time with probability λδ.

Discussion: Is this a reasonable model of things like hit times for a web server, or cell phone
calls going into a tower? Well, perhaps, perhaps not. If you think of the definition in terms of
the observation we just made, it’s reasonable if you imagine there are a large number of agents,
each of which has a small chance of “arriving”; and, in each tiny segment of time, there is an equal
(tiny) chance that an agent will arrive. This is somewhat reasonable for things like arrivals at a
web server in a modest stretch of time. (For longer stretches, probability the arrival rate will vary
with time of day; there are extensions to the Poisson Process that allow for this.)

2.2 Arrival count N(t)

An obvious first question to ask is:

Question: Given a fixed time t ≥ 0, let N(t) be the random variable counting the number of
arrivals up to time t. What is the distribution of this random variable?

Hint: Notice that N(t) is a discrete random variable which has possible values 0, 1, 2, Also,
notice that it is called the Poisson Process.

Intuitive answer: We observed before that we can think of the time segment [0, t] as being
divided into tiny segments of length δ, and each segment as flipping a (λδ)-biased coin to determine
if there is an arrival in that segment. Thus we would think that the number of arrivals in time
[0, t] is Binomial(t/δ, λδ). Since t/δ is huge and λδ is tiny, this is the perfect time for the Poisson
Approximation, which suggests that

Binomial(t/δ, λδ) ≈ Poisson((t/δ)(λδ)) ∼ Poisson(λt).

Rigorous answer: The intuitive answer is correct:

N(t) ∼ Poisson(λt).

The rigorous proof is straightforward, but requires some fiddly integration. See the homework!

Corollary: E[N(t)] = λt. I.e., the expected number of arrivals in time interval [0, t] is λt. This
is why the parameter λ is often called the arrival rate.

Example problem: Hits come into a web server according to a Poisson Process with rate λ =
1

10 msec . What is the expected number of hits in the first second, and what is the variance?

Solution: Letting time be measured in milliseconds, we are interested in E[N(1000)] and Var[N(1000)].
We know that N(1000) ∼ Poisson(λ1000) ∼ Poisson(100). Hence the expected number of hits is
100 and the variance is also 100.

4

2.3 Definition based on Poisson arrivals

Let’s make another observation. Suppose we fix some point in time s ≥ 0, and consider only the
arrivals after this point. You can see that this is also a Poisson Process with rate λ; this is because
the memorylessness property of exponentials ensures that the interarrival times starting from s are
independent Exponential(λ)’s. We can draw the following conclusion:

Fact 6. Let s, t ≥ 0. The number of arrivals in the interval (s, s+ t], which is equal to N(s+ t)−
N(s), has distribution Poisson(λt).

And memorylessness also implies:

Fact 7. (and Definition.) A Poisson Process has independent increments, meaning that if (t1, t2]
and (t3, t4] are disjoint intervals, the number of arrivals in the first interval N(t2) − N(t1) is
independent of the number of arrivals in the second interval N(t4)−N(t3).

Independent Increments

These two properties can actually be taken as an alternate definition of the Poisson Process.
First, let’s define:

Definition 8. A continuous-time stochastic process is just a collection of (joint) random variables
X(t), one for each real t ≥ 0. It is called a counting process if: (i) each X(t) has range N; (ii) s ≤ t
implies X(s) ≤ X(t) always.

Definition 9. A Poisson Process with parameter λ > 0 can alternately be defined as follows: Its
arrival counts N(t) are a continuous-time counting stochastic process satisfying:

1. N(0) ≡ 0.

2. Independent increments: if (t1, t2] and (t3, t4] are disjoint, then N(t2) − N(t1) and N(t4) −
N(t3) are independent.

3. N(s+ t)−N(s) ∼ Poisson(λt) for all s, t ≥ 0.

Let us show that this definition based on the arrival counts N(t) implies the other definition
based on interarrival times.

Proposition 10. The definition based on arrival counts implies the one based on interarrival times.

Proof. Let’s look at how the first interarrival time S1 depends on the N(t)’s:

S1 > t ⇔ N(t) = 0 ⇔ N(t)−N(0) = 0,

where we used Property 1 above. So using Property 3 above,

Pr[S1 > t] = Pr[Poisson(λt) = 0] = exp(−λt) ⇒ FS1(t) = Pr[S1 ≤ t] = 1− exp(−λt).

This is the CDF of an Exponential(λ), hence indeed S1 ∼ Exponential(λ).

5

Let’s look at the second interarrival time S2, conditioned on S1 = s.

Pr[S2 > t | S1 = s] = Pr[N(s+ t)−N(s) = 0 | S1 = s]
= Pr[N(s+ t)−N(s) = 0 | N(s)−N(0) = 1, N(s′)−N(0) = 0 ∀s′ < s]
= Pr[N(s+ t)−N(s) = 0] (independent increments)
= Pr[Poisson(λt) = 0]
= exp(−λt),

and notice this does not depend on s. We conclude that S2 also has the Exponential(λ) distribution
and is independent of S1. We can make similar deductions for S3, S4, S5,

2.4 An even more general definition

The second definition of the Poisson Process obviously has Poissons built right into it. And the
first definition has Exponentials built into it. Actually, the “traditional” definition of the Poisson
Process has no specific distribution built into it; just some simple axioms about arrivals. Writing
N(t) for the number of arrivals up to time t, the axioms are:

1. At the beginning there are no arrivals: N(0) ≡ 0.

2. Independent increments; i.e., the number of arrivals in one interval does not affect the number
in a disjoint interval.

3. The “average” arrival rate is a constant λ; more precisely, for all t ≥ 0,

Pr[N(t+ δ)−N(t) = 1] = λδ + o(δ).

4. Arrivals occur “one at a time”:

Pr[N(t+ δ)−N(t) ≥ 2] ≤ o(δ).

(Remember, o(δ) represents some function of δ, call it h(δ), with the property that h(δ)/δ → 0 as
δ → 0; informally, h(δ)� δ.)

As you can see, this is very much like our intuitive model of the Poisson Process wherein each
tiny time segment of length δ flips a (λδ)-biased coin and has an arrival if the coin lands heads.
Indeed, with a page or two of basic calculus, you can prove the following:

Theorem 11. Any stochastic counting process satisfying the above axioms must be the Poisson
Process with rate λ.

So you see, the Poisson Process can arise quite naturally, with no reference to either Poissons
or Exponentials.

3 Poisson Process merging and splitting

Having three equivalent definitions of the Poisson Process lets us be very flexible when proving
facts about the Poisson Process. Let’s prove two basic such facts.

6

3.1 Poisson Process merging

Imagine the 61A bus arrives at the bus stop in front of The Cut according to a Poisson Process with
rate λA. Imagine the 61B bus also arrives at this bus stop according to an independent Poisson
Process with rate λB. If you are going to the corner of Forbes and Murray, you can equally well
use either bus; so, you really only care about the arrival times of any kind of bus. This process is
called the merging of two Poisson Processes.

By the way:

Definition 12. We say Poisson Processes A and B are independent if their interarrival time
random variables are independent. Equivalently, the arrival counts NA(t) and NB(u) should be
independent for all t, u ≥ 0.

You may not be surprised to learn:

Theorem 13. If we merge two independent Poisson Processes with rates λA and λB, the result is
a Poisson Process with rate λA + λB. (More generally, merging n independent Poisson Processes
with rates λ1, . . . , λn yields a Poisson Process with rate λ1 + · · ·+ λn.)

Proof. Since we have several ways of thinking about Poisson Processes, there are several ways
to prove this. (You should try thinking about them!) Here is the way to prove it based on
interarrival times. In the merged process, the first arrival occurs after a period of time U1 which
is the minimum of an Exponential(λA) and an independent Exponential(λB). As we saw on the
homework, U1 ∼ Exponential(λA + λB). Let’s think now about conditioning on this first arrival
time. What subsequently happens in Process A? Well, if the first arrival was in A, then the
distribution on its interarrival time is another Exponential(λA). And if the first arrival was in B,
then the distribution on the subsequent time for an arrival in Process A is still Exponential(λA), by
the memorylessness property of exponentials. So even conditioned on U1, Process A continues to
act like a Poisson Process with rate λA. The exact same considerations hold for Process B. Hence
the next interarrival time, U2, is again the minimum of an Exponential(λA) and an independent
Exponential(λB) — which is Exponential(λA + λB) — and this is also independent of U1. Etc.
Thus the interarrival times in the merged process are independent Exponential(λA + λB) random
variables, as required.

3.2 Poisson Process splitting

The opposite of Poisson Process merging is Poisson Process splitting, and it is slightly more sur-
prising. As an example, suppose you have a server with two processors. Jobs arrive at the server
according to a Poisson Process with rate λ. You use a randomized load-balancing policy, wherein
an arriving job is assigned to the first processor with probability p and the second processor with
probability 1− p (independently for each job).

You can now consider the jobs arriving at processor 1 to be one process, and the jobs arriving
at processor 2 to be a separate (but presumably dependent) process.

Theorem 14. In this scenario, the jobs arriving at processor 1 form a Poisson Process with rate
pλ, and the jobs arriving at processor 2 form a Poisson Process with rate (1 − p)λ. Furthermore,
these processes are independent!

7

Remark 15. This is one of those rare times when you have random variables which are generated
together and thus don’t look independent (according to the “Principle”, at least). But, as it turns
out, they are independent, according to the official definition. This independence actually proves to
be very useful!

Proof. Let’s start with just showing that the jobs arriving at processor 1 for a Poisson Process
with rate pλ. What do the interarrival times look like for the jobs at processor 1? We start with
independent Exponential(λ) interarrival times S1, S2, S3, However some of these arrivals go
to processor 2. Let G be the random variable denoting the index of the first job that goes to
processor 1. Then it’s clear that G ∼ Geometric(p) (and G is independent of the Si’s). Thus the
arrival time for the first processor 1 job is

U1 = S1 + S2 + · · ·+ SG.

Lemma 16. The sum of a geometric number of exponentials is exponential. Specifically, U1 ∼
Exponential(pλ).

Proof. We give an intuitive proof, based on thinking of exponentials as the continuous version of
geometrics. You will do a rigorous proof on the homework. Let C be a biased coin with heads-
probability λδ, where δ is tiny. Intuitively, you can think of S1 ∼ Exponential(λ) as being the time
it takes to get a heads when you flip C every δ-length time tick. Suppose you have another coin D
with heads-probability p, and every time you flip C you also flip D. As long as C flips tails, you
ignore D, but whenever C flips heads, you look at the outcome of D. If D is also heads, you stop.
If D is tails, you continue flipping both coins.

The stretch of time till the first C-heads is distributed like S1. When that stretch ends, whether
or not you continue depends on a D-flip. If it’s tails, you get another stretch of time distributed
like S2 ∼ Exponential(λ), and another D-flip, etc. Hence, the total time till you flip heads on
both coins is distributed like U1, a geometric sum of exponentials. And if you think of the two
coins C and D together as being like a single coin with heads-probability pλ, you see that U1 ∼
Exponential(pλ).

This shows that the first interarrival time for jobs to processor 1 has distribution Exponential(pλ).
It’s clear that the subsequent interarrival times are also independent Exponential(pλ) random vari-
ables. Hence indeed, the jobs arriving at processor 1 form a Poisson Process with rate pλ.

Similarly, the jobs arriving at processor 2 form a Poisson Process with rate (1− p)λ.

It remains to show that these are actually independent Poisson Processes. To do this, we will
show that N1(t) and N2(u) are independent for all t, u ≥ 0. Let’s start with the case t = u:

Lemma 17. N1(t) and N2(t) are independent for all t ≥ 0.

Proof. Suppose we fix some time t. To show that N1(t) and N2(t) are independent, we need to
show that their joint PMF is the product of their individual PMFs; i.e., for all a, b ∈ N,

Pr[N1(t) = a & N2(t) = b] = Pr[N1(t) = a]Pr[N2(t) = b].

Now
Pr[N1(t) = a & N2(t) = b] = Pr[N(t) = a+ b & N1(t) = a],

8

where N(t) is the arrival count for jobs to the server. We have N(t) ∼ Poisson(λ), so Pr[N(t) =
a + b] = exp(−λ)λa+b/(a + b)!. Conditioned on N(t) = a + b, what is the distribution of N1(t)?
We have a+ b jobs arrived in the time span, and each gets sent to processor i independently with
probability p. So N1(t) | (N(t) = a+ b) has distribution Binomial(a+ b, p). Thus

Pr[N(t) = a+ b & N1(t) = a] = exp(−λ)
λa+b

(a+ b)!
· (a+ b)!

a!b!
pa(1− p)b

= exp(−pλ)
(pλ)a

a!
· exp(−(1− p)λ)

((1− p)λ)b

b!
= Pr[N1(t) = a]Pr[N2(t) = b],

because N1(t) ∼ Poisson(pλ) and N2(t) ∼ Poisson((1− p)λ). This completes the proof.

Finally, since we know N1(t) and N2(t) are independent for all t, it’s not too hard to show that
N1(t) and N2(u) are independent as well. It’s a bit of a trick, using the “independent increments”
property of the Poisson Process. Assume without loss of generality that u > t. Now

Pr[N1(t) = a & N2(u) = b] =
b∑

c=0

Pr[N1(t) = a & N2(t) = c & (N2(u)−N2(t) = b− c)],

by partitioning according to the number of arrivals at processor 2 by time t. By the “independent
increments” property, the arrivals to the server in the time segment (0, t] are independent of the
arrivals in time segment (t, u]. Hence

Pr[N1(t) = a & N2(t) = c & (N2(u)−N2(t) = b− c)]
= Pr[N1(t) = a & N2(t) = c]Pr[N2(u)−N2(t) = b− c].

Since N1(t) and N2(t) are independent, this equals

Pr[N1(t) = a]Pr[N2(t) = c]Pr[N2(u)−N2(t) = b− c].

Again, independent increments implies that N2(t) and N2(u) − N2(t) are independent, so going
back again this equals

Pr[N1(t) = a]Pr[N2(t) = c & N2(u)−N2(t) = b− c].

So we have shown

Pr[N1(t) = a & N2(u) = b] =
b∑

c=0

Pr[N1(t) = a]Pr[N2(t) = c & N2(u)−N2(t) = b− c]

= Pr[N1(t) = a]
b∑

c=0

Pr[N2(t) = c & N2(u)−N2(t) = b− c]

= Pr[N1(t) = a]Pr[N2(u) = b],

and hence N1(t) and N2(u) are indeed independent.

9

15-359: Probability and Computing
Fall 2009

Lecture 20: Continuous-Time Markov Chains

Continuous-Time Markov Chains are a very natural variant of Discrete-Time Markov Chains,
and are important for the study of queuing systems. We will describe them in this lecture.

1 Continuous-Time Markov Chains

Let’s think about how to define continuous-time Markov Chains (CTMCs).

1.1 The Markov Property

I hope you remember when we studied discrete-time Markov Chains, there were two very different-
looking — but equivalent — definitions. The first was a sort of “hands-on” definition: you had a
diagram like this,

with corresponding transition matrix K. In the associated random process, you jumped from state
to state each time tick according to the transition probabilities.

The alternate definition was more “abstract”:

Definition 1. A discrete-time Markov Chain with (countable) state set S is a discrete-time stochas-
tic process — i.e., a sequence of S-valued random variables X0, X1, X2, . . . — with the Markov
Property: for all t ∈ N and u, v ∈ S,

Pr[Xt+1 = v | Xt = u & values of Xt′, t′ < t] = Pr[Xt+1 = v | Xt = u] = K[u, v].

I.e., given that you are in state u at time t,

� it does not matter how you got there, and

� it does not matter what the time t is,

1

your probability of being at state v at time t+ 1 is just K[u, v].

A somewhat non-realistic aspect of my “Work-Surf-Email” chain above was that it imagined I
jumped from state to state at discrete time intervals (every minute). In reality, my time is fluid,
and I might jump from state to state at any point in (continuous) time. In continuous time, what
should the picture look like?

1

Hmm. Since it is not immediately obvious how to make a continuous-time version of the
“hands-on” definition, let’s consider a continuous-time analogue of the “abstract” definition is:

Definition 2. A continuous-time Markov Chain with (countable)2 state set S is a continuous-time
stochastic process — i.e., a collection of S-valued random variables Xt, for t ∈ R≥0 — which satisfy
the following Markov Property: for all s, t ≥ 0 and u, v ∈ S,

Pr[Xt+s = v | Xt = u & values of Xt′, t′ < t] = Pr[Xt+s = v | Xt = u] = Ps[u, v].

I.e., given that you are in state u at time t, it does not matter how you got there, and it doesn’t
matter what t is, the probability that in time s you are in state v is some number Ps[u, v] depending
only on u, v, and s.

Please note, by the way, that each random variable Xt is a discrete random variable; it takes
values in the countable set S. It’s just that we have uncountably many of them. Actually, we will
not take Definition 2 too seriously, because it’s not exactly clear what it means to condition on
uncountably many events Xt′ = w simultaneously. Instead, we’ll just use it as a muse when coming
up with the more “hands-on” definition of continuous-time Markov Chains.

1.2 Waiting times

Suppose I am in state u at time t0. Presumably, for a while I will continue to be in state u; then
I’ll jump to being in some other state. The amount of time I stay in state u before jumping will be
a continuous random variable. Let’s call it

U = amount of time until I change states, given that I’m in state u at time t0.

What does Definition 2 suggest about this random variable U? Could we understand, say,

Pr[U > t]?

It’s not obvious. . . But instead, suppose we asked about

Pr[U > t+ s | U > s].
1As you can see from the picture, I’ve decided that I sometimes go from email to surfing.
2We will only ever deal with finite or countable state sets.

2

I.e., what is the probability that it takes longer than t+ s time to jump away from state u, given
that it took longer than s? Well,

“U > s” ⇔ Xt′ = u ∀t0 ≤ t′ ≤ t0 + s.

