Capturing and Analyzing Low-Level Events
from the Code Editor

YoungSeok Yoon

Institute for Software Research
Carnegie Mellon University
Pittsburgh, PA, USA

youngseok@cs.cmu.edu

Abstract

In this paper, we present FLUORITE, a publicly available
event logging plug-in for Eclipse which captures all of the
low-level events when using the Eclipse code editor.
FLUORITE captures not only what types of events occurred
in the code editor, but also more detailed information such
as the inserted and deleted text and the specific parameters
for each command. This enables the detection of many
usage patterns that could otherwise not be recognized, such
as “typo correction” that requires knowing that the entered
text is immediately deleted and replaced. Moreover, the
snapshots of each source code file that has been opened
during the session can be completely reproduced using the
collected information. We also provide analysis and visual-
ization tools which report various statistics about usage
patterns, and we provide the logs in an XML format so
others can write their own analyzers. FLUORITE can be used
for not only evaluating existing tools, but also for discover-
ing issues that motivate new tools.

Categories and Subject Descriptors D.2.6 [Software
Engineering]: Programming Environments — integrated
environments.

General Terms Human Factors

Keywords event logger; code editor; editing strategies

1. Introduction

To evaluate usability of certain programming language
features or tools, it is important to know when and how the
developers actually use them. There exist several different

Copyright is held by the author/owner(s). This paper was published in the
Proceedings of the Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU) at the ACM Onward! and SPLASH Conferences.
October, 2011. Portland, Oregon, USA.

Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA, USA

bam@cs.cmu.edu

methods for gathering usage data, we have not found one
that is suitable for analyzing fine-grained code editing
history without requiring laborious manual inspection. In
order to address this limitation, we built a publicly
available event logging plug-in for Eclipse called FLUO-
RITE'. FLUORITE keeps track of all of the events that occur
in the code editor and saves the log files in XML format.

The granularity of events that FLUORITE logs is very fine
since it logs character typing, moving the text cursor,
changing the selected text, and all other Eclipse commands
executed in the code editor. FLUORITE not only logs the
command IDs but also the parameters to those commands.
For example, the Find command has additional searchText
and replaceText parameters. In the case of text editing
events, the inserted or deleted text is also recorded.

What makes FLUORITE unique is that FLUORITE’s time-
stamped and detailed event logs enable us to analyze the
developers’ complex code editing strategies which are
often composed of sequences of commands. For example,
we saw in our logs that backspace was 12.41% of all the
keystrokes in code editing, and it is often used in sequences
of more than four backspaces in a row (4.35 on average)
generally used to fix typos or rename variables. This type
of analysis cannot be done using the types of usage data
available from the Eclipse Usage Data Collector (UDC) [1]
or other available logging tools (see section 2).

Using the snapshots of the initial source files and the
deleted / inserted text from all the commands, it is possible
to completely reproduce any file snapshot at any given time.
This enables us to know in which situation a command was
executed.

FLUORITE is useful for many different purposes. First, it
can be used in lab studies or field studies for evaluating
existing tools. FLUORITE logs can be used to detect and
measure the time for various usage patterns or events of
interest, without needing the experimenter to manually

! Full of Low-level User Operations Recorded In The Editor

annotate a videotape. FLUORITE can also be useful for
motivating new tools. Ko et al. laboriously hand-analyzed
videotapes of code editing in their study of Eclipse editing
[13], and showed that people spend significant time
scrolling, which motivated interesting new tools. FLUORITE
will provide an easier way to get such data, and thus might
help motivate other ideas for new tools that would help
programmers in the future. In addition, we anticipate in the
future that FLUORITE’s logging and analysis may be used in
real-time to support novel code editing operations that will
depend on the history.

2. Related Work

There are many different sources of developers’ usage data
each with its own strengths and weaknesses. In many cases,
FLUORITE can be used to complement the shortcomings of
those methods. One way is to directly ask the developers
who regularly use the target programming language or tool
through interviews or surveys. Although these methods are
effective and the investigators can get useful insights about
the target feature, the responses from the subjects may not
be reliable. For instance, many operations are performed
quite automatically by the developers, so it is possible that
they could report that they use a feature a lot but could not
remember the specific occasions.