But by the Markovian Property, the fact that you were in state u for all times between t0 and t0 +s
doesn’t matter; all that matters is that you were in state u at time t0 + s. Since the Markovian
Property also doesn’t care about the difference between being in state u at time t0 and being in
state u at time t0 + s, we ought to have

Pr[U > t+ s | U > s] = Pr[U > t].

I.e, U should have the Memorylessness Property! As you will show on the homework, the only
continuous random variables which have the Memorylessness Property are exponential random
variables. Hence we deduce:

In a continuous-time Markov Chain, the amount of time you wait at each state
has an exponential distribution.

1.3 A hands-on definition

Great! We’re well on our way to a nice definition now. First, there’s no reason why it should be
the same exponential distribution for each state. So let’s assume that for each state u, I wait for
some time with distribution Exponential(αu).

Well, now as soon as I’m done “waiting” in a state u, I must hop to another state. According to
the Markov Property, the probability of me hopping to each other state v should only depend on
the states and not on any times. So just as with discrete-time Markov Chains, we could have a
probability p[u, v] for each possible arrow.

Note: There is no point in having self-loops. If you were thinking about having hops from u to
u, you may as well just increase the waiting time at u by decreasing the rate αu!

3

In this diagram we have, e.g., p[E,W] = .4. Of course, the sum of the probabilities coming out of
each state needs to be 1. We now can make a “hands-on” definition of CTMCs:

Definition 3. A continuous-time Markov Chain with (countable) state set S consists of:

� a discrete-time Markov Chain over S with transition matrix P (and no self-loops), called the
skeleton chain;

� a “rate” αu > 0 for each state u.

We associate the following random process:

// the initial state, X0, is some random variable with values in S
t← 0
u← X0

loop forever
U ← Exponential(αu)
Xs ← u for all t < s < t+ U
t← t+ U
choose V ∈ S by assigning V ← v with probability p[u, v]
Xt ← V
u← V

E.g., in the above chain, suppose I start with X0 = Work. First I work for some Exponential(αW)
amount of time. Then I switch to Surfing with probability 1. Then I surf for some Exponential(αS)
amount of time. Then I go back to Work with probability .25 and I switch to Email with probability
.75. Etc.

Question: Suppose the rates αu are all the same across u ∈ S. What can you say about the
transition times in the CTMC?

Answer: They form a Poisson Process.

1.4 Alarm clocks

The above definition of a CTMC is a perfectly good one, and is the one you’d probably use if
you were writing a simulator. However, if you look around, you will find that people do not draw
CTMCs in the above way, with each state labeled by a waiting rate and each arrow labeled by a
probability. Instead, they draw them like this, with no numbers on the states, and arbitrary real
numbers on the arrows:

4

What does this mean?!

Let’s go back to the previously defined Work/Surf/Email chain and focus on the Surf state.
Let’s measure time in hours. Suppose we decide that every time I start surfing, I spend 3 minutes
doing it on average. (I may be afflicted with Attention Deficit Disorder. . .)

Question: What should αS be?

Answer: We want the mean of the Exponential(αS) random variable to be 1/20 (because 3
minutes is 1/20 of an hour). Thus αS should be 20. If you think of this 20 as a rate, it’s saying
that I transition out of the Surf state at the “rate of 20 transitions per hour”.

As you recall, we have that once I transition out of Surfing, I go to Email with probability .75 and
to Work with probability .25.

Why? Why might I do this? Here’s a plausible explanation: As I’m surfing, one of two things
can happen. I can receive an Email, in which case I promptly go address it. Or, I can feel a guilt
pang, in which case I get back to work. It’s a bit like two alarm clocks might go off as I’m surfing:
the Email alarm clock and the Work (AKA guilt pang) alarm clock. Whichever one buzzes first
draws me into its state.

Indeed, something quite neat happens if we model the waiting times for emails and guilt pangs
according as exponential random variables. Suppose we think of a new email arriving in exponential
time with parameter 15 (hence mean 60/15 = 4 minutes) and a guilt pang as arriving in exponential
time with parameter 5 (hence mean 60/5 = 12 minutes). Here is picture:

(I agree that it’s not clear why the arrows should point this way and not the opposite way. But
this is the way we’ll draw it.)

Interpretation: While I’m in the Surf state, there is an Email “alarm clock” that buzzes after
a random amount of time with distribution Exponential(15). There is also an (independent) Work
alarm clock that buzzes after Exponential(5) time. As soon as one of them buzzes, I go to its state.

5

Question: In this alarm clock scenario, what is the distribution on time I spend in the Surf state?

Answer: It is the minimum of two exponential random variables, with parameters 15 and 5. As
we know, the minimum of two exponentials is exponential, with the parameters adding. So the
amount of time I spend in the Surf state has distribution Exponential(20) — just as desired!

Question: In the alarm clock scenario, when I eventually transition out of the Surf state, with
what probability do I go to Email and with what probability to Work?

Answer: I go to Email if and only if the Email alarm clock buzzes first. I.e., if the alarm times are
AE ∼ Exponential(15) and AW ∼ Exponential(5), I go to Email if and only if min(AE , AW) = AE .
But remember from last lecture:

Theorem 4. If X1, . . . , Xn are independent random variables with Xi ∼ Exponential(λi), then

Pr[min(X1, . . . , Xn) = Xi] =
λi

λ1 + · · ·+ λn
.

So the probability the Email alarm buzzes first is 15
15+5 = .75 and the probability the Work

alarm buzzes first is 5
15+5 = .25, just as desired.

In other words, this alarm clock scenario exactly models the original setup of spending Exponential(20)
time in the Surf state, then going to Email with probability .75 and Work with probability .25.

1.5 The alarm clock definition

More generally: Instead of drawing CTMCs like the one on the left, we always draw them like the
one on the right:

⇒

Definition 5. (Alarm clock definition.) A continuous-time Markov Chain on state set S is defined
by a transition diagram such as the one on the right, above (with no self-loops). The directed arc
from state u to state v is labeled with a positive number α[u, v] which denotes the rate of transition
from u to v. We associate the following process:

Suppose you are in state u. For each arc (u, v), we imagine an independent “alarm clock” for
state v which buzzes after an Exponential(α[u, v]) amount of time. Whenever one of the alarm
clocks buzzes, we transition to its state.

6

Example: Here is how my old car used to treat me. (Think of time in months.)

Question: Once I manage to get my car running, what is the expected amount of time till
something goes wrong with it?

Answer: When in the Running Well state, we think of an Exponential(1) alarm clock going into
“Hard To Start” and an Exponential(2) alarm clock for going into “Check Engine Light On”. Hence
the distribution on the time till one of these buzzes (i.e., something goes wrong) is Exponential(1+
2) ∼ Exponential(3). The mean of an Exponential(3) random variable is 1/3. Hence the average
amount of time till something goes wrong is 1/3 of a month; i.e., about 10 days.

2 Stationary Distributions

Just as with discrete-time Markov Chains, we’re frequently interested in the long-time behavior of
CTMCs. For example, in the long run, what fraction of the time is my car Running Well (R)? Is
there a “steady-state”, or stationary distribution, such that if I’m in that distribution on states, I
will remain in the same distribution for all time?

To answer these questions rigorously for CTMCs involves some rather long and unenlightening
detours that I don’t think it’s worth getting into. Let me just show you how you can obtain the
right answers for finite-state CTMCs and most natural infinite-state chains. The idea is to take
the view of exponentials as the limit as δ → 0 of “coin flips every δ-length time tick”, and convert
to a discrete-time Markov Chain!

2.1 CTMCs to DTMCs

Let’s take my old car’s CTMC and focus on state R (= Running Well).

7

There are two states it can go to, H (= Hard To Start) and C (= Check Engine Light On). We
imagine an alarm clock for each; the H clock buzzes after Exponential(1) time, the C clock buzzes
after Exponential(2) time. We imagine these exponential random variables as follows. Time is
chopped up into tiny segments of length δ. On each time step independently, the H clock buzzes
with probability 1 · δ and the C clock buzzes with probability 2 · δ. If neither clock buzzes, you stay
put. If one clock buzzes, you go to its state. If both clocks buzz. . . well, there’s only a freakishly
small chance of that, 2δ2. Generally, we think of δ as tiny and hence anything O(δ2) is unimagin-
ably tiny; we will end up neglecting O(δ2) quantities. For definiteness, we’ll assume that if both
clocks buzz you stay put.

To be precise,

Pr[C buzzes and H does not buzz] = 2δ(1− δ) = 2δ −O(δ2).

Pr[H buzzes and C does not buzz] = δ(1− 2δ) = δ −O(δ2).
Pr[stay put] = Pr[0 or > 1 buzzes] = 1−Pr[exactly 1 buzz]

= 1− (2δ −O(δ2))− (δ −O(δ2)) = 1− 3δ +O(δ2).

Hence we discretize this part of the chain to the following:

By analogous reasoning, we can discretize the whole chain as follows:

8

We can now solve this DTMC!

Question: Will the DTMC be regular? I.e., will it be ‘irreducible’ and ‘aperiodic’?

Answer: Irreducibility is always easy to check: it’s just checking whether the graph is totally
connected. As for aperiodicity, something very nice happens. The DTMC will always be ape-
riodic. Why? Because there are self-loops on every state! Hence if you can go from state u to
state v at in T steps, then you can also do it in T+s steps for every s ≥ 0. So cycling is not possible.

This is very nice, because (at least for finite-state chains) it means the only thing you have to
worry about is reducibility/disconnectedness, which is easy to check.

2.2 Balance equations

So assuming the graph is connected (and finite), the Fundamental Theorem tells us that there is
a unique stationary distribution, it has nonzero probability for each state, and it is the long-time
limiting distribution. We solve for it via the stationary equations:

π = πK (and also
∑
u∈S

π[u] = 1).

Let’s think about these equations a little bit abstractly, before we go plugging any numbers in.

Key insight: When there are self-loops with huge probabilities (as there are when converting
CTMCs to DTMCs), you should think about the stationary equations a little differently.

Specifically, let’s take one of the equation for one state, say R:

π[R] =
∑

u

π[u]K[u,R].

9

Let’s separate the big ‘self-loop’ quantity, K[u, u]:

π[R] =
∑
u6=R

π[u]K[u,R] + π[R]K[R,R] ⇒ π[R](1−K[R,R]) =
∑
u6=R

π[u]K[u,R].

From state R, you have to go somewhere:∑
v

K[R, v] = 1

(I.e., all rows of K add up to 1.) Hence

1−K[R,R] =
∑
v 6=R

K[R, v].

So we conclude ∑
v 6=R

π[R]K[R, v] =
∑
u6=R

π[u]K[u,R]. (1)

Definition 6. The equation 1 is called the balance equation for state R.

Note: This is NOT the same as the time-reversibility equations!

Interpretation: The quantity on the left is the long-term fraction of transitions leaving R. The
quantity on the right is the long-term fraction of transitions entering R. (In fact, it’s obvious that
this equation must hold in the long-term limit: every time you enter R, you must leave R, and vice
versa. So in a long run of a DTMC, the number of entrances to R must differ from the number
of leavings from R by at most 1. Hence we can deduce (1) the same way we reasoned about the
time-reversibility equations in Lecture 15 Section 6.)

Note: As we just saw, the stationary equation for state R is easily equivalent to the balance
equation for state R. You’re just subtracting the self-loop rate from both sides. So solving the
stationary equations and solving the balance equations is equivalent.

2.3 The balance equations for discretized CTMCs

The reason we bring up the balance equations is that when you discretize a CTMC to a DTMC,
the balance equations are much easier to solve. Let’s observe this in the old car chain. The rate of
transitions entering R — i.e., the LHS of (1) — is

π[D](5δ −O(δ2)) + π[H](3δ −O(δ2)) + π[C](1δ −O(δ2)) = 5δπ[D] + 3δπ[H] + 1δπ[C]−O(δ2).

The rate of transitions leaving R — i.e., the RHS of (1) — is

π[R](1δ −O(δ2) + 2δ −O(δ2)) = 3δπ[R]−O(δ2).

So the balance equation for state R is

5δπ[D] + 3δπ[H] + 1δπ[C]−O(δ2) = 3δπ[R]−O(δ2).

But now we can divide by δ! This gives

5π[D] + 3π[H] + 1π[C]−O(δ) = 3π[R]−O(δ).

10

The O(δ)’s now become negligible as δ → 0, and we just get

5π[D] + 3π[H] + 1π[C] = 3π[R]. (2)

Let’s look at this in light of the original CTMC:

We see that the balance equation (2) for R is easily read off of the CTMC diagram, just by saying
that the “rate of transitions into state R” should equal the “rate of transitions out of state R”.
Even though the rates in the CMTC diagram are not probabilities, this still works.

The remaining balance equations, for states H, C, and D respectively, are:

1π[C] + 1π[R] = 10π[H]
1π[H] + 2π[R] = 2π[C]

6π[H] = 5π[D].

When we also include the balance equation (2), as well as the usual

π[R] + π[H] + π[C] + π[D],

we can solve for the stationary distribution. This turns out to give

π[R] ≈ .39, π[C] ≈ .43, π[H] ≈ .08, π[D] ≈ .10.

I.e., in the long run, my car is Running Well about 39% of the time, running with the Check Engine
light on about 43% of the time, being Hard To Start about 8% of the time, and Dead about 10%
of the time. Yeah, that’s about how I remember it.

2.4 Summary

Theorem 7. Suppose we have a CTMC on finite state set S which is irreducible (every state can
reach every other state). Then there is a unique solution π to the balance equations∑

w 6=u

π[w]α[w, u] =
∑
v 6=u

π[u]α[u, v] ∀u ∈ S,

∑
u∈S

π[u] = 1.

This probability vector has π[u] > 0 for all states u, and represents the long-time limiting probability
of being in each state.

For irreducible CTMCs on infinite state sets, if the balance equations have a solution with
π[u] > 0 for all u ∈ S, then the solution is unique and these are the limiting probabilities.

11

15-359: Probability and Computing
Fall 2009

Lecture 21: Intro to Queuing Theory

1 Recap of the main theorem for CTMCs

For this lecture, we’ll need to recall the theorem about continuous-time Markov Chains which we
ended on last time:

Theorem 1. Suppose we have a CTMC on finite state set S which is irreducible (every state can
reach every other state). Then there is a unique solution π to the balance equations∑

w 6=u
π[w]α[w, u] =

∑
v 6=u

π[u]α[u, v] ∀u ∈ S,

∑
u∈S

π[u] = 1.

This probability vector has π[u] > 0 for all states u, and is both the stationary distribution and the
long-time limiting probability of being in each state.

For irreducible CTMCs on infinite state sets, if the balance equations have a solution with π[u] >
0 for all u ∈ S, then the solution is unique and these are the steady-state/limiting probabilities.

2 Queuing Theory

This lecture is about Queuing Theory. Queuing Theory — the study of waiting in lines — is a
major branch of mathematical computer science/operations research. It was originally developed
mainly by people working on telephone systems (!), especially in the 1950s. Today it’s commonly
used to study e.g., requests to a web server, packets coming into routers, threads queuing for critical
sections, processes arriving at CPUs — as well as real-world queues of people at hospitals, grocery
stores, etc.

The hardest part about Queuing Theory is, of course, spelling ‘queuing’. Luckily, ‘queuing’
and ‘queueing’ are both considered acceptable spellings (the former is more American, the latter
is more British). Yes, the latter version has five (5) consecutive vowels, and is the only common
English word with this property.

2.1 Queuing theory terminology and diagrams

Queuing theory has its own set of funny notation and diagrams.

The things that queue up to be processed are called jobs.
The things that process them are called servers. If there’s more than one, it’s a server network.
These items are usually drawn as follows:

1

Queuing systems are characterized by the following choices:

Distribution of job interarrival times.
Distribution of job service times. Usually the r.v. S denotes the time a job takes to process.
Number of servers. Usually denoted m.
Capacity of each server’s queue.
Total number of jobs.
Service policy: e.g., FCFS (= First-Come First-Served = First-In First-Out).

Today we will focus on the simplest realistic queuing model, which is called M/M/1; aka, the
single-server Markovian queue.

Question: What does this mean? What is up with the bizarre terminology ‘M/M/1’?

Answer: This is “Kendall notation”, invented by the probabilist David G. Kendall. The first
‘M’ stands for Exponential.1 This means that the interarrival times are Exponential(λ) for some
parameter λ. I.e., they form a Poisson Process of rate λ. The second ‘M’ stands for Exponential
as well. It means that each job requires an Exponential(µ) amount of time to process, for some
parameter µ. The ‘1’ means there is one server. The other three parameters are assumed to be
their “default” values: the server has a potentially infinite queue, the number of jobs arriving jobs
is unbounded, and the service policy is FCFS.2

Question: What about server speeds?

Answer: Good question. In queuing theory, you don’t talk about server speeds. Instead, you
fold this into the service time distribution. E.g., if you want to imagine a server being sped up,
instead you imagine the service time (distribution) being shrunk.

The parameters of a queuing system:

λ: the (long-term) average number of arrivals per unit time.
µ: the (long-term) average number of service-completions per time, assuming an always-full queue.

In the “long-term limit”, we expect µ = 1/E[S], where S is the service time random variable.
This holds for the M/M/1 queue we will study, where the interarrival times are Exponential(λ) and
the service times are Exponential(µ).

1I know, doesn’t Exponential start with ‘E’?! ‘M’ here stands for Markovian, or Memoryless.
2By the way, you saw the discretized version of this queuing system before, in Homework 8, Problem 5.

2

3 Analyzing the M/M/1 queue

3.1 The M/M/1 queue as a CTMC

The M/M/1 queue is particularly nice because it can be modeled with a continuous-time Markov
Chain. The state set is S = N, with the states representing the number of jobs in the system.

Note: If there are u > 0 jobs in the system, 1 of them is at the server and u − 1 of them are
waiting in the queue. We say the server is busy. If there are u = 0 jobs in the system, we say the
server is idle.