Another way of gathering usage data is performing
contextual inquiries or experiments in lab settings. Often,
the participants are required to think aloud while perform-
ing their tasks, and their screen and voice are recorded for
further analyses. However, the experimenter must then
manually inspect the videotape (as was done in [6, 13, 15,
16]) in order to analyze the results, which can be time-
consuming and error-prone.

Usage data can also be obtained by mining software
repositories and their revision histories. Many researchers
have been used this method to gain insights about code
clones [4, 5, 12] and how the developers refactor [11, 18,
21]. There is plenty of available data in the open source
software repositories and from industry, and the data can be
analyzed automatically. One problem with this method is

that we still cannot know what events happened between
two consecutive revisions. Instead, we can only infer what
types of commands the developers might have used to
change the code from one revision to the next.

Mylyn keeps track of the user interaction history inter-
nally in order to derive the task context [9, 19]. Using the
Mylyn Monitor API [2], investigators can retrieve the user
interaction data for their own analyses. FLUORITE differs
from the Mylyn Monitor in that FLUORITE focuses more on
the details of the user interaction in the code editor,
whereas Mylyn Monitor collects more abstract user
interaction data on the entire IDE. For example, when the
developer selects a class from the package explorer, Mylyn
Monitor logs that there was a selection event from the
package explorer with the name of the selected class,
whereas FLUORITE logs exactly which file was opened, and
the offset and length of the highlighted text (i.e., the name
of the class) in the file.

The Eclipse Usage Data Collector (UDC) is another
useful source of developers’ Eclipse usage data [1]. The
UDC collects usage information from all the Eclipse users
all over the world who consented to upload their usage data
to the UDC. The UDC provides several usage reports
including the commands report. These reports have been
used by many researchers [18, 20]. However, the com-
mands report from UDC can be misleading because it fails
to capture some important commands executed in the code
editor. It ignores many of the most frequent keyboard
commands such as navigating source code with arrow keys
and deleting the previous character with the backspace key
because they are not explicitly bound as shortcuts by
default. In contrast, FLUORITE collects all commands
regardless of the use of their shortcut keys. Also, with UDC,
you cannot find out anything about sequences of commands
or specific parameters of commands, since UDC only
reports the number of occurrences of each command.

Syde and Replay are tools for Eclipse that can record
fine-grained change history of Java-based systems in multi-
developer settings [8]. These tools are intended to help
developers understand the code’s evolution, but they could

timestamp="5598"/>

<Command __id="2" _type="MoveCaretCommand" caretOffset="142" docoffset="142" timestamp="3977"/>
<Command __id="3" _type="EclipseCommand” commandID="eventLogger.styledTextCommand.SELECT_LINE_DOWN"

<DocumentChange __id="4" _type="Delete" docASTNodeCount="22" docActiveCodeLength="125" docExpression-
Count="10" docLength="151" endLine="9" length="39" offset="142" startLine="8" timestamp="7186">

<text> .
<! [CDATA[System.out.printin("Hello world!™);
11>
</text>
</DocumentChange>

<Command __id="5" _type="EclipseCommand” commandID="org.eclipse.ui.edit.delete" timestamp="7202"/>
<Command __id="6" _type="EclipseCommand" commandID="org.eclipse.ui.file.save" timestamp="8099"/>

Figure 1. Example log generated by FLUORITE. The developer (1) moved the cursor by clicking mouse button, (2) selected
one line by SHIFT + DOWN, (3) deleted selected code using the DELETE key, and (4) saved the file. Each event has its own
parameters, and the whole deleted text is listed in DocumentChange event.

Event Type | Name Description
MoveCaret Move cursor using the mouse
SelectText Select (highlight) text
Find Find, & Find & Replace
InsertString | Type new text

Command Run Run/Debug the application
FileOpen Open or activate a new file
Assist Quick fix/Content assist
Eclipse All other Eclipse commands

D Insert Text insertion

gﬁiwgent Delete Text deletion

Replace Deletion & insertion in one step

Annotation | Annotate Manual annotation by the user

Figure 2. Complete list of the different types of events

be used to track the editor usage as well. Syde differs from
FLUORITE in that it records changes at the abstract syntax
tree (AST) level, not the textual level. Also, it only records
the operations which modify the AST, and so, for example,
the SselectText command will not be recorded by Syde.