Why is the M/M/1 queue a CTMC? The memorylessness of both the interarrival times and
the service times mean that the process has the Markovian Property. Think about it: Suppose I
tell you that at a certain point in time t0 there are u jobs in the system. By memorylessness, you
know that the time till the next arrival is still Exponential(λ), and the time till the current job is
finished is still Exponential(µ) (assuming u > 0). These facts do not depend on what states you
were in prior to u, nor on how long you’ve been in state u, nor on the point in time t0.

Thus the chain’s state diagram looks like this:

Question: What are the transition rates for the arrows?

Answer: This is easy to see from the ‘alarm clock’ point of view. Say at a certain point in time
there are u > 0 jobs in the system. There are two things that can happen next: (i) A new job
arrives; this happens when an ‘Exponential(λ) alarm clock buzzes’; (ii) The job currently being
processed is finished; this happens when an ‘Exponential(µ) alarm clock buzzes’. Hence the CTMC
for the M/M/1 queue looks like this:

(Note that for state 0 — when the server is idle, the only thing that can happen is that a new job
arrives.)

3.2 Solving for the stationary distribution

Let’s solve for the stationary distribution, AKA steady-state distribution, of this CTMC. Remem-
ber, we should solve the balance equations: the rate of transitions leaving a state should equal the
rate of transitions entering the state.

Balance equation for state 0: λπ[0] = µπ[1]
Balance equation for state 1: (λ+ µ)π[1] = λπ[0] + µπ[2]

3

Balance equation for state 2: (λ+ µ)π[2] = λπ[1] + µπ[3]
Balance equation for state 3: (λ+ µ)π[3] = λπ[2] + µπ[4]

Etc.

We start solving from the first of these, trying to write everything in terms of π[0].

π[1] =
λ

µ
π[0]

(λ+ µ)
λ

µ
π[0] = λ π[0] + µπ[2] ⇔ λ2

µ
π[0] = µπ[2] ⇔ π[2] =

(
λ

µ

)2

π[0]

(λ+ µ)
(
λ

µ

)2

π[0] =
λ2

µ
π[0] + µπ[3] ⇔ λ3

µ2
π[0] = µπ[3] ⇔ π[3] =

(
λ

µ

)3

π[0]

(λ+ µ)
(
λ

µ

)3

π[0] =
λ3

µ2
π[0] + µπ[4] ⇔ λ4

µ3
π[0] = µπ[4] ⇔ π[4] =

(
λ

µ

)4

π[0],

etc. Clearly (prove it by induction, if you like), we have

π[u] =
(
λ

µ

)u
π[0]

for each u ∈ N. It may look like we’re stuck now, but of course, we haven’t yet used one equation!∑
u∈N

π[u] = 1.

Substituting in what we’ve deduced so far, we get

π[0]

(
1 +

λ

µ
+
(
λ

µ

)2

+
(
λ

µ

)3

+ · · ·

)
= 1.

The quantity inside the parentheses is an (infinite) geometric series.

Question: When does it converge?

Answer: If and only if λ/µ < 1: i.e., λ < µ.

Assumption: Let’s assume that λ < µ. We’ll discuss this assumption shortly.

Given this assumption, the infinite series adds up to
1

1− λ
µ

. Hence we get

π[0] · 1
1− λ

µ

= 1 ⇔ π[0] = 1− λ

µ
,

and hence

π[u] =
(

1− λ

µ

)(
λ

µ

)u
∀u ∈ N.

For safety, you can go back and check that if you plug in this solution, the balance equations are in-
deed satisfied. These probabilities π[u] are all positive, so we have found the unique stationary/steady-
state distribution, by our theorem on CTMCs.

4

3.3 The assumption λ < µ

The assumption we made, λ < µ, is actually a pretty natural one. It is saying that the rate of jobs
arriving to the server is strictly less than the rate of jobs being serviced. If this is not true, then it
seems clear that that jobs will just keep building up and building up in the queue; in other words,
the server will become overwhelmed as time goes on. At a formal level, when λ ≥ µ, the balance
equations have no solution, and there is no stationary distribution. We have a “non-recurrent”
CTMC here, one of the “irregular” kinds of Markov Chains that we don’t bother to deal with.

3.4 Thinking about the steady-state distribution

We now have a nice formula for the steady-state distribution. It’s even pleasanter if you introduce
the following letter:

ρ :=
λ

µ
.

Then in the long-term, the fraction of time for which there are u jobs in the system is

π[u] = (1− ρ)ρu. (1)

One way to think about ρ is as follows: In the long run,

Pr[0 jobs in system] = 1− ρ ⇒ ρ = Pr[> 0 jobs in system] = Pr[server is busy].

Definition 2. For any server in a queuing system, we write ρ for the long-term (limiting) fraction
of time the server is busy.3 This is called the utilization of the server. For the M/M/1 queue, we
saw that ρ = λ/µ.

The equation (1) should also look sort of familiar. Remember, the stationary probabilities
π[·] are really a PMF for a discrete random variable, representing the state under a steady-state
distribution.

Question: What is this the PMF of?

Answer: Not quite Geometric(1−ρ). Instead, if N is the steady-state distribution on states, then
N ∼ (Geometric(1− ρ)− 1); i.e., N is one less than a Geometric random variable with parameter
1− ρ.

Using this fact, it is easy to deduce the following:

Theorem 3. Let L denote the expected number of jobs in the system, in the steady-state. Then

L =
ρ

1− ρ
=

λ

µ− λ
.

Proof. We have
L =

∑
u∈N

π[u]u.

We could compute this using our formula for π. Or we could simply note that

L = E[N] = E[Geometric(1− ρ)− 1] = E[Geometric(1− ρ)]− 1 =
1

1− ρ
− 1 =

ρ

1− ρ
,

3Provided this limit exists.

5

as claimed. And
ρ

1− ρ
=

λ/µ

1− λ/µ
=

λ

µ− λ
.

The plot of L vs. ρ is:

E.g., if the utilization is .01 — i.e., the server is busy 1% of the time — then the average number of
jobs in the system (in the long run) is .01

.99 ≈ .01. On the other hand, if the utilization is .95 — i.e.,
the server is busy 95% of the time — then the average number of jobs in the system is .95

.05 = 19.

Exercise 4. Show that the variance of the number of jobs in the system, in the steady state, is
ρ

(1−ρ)2 .

3.5 Towards response time

Let’s try a slightly harder problem.

Definition 5. The response time for a job is the total amount of time it spends in the system —
the time spent queuing plus the time spent being processed.

Suppose the system is in steady-state and a new job arrives. Let’s define the random variable

T = response time for the newly arrived job,

and
W = E[T].

How can we compute W?

The natural thing to do is to condition on the number of jobs already in the system when the
new job arrives.

6

Assuming the system is in the steady-state, let’s define the events

Lk = “there are k jobs in the system when the new job arrives”.

By the law of total expectation, we have

W = E[T] =
∞∑
k=0

E[T | Lk]Pr[Lk]. (2)

Now E[T | Lk] is not hard to compute. If a new job arrives and there are k jobs in the system, then
the new job will be completed after k + 1 services (the other k jobs’, and its own). Each service
time is Exponential(µ), which has mean µ, and so by linearity of expectation,

E[T | Lk] =
k + 1
µ

. (3)

Next, we need to compute Pr[Lk].

3.6 PASTA

We want to compute Pr[Lk], the probability that a newly arriving job into the steady-state system
encounters k jobs.

Question: Isn’t this just π[k]?

Answer: Yes! Remember, if the system is in the steady-state (stationary) distribution, then it
remains in that distribution for all time. In particular, whenever a job arrives, it is in the steady-
state distribution.

This feature is called PASTA — Poisson Arrivals See Time Averages.4 There is a bit of a
subtlety going on with it. The key point is the first two words, Poisson Arrivals.

PASTA Theorem: In any queuing system where the arrivals are a Poisson Process, the long-
term probability that an arriving job sees k jobs in the system equals the long-term probability of
there being k jobs in the system.

If you still think this looks tautological, think again. Consider a queuing system where the
interarrival times are always 4 seconds and the processing times are always 1 second. (Such a
queue is termed “D/D/1”, with D standing for Deterministic.)

4This goofy name brought to you by Ronald Wolff of Berkeley.

7

Clearly, the long-term fraction of the time the system has k jobs is 1/4 for k = 1 and 3/4 for k = 0.
But in this system, whenever a job arrives it sees 0 jobs in the system with probability 1!

As mentioned, the key to PASTA is Poisson Arrivals; more specifically, the fact that the number
of arrivals in a certain unit of time is independent of the number of jobs in the system. For example,
PASTA holds in an M/D/1 queue, where the arrivals are a Poisson Process and the process times
are all deterministically 1 second.

Exercise: Prove this.

3.7 Response time and summary of performance metrics

Finally, we can plug equation (3) and Pr[Lk] = π[k] into equation (2) to get

W = E[T] =
∞∑
k=0

k + 1
µ

π[k]

=
1
µ

(∞∑
k=0

kπ[k] +
∞∑
k=0

kπ[k]

)

=
1
µ

(L+ 1) .

Using the formula in Theorem 3 twice, this implies

W =
1
µ

(
λ

µ− λ
+ 1
)

=
1

µ− λ
=

L

λ
.

We summarize:

Theorem 6. In the M/M/1 queuing system with arrival rate λ and service rate µ,
the utilization is

ρ =
λ

µ
,

the long-term average number of jobs in the system is

L =
ρ

1− ρ
=

λ

µ− λ
,

and the long-term average response time for an arriving job is

W =
1

µ− λ
.

In particular,
L = λW. (4)

3.8 Little’s Law

Equation (4), L = λW , is a very famous one. It is called Little’s Law. It holds not just for the
M/M/1 queuing system, but for essentially every “queuing system” imaginable. Here is the more
general theorem:

8

Theorem 7. (Little’s Law.) Suppose jobs arrive into a “system” at times 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ,
and suppose the ith job spends Ti time in the system before departing. Define

N(T) = number of arrivals in time range [0, T],

λ(T) =
1
T
N(T) = arrival rate in time range [0, T],

X(t) = number of jobs in system at instant t,

L(T) =
1
T

∫ T

0
X(t) dt = avg. # jobs in the system in time range [0, T],

W (n) =
1
n

n∑
i=1

Ti = avg. waiting time of the first n jobs.

Finally, assume that the following limits exist and are finite:

L = lim
T→∞

L(T), λ = lim
T→∞

λ(T), W = lim
n→∞

W (n).

Then
L = λW.

The proof of this theorem is not too hard.

Little’s Law should, of course, be called Little’s Theorem, but I guess the pull of alliteration
was too tempting. It was proved by John Little in 1961, when he was an assistant professor of
Operations Research over at our neighbor, Case Western University.5 He had been teaching a
course on queuing theory for four years. In his fourth year, he showed that L = λW holds for
M/M/1 queues, and also for a few other queues, and remarked in class that it seemed to hold in a
lot of situations. After that class, a bunch of students were talking with him, and one asked, “Do
you think it would be hard to prove L = λW in general?” Little said, “Hmm, I guess it shouldn’t
be too hard.” He proved it that summer while on a beach vacation. He also almost immediately
quit working on operations research. He is now much more famous for his research on marketing,
and currently works at the business school of MIT.6 Here’s a little picture:

5Actually, it was called Case Institute of Technology then, and CMU was called Carnegie Institute of Technology.
6Massachusetts Institute of Technology.

9

15-359: Probability and Computing
Fall 2009

Lecture 22: Intro to Gaussian random variables

In this lecture we will learn about ‘Gaussian’, or ‘normal’ random variables. They are usually
considered the most important class of random variables in all of probability and statistics, due
to the “Central Limit Theorem”, which roughly says that summing up many independent random
variables of any type gives you a Gaussian distribution in the limit.

1 The limit of Binomials

In previous lectures we saw how the Uniform random variable could be seen as the “continuous
limit” of RandInt(N), appropriately scaled, and how the Exponential random variable could be
seen as the “continuous limit” of Geometric(1/N), appropriately scaled. We will begin this lecture
by investigating the continuous limit of the Binomial random variable.

1.1 Binomials

So let’s talk about our old friend, X ∼ Binomial(N, 1/2), the number of heads in N fair coin flips.
Does it have some kind of limit as N →∞? Remember, the PMF of X is

pX(u) =

(
N
u

)
2N

, u = 0, 1, . . . , N.

Here are two plots of pX(u) I made with Maple, one with N = 100 and one with N = 1000.

N = 100

1

N = 1000

This does look like it’s “converging”, and to the well known “bell curve” at that. On the other
hand, you can see that I chose the axes in this plot very carefully: I kept the u axis range pretty
near the mean N/2, and I cut the pX axis so that the curve would go to the top.

It looks like what we’ll want to do is this:

First: Translate the random variable so that the mean is always 0. The way to do this is just to
subtract the mean; i.e., define

Y = X −N/2.

Second: Scale the random variable so that the variance is 1. (Equivalently, the standard deviation
is 1.) The way to do this is to just divide by the standard deviation. Recall that Var[X] =
N(1/2)(1/2) = N/4. Since Y is X minus a constant, we also have Var[Y] = N/4, and hence
stddev[Y] =

√
N/2. So we define

Z =
X −N/2√

N/2
. (1)

Remember, we usually think of a Binomial as

X = X1 +X2 + · · ·+XN ,

where the Xi’s are independent Bernoulli(1/2) random variables. Hence we can also think

Y = Y1 + · · ·+ YN , Yi =

{
−1/2 w.p. 1/2,
+1/2 w.p. 1/2,

Z = Z1 + · · ·+ ZN , Zi =

{
−1/
√
N w.p. 1/2,

+1/
√
N w.p. 1/2.

2

In particular, note that the Zi’s are independent, have mean 0, and have variance 1/N . Hence the
random variable Z has mean 0 and variance 1.

So as N →∞, it seems like Z might be a good candidate for the “continuous limit” of the Bino-
mial distribution. The associated real-valued random variable would have mean 0 and variance 1.
The range of the discrete version is{

−N√
N
,
−N + 2√

N
,
−N + 4√

N
, · · · , +N√

N

}
=
{
−
√
N,−

√
N +

2√
N
,−
√
N +

4√
N
, · · · ,

√
N

}
. (2)

Since
√
N → ∞ as N → ∞, it seems like the continuous r.v. Z will have range (−∞,∞). But to

really understand it, we’ll need to work out what Z’s PDF (or CDF) should be. . .

1.2 The limit of Binomials

Let’s write ϕ (the Greek version of f) for the PDF of our hypothesized-to-exist continuous version
of the random variable Z. Given t ∈ R, we want

ϕ(t)dt ≈ Pr[t ≤ Z < t+ dt].

Since the discrete random variable Z has range with jumps of size 2/
√
N (see (2)), let’s try taking

“dt = 2/
√
N”. So we want

ϕ(t)(2/
√
N) ≈ Pr[t ≤ Z < t+ 2/

√
N].

Recall the definition of Z from (1). We get

ϕ(t)(2/
√
N) ≈ Pr

[
t ≤ X −N/2√

N/2
< t+

2√
N

]
= Pr

[
t(
√
N/2) ≤ X −N/2 < t(

√
N/2) + 1

]
= Pr[N/2 + t(

√
N/2) ≤ X < N/2 + t(

√
N/2) + 1]

= Pr
[
X = dN/2 + t(

√
N/2)e

]
,

where the last step used the fact that X takes on integer values. Let’s assume that N/2 + t(
√
N/2)

is in fact some integer u:
u = N/2 + t(

√
N/2). (3)

So
ϕ(t) ≈ (

√
N/2) ·Pr[Binomial(N, 1/2) = u]. (4)

1.3 Stirling’s Formula

So far so good. As an example, we might imagine the case t = 0, which makes u = N/2. (Assume
N is even.) Hence

ϕ(0) ≈ (
√
N/2) ·Pr[Binomial(N, 1/2) = N/2].

On Homework 5 Problem 5, we managed to show that the probability of exactly half heads in
N coin flips was equal to Θ(1/

√
N). (We didn’t manage to nail down the constant factors here

though.) So we get
ϕ(0) ≈ (

√
N/2) ·Θ(1/

√
N) = Θ(1).

3

Hmm. Not very informative, but it does illustrate that we did the scaling correctly : the N ’s canceled
themselves out in the limit.

But if we already had some difficulty for t = 0, won’t things be even harder for general t? We
know

ϕ(t) ≈ (
√
N/2) ·Pr[Binomial(N, 1/2) = u] = (

√
N/2) ·

(
N

u

) /
2N = (

√
N/2) · N !

u!(N − u)!2N
.

We could plug in u = N/2 + t(
√
N/2) here, but it’s really may not be clear how the N ’s will cancel

out as N →∞, leaving a function of just t.

The key is to come up with a good approximation for u!. This is done with Stirling’s Formula.

Theorem 1. De Moivre’s Formula:

u! = Θ(
√
u(u/e)u). I.e., lim

u→∞

u!√
u(u/e)u

= c, a constant.

Stirling’s Formula:1 c =
√

2π.

You will prove De Moivre’s Formula on the homework. So let’s use it (and not the stronger
Stirling’s Formula) for now. Thus

ϕ(t) ∼ (
√
N/2) · N !

u!(N − u)!2N

∼ (
√
N/2) · c

√
N(N/e)N

c
√
u(u/e)u · c

√
N − u((N − u)/e)N−u · 2N

=
1
c
· N

2
√
u(N − u)

· (N/2)N

uu(N − u)N−u
. (5)

Recall from (3) that

u = N/2 + t(
√
N/2) = N

2 (1 + t√
N

), hence N − u = N
2 (1− t√

N
).

Let’s write
ε =

t√
N
, so u = N

2 (1 + ε), N − u = N
2 (1− ε).

Let’s now heroically analyze the two fractions in (5) involving u. First,

N

2
√
u(N − u)

=
N

2
√

N
2 (1 + ε) · N2 (1− ε)

=
1√

1− ε2
.

1It was Abraham de Moivre, a French mathematician, who came up with all this limiting Binomial stuff in 1730–
1733. He didn’t manage to get a closed form for c; the Scottish mathematician James Stirling worked it out (by a
very different method) around the same time. Stirling was an interesting character. By age 25 he had become a
well known mathematician, and got a job offer from the university in Venice. So he traveled out there from the UK
but for an unknown reason the job offer fell through. He kicked around Italy for a bit and soon thereafter became
the chair at the University of Padua. However, it is said that during his 3 years there, he learned certain secrets of
glassmaking and then had to flee back to Scotland after assassination attempts by Italian glaziers who didn’t want
the secrets to get out.

4

But ε = t√
N
→ 0 as N →∞ (for any fixed t). Thus 1√

1−ε2 → 1. Great! The first fraction involving
u drops out in the limit! Next up,

(N/2)N

uu(N − u)N−u
=

(
N
2

)N(
N
2 (1 + ε)

)(N/2)(1+ε) ·
(
N
2 (1− ε)

)(N/2)(1−ε) .

Check it out: the powers of N
2 exactly cancel out here, and the above equals

1
(1 + ε)(N/2)(1+ε) · (1− ε)(N/2)(1−ε) =

(
(1 + ε)1+ε(1− ε)1−ε

)−N/2 = exp(J(ε))−N/2, (6)

where
J(ε) = ln

(
(1 + ε)1+ε(1− ε)1−ε

)
= (1 + ε) ln(1 + ε) + (1− ε) ln(1− ε).

Using the Taylor series ln(1 + x) = x− x2/2 + x3/3− x4/4 + · · · , we get

J(ε) = (1+ε)(ε−ε2/2+ε3/3−O(ε4))+(1−ε)(−ε−ε2/2−ε3/3−O(ε4)) = ε2±O(ε4) =
t2

N
±O(t4

N2),

where we used the fact that ε = t/
√
N . Finally, substituting this into (6) we get

exp(J(ε))−N/2 = exp
(
t2

N
±O(t4

N2)
)−N/2

= exp
(
− t

2

2
±O(t4

2N)
)
→ exp

(
− t

2

2

)
,

as N →∞ (for any fixed t).

Finally, plugging all this into (5), we have concluded that as N →∞,

ϕ(t)→ 1
c e
−t2/2.

And if you remember Stirling’s Formula, c =
√

2π. This all suggests that the continuous limit of
the discrete random variable Z should have PDF

ϕ(t) = 1√
2π
e−t

2/2.

5

A plot of ϕ(t) vs. t.

This is the PDF of the Gaussian distribution, which we will spend some time studying. As
mentioned at the beginning of the lecture, the reason it is important is that it’s not just the
limiting distribution when you add up a bunch of independent Bernoulli(1/2)’s — it’s also the
limiting distribution when you add up a bunch of independent random variables (with finitely
many values), and most continuous distributions! We will see this when we study the “Central
Limit Theorem”.2

2 The Gaussian distribution

2.1 The Gaussian PDF

As usual with continuous random variables, we introduce them by fiat:

Definition 2. If Z is the random variable with PDF

fZ(t) = ϕ(t) = 1√
2π
e−t

2/2,

then we call Z a standard Gaussian (or normal) random variable. We write Z ∼ N(0, 1).

Remark: ‘Gaussian’ = ‘Normal’; the two terms are used interchangeably. The ‘N ’ in N(0, 1)
stands for ‘Normal’, and the 0 and 1 are the mean and variance of Z, respectively.

2By the way, do you recognize this expression a bit already from the Chernoff Bound?. . .

6

Remark: The Gaussian is my favorite kind of continuous random variable! I know it looks painful
because of the crazy formula for ϕ(t), but it’s really not so bad. I hope it’ll become your favorite too!

In any case, in order for this definition to make sense, we need the following theorem:

Theorem 3.
∫ ∞
−∞

1√
2π
e−t

2/2 dt = 1.

This probably doesn’t seem obvious to you. Lord Kelvin reputedly once said “a mathematician
is one to whom that is as obvious as that twice two makes four”.3 Man, what a pompous jerk! It’s
not at all obvious! I think the following figure at least makes Theorem 3 plausible:

The area under the curve looks about the same as the area of the triangle that has base 2 × 2.5
and height .4 — and that area is 1.

Anyway, since we just did some long calculations, we’ll defer the proof of Theorem 3 to the
beginning of the next lecture.

2.2 The Gaussian CDF

You might be asking, why are we deferring the proof of Theorem 3 till later? Why not just integrate
as usual? You know, find the antiderivative of e−t

2/2, subtract the limiting values, etc. Well, as a
matter of fact, it’s known that e−t

2/2 does not have an antiderivative that can be expressed with
elementary functions like exp, ln, sin, cos, polynomials, etc. So you simply can’t evaluate it this
way. Nevertheless, we’ll still be able to deduce Theorem 3 by a somewhat unexpected alternate

3Strictly speaking, he was referring to the fact that
∫∞
−∞ e

−t2 dt =
√
π, but this is obviously the same fact, after

a change of variables ;)

7

method.

The fact that ϕ(t) has no easy-to-write-down antiderivative means that we can’t do much more
than define the Gaussian CDF by saying, “it is what it is”.

Definition 4. If Z ∼ N(0, 1) is a standard Gaussian, its CDF FZ(t) is usually written written
Φ(t). We have

Φ(t) = Pr[Z ≤ t] =
∫ t

−∞
ϕ(u)du,

but there is no other closed form for this quantity.

Rather than being disappointed by this, you should just strive to get used to it. I mean, you got
used to the function sin(t), right? It’s some weird function of t, you know what its plot looks like,
you know its derivative, you know you can compute it by plugging numbers into your calculator or
your computer. Same thing goes for Φ(t).

Super-annoyingly, instead of there being a “Φ” button on your calculator, for some crazy reason
the engineers decided to have an “erf” button. I’m not sure who invented the function erf(t), but
you should think of it as being defined by the following equation/formula,

Φ(t) =
1
2

+
1
2

erf
(

t√
2

)
. (7)

So if you want to compute Φ(t) for some number t, it’s typically fastest to use the above formula
along with your calculator/computer’s “erf” button. E.g., if I want to know Φ(−.3), I’ll go into
Maple or www.wolframalpha.com and type

1/2 + 1/2 * erf(-.3/sqrt(2))

8

and I’ll get back .382. This means that for Z ∼ N(0, 1) we have

Φ(−.3) = Pr[Z ≤ −.3] ≈ .382.

Similarly, if I want to know
Pr[−1 ≤ Z ≤ 2],

that’s
Pr[Z ≤ 2]−Pr[Z ≤ −1] = Φ(2)− Φ(−1),

which one can work out equals .81859 or so, using (7) and Wolfram Alpha.

Believe it or not, even today teachers in probability classes worldwide still hand out sheets of
paper with a table of values for Φ on it, and reading this table is considered an important skill to
learn. But that’s like handing out sheets of paper with log tables, or sin tables on it! You all know
how to use calculators and computers: if you want to know Φ(t), use formula (7)!

One more comment on integration: Although we told you that there is no closed form for
the antiderivative of ϕ(t) = 1√

2π
e−t

2/2, there are closed forms for very closely related expressions.
For example, you can check that∫

t · 1√
2π
e−t

2/2dt = − 1√
2π
e−t

2/2.

(Just differentiate the expression on the right, or use integration by parts on the left.) In fact, I
would say that for a great many integrals of the form

∫
h(t)ϕ(t)dt, you can compute them by a

combination of: a) integration by parts, and b) using Theorem 3 as a black box. In other words,
just because

∫
ϕ(t)dt can’t be done, don’t think you’re off the hook for computing

∫
h(t)ϕ(t)dt

precisely!

2.3 Mean and variance

As usual, whenever we have a new kind of random variable, we like to calculate its mean and
variance. Since we derived Z ∼ N(0, 1) as the limit of some discrete random variable which had
mean 0 and variance 1, it seems clear that Z will have mean 0 and variance 1. This is true.

Theorem 5. If Z ∼ N(0, 1) is a standard Gaussian, then E[Z] = 0 and Var[Z] = 1.

Proof. We can compute the mean without any calculations: just symmetry. Notice that ϕ(−t) is
the same as ϕ(t), because of the presence of the t2 in the formula. Thus Z is a symmetric random
variable; i.e., −Z has the same distribution as Z, the standard Gaussian distribution. It follows
that the mean of Z must be 0 (because, e.g., E[Z] = E[−Z] = −E[Z]). If you wanted to be more
formal, you could compute

E[Z] =
∫ ∞
−∞

t · 1√
2π
e−t

2/2dt,

but again, it’s obvious that this is 0 from the picture:

9

t · 1√
2π
e−t

2/2 vs. t

As for showing the variance is 1, since the mean is 0 it suffices to show that E[Z2] = 1. It’s not
very hard to verify this using integration by parts. We will see another way at the beginning of the
next lecture.

10

15-359: Probability and Computing
Fall 2009

Lecture 23: The Central Limit Theorem

In this lecture we will see the famous Central Limit Theorem. This is often described as the
“crown jewel of Probability Theory”. I mean, it’s right there in the name: the Central Limit
Theorem.1 It will be the last probability theory topic in the course. Future lectures will be about
computer science applications (although, we will also learn about a very unexpected connection
between the Central Limit Theorem and the subject of Computer Science at the end of the lecture).

1 Recap of the standard Gaussian distribution

Remember that the standard normal (or Gaussian) random variable Z ∼ N(0, 1) has the PDF

ϕ(t) =
1√
2π
e−t

2/2.

We derived this as the limit of Binomial(N, 1/2) distributions as N →∞, suitably translated and
scaled so that all the discrete distributions had mean 0 and variance 1. De Moivre’s Formula,

u! = Θ(
√
u · (u/e)u),

told us that ϕ(t) had to be of the form

ϕ(t) =
1
c
e−t

2/2,

where c is the constant hidden in the Θ(1) in De Moivre’s Formula. Stirling’s Formula implied that
c =
√

2π. What we’ll do now is prove that ϕ(t) really is a proper PDF:

Theorem 1. ∫ ∞
−∞

e−t
2/2dt =

√
2π.

Incidentally, one of the “textbook” ways to prove Stirling’s Formula is via the following two
steps: a) prove De Moivre’s Formula (which you will do on the homework); b) prove Theorem 1.
This actually implies that the constant c has to be

√
2π!

1.1 Proving Theorem 1

As you remember, there is no closed form for
∫
e−t

2/2dt, so the proof of Theorem 1 has to be a
little bit sneaky. Here is the idea:

1Yep, that’s why George Pólya named it that in 1920, a name that stuck.

1

Idea: To understand a single Gaussian random variable, it’s often useful to study two independent
Gaussians.

To prove Theorem 1, we’ll actually prove the equivalent statement(∫ ∞
−∞

e−x
2/2 dx

)2

= 2π.

First,(∫ ∞
−∞

e−x
2/2 dx

)2

=
(∫ ∞
−∞

e−x
2/2 dx

)(∫ ∞
−∞

e−y
2/2 dy

)
=
∫∫
R2

e−x
2/2e−y

2/2 dx dy =
∫∫
R2

e−(x2+y2)/2 dx dy.

Here is the 3-d plot of the integrand:

The key point is:

The function being integrated is rotationally symmetric. Why? Because its value at (x, y)
is

e−r
2/2, where r =

√
x2 + y2.

I.e., the function’s value at (x, y) only depends on the distance of (x, y) from the origin.

2

Whenever you are doing a 2-d integral with such a function you should always think one thing:
polar coordinates. I.e., you should2 make the change of variables

r =
√
x2 + y2, θ = angle of the vector (x, y) from the x-axis.

As I hope you remember from multivariable calculus, with this change of variables, dx dy = r dr dθ.
Hence ∫ ∞

r=0

∫ 2π

θ=0
e−r

2/2 r dθ dr.

The integrand now doesn’t even depend on θ. Since
∫ 2π
0 dθ = 2π, the above equals

2π
∫ ∞
r=0

re−r
2/2 dr.

But this is an integral we can do! The antiderivative of re−r
2/2 is −e−r2/2, which you can check by

differentiating. Hence the above is

2π(−e−r2/2)
∣∣∣∞
0

= 2π(−0− (−1)) = 2π,

completing the proof.

1.2 The relationship to Exponentials

What we just exploited is the fact that if you have two independent Gaussians, X and Y , then
their joint PDF is

fXY (x, y) = ϕ(x)ϕ(y) =
1

2π
e−(x2+y2)/2.

Let’s solve the following problem:

Problem: What is Pr[X2 + Y 2 > t]?

Solution: To solve this, we integrate the joint PDF over the event in question, A = {(x, y) :
x2 + y2 > t} = {(x, y) :

√
x2 + y2 >

√
t} — i.e., everything outside the circle of radius

√
t centered

at the origin.

Pr[X2 + Y 2 > t] =
∫∫

√
x2+y2>

√
t

1
2π
e−(x2+y2)/2 dx dy.

Changing to polar coordinates again, this equals∫∫
r>
√
t

1
2π
e−r

2/2r dθ dr =
∫∫
r>
√
t

re−r
2/2 dr = (−e−r2/2)

∣∣∣∞√
t

= 0 + e−
√
t
2
/2 = e−t/2.

So we have shown that if Z = X2 + Y 2, then Pr[Z > t] = e−t/2.

Question: What does this mean about the continuous random variable Z?
2Exercise: if you don’t like polar coordinates, show that this integral can be computed with the substitution u = x,

v = y/x.

3

Answer: Its distribution is Exponential(1/2)!

We have just shown:

Theorem 2. If X and Y are independent standard Gaussians, and Z = X2 + Y 2, then Z ∼
Exponential(1/2).

We can use this to give a slick proof that a Gaussian has variance 1:

E[X2] =
1
2
(
E[X2] + E[X2]

)
=

1
2
(
E[X2] + E[Y 2]

)
=

1
2
(
E[X2 + Y 2]

)
=

1
2
E[Z] =

1
2
· 2 = 1.

2 The general Gaussian distribution

So far we have only talked about the “standard” normal distribution, denoted N(0, 1). Now we’ll
define the general normal distribution.

Remember that in deriving the Gaussian distribution, we started with X ∼ Binomial(n, 1/2).
We first translated it to get the mean-0 variable Y , and then we scaled it to get the mean-0
distribution Z:

Z =
X − n/2√

n/2
⇔ X = n/2 + (

√
n/2)Z.

This suggests that if we take
Z ∼ N(0, 1),

then
X = n/2 + (

√
n/2)Z

should be a good approximation to the Binomial(n, 1/2) distribution, when n is large. More
generally, this suggests studying random variables of the form

W = a+ bZ,

where a, b ∈ R. Of course,

E[W] = a+ bE[Z] = a, Var[W] = Var[bZ] = b2Var[Z] = b2.

Because of this, it’s a bit more natural to write µ instead of a and σ2 instead of b2. We will also
call random variables like W “Gaussian”. Just as we have a one-parameter family of distributions
Exponential(λ), we have a two-parameter family of Gaussian distributions.

Definition 3. Let W be a random variable of the form a + bZ, where Z ∼ N(0, 1) is a standard
Gaussian, a, b ∈ R, and b 6= 0. Then we call W a Gaussian random variable with mean a and
variance b2. We also write W ∼ N(a, b2). It is more usual to write µ = a and σ2 = b2, so N(µ, σ2)
denotes a Gaussian with mean µ and variance σ2.

Let’s figure out the PDF and CDF of W = µ+ σZ.

Theorem 4. The PDF of W ∼ N(µ, σ2) is

fW (t) =
1√
2πσ

exp
(
−(t− µ)2

2σ2

)
,

and the CDF of W is

FW (t) = Φ
(
t− µ
σ

)
.

4

Proof. As usual, we start with the CDF:

FW (t) = Pr[W ≤ t] = Pr[µ+ σZ ≤ t]

= Pr
[
Z ≤ t− µ

σ

]
(we used σ > 0 here)

= Φ
(
t− µ
σ

)
=

∫ (t−µ)/σ

−∞
ϕ(u)du.

Having gotten the CDF, we can continue by making a change of variables:

v = µ+ σu ⇔ u = (v − µ)/σ.

Then u ranging from −∞ to (t− µ)/σ is the same as v ranging from −∞ to t, and we also have

du =
1
σ
dv.

Hence: ∫ (t−µ)/σ

−∞
ϕ(u)du =

∫ t

−∞

1
σ
ϕ

(
v − µ
σ

)
dv.

Thus by the Fundamental Theorem of Calculus, we have

fZ(t) =
d

dt
FW (t) =

1
σ
ϕ

(
v − µ
σ

)
=

1√
2πσ

exp

(
−
(
t− µ
σ

)2 /
2

)
,

as claimed.

To be perfectly honest, I do not always knock myself out remembering these formulas. When
working with a random variable W ∼ N(µ, σ2), I almost always immediately “standardize it”,
which means write it as µ+ σZ, where Z ∼ N(0, 1). For example:

Question: Suppose W ∼ N(µ, σ2). What is the probability that W ≤ 3?

Answer: Writing W = µ+ σZ, where Z ∼ N(0, 1), we have

W ≤ 3 ⇔ µ+ σZ ≤ 3 ⇔ σZ ≤ 3− µ ⇔ ≤ Z ≤ 3− µ
σ

.

Hence
Pr[W ≤ 3] = Φ((3− µ)/σ),

which one can work out with a calculator and the “erf” formula for any given µ and σ.

3 The sum of independent Gaussians is Gaussian

We originally derived the Gaussian as the limit of translated/scaled Binomial(n, 1/2) random vari-
ables, with n large. Now suppose X and Y are independent Binomial(n, 1/2) (and hence are
approximately N(n/2, n/4)). Of course, X + Y has distribution Binomial(2n, 1/2): it’s just the
number of heads when you flip n fair coins, then flip n more fair coins. This suggests that the sum
of two independent Gaussians should also be Gaussian. This is true! Let’s do the simplest case:

5

Theorem 5. Let X and Y be independent standard Gaussians. Then Z = X + Y has distribution
N(0, 2).

Proof. We will take advantage of the rotational symmetry of two independent Gaussians. Think of
(X,Y) as a random point/vector in R2. Then

Z = (X,Y) • (1, 1),

where • denotes the usual dot product.