3. FLUORITE Implementation

FLUORITE is implemented as an Eclipse plug-in because
Eclipse is one of the most widely used integrated develop-
ment environments (IDEs). We based our code off of an
open source Eclipse plug-in called Practically Macro [3],
but it was not sufficient for our purposes because some
important commands and parameters were missing (e.g. the
FileOpen command), and it was not stable enough to record
long sessions. Therefore, we augmented it to record all the
commands and their parameters, increased its stability, and
added the capability of capturing inserted and deleted text.
Once FLUORITE is installed on Eclipse, it begins to
capture all the low-level events occurring in the code editor,
and saves the transcript as an XML file when Eclipse is
closing. An example transcript is shown in Figure 1.

3.1 Types of logged events

There are three different types of events that FLUORITE logs:
commands, document changes, and annotations. The full
list of different types of events is shown in Figure 2.

A command is an event directly invoked by a user’s
action. This includes typing new text, moving the cursor
position or selecting text by keyboard or mouse, along with
all editor commands such as copying, pasting, and undoing.

A document change event is logged whenever the active
file is changed by any executed command. Each document
change event contains the actual deleted or inserted text.
This is needed because we cannot correctly reproduce the
snapshots of the files by capturing only the commands. For
example, when the developer copies a code fragment from
a web browser and pastes it into the code editor, there is no
way to find out what the pasted code was if we have only
the command history. In addition, this simplifies the way
we get the actual change results for each command: we can

= Java - edu.cmu.scs.eventlogger/grc/edu/emurse

File Edit Source Refacto avigate Searc|
il = = H-0-

[% Package Explorer i3 =h-3 =

= Add annotation

Please add annotation about what you are deing

[Backtracking] |Writing new code| | Other | | Cancel |

Figure 3. Annotation toolbar button and the dialog

just read the preceding” document change event for each
command. There can be multiple document change events
triggered by a single command (e.g., find and replace), and
even no document changes if a command does not change
any of the code content.

An annotation is logged when the developer wants to
add an annotation at a given time to provide information to
the investigator about the current activity. FLUORITE adds a
toolbar button to Eclipse for adding annotations as shown
in Figure 3, and a simple dialog box for inserting annota-
tion pops up when the button is clicked. The buttons at the
bottom of the window provide a quick way for users to
identify certain events of interest.

3.2 Parameters

Each event is logged as an XML element, and the parame-
ters for each event are logged as either attributes or sub-
elements. There are a few parameters common to every
event (Figure 4) and there are also event-specific parame-
ters. For example, the MoveCaret command has the
resulting cursor position as an offset from the beginning of
the document, and the Find command has searchText and
replaceText parameters. Also, every document change
event has a few code size metrics (Figure 5), in order to

Parameter Description

id Unique ID (sequentially incremented)

type Corresponds to the "Name" column

timestamp Timestamp relative to the session start time
timestamp2 (optional) Timestamp of the last merged event
repeat (optional) Number of events merged together

Figure 4. List of common parameters

Metric

Code Length

Active Code Length
AST Node Count
Expression Node Count

Description

Code length in # of characters
[Code length] - [Comment length]
of all the AST nodes

of all the expression nodes in AST

Figure 5. Currently logged code size metrics

2 Currently, a document change event precedes the causing command
rather than following it, due to the event handling order of the Eclipse
code editor.

keep track of the code size changes.

3.3 Merging events

In order to prevent the log files from being unnecessarily
large, FLUORITE merges multiple events of the same type in
a row whenever possible. For instance, when the developer
moves the cursor to ten lines by holding down the up arrow
key, the ten events are merged together as one XML
element and the repeat parameter is set to 10. In some
cases, some of the parameters must be merged as well. For
example, when merging multiple InsertString commands
which represent typing new text, the data parameter must
be merged so as not to lose important information. Two
consecutive events are merged only if their time difference
is no greater than the specified threshold (2 sec. by default).