Notice that the vector (1, 1) is at an angle of 45° from the x-axis. Let’s write Rot45 for the operation
of rotating a vector by 45° clockwise. For example, Rot45(1, 1) = (

√
2, 0).

Now you know that if you rotate two vectors ~a and ~b by the same amount, it doesn’t change
the dot product. (This is because the dot product depends only on the lengths of the vectors and
the angle between them: ~a •~b = ‖~a‖‖~b‖ cos](~a,~b).) Therefore,

Z = Rot45(X,Y) • (
√

2, 0).

Let us write (X ′, Y ′) for Rot45(X,Y); here X ′ and Y ′ are new continuous random variables.

Now what is the distribution of (X ′, Y ′)? The key is to remember a fact from the beginning of
this lecture:

The distribution of two independent standard Gaussians is rotationally symmetric.
Remember, this is because the joint PDF, 1

2πe
−(x2+y2)/2, only depends on the length (squared) of

(x, y), not on its angle. Therefore

(X ′, Y ′) = Rot45(X,Y) is also distributed as two independent standard Gaussians!

Thus
Z = (X ′, Y ′) • (

√
2, 0) =

√
2X ′ ∼

√
2N(0, 1) = N(0, 2),

as claimed.

On the homework, you will generalize this as follows:

6

Theorem 6. Suppose Z1, Z2, . . . , Zm are independent, and Zi ∼ N(µi, σ2
i). If W = Z1 +Z2 + · · ·+

Zm, then
W ∼ N(µ1 + · · ·+ µm, σ

2
1 + · · ·+ σ2

m).

By the way, the fact that the random variable W has mean µ1 + · · ·+µm follows from linearity
of expectation, and the fact that it has variance σ2

1 + · · ·+ σ2
m follows from the fact that variance

is additive for independent random variables. The point of the theorem is that W is a Gaussian
with these parameters.

4 The Central Limit Theorem

4.1 Statement of the CLT

We came to Gaussians by noting that as n → ∞, the sum of independent Bernoulli(1/2) random
variables (i.e., a Binomial) has a distribution which tends to a Gaussian. We also just saw that if
you add up a bunch of independent Gaussian random variables, you again get a Gaussian. Could
it be that the sum of a bunch of any independent random variables converges to a Gaussian?

Yes! This is the content of the Central Limit Theorem (CLT). This theorem was first quasi-
proved by Laplace in 1812. (You will give roughly the same quasi-proof on the homework!) It was
first proved properly by our old friend Poisson, in 1824–1829.

Setting: Let X be a random variable. Let X1, X2, X3, . . . be independent “copies” of X (rv’s
with the same distribution).

Assumption: We need to assume that the random variables have finite mean and variance:
µ := E[X] <∞, σ2 := Var[X] <∞.

We are interested in the sums, when you add up n copies of the random variable:

Sn = X1 +X2 + · · ·+Xn.

In order to investigate convergence, we should “standardize” Sn; i.e., translate/scale it so it has
mean 0 and variance 1. We have E[Sn] = nµ and Var[Sn] = nσ2, hence stddev[Sn] =

√
nσ. We

therefore define
Zn =

Sn − nµ√
nσ

,

so that E[Zn] = 0, Var[Zn] = 1. The CLT says that Zn tends to a standard Gaussian random
variable, in the following sense:

Theorem 7. (Central Limit Theorem.) Let FZn be the CDF of Zn. Then

lim
n→∞

FZn(t) = Φ(t) for every t ∈ R.

I.e.,
lim
n→∞

Pr[Zn ≤ t] = Φ(t) = Pr[N(0, 1) ≤ t] for every t ∈ R.

4.2 Example

Here is a typical use of the CLT:

7

Problem: Twitter processes 1 million tweets per day.3 Let’s assume for simplicity that the tweets
are independent, and each consists of a uniformly random number of characters between 10 and
140. What is the (approximate) probability that Twitter processes between 74.9 million and 75.1
million characters on a given day?

Solution: Let X be a random variable which is uniform on {10, 11, 12, . . . , 140}. Clearly µ =
E[X] = 75. With a little calculation (which we’ll skip), you can show that σ2 = Var[X] = 1430.
Hence σ =

√
1430 ≈ 37.82. Let us write Xi for the number of characters in the ith tweet, i = 1 . . . n,

where n = 106. Let
Sn = X1 +X2 + · · ·+Xn

be the total number of characters processed on a given day. We want to know

p = Pr[74.9× 106 ≤ Sn ≤ 75.1× 106].

We now standardize, defining

Zn =
Sn − nµ√

nσ
, ⇔ Sn = nµ+

√
nσZn = 75× 106 + 103 × 37.82× Zn.

Thus

p = Pr[74.9× 106 ≤ 75× 106 + 103× 37.8×Zn ≤ 75.1× 106] = Pr[− .1
37.8 × 103 ≤ Zn ≤ .1

37.8 × 103].

We have .1
37.8 × 103 = 2.64. Hence

p = Pr[−2.64 ≤ Zn ≤ 2.64] = Pr[Zn ≤ 2.64]−Pr[Zn < −2.64].

Since n is so large, by the Central Limit Theorem we may reasonably approximate

Pr[Zn ≤ 2.64] ≈ Φ(2.64), Pr[Zn < −2.64] ≈ Φ(−2.64).

Finally, we compute Φ(2.64) = 1
2 + 1

2 erf(2.64/
√

2) ≈ .996, using a calculator or computer math
program, and also Φ(−2.64) ≈ .004. Hence

p ≈ .996− .004 = .992.

Thus there is roughly a 99.2% chance that the number of characters will be between 74.9 million
and 75.1 million.

5 Generalizations and improvements

5.1 Error bounds for The rate of convergence

One nagging question that comes up with the CLT is: “Yes, we get convergence in the limit, but
how fast is the convergence? How does the error depend on n?” We sort of skipped over this issue
in the previous problem when we said “we can approximate Zn by N(0, 1)”. How good is this
approximation? This is a very computer sciencey question, by the way — we really care about
asymptotic dependence on n, not just “limiting” statements. Many basic probability textbooks
will not tell you the answer, but we will see it!

This is the content of the “Berry–Esseen Theorem”.4

3Actually, it’s more like 2 million, as of November, 2009.
4Proved independently by Andrew Berry and Carl-Gustav Esseen in 1941–42.

8

Theorem 8. (Berry–Esseen) In the setting of the CLT, let’s assume (without loss of generality by
translation/scaling) that E[X] = 0 and Var[X] = 1. Thus Zn is simply Sn/

√
n. Define

β3 = E[|X|3].

Then for all t ∈ R, ∣∣∣FZn(t)− Φ(t)
∣∣∣ =

∣∣∣Pr
[
Sn√
n
≤ t
]
− Φ(t)

∣∣∣ ≤ O(β3/
√
n).

So basically, the error is O(1/
√
n). For example, suppose X is the “Rademacher random vari-

able”, ±1 with probability 1/2 each. This indeed has E[X] = 0, Var[X] = 1. It has β3 = E[|X|3] =
1, because |X|3 is always 1. Thus the Berry-Esseen theorem says that (

∑n
i=1Xn)/

√
n is very close

to being N(0, 1): the two CDFs differ by at most O(1/
√
n) at every point t.

If you really care about the constant, you can use Shevtsova’s Theorem:5

Theorem 9. (Shevtsova’s Theorem) The right-hand side of the Berry–Esseen inequality can be
replaced by .7056β/

√
n.

5.2 Not all the same distribution

Another question is: Suppose X1, X2, X3, . . . are independent, but they don’t necessarily all have
the same distribution. Is it still true that the standardized sum Zn tends to a Gaussian random
variable?

Well, the answer is that it depends. Sometimes the answer is No. For example, if X1 is a
Rademacher (±1 with probability 1/2 each) and Xi ≡ 0 for every i > 1, then of course each sum
Sn just equals X1, and so Zn = Sn = X1 does not converge to a Gaussian — it’s always just a
Rademacher!

The problem here is that one random variable (namely, X1) “dominates” the sum. If you make
some assumptions that prevent one random variable from dominating, then the CLT continues to
hold. For example:

Lyapunov’s Assumption: WOLOG, assume E[Xi] = 0 for each i. Let σ2
i = Var[Xi], and define

βi = E[|Xi|3]. Assume ∑n
i=1 βi

(
∑n

i=1 σ
2
i)3/2

→ 0 as n→∞.

Theorem 10. (Lyapunov’s CLT.6) Assuming Lyapunov’s Assumption, the CLT’s conclusion still
holds.

5.3 Further improvements

The following is a true story. Once upon a time — more precisely, fall of 1933 — there was an
undergraduate student at the University of Cambridge. He was a junior at the time. He went
to a lecture by a famous astrophysicist, Sir Arthur Eddington, who talked about how in natural

5Proven in 2006 by Irina Shevtsova.
6Proved by Aleksandr Lyapunov in 1901. Actually, he proved something a bit stronger.

9

scientific experiments, the measurement errors tended to a Gaussian distribution. Eddington only
made some vague mentions of the Central Limit Theorem. To be honest, mathematicians in the
UK were just not interested in probability, and hardly knew anything about it. (The Russians were
the real leaders in probability back then.) The student was a smart guy, though, and realized this
“probability” stuff was really important. So he took it upon himself to investigate what was going
on with this CLT.

As I said, though, hardly anyone in the UK knew much about probability, his math professors
included. So the student got a couple of textbooks — some in English, some in German — and
did self-study. At the time, the CLT itself at least appeared in textbooks. (I’m not sure whether
or not Lyapunov’s theorem appeared.)

By very early spring of 1934, the junior had proved some great results, all by himself! He
proved a version of the CLT which was even stronger than Lyapunov’s — basically, he showed that
a relaxed version of the Lyapunov Assumption was still sufficient for CLT to hold. He also made
some progress on showing that his relaxed assumption was necessary.

But what to do with this cool research? His professors didn’t really know anything about this
newfangled probability area. What would you do?

Well, he did what was pretty much the only thing he could do. He wrote a letter to the author
of his favorite textbook! This was a Czech mathematician by the name of Emanuel Czuber. He got
Czuber’s address, in Vienna, out of the textbook. I’m not sure we know what it said, exactly —
probably something like “Sehr geehrter Herr Professor Czuber: I proved this cool generalization of
the CLT — what do you think?” The only reason we know about it is because we have a copy of
a letter the student wrote to his mother, in April 1934. After all the “Dear Mom,” stuff, he wrote,

I am sending some research I did last year to Czuber in Vienna, not having found anyone
in Cambridge who is interested in it. I am afraid however that he may be dead, as he
was writing books in 1891.

!!!! I love the fact that he was like, “uh, yeah, he might be dead.” There were no homepages to
check back then! And the kicker is, Czuber was dead — he’d been dead for 9 years!

Eventually the student corresponded with some people that knew probability, and unfortu-
nately, he was eventually informed that actually, his results were mostly already known. :(The
bulk of them had been proved by a Finnish mathematician called Jarl Lindeberg, in 1922. (Yes,
news traveled slowly back then. Also, Lindeberg himself had died in ’32.) There were some pieces
that the student had done that were new, though.

Anyway, once his professors had found out that this student had independently proved some
super-important probability results that had originally taken more than 10 years to solve, they were
extremely impressed. They basically said, “This is worth a Ph.D. Write it up as a dissertation.”
So the student did, finishing it up and submitting it in the first semester of his senior year. He
actually never got around to publishing the work in a journal, since he figured it was mostly not
a new result. But by the end of his senior year, his dissertation was accepted, and the student
skipped straight to being a post-doc.

10

But before this dissertation turned out to be accepted, the student still had his final semester
as a senior to finish. His first research project obviously had some ups and downs, but he wasn’t
discouraged. In this final undergrad semester, while waiting to hear about his thesis, he went to
another talk at Cambridge, this time by a topologist who described the two Gödel Incompleteness
Theorems that had just been proved three years ago. The topologist ended by saying, “There’s
still one major open problem in the area: decidability. Is there some kind of decision procedure
that will always let you tell if a given mathematical theorem is provable or not?”.

“Hmm,” said the undergraduate, “this decidability stuff sounds interesting. I guess the first
step is to formalize what an “algorithm” is, and then maybe think if this Gödel guy’s Diagonal
Argument can be useful for proving things decidable or undecidable.”

Yep. The undergrad was Alan Turing. He had it solved by the end of his senior year.

11

15-359: Probability and Computing
Fall 2009

Lecture 24: Intro to Computational Learning Theory

1 What is learning?

There are plenty of tasks out there which it seems like computers ought to be able to do — and
yet, it’s not obvious how to program them to do so. Here are just a few of many examples:

� Face recognition: given a photo of a face, whose face is it? Or even simpler: given a photo,
does it contain a face?

� Handwriting recognition. Or even simpler: recognition just for the 10 digits.

� Autonomous driving.

� Detecting spam email.

� Recommending movies to a person based on past preferences.

� Translating text between English and Spanish.

Question: Why “ought” computers be able to do these things?

Answer: Almost all human brains can do them pretty easily. (Except for the last one, but anyone
raised bilingually in English and Spanish does it after 5 or 6 years.)

Human brains contain about 1011 neurons. Each one is connected to about 103 to 104 others.
So if you think of the brain as a circuit, there are maybe a few hundred trillion wires. That’s not so
many! Various companies have databases with over a petabyte of storage. Traffic on the Internet
is a few hundred TB/second. So why shouldn’t we have computers that solve all of these tasks. . . ?

The trouble is it’s not obvious how to program a computer “from scratch” to do any of these
tasks. We somehow know that there are reasonably-sized programs that can do these tasks, we just
don’t know what they are. Somehow human brains “learn” how to do these tasks, or are “trained”
to do them. Computational Learning Theory is the research area devoted to designing computer
algorithms that learn rules or tasks from examples.

1

1.1 Questions, questions

There are several immediate questions that arise when discussing a particular learning task.

� How many “examples” does a learner need before it has a good chance of learning the correct
rules?

� Where do these examples come from?

� How should the learner go from the examples to a learned rule or “hypothesis”?

� How can the learner know if its hypothesis is a good one?

To answer these questions scientifically and algorithmically, we need a well-defined mathematical
model.

2 A formal model for learning tasks

We will describe a basic model for computational learning. (Many many other variations and
models are possible.) As a running example we will use the following learning task:

Running example: Important-Emails. A company providing a web-based email application
decides to have a new method of displaying unread emails to the user. It will have a special pane at
the top devoted to what it thinks are the “important” unread emails (from the user’s perspective).
It therefore needs a way of automatically classifying (for each user) incoming emails as “important”
or not.

2.1 Definitions

In general, a learning (AKA “supervised learning” AKA “classification”) task has the following
components:

Instances: These are the basic “objects” in the learning problem. In our running example, these
are incoming email messages. For face recognition or handwriting recognition, the instances are
images. For English-Spanish translation, the instances are (say) sentences. For autonomous driving,
the instances would probably be “states of the car+road system”.

Features: (AKA attributes.) Instances are abstracted/broken down into a vector of “features”.
When the instances are images, the features might be the colors of each pixel. When the instances
are movies (in the movie recommendation task), the features might be the tuple “(genre, director,
rating, length, year, inColor?, etc.)”. For English text instances, such as the emails in our running
example, it is quite common for the features to be the presence or absence of each possible word.
This means that we fix a dictionary of all n possible English words, and then we convert

text ⇒ binary vector in {0, 1}n,

where the ith bit is 1 if and only if the text contains the ith word in the dictionary. This is called the
bag of words abstraction, since it loses the information about which word was where.1 In general,
abstracting instances down to a good vector of features (“feature extraction”) is an important art.

1Try searching for a literal interpretation of the “bag of words” on the 8th floor of the Gates Center.

2

Instance space: This means the set of all possible feature vectors. When all the features are
binary-valued (which you can insist on without loss of generality, if you really want), the instance
space is {0, 1}n. In the remainder of this lecture we will assume this is the case. So when we speak
of an instance, this corresponds to a binary string in {0, 1}n.

Label: The “label” of an instance is the “correct answer”. In this lecture we will consider the
basic case where the labels are Yes or No, i.e., 1 or 0. This is the case for, e.g., face detection, or our
problem of determining if an email is important. For English-Spanish translation, the instances
might be pairs of sentences, and the label is 0 or 1 depending on whether they are “correct”
translations of one another. For handwritten digit recognition, the labels would not be 0 or 1,
but would instead be {0, 1, . . . , 9}. In the case of binary labels, it’s also common to generalize
to the case of probabilities. E.g., in a medical diagnosis scenario, instead of labeling a patient as
coronary-risk or not-coronary-risk, one might label them with a probability-of-coronary.

Target function: For most learning scenarios, one assumes that there exists a mapping from
instances to true labels. This mapping is called the target function. Since we are focusing in this
lecture on binary features and labels, our target functions are of the form

f : {0, 1}n → {0, 1}.

For example, for face detection on black and white images, the target function f maps a given
image (thought of as a binary vector of pixel values) into a Yes (1) or No (0) answer. The target
function is unknown to the learner — indeed, it’s what the learner is trying to learn.

We also tend to assume the target function is relatively simple. For example, the user him/herself
has the ability so say whether an incoming email is important or not relatively quickly; they are
using some relatively simple rule in their brain to map each email into a label. We do not usually
worry about trying to learn, e.g., a totally random function f : {0, 1}n → {0, 1}.

The assumption that a target function exists might not be a good one, especially if the features
don’t perfectly capture the real instances. For example, in the Important-Emails problem, if we
abstract out emails as binary vectors with the bag of words approach, maybe some bags of words
could correspond both to an important email and to a non-important one, depending on the actual
word structure. We will talk about this issue again later when we discuss noise.

Labeled example: This is a pair 〈x, y〉, where x is an instance and y is a label; in this lecture,
x ∈ {0, 1}n, y ∈ {0, 1}. In our running example, the pair is of the form 〈email, isImportant?〉.

Training data: This is a “batch” of “correctly” labeled examples, 〈x1, f(x1)〉, . . . , 〈xm, f(ym)〉.
This is the data that a learning algorithm is trying to learn from. Here we are assuming the
example instances are correctly labeled by the (unknown-to-the-learner) target function. Again,
we will discuss this assumption shortly.

2.2 Enter probability

Before we even get to the algorithmic learning task, we need to discuss an important basic question:
where does the training data come from? This can be divided into two questions: Where do the
training instances xi ∈ {0, 1}n come from? And where do the “correct” labels yi = f(xi) come from?

Let’s start with the first question. The short answer is “Nature”: there is usually a “natural”
distribution on instances. This is where probability enters the picture:

3

Modeling assumption: There is a probability distribution D on instances from {0, 1}n. The
distribution D is unknown to the learner, but the learner can obtain independent draws from it.
This is also the distribution that the learner will be tested on.

You can think of this as saying there is some randomized code D() which outputs instances
x ∈ {0, 1}n. You can think of its return value as a {0, 1}n-valued random variable X. We assume
that the learner is allowed to make independent calls to D() to get its training instances; i.e., it
gets the values of independent copies X1, . . . , Xm of the random variable X.

This model is quite reasonable in many real-world cases.2 For example, in the Important-Email
scenario there is the natural distribution of emails that a particular user receives. The email client
can observe a succession of emails from this distribution. For a face recognition learning task, one
might imagine a learner simply picking a sequence of random images independently from Flickr.
The assumption that the distribution is unknown to the learner also makes sense: it does not seem
reasonable to assume that a learning algorithm will know, e.g., the probability that a user will
receive an email forming a particular bag of words.

2.3 Labeled examples?

Next, let’s return to the question of where the learner gets the labels yi = f(xi) for its training data.
Getting correct labels for training data is usually a difficult and expensive “real-world” problem. In
many cases, a human will go through the training instances and label them by hand. (E.g., “yep,
this image contains a face; nope, this image does not contain a face”.) This obviously doesn’t scale
very well, although things like Prof. von Ahn’s ESP Game (now Google Image Labeler), which
gets hundreds of thousands of images labeled by humans through an online game, can help. In our
scenario of labeling emails as important or not, there are several things the company could try.
First, it could try annoying the user somewhat by asking him or her to explicitly label a week’s
worth of emails as important or not. Second, it could try to guess the answer ex post facto for a
bunch of training emails by observing things like: i) whether the user clicked on the email first;
ii) whether the user sent a response; iii) whether the user deleted the message; iv) whether the user
spent a long time reading the message, etc.

Conclusion: We allow the learner to obtaining training data 〈x1, f(x1)〉, . . . , 〈xm, f(xm)〉, with
the xi’s being drawn independently from an unknown-to-the-learner probability distribution D.
However, because getting good training labels is usually expensive, we strive to design algorithms
that use as few training examples as possible.

2.4 Noise

In reality, it is unlikely that in the training data we will perfectly have yi = f(xi) for every i;
even careful humans will sometimes make mistakes in doing hand-labeling. Furthermore, as we
discussed earlier, sometimes it doesn’t even make sense to assume that there is a target function
f mapping each instance to a unique label. Perhaps some small fraction of instances don’t really
have a “correct answer”. A more general and more realistic framework for learning is the following:

Noisy data: We continue to assume that there is a relatively simple target function f : {0, 1}n →
{0, 1}. However, we assume that some small fraction η of the training data is noisy ; i.e., has

2The ability to get independent samples could be questioned.

4

yi 6= f(xi).

For this lecture, we will stick to the simple case where there is no noise: η = 0 and we assume
the training data is of the form 〈x1, f(x1)〉, . . . , 〈xm, f(xm)〉 for some target function f .

3 The learning task

The basic task of the learning algorithm:

Task: Given the training data, output a low-error hypothesis.

Definition 1. A hypothesis is a map h from the instance space to the label set. In our case, it is
a function h : {0, 1}n → {0, 1}.

This should make sense: e.g., the learner is trying to come up with a rule which classifies each
new email as Important or Not.

Note: Notice that we didn’t say that it is the learner’s task to identify f . It only has to come up
with a “good” or “low-error” hypothesis.

The notion of “error” is slightly subtle; please pay attention to the following definition:

Definition 2. In a learning scenario, the true error of hypothesis h is

Err(h) = Pr
X←D

[h(X) = f(X)].

The empirical error of hypothesis h is

Êrr(h) = fraction of training examples 〈xi, yi〉 for which h(xi) = yi.

The goal is an algorithm which produces a hypothesis with true error as close to 0 as possible.3

An obvious strategy is to find a hypothesis with low empirical error, and hope that it also has low
true error.

Question: What is the simplest and best way to find a hypothesis with low empirical error?

Answer: Output the following hypothesis:

h(x) =

{
yi if x = xi for some training instance xi,
0 else.

This hypothesis is just a simple lookup table based on the training data, and obviously has empir-
ical error 0.

You might be skeptical, though, as to whether this “trivial” solution will actually have low true
error. It doesn’t really seem like it’s doing “learning”. We are led to several questions.

3When we have noisy training data, the goal is to find a hypothesis with true error as close to η as possible.

5

Questions:

1. Given a hypothesis, can an algorithm check if it has low true error?

2. Under what circumstances can we expect a hypothesis with low empirical error to also have
low true error?

3. Given training data, are there algorithms with fast running times for finding hypotheses with
low empirical error?

We will investigate these questions in turn.

4 Hypothesis validation

Suppose a learning algorithm looks at training data and (somehow) comes up with a hypothesis h
that looks pretty good. Is there anyway to decide if it’s actually good?

Theorem 3. Suppose after m training examples we produce hypothesis h : {0, 1}n → {0, 1}. Then
with v = d 3

ε2
ln(2/δ)e additional labeled examples, we can estimate the true error Err(h) to within

±ε, with confidence 1− δ.

I.e., with not too many more labeled examples, we can (with high probability) estimate how
good our proposed hypothesis is. This process of vetting a candidate hypothesis is called validation.

We described validation according to the following process: 1. Get training data and learn.
2. Get more labeled examples, and validate. But usually one thinks of it as follows: 1. Get training
data. 2. Pick some fraction of it (randomly, perhaps) and hold that aside as validation data. 3.
Train on the remaining data, obtaining hypothesis h. 4. Validate h using the saved validation data.

Proof. The proof of theorem uses the idea of sampling (AKA polling), from way back in Lecture 10.
Given the hypothesis h, suppose the algorithm draws fresh labeled examples 〈X1, f(X1)〉, . . . ,
〈Xv, f(Xv)〉, where the Xi’s are independently drawn from D. For each i, the algorithm also
computes h(Xi) and see whether it equals f(Xi). Let

Ei = indicator random variable that h(Xi) = f(Xi).

Then the algorithm will estimate the true error of h as

E :=
1
v

v∑
i=1

Ei.

The key observation is that the distribution of the random variable Ei is

Ei ∼ Bernoulli(Err(h)).

Also, the Ei’s are independent, since the Xi’s are. Hence it’s just like sampling/polling, and we
can apply the Sampling Theorem to get the claimed result. (It’s like we’re polling the instances x
to see whether they think h(x) 6= f(x).)

This is a classic use of the Chernoff Bound in Learning Theory.

6

5 Occam’s Razor

Okay, so if we have a hypothesis, it’s not too expensive to check whether or not it’s got low true
error. But what is the relationship between true error and empirical error? When do we expect a
hypothesis with low empirical error to also have low true error? Let’s focus on the case of hypotheses
with zero empirical error:

Definition 4. A consistent hypothesis is one which is correct on all training examples; i.e., it has
empirical error Êrr(h) = 0.

As we saw, it’s easy to output a consistent hypothesis: just output a lookup table based on
the training data. But it really seems doubtful that this hypothesis will do well on future data
(“generalize”, is the terminology). On the other hand, suppose I have a large set of training data,

m

〈1011001010111101 , 1〉
〈0101101011101011 , 0〉
〈1101101011101011 , 1〉
〈0101101011101011 , 0〉
〈1110001100100011 , 1〉
· · ·
〈0011101010000101 , 1〉,

and I (somehow) notice that
h(x) = x1 ∨ x3

is a consistent hypothesis. That seems kind of convincing! If m is 10,000, and every single training
example is correctly labeled by the hypothesis h, it seems like it would almost be too much of a
coincidence for this to be very wrong.

This leads to the following definitions:

Definition 5. Occam, refers to William of Ockham, a 14th century Franciscan friar and logician
from Surrey, UK.

Definition 6. Occam’s Razor is a quotation of his, “entia non sunt multiplicanda praeter neces-
sitatem”.

Of course, what Occam meant by this was the following:4

Theorem 7. (Also called Occam’s Razor.) Suppose A is a learning algorithm which takes m
training examples and is guaranteed to output a simple hypothesis; say, one that it describes using
s bits. Assume

m ≥ 1
ε

((ln 2)s+ ln(1/δ) + 1) .

Then
Pr[A outputs a consistent output yet Err(h) > ε] < δ.

I.e., if an algorithm finds a consistent, simple hypothesis with zero empirical error on a large
enough set of training data, then with high probability its true error is small.

4Okay, okay, it actually means “entities must not be multiplied beyond necessity”; i.e., “the simplest explanation
is likely to be correct”. The “razor” part refers to shaving away unnecessary assumptions.

7

Example: Suppose that our algorithm always outputs a monotone disjunction. This is just a
fancy way of saying it outputs an OR of some subset of the n variables, like x1 ∨ x3 from the
previous example. Then we may take s = n, because it is possible to specify an arbitrary monotone
disjunction with n bits (one bit for each variable, to say whether or not it is included in the
disjunction). Say we want ε = 1% and δ = 5%. Then Occam’s Razor’s requirement is

m ≥ 1
.01

((ln 2)n+ ln(1/.05) + 1) ≈ 69n+ 400.

Conclusion: If you have n-bit instances, and 69n + 300 training examples, and you manage to
find a monotone disjunction hypothesis consistent with all of the training data, then 95% of the
time that hypothesis has true error at most 1%.

Proof. (of Occam’s Razor.) Before we even think about running algorithm A, let’s recall that by
assumption, its output hypothesis will be describable by at most s bits. Therefore, there are at
most

20 + 21 + 22 + · · ·+ 2s ≤ 2s+1 different hypotheses

that A might ever output. Let’s write these potential hypotheses as

h1, h2, . . . , h2s+1 .

Let’s call a hypothesis bad if its true error exceeds ε. Now, some of the potential hypotheses hi are
bad and some are good. To prove the theorem, we will show

Pr
training data

[exists a consistent hypothesis hi which is actually bad] < δ.

Suppose that the bad hypotheses among h1, . . . , h2s+1 are b1, . . . , bt, where t ≤ 2s+1. (Notice
that “badness” does not depend on the training data.) Consider a fixed bad hypothesis, bj . We
have

Pr[bj consistent with the first training example] < 1− ε,

by the definition of bj being a bad hypothesis. Hence

Pr[bj consistent with all m training examples]
< (1− ε)m

≤ exp(−ε)m (since 1− ε ≤ exp(−ε) always, cf. the Most Useful Approx Ever)
≤ exp(−(ln 2)s− ln(1/δ)− 1) (by assumption on m)
= 2−s · δ · e−1

< 2−(s+1) · δ.

We can now apply a Union Bound over all bad hypotheses:

Pr[any bad hypothesis is consistent with all training data] ≤ 2s+1 · 2−(s+1) · δ = δ,

since there were are at most 2s+1 bad hypotheses.

More generally, with the Chernoff + Union Bound Method, you can show that if A is an
algorithm which always outputs a hypothesis describable by s bits, and m ≥ O(s/ε2) ln(2/δ), then
the empirical error A’s hypothesis will be within ε of the true error, except with probability at
most δ. I.e., roughly speaking, for simple hypotheses, the empirical error is close to the true error.

8

6 Algorithmic learning theory

Great — so all we have to do is find a good-looking simple hypothesis, and we will have done a
great job of learning.

Of course, this assumes there is a good-looking simple hypothesis to find. This might not be
the case in general. But remember, we typically assume that the target function itself is simple. If
we additionally make the assumption that there is no noise, then that means there will always be
a simple hypothesis with zero empirical error (and true error).

In this case, are we done? Not necessarily. Because algorithmically speaking, it might be com-
putationally hard to find a consistent hypothesis.

Let’s consider a simple example. Suppose I promise you the target function is a monotone
disjunction. Your goal is to design a learning algorithm which finds a monotone disjunction consis-
tent with some given training data. (You know there will always exist at least one such monotone
disjunction.) If you can do this, then you will have a good learning algorithm, by Occam’s Razor.
This leads to the following algorithmic task:

Algorithmic Task: Given as input is m pairs 〈xi, yi〉, with xi ∈ {0, 1}n and yi ∈ {0, 1}. You are
promised that there exists some function f , an OR of coordinates, such that yi = f(xi) for all i.
The task is to find an OR of coordinates h with this property.

I’ll let this be a little puzzle for you:

Exercise: Show this task can be solved in O(mn) time.

As Occam’s Razor tells us we only need to take m to be about Θ(n/ε), we conclude that
monotone disjunctions are learnable in roughly O(n2/ε) time, which is polynomial in both n and
1/ε.

6.1 Noise

Suppose there is a bit of noise in this problem, though. Then what is the algorithmic task like?

Algorithmic Task: Given as input is m pairs 〈xi, yi〉, with xi ∈ {0, 1}n and yi ∈ {0, 1}. You are
promised that there exists some function f , an OR of coordinates, such that yi = f(xi) for at least
99% of the i’s. The task is to find an OR of coordinates h with empirical error as close to 1% as
possible.

Although it doesn’t look much different, it turns out This algorithms problem is way, way
harder! (You should think about it!) In fact, in 2006, it was shown that to find a hypothesis h
with empirical error less than even 49% is NP-hard!

Professor Guruswami has several research papers along these lines, showing that easy-seeming
learning-with-noise tasks are actually NP-hard.

9

15-359: Probability and Computing
Fall 2009

Lecture 25: Elements of Information Theory

Information Theory is a major branch of applied mathematics, studied by electrical engineers,
computer scientists, and mathematicians among others. Almost everyone agrees that it was founded
by one person alone, and indeed by one research paper alone: Claude Elwood Shannon and his
work “A Mathematical Theory of Communication”, published in 1948 in the Bell System Technical
Journal.

(Shannon was a Michigan-born, MIT-trained mathematician who was working at Bell Labs at
the time. Shannon also basically invented the idea of using Boolean logic to analyze and create
real-world circuits. He also came up with Problem 2 on the practice midterm when trying to build
real circuits using unreliable switches.) The field of information theory has led to innumerable
practical benefits, from data compression, to hard drive and CD-ROM technology, to deep space
communication.

Information theory is fundamentally concerned with two distinct topics:

Compression: This refers to the idea of removing redundancy from a source of information, so
as to (losslessly) store it using as few bits as possible.

Coding: This refers to the idea of adding redundancy to a source of information, so that the
original message can be recovered if some of the stored bits are corrupted.

In this lecture we will talk only about compression. We will see that the least number of bits
you need to store a large source of random data is essentially equal to its entropy.

1 Entropy

1.1 A surprise party

Before getting directly into entropy, let’s talk about a related concept: “surprise”. Suppose I have
some experiment (randomized code) which generates a discrete random variable X. Perhaps

X =

a with probability .5,
b with probability .25,
c with probability .125,
d with probability .125.

1

Here a, b, c, and d are some distinct real numbers.

Scenario: I am repeatedly and independently instantiating X (i.e., running the code) and telling
you things about the result. The question is, for each thing I tell you, how surprised are you? Please
note that you know the PMF of X, but the only thing you know about my particular instantiations
of X are what I tell you.

Question: I instantiate X and tell you it was either a, b, c, or d. How surprised are you?

Answer: Not at all surprised. Zero surprise. You know the PMF of X!

Question: I instantiate X and tell you it was b. How surprised are you?

Answer: I dunno, somewhat?

Question: I instantiate X and tell you it was d. How surprised are you?

Answer: Well, more surprised than with b. It seems like the level of surprise should only depend
on the probability of the outcome. So perhaps we could say the amount of surprise was S(.25)
for outcome b and S(.125) for outcome d, where S(.125) is greater than S(.25). (And S(1) for the
first-mentioned event, Ω = {a, b, c, d}.)

Question: Suppose that d had probability .1249999999 rather than .125. How much would that
change your surprise level for an outcome of d.

Answer: Hardly at all. I guess you be very slightly more surprised, but basically you’d imagine
that S(.125) ≈ S(.1249999999).

Question: Suppose I instantiate X once, tell you it was a, then I instantiate X again (indepen-
dently) and tell you it was c. How surprised are you?

Answer: On one hand, you just experienced an overall event with probability .5 · .125, so it seems
your surprise level would be S(.5 · .125). On the other hand, you could look at it this way: When
you first heard about a, you experienced S(.5) surprise. Then, because you know I’m instantiating
X independently, this shouldn’t change the fact that when you hear about the second draw being
c, you experience S(.125) surprise. I.e., we should have S(.5 · .125) = S(.5) + S(.125).

1.2 Surprise, axiomatically

The preceding discussion suggests that whatever this notion of “surprise” is, it should be a function

S : [0, 1]→ [0,∞)

which satisfies the following axioms:

Axiom 1: S(1) = 0. (If an event with probability 1 occurs, it is not surprising at all.)

2

Axiom 2: S(q) > S(p) if q < p. (When more unlikely outcomes occur, it is more surprising.)

Axiom 3: S(p) is a continuous function of p. (If an outcome’s probability changes by a tiny
amount, the corresponding surprise should not change by a big amount.)

Axiom 4: S(pq) = S(p) + S(q). (Surprise is additive for independent outcomes.)

Theorem 1. If S satisfies the four axioms, then

S(p) = C log2(1/p)

for some constant C > 0.

(You can also check that any S(p) = C log2(1/p) satisfies the axioms.)

Let’s just sketch the proof here, because the theorem is virtually identical to Homework 11,
Problem 1 (proving that the only memoryless continuous random variables are Exponentials).
Suppose we write

S(1/2) = C.