4. Example Analyses & Results

We also built a FLUORITE analyzer which can produce
several types of analysis reports and visualize them. Since
the FLUORITE log files are written in XML format, people
can implement their own analyzers as well.

We used FLUORITE during a lab study of 12 students
performing some small editing tasks for about 2 hours each.
These tasks used the Paint program from [7, 13], and had
users add four new features. Some of the more interesting
patterns and results are summarized next.

4.1 Code editing pattern detection

It is possible to detect various code editing patterns which
are composed of sequences of commands. As an example,
our analyzer can detect fixing typo patterns from the logs.
Some fixing typo patterns can be detected by looking at
three consecutive document change events as follows: 1)
Any Insert event, 2) a Delete event whose deletion range is

| Commands [Visualization | Events | Patterns | KeyStrokes|

D Le...
39
b3
127
269

Additional Information
3 “think” = “nk” + k"
3 k- TK + "ckness”
3 “hank”
3 T ="T" + "thickness”

319 3 “sethi” - " gethi” + " get”

643 3 colorPanelad” - colorPanel,ad”+ " colorPanel ad”
867 3 “colost” - "sr” + "rPanel,add”
3
3
3
3
3
3
3

1061 "Button t1Button, t2Button, 13" - "1Button, t2Button, 13" + "Button[51.”
1202 “changeEvent,” - "eEvent,” + "Event”

1267) i -+ tButtson”

1278 “tButtson” - "son” + "ons”

1311 "= new JButton}” -)"+ 01

1371 fare” - "fore” + fareach()”

1468 “tButtons[i] = tButtons,le” - tButtons, le” + new J&”

Figure 6. Example of detected fixing typo patterns. A
pattern is represented in the form of "originally typed text"
- "deleted text" + "newly typed text". The ID column
indicates the ID of the event where the pattern starts so the
investigator can jump to the events list and see what was
happening around that time.

somewhere inside the previous Insert event, 3) an Insert
event whose starting position is the same as that of the
previous Delete event. Figure 6 shows a few sample fixing-
typo patterns detected by this algorithm. Some of the
detected patterns are not merely typo corrections. For
example, the pattern starting from ID 1061 in Figure 6, we
can see that the developer decided to declare an array
instead of declaring multiple variables.

It is important to note that this kind of fine-grained
editing pattern detection cannot be easily done with the
data that comes from other types of tools. Generalizing this
pattern detection algorithm so that it can detect more
complicated patterns remains as part of our current work.

4.2 Code length graph

Since several code size metrics are logged whenever a
document change event occurs, it is possible to plot the
code size over time either for each file or as a whole.
Currently supported metrics are listed in Figure 5. From the
logs we collected, we have noted that the code length graph
and the active code length graphs differ significantly,
which indicates that developers often comment out or
uncomment code. We can also see some interesting editing
trends in the graphs. In Figure 7, the steadily increasing
part indicates that the developer was typing new code,
small fluctuations mean the developer was doing a small
experiment or fixing minor mistakes, and a big, sudden
change means commenting / uncommenting a block of
code or cutting and pasting.

If there is an interesting place on the graph and we want
to investigate more thoroughly to see what was happening,
we can jump to an events-list view by double clicking the
point on the graph. This brings up the event-list viewer that
shows the full list of events and their parameters. The event
whose timestamp is closest to the selected point on the
graph is highlighted. In the events list view, we can filter
the events and see only the types of events we are interest-
ed in, and also see all the detailed parameters.

4.3 Keystroke distribution report

The keystroke distribution report gathers all the keystroke
data from the logs and draws a pie chart showing the
frequency of various types of keystrokes. In our study,
there were a total of 45,872 keystrokes, and the five most
frequent keystrokes were down arrow (12.64%), backspace
(12.41%), up arrow (9.80%), right arrow (7.82%), and left
arrow (6.00%), respectively. Although this data may be
exaggerated because FLUORITE logs multiple instances of
the same event when the developer holds down a key so it
auto-repeats, it is still interesting to see that developers
navigate a lot within a file using arrow keys. This result is
consistent with Ko ef al.’s observation [13] that developers
spend about 16% of their time navigating dependencies.

Comnmands | Yisualization | Events [Patterns | KeyStrokes|

Y