This number C has to be positive, because S(1/2) > S(1) = 0 by Axioms 1 and 2. Now by Axiom 4,

S((1/2)2) = 2C, S((1/2)3) = 3C, etc., S((1/2)m) = mC.

Also from Axiom 4,

S(
√

1/2
√

1/2) = S(
√

1/2) + S(
√

1/2) ⇒ S(1/2) = 2S(
√

1/2) ⇔ S(
√

1/2) =
1
2
C,

and similarly,

S(3
√

1/2) =
1
3
C, S(4

√
1/2) =

1
4
C, etc., S(n

√
1/2) =

1
n

C.

Combining these two types of deductions leads to

S((1/2)m/n) = (m/n)C

for all positive integers m, n. Since m/n can be an any positive rational, and thus be made
arbitrarily close to a given positive real, by Axiom 3 we conclude that indeed

S((1/2)x) = xC for all real x > 0.

But we can express
p = (1/2)x ⇔ x = log1/2(p) = log2(1/p),

and hence indeed
S(p) = C log2(1/p).

1.3 Entropy defined

So any measure of “surprise” must in fact be S(p) = C log2(1/p), where C > 0 is just a scaling.
Let’s go ahead and assume we take

C = 1.

This is a nice choice because it means that if X is a 50-50 coin flip, you experience 1 unit of
“surprise” for both heads and tails. Alternatively (and suggestively), you can think of me telling
you that I generated a heads as giving you 1 bit of surprising new information.

3

Question: Suppose X is a discrete random variable and I instantiate it once. What is the expected
surprise the outcome generates for you?

Answer: Well, if p is the PMF of X, then it’s just E[log2(1/p(X))].

This quantity is the called the entropy of X.

Definition 2. Let X be a discrete random variable. The (Shannon) entropy of X, denoted H(X),
equals the nonnegative number ∑

x∈range(X)

pX(x) log2(1/pX(x)).

The associated unit of measurement is bits.1

Convention: In entropy calculations, we always define 0 log2(1/0) = 0. That way it is even okay
to sum over x’s not in the range of X (for which pX(x) = 0).2

Example: For our original a, b, c, d random variable X, we have

H(X) = .5 log2(1/.5) + .25 log2(1/.25) + .125 log2(1/.125) + .125 log2(1/.125)

=
1
2
· 1 +

1
4
· 2 +

1
8
· 3 +

1
8
· 3 =

14
8

= 1.75 bits.

1.4 Jensen’s Inequality

Another way to think about the entropy (“average surprise”): It measures the uncertainty in the
value of X. Here are two basic facts that suggest this:

Fact 3. H(X) = 0 if and only if X is a constant random variable.

Fact 4. Suppose X is a random variable with range {a1, a2, . . . , an}; i.e., it can take on n different
values. Then the maximum possible value of H(X) is log2 n.

Notice that the maximum entropy log2 n occurs when we have the uniform distribution: i.e.,
pX(ai) = 1/n for all i.

The first fact you should prove for yourself; it’s extremely easy. To prove the second fact we
need to use a form of Jensen’s Inequality. Jensen’s Inequality says that if f is a concave down
function, then for any discrete random variable Y ,

f(E[Y]) ≥ E[f(Y)].

In words, when you take the weighted average of some numbers and then apply f , it’s greater than or
equal to what you would get if you took the same weighted average of f -applied-to-those-numbers.
Here is the “proof by picture” for when you’re averaging two numbers:

1Amusingly, if you make the definition with ln instead of log2, you call the unit of measurement nats. 1 nat =
about 1.44 bits.

2This convention never leads to trouble, because indeed q log2(1/q)→ 0 as q → 0.

4

In particular, since log2(x) is a concave down function, we get:

Theorem 5. For any discrete random variable Y , log2 E[Y] ≥ E[log2 Y].

We can now prove Fact 4. We’ll write p for the PMF of X. Then

H(X) = E[log2(1/p(X))]
≤ log2 E[1/p(X)] (by applying Jensen with the r.v. 1/p(X))

= log2

n∑
i=1

p(ai) · (1/p(ai))

= log2

n∑
i=1

1 = log2 n.

2 (Lossless) data compression

Yet another way to think about entropy is in terms of information content. There is a sense in
which, given one instantiation of the random variable X, you can on average extract H(X) random
bits from it. Let’s try to understand this through the lens of data compression. More specifically,
we’ll see the reverse perspective: that in order to store the results of many independent draws of
X, you need to use H(X) bits per draw, on average.

2.1 On compression

Let’s talk about data compression (you know, like in .zip, .tar, or .mp3 files). We will only consider
the case of lossless compression, meaning we want to always be able to perfectly recover the source
data from the compressed version. This problem is also called source coding.

Imagine our source data is a sequence of symbols — say, English letters. With the ASCII en-
coding, English letters are stored using 7 bits each. For example, ‘A’ is 1000001 and ‘Q’ is 1010001.
On the other hand, with Morse Code, each letter is stored using a sequence of dots and dashes

5

(except for the ‘space’ character, which is stored with a space). For example, ‘A’ is • — whereas
‘Q’ is — — • —. The idea behind data compression is like that of Morse Code: encode the more
common things with short sequences and the less common things with long sequences. Then for
a “typical” (probable) sequence of symbols, you will use less storage than if you just used a fixed
number of bits per symbol.

We are going to investigate the most efficient way to make such a compression scheme. To do
this, we need a probabilistic model.

Assumption: The sequence of symbols we are trying to compress is generated by making inde-
pendent draws from a random variable.

Note that this is not a good assumption for English text. In English text, the letters do have
some probabilistic frequency, but the succession of letters is not independent. Things get better
though if you consider pairs or triples of letters to be a single symbol — we’ll get back to that.
On the other hand, sometimes this is a good model. Perhaps you are looking at a specific spot
in the genetic code of a protein, and recording the amino acid that is there across thousands of
samples. There are 20 different amino acids, represented by a letter, and for a given spot there is
some frequency of seeing each. How many bits will you need to record a typical long such sequence?
(The goal is to beat the trivial dlog2 20e = 5 bits per amino acid.3)

2.2 Prefix-free codes

One elegant way to encode data for compression is with a prefix-free code:

Definition 6. Given a set Σ of symbols, a binary prefix-free code (AKA instantaneous code) is
a way of mapping each symbol to a “codeword” sequence of bits so that no codeword is a prefix of
any other codeword.

For example, if there are 4 symbols A, B, C, D, then mapping them as

A ↔ 11
B ↔ 101
C ↔ 100
D ↔ 00

is a valid prefix-free code. On the other hand, if we changed C to 110, that would not be a valid
prefix-free code, because then A’s codeword 11 would be a prefix of C’s codeword 110.

The beauty of a prefix-free code is that you don’t need any additional markers for the boundary
between codewords. Because of the prefix-free property, you can just concatenate all the encodings
together. For example, to compress the sequence

BADDAD

with the above prefix-code, you would produce

1011100001100.

3Actually, in real life, each amino acid is stored with 3 nucleotides, AKA 6 bits.

6

Prefix-codes are also called instantaneous codes because with a left-to-right scan, you can decode
each symbol ‘instantaneously’. I.e., you will know as soon as you have scanned a whole encoded
symbol; there is no need for lookahead.

Again, you don’t have to compress data using a prefix-free code, but it’s one elegant way to do it.

2.3 Prefix-free codes as binary trees

Another way to look at prefix-free codes is as binary trees. Each leaf corresponds to a symbol, and
the associated codeword is given by the path from the root to that leaf. I trust you will get the
idea from the following picture, corresponding to the 4-symbol code we were discussing:

The fact that the code is prefix-free corresponds to the fact that the codewords are at the leaves,
and no leaf is a descendant of any other leaf.

2.4 Kraft’s inequality

Kraft’s Inequality is a very nice property of prefix-free codes.

Theorem 7. (Kraft’s Inequality.) Suppose we have a prefix-free code for n symbols, and the ith
symbol is encoded by a string of length `i. Then

n∑
i=1

2−`i ≤ 1. (1)

Conversely, if you have any positive integers `i satisfying (1), there is a prefix-free code which has
them as its codeword lengths.

Although there is no probability in this statement, my favorite proof of the first part uses proba-
bility ! Suppose we have a prefix-free code with given codeword lengths. Think of the corresponding
binary tree. Suppose we make a random walk down the tree, starting from the root. At each step,
we flip a fair coin to decide if we should walk left (0) or right (1). We keep walking randomly until
we hit a leaf or until we “fall off the tree” (e.g., if we flipped 0 then 1 in the above tree). In the
end, you either hit a leaf or fall off, so clearly

Pr[hit a leaf] ≤ 1.

7

On the other hand,

Pr[hit a leaf] =
n∑

i=1

Pr[hit the leaf for symbol i],

because these are mutually exclusive events. But if the codeword for symbol i has length `i (i.e.,
the leaf is at depth `i), then the probability the random walk reaches it is just 2−`i . (E.g., the
probability of reaching leaf 101 is just 1/8, the probability of flipping 1 then 0 then 1.)

This proves the first statement, that prefix-free codes satisfy (1). To prove the second statement,
suppose we are given positive integers `1, . . . , `n satisfying (1). Here is how you can construct a
prefix-free code with these as the code lengths:

� Reorder the symbols so that `1 ≤ `2 ≤ · · · ≤ `n. Let L = `n.

� Start with the complete binary tree of depth L.

� Pick any node at depth `1 and make it into a leaf by deleting all its descendants. Label the
leaf with symbol 1.

� Pick any unlabeled node at depth `2 and make it into a leaf by deleting all its descendants.
Label the leaf with symbol 2.

� Pick any unlabeled node at depth `3 and make it into a leaf by deleting all its descendants.
Label the leaf with symbol 3.

etc.

We need to show that inequality (1) implies this algorithm never gets stuck; i.e., there is always
an unlabeled node of the appropriate depth to pick. To prove this, let us call all the depth-L nodes
“buds”. Initially, there are 2L buds. We begin by picking a depth-`1 node and making it a leaf.
This node has distance L− `1 from the buds, so it has 2L−`1 bud descendants. Thus when we make
it a leaf, we kill off a

2L−`1

2L
= 2−`1

fraction of the initial buds. Similarly, when we next turn a depth-`2 node into a leaf, we kill off a
2−`2 fraction of the initial buds. Etc.

Now as long as there is at least one bud left, we are able to continue the process. This is because
the buds are at depth L, so if we need to choose an unlabeled node at depth `i (which is at most L),
we can choose an ancestor of any bud left in the tree (or the bud itself if `i = L). Finally, the
inequality (1) means that we will never kill off a 1-fraction of all the initial buds (except possibly
after we have made the last step, placing symbol n).

2.5 The Shannon-Fano code

Now we’ll see the Shannon-Fano code, which gives a decent prefix-free code for compressing a long
sequence of independent instantiations of a random variable X. (The code appeared in Shannon’s

8

famous 1948 paper, but he attributed it to Robert Fano.) Say that

X =

symbol 1 with probability p1,
symbol 2 with probability p2,
· · ·
symbol n with probability pn.

Let
`i = dlog2(1/pi)e

(the ceiling of the “surprise” S(pi) of pi).

Claim 8. These positive integers satisfy the Kraft Inequality (1).

Proof.

n∑
i=1

2−`i =
n∑

i=1

2−dlog2(1/pi)e

≤
n∑

i=1

2− log2(1/pi)

=
n∑

i=1

pi = 1.

Therefore there exists a prefix-free code having the `i’s as its codeword lengths. This is the
Shannon-Fano code.

The Shannon-Fano code is pretty decent:

Question: What can you say about the expected number of bits used to encode one (random)
symbol?

Answer: By definition, it’s

n∑
i=1

pi`i =
n∑

i=1

pi dlog2(1/pi)e ≤
n∑

i=1

pi (log2(1/pi) + 1) =
n∑

i=1

pi log2(1/pi) +
n∑

i=1

pi = H(X) + 1.

That was an upper bound. For a lower bound, we have

n∑
i=1

pi`i =
n∑

i=1

pi dlog2(1/pi)e ≥
n∑

i=1

pi log2(1/pi) = H(X).

If all the probabilities pi are of the form 1/2c for c ∈ N, then the Shannon-Fano code uses exactly
H(X) bits per symbol, on average. In the worst case, if the round-off is very bad, it may use up
to H(X) + 1 bits per symbol. This extra +1 may be either reasonable or quite bad, depending
on H(X). It’s sometimes quoted that the entropy of a single letter of English text is somewhere
in the range of 1 to 1.5 bits. So in this case, an extra +1 is a lot. On the other hand, for more
complicated random variables, the entropy H(X) will be very high, so the +1 may be negligible.

9

2.6 A lower bound for any prefix-free compression scheme

Was it just a coincidence that the entropy of X showed up for the Shannon-Fano code? And
could we do a lot better than Shannon-Fano? The answer to both questions is no. In fact, the
Shannon-Fano code is close to optimal:

Theorem 9. Suppose we have any prefix-free code for X. Then the expected length of a codeword
is at least the entropy H(X).

Proof. In this proof, using considerable foresight we will look at the entropy minus the expected
length of a codeword:

H(X)−
(

expected length of a codeword
)

=
n∑

i=1

pi log2(1/pi)−
n∑

i=1

pi`i

=
n∑

i=1

pi(log2(1/pi)− `i)

=
n∑

i=1

pi(log2(1/pi)− log2(2`i))

=
n∑

i=1

pi log2

(
1

pi2`i

)
= E

[
log2

(
1

pX2`X

)]
.

Here we are thinking of X as a random variable that takes value i with probability pi. We now
apply Theorem 5, the corollary of Jensen’s Inequality, to conclude:

E
[
log2

(
1

pX2`X

)]
≤ log2 E

[
1

pX2`X

]
= log2

(
n∑

i=1

pi ·
1

pi2`i

)

= log2

(
n∑

i=1

2−`i

)
≤ log2 (1) ,

where we used Kraft’s Inequality on the codeword lengths of a prefix-free code. But log2(1) = 0.
Hence we have shown

H(X)−
(

expected length of a codeword
)
≤ 0,

i.e., the expected codeword length must be at least the entropy H(X).

10

2.7 Conclusion

In conclusion, we have shown that any prefix-free way of encoding a random variable X requires
at least H(X) bits on average. Furthermore, the Shannon-Fano code comes close to achieving this,
using between H(X) and H(X) + 1 bits on average. Is it possible to get rid of this +1? Yes! We
leave it to you to try to show the following:

Theorem 10. Suppose we have a long sequence of independent instantiations of X. First, we
group the results into blocks of size k. Second, we apply the Shannon-Fano code to the k-blocks.

Then the expected number of bits per symbol in each block will be between H(X) and H(X)+1/k.
Hence by making k large, we can approach the compression limit — i.e., the entropy H(X).

11

15-359: Probability and Computing
Fall 2009

Lecture 26: Generating Random Variables

1 On generating random variables

We began the class by introducing probability in terms of randomized computer code. Remember
this stuff from Lecture 2?

flip1 ← Bernoulli(1/2)
flip2 ← Bernoulli(1/3)

The first few lectures were about the probability of events, but as we got more sophisticated,
we came to spend more time talking about random variables. At first, our random variables came
out of explicit experiments; for example, we got a Geometric(p) random variable as follows:

X ← 1
while Bernoulli(p) = 0,

X ← X + 1

But again, as we got more sophisticated, we started defining random variables not via explicit
experiments, but rather just by stating their PMFs — e.g.,

X ∼ Poisson(λ) ⇔ pX(u) =
e−λλu

u!
— or by their PDFs — e.g.,

X ∼ N(0, 1) ⇔ fX(u) =
1√
2π
e−t

2/2.

This raises an important question, which we skirted up until now. How do actually get such
random variables with computer code? This is a very important topic! If you want to do theoretical
experiments in queuing theory, you’ve got to be able to generate Exponential(λ) random variables.
If you want to run Michel and David’s algorithm for Max-Cut (see Homework 12, #4), you have
to be able to generate N(0, 1) random variables. If you want to write a simulator for radioactive
decay (or 19th-century Prussian cavalry units, see Lecture 11), you’ll need to be able to generate
Poisson(λ) random variables.

In this lecture we’ll investigate 3 basic questions:

1

Question 1: Given access to, say, Unif[0, 1] or RandInt(m), how can we generate other types of
random variables?

Question 2: How can we generate these different types of random variables efficiently?

Question 3: How do we even get started? E.g., how can we even get a single random bit?

1.1 The plan

Here is a basic outline for how to generate various kinds of random variables. (Note that we will
not describe all the possibilities; in some cases, there are better generation methods than the ones
we discuss!)

We will describe this diagram in a somewhat random order ;)

2 The starting point: RandInt(232)

In practice, the starting point for (pseudo-)random number generation is some function such as
RandInt(232). Most programming languages (C, java, python, whatever) have some kind of built-
in function that returns a uniformly random (supposedly) 32-bit (or 16-bit or 64-bit or whatever)
number.1 At the end of the lecture, we’ll come back to this point, but let’s just assume we indeed
have such a built-in function.

3 From RandInt(232) to Unif[0, 1]

We talked about this when we introduced continuous random variables: The notion of generating a
uniformly random real between 0 and 1 is an utter mathematical abstraction (albeit, a very useful
one!). This is because in the real world, on a finite computer in a finite universe, you can never
perfectly represent a real number. But for practical purposes, since 232 (or 264) is so big, we just
do

X ← RandInt(232)
1According to our conventions, this would technically be a draw from RandInt(232)− 1.

2

U ← X/232

and figure that this is close enough to U ∼ Unif[0, 1]. Obviously, you can increase the 32 to a larger
number to make it closer.

4 From Unif[0, 1] back to RandInt(m)

Sometimes, your programming language only gives you Unif[0, 1]. As I’m sure you well know, the
way then to implement R ∼ RandInt(m) is:

U ← Unif[0, 1]
R← dU ·me.

5 From Unif[0, 1] to Exponential(λ) — the Inverse Transform Method

Once we have the ability to draw U ∼ Unif[0, 1], what can we do with it? Let’s do some brief
exploration. Suppose we do:

U ← Unif[0, 1]
W ← 10U4.

This gives us a new random variable W , with range [0, 10]. What distribution does it have? As
you’ll recall, it’s better to work out the CDF of W first. For 0 ≤ t ≤ 10, we have

Pr[W ≤ t] = Pr[10U4 ≤ t] = Pr[U4 ≤ t/10] = Pr[U ≤ (t/10)1/4] = (t/10)1/4.

So the CDF of W (on the range [0, 10]) equals (t/10)1/4.

Question: What is the relationship between the transform we made, 10U4, and the resulting
CDF, (t/10)1/4?

Answer: They are inverse functions. You get the CDF by solving t = 10u4 for u.

Question: Okay, so instead of this weird W , suppose we wanted to get Y ∼ Exponential(λ).
Could we use a similar trick?

Answer: Yes! The CDF of an Exponential(λ) is 1− e−λt. We write

u = 1− e−λt ⇒ 1− u = e−λt ⇒ ln(1− u) = −λt ⇒ t = − 1
λ

ln(1− u).

Thus to generate a Y ∼ Exponential(λ) from a Unif[0, 1], we can do

U ← Unif[0, 1]

Y ← − 1
λ

ln(1− U).

3

Just to check that this works. . . Since U ∈ [0, 1], ln(1−U) ∈ [−∞, 0], hence − 1
λ ln(1−U) ∈ [0,∞]

so that Y has the correct range.2 And then (making sure to handle the signs carefully!):

Pr[Y ≤ t] = Pr
[
− 1
λ

ln(1− U) ≤ t
]

= Pr[ln(1− U) ≥ −λt] = Pr[1− U ≥ e−λt]

= Pr[U ≤ 1− e−λt] = 1− e−λt,

as desired.

Even simpler: Notice that if U ∼ Unif[0, 1], then 1 − U also has the distribution Unif[0, 1].
Hence you can simplify the generation of an Exponential(λ) as follows:

U ← Unif[0, 1]

Y ← − 1
λ

lnU.

Summary: For a general continuous random variable W , you can simulate it by drawing u ∼ U
and then outputting F−1

W (u), where F−1
W denotes the inverse function of the W ’s CDF FW .

6 From Unif[0, 1] to generic discrete random variables

Actually, the Inverse Transform method works equally well for generic discrete random variables!
Suppose we have access to U ∼ Unif[0, 1], and we want to simulate a discrete random variable

X =

1 with probability p1,
2 with probability p2,
3 with probability p3,
· · ·
n with probability pn.

(I am just using the values 1, 2, . . . , n here for simplicity; they could of course be general values
a1, . . . , an.)

The simplest way to do it (which you essentially saw on Homework 1 Problem 2) is:

U ← Unif[0, 1]
if U < p1 then X ← 1
else if U < p1 + p2 then X ← 2
else if U < p1 + p2 + p3 then X ← 3
etc.

2Don’t worry, Y =∞ iff U = 0, which has probability 0.

4

This is fact the Inverse Transform method! Think about it. It’s because the CDF of X is

FX(t) =

p1 if t < 1,
p1 + p2 if t < 2
p1 + p2 + p3 if t < 3
etc.

Downside: A drawback of this method is that it takes O(n) time in the worst-case. The reason
the Inverse Transform method was so great for Exponential random variables was that there was
a simple and snappy formula for the inverse of the CDF: − 1

λ ln(1 − u). If you don’t have such a
formula, it can be a real drag to go cycle through up to all n values in the generic discrete case.
(And it’s impossible to do in the continuous case!)

Method of Aliases: One thing that somewhat helps is the so-called Method of Aliases, invented
by Alastair Walker in 1977. Suppose you have some discrete random variable X, takes on n values,
and you plan on sampling from it many times. The Method of Aliases gives a way of constructing
a couple of arrays based on X, with the following properties: 1. It takes O(n) time to construct
the arrays. 2. But, once you have them, you can sample from X in O(1) time using one draw from
Unif[0, 1].

It is not too hard to describe the Method of Aliases, but we will skip it due to lack of time.

7 From Exponentials to N(0, 1)

As we’ve seen, the Inverse Transform always works, but it is not very useful it it is hard to compute
the inverse CDF. In particular, suppose we wanted to generate a Gaussian, N(0, 1). Its CDF is

Φ(t) =
∫ t

−∞

1√
2π
e−u

2/2 du,

which already looks very hard to compute, let alone having to compute the inverse! Is there another
way?

Idea: Use the relationship between Exponentials and Gaussians!

Remember back in Lecture 23 we saw the following:

Theorem 1. Let X and Y be independent N(0, 1) Gaussians. Then:

1. The distribution of (X,Y) ∈ R2 is rotationally symmetric.

2. If Z = X2 +Y 2 is the squared distance of (X,Y) from the origin, then Z ∼ Exponential(1/2).

The trick is to just think of this theorem in reverse!

Corollary 2. Suppose we pick an angle Θ ∈ [0, 2π) uniformly at random, and we also pick Z ∼
Exponential(1/2). Let (X,Y) ∈ R2 be the vector of length

√
Z and angle Θ to the x-axis. Then X

and Y are independent standard Gaussians.

5

Hence we get a method for generating two independent Gaussians. (We only wanted one, but
hey, why not take two?)

Θ← 2π ·Unif[0, 1]
Z ← −2 ln(Unif[0, 1]) // so Z ∼ Exponential(1/2)
X ← Z sin(Θ)
Y ← Z cos(Θ)

Neat, huh? There is a slight variant (called the “polar method”) on this little algorithm which
doesn’t require the use of trigonometric functions. (It still requires computing a logarithm.) This
used to be the most popular way of generating Gaussians, but now there is an even better way
called the Ziggurat Method, invented by George Marsaglia and Wai Wan Tsang in 2000. It is sort
of a generalization of the Method of Aliases; after generating a certain lookup table, you can draw
from N(0, 1) with one draw from Unif[0, 1], a couple of multiplications, an ‘if’, and a table lookup.

8 From Exponentials to Geometrics

Of course, you can generate G ∼ Geometric(q) from Unif[0, 1] in the obvious way:
G← 1
while Unif[0, 1] > q,

G← G+ 1

Question: How long does this take, on average?

Answer: The running time is proportional to the final value of G. Hence the expected running
time is O(E[G]) = O(1/q).

This is pretty bad if p is small! Another option is to try the Inverse Transform method — i.e.,
see if we can find an easy formula for the inverse of the CDF of a Geometric(p). This will work,
but there is a slightly slicker way to do it.

On the left here is a histogram-style plot of the PMF of a Geometric(1/3) random variable. In
general, of course, the PMF values go down by a factor of (1− q): q, then q(1− q), then q(1− q)2,
then q(1− q)3, etc.

6

On the right is a plot of the PDF of Y ∼ Exponential(λ), where λ = − ln(1− 1/3)). In general,
the PDF of Y ∼ Exponential(λ) with

λ = − ln(1− q)

pY (u) = λe−λu = − ln(1− q)eln(1−q)u = −ln(1− q)(1− q)u.

This function has the exact same sort of decay: as you increase u by +1 it goes down by a factor
of (1− q).

Question: Could we be so lucky as to just generate Y ∼ Exponential(λ) and then set G = dY e?!

Answer: Yes! Because if we do this,

Pr[G = k] = Pr[k − 1 < Y ≤ k] = FY (k)− FY (k − 1) = (1− e−λk)− (1− e−λ(k−1))

= eln(1−q)(k−1) − eln(1−q)k = (1− q)k−1 − (1− q)k = q(1− q)k−1 = pG(k),

as needed.
So to generate a Geometric(p), it’s just:

G← dExponential(− ln(1− q))e.

Actually, if you remember how we generate Exponentials from Uniforms, this is just:
G← dln(Unif[0, 1])/ ln(1− q)e.

Exercise: Show that the above line of code is basically doing the Inverse Transform method for a
Geometric, except with 1−Unif[0, 1] in place of Unif[0, 1].

Exercise: Suppose q = 1/2. Give a much easier way for generating a Geometric(1/2), using
RandInt(232) and bit-tricks.

7

9 From Exponentials to Poissons

What about generating N ∼ Poisson(λ)? This was our prototypical random variable for which we
didn’t even have a natural experiment. (Balls and bins with m bins and n = λm balls approximates
it, but does not give it exactly.)

The Inverse Transform method for Poissons is really not suitable. For a modest λ like 25, you
need to computer quantities like

pN (30) =
e−25 · 2530

30!
≈ .0454.

Here you have an insanely huge number, 2530 (which is 140 bits long), roughly canceling out with
two insanely tiny numbers e−25 and 1/30!. Doing these calculations with enough precision is going
to kill you. Is there any easier way?

Idea: Exploit the Poisson Process!

Imagine a Poisson process with rate λ. Here are two things we know about it:

1. Its generated by interarrival times which are Exponential(λ).

2. The number of arrivals between time 0 and time 1 has distribution Poisson(λ).

Thus, we can get a Poisson(λ) as follows:

N ← 0, t← 0
while t < 1,

t← t+ Exponential(λ), N ← N + 1
N ← N − 1.

Actually, you can make this slicker. Remember that we generate Exponential(λ) as − 1
λ ln(U),

where U ∼ Unif[0, 1]. The above code adds up such draws randomly until they are at least 1. But

(− 1
λ ln(U1)) + (− 1

λ ln(U2)) + · · ·+ (− 1
λ ln(Un)) = − 1

λ ln(U1U2 · · ·Un) ≥ 1 ⇔ U1U2 · · ·Un ≤ e−λ.

So we can use the following simpler code instead:

N ← 0, r ← 1
while r > e−λ,

r ← r ·Unif[0, 1], N ← N + 1
N ← N − 1.

The running time: As with the naive method for generating Geometrics, this algorithm takes
time proportional toN . Hence the expected time it takes to generate a Poisson(λ) isO(E[Poisson(λ)]) =
O(λ). This is fine if λ is modest, but not very good if λ is large. There exist algorithms that generate
Poissons much faster, but they are significantly more complicated.

8

10 Binomials?

What about Binomials? Of course, we can generate Binomial(n, p) by doing the natural experiment,
adding up n independent Bernoulli(p)’s. Again, this takes time O(n), which is not so great. Again,
there are algorithms that generate Binomials much faster, from Unif[0, 1]’s, but they are much
more complicated.

11 Bernoullis

As mentioned, most pseudorandom number generators give blocks of, say, 32 random bits. Of
course, it would be good enough if you just had independent accesses to one random bit, Bernoulli(1/2);
you could then draw from it 32 times. Since even getting one random bit is a bit of a physics/philosophy
headscratcher, it’s interesting to dial down to the question of simulating one Bernoulli random vari-
able by another.

11.1 From Bernoulli(1/2) to Bernoulli(1/3)

On Homework 1 Problem 2 you investigated simulating Bernoulli(1/3) using calls to Bernoulli(1/2).
As you showed there, it’s impossible to do this precisely. However as you also showed, you can get
a simulation that runs in time O(n) and fails only with probability 2−n — this is good enough!

11.2 From Bernoulli(p) to Bernoulli(1/2) — the unknown bias case

What if someone handed us a weighted coin with some unknown bias p, and we could flip it
independently as many times as we like. Could we somehow use this to generate a Bernoulli(1/2)?
One idea might be to flip it a whole bunch of times, estimate p, and then try to do some kind
of strategy like the one in Homework 1 Problem 2. There is a simpler way that gives a perfect
simulation of Bernoulli(1/2) which is quite surprising if you haven’t seen it before:

Von Neumann’s Trick: Flip the coin twice. If you get HT, output 0. If you get TH, output 1.
If you get TT or HH, try again.

Obviously, no matter what p is, the probability of HT equals the probability of TH (namely,
p(1−p)). Hence the probability of outputting 1 conditioned on outputting anything is exactly 1/2;
i.e., we get a perfect simulation of Bernoulli(1/2).

Downside: This can be somewhat slow if p is close to 0 or 1. The expected number of flips
needed to get 1 unbiased bit is

2 E[Geometric(2p(1− p))] =
1

p(1− p)
.

So if you are willing to make n flips, you can get

1
p(1− p)

n

bits out on average. It follows from the last lecture that the best we could hope for would be to
take n flips and extract

H(p)n := (p log2(1/p) + (1− p) log2(1/(1− p)))n

9

bits on average. In fact, in 1972 Peter Elias showed a scheme that indeed achieves this rate as
n→∞!

For a taste of it, you might like to investigate the following improvement on von Neumann’s
scheme: group the flips into blocks of 4, and output bits according to the following rule:

HHHH nothing
HHHT 11
HHTH 01
HTHH 10
THHH 00
HHTT 1
HTHT 11
HTTH 10
THHT 01
THTH 00
TTHH 0
HTTT 10
THTT 00
TTHT 11
TTTH 01
TTTT nothing

11.3 From Bernoulli(p) to Bernoulli(1/2) — the known bias case

The following is also an interesting question: suppose you know the bias p of the coin exactly.
What scheme for generating, say, a Bernoulli(1/2) random variable uses the fewest average flips?
Although Don Knuth and Andy Yao have a pretty good general scheme for this, determining the
optimal scheme still an open research question. Here is a puzzle along these lines:

Puzzle 1: Suppose I give you independent draws from Bernoulli(1/3). You must produce a single
draw from Bernoulli(1/2). Show a scheme for doing this where the expected number of draws from
Bernoulli(1/3) is 21

7 .

Puzzle 2 (Harder): Prove that 21
7 is optimal.

12 Pseudorandom bits

We’ve evaded the question long enough. Finally we have to ask, “How should we get pseudorandom
bits? I.e., how should one implement RandInt(32)?”

You can’t create something from nothing, so pseudorandom generators all assume that you
have access to short short seed sequence of random bits.3 They then take this seed and repeated
perform some kind of deterministic transformation on it, each application yielding another 32 bits
(say). The hope is that these bits “look like” independent uniform draws from RandInt(32). At
this point, it is obligatory to repeat a quotation of John von Neumann’s:

3You can get try getting this from the bits of the system clock, or from a geiger counter, or a lava lamp, or you
can buy them off the Internet.

10

Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.

12.1 Linear congruential generators

An old-school pseudorandom number generation method is called the “linear congruential genera-
tor”. (Most implementation of C’s rand() function use these.) Here you let X0 be the 32-bit seed,
and then the generator defines

Xi = 1664525Xi−1 + 1013904223 mod 232.

Here, 1664525 and 1013904223 are carefully chosen magic numbers. Linear congruential generators
have two upsides:

1. They are very fast to compute.

2. The numbers they generate are indeed roughly uniformly distributed.

Other than that, they’re kind of terrible :) There are gross dependencies between the Xi’s. For
example, if you naively generated a sequence of random bits by taking Xi mod 2, you’d get the
sequence . . . , 0, 1, 0, 1, 0, 1, 0, 1, The values are also pretty bad for simulations. If you think
of (X1, X2), (X3, X4), (X5, X6), (X7, X8) as points in the plane R2, then the sequence of points
will exhibit clear “artifacts”; e.g., the points will coverable by an unusually small number of lines.

12.2 Mersenne Twister

The choice du jour for pseudorandom number generation is called the Mersenne Twister method.
It was introduced by Makoto Matsumoto and Takuji Nishimura in 1997–98. It’s a bit hard to
define, but it’s something like a souped-up version of a linear congruential generator; to get the
next chunk of 32 bits, you do some bit-twiddling on some of the previously generated chunks, with
some more magic numbers involved. The Mersenee Twister has better upsides:

1. It’s still fast to compute.

2. The generated numbers pass a lot more kinds of “statistical tests”.

You can find the code for Mersenne Twister easily on the web. It’s the built-in pseudorandom
number generator for Maple, Matlab, and Python, among others.

12.3 Truly pseudorandom numbers?

We saw that linear congruential generators aren’t so great because they fail some pretty basic
statistical tests. Mersenne Twister is better, but even for it, there are some relatively natural
statistical tests it fails. Is the solution to just keep dreaming up more tests and then trying to come
up with hacky pseudorandom generators that pass them? Or should we try to identify the “most
important” statistcal tests? Neither of these options sounds too satisfying. But how should one go
about it? Which statistical tests should you ensure your random bits pass?

11

12.4 Truly(?) pseudorandom bits

In many computer scientists’ opinion, the ingenious answer to this, the real masterstroke, first
appeared in a 1981 paper by CMU’s own Professor Manuel Blum and his Ph.D. student Silvio
Micali. Their answer: The bits should pass all polynomial-time statistical tests. In other words,
no polynomial-time algorithm should be able to “tell the difference” between the pseudorandom bits
and truly random bits.

Two questions spring to mind:

1. Why is this a good answer?

2. Is this an achievable answer?

As for (1), ask yourself: What is the thing you really want out of pseudorandom bits? It’s
that if you use them in your favorite randomized algorithm A, you’ll get the same kind of behavior
as if you had run A with truly random bits. But any algorithm A you’re running in real life is
(presumably) a polynomial-time algorithm.

As for (2): Blum and Micali originally gave an efficient algorithm for generating such strong
pseudorandom bits, based on a certain cryptographic assumption. Subsequent to that, CMU’s
Professor Lenore Blum, Manuel Blum, and Michael Shub developed an improved version called the
Blum-Blum-Shub (BBS) pseudorandom generator. It has the property that no efficient algorithm
can tell the difference between its output and truly random bits, assuming that factoring integers is
hard. This is an even weaker cryptographic assumption that the assumption used in RSA encryp-
tion. The BBS generator is therefore pretty much the “gold standard” of pseudorandom generators.

There is one downside to the BBS generator, though: It’s a somewhat slow. Well, actually,
it’s quite fast. But it’s not super-fast, like, say, Mersenne Twister. If you need to generate, like,
millions of random bits per second, then BBS is not the pseudorandom generator for you. Thus
BBS is mainly used these days for cryptographic purposes, when you really really really want to
make sure the pseudorandom bits you’re generating are indistinguishable from truly random bits.

12

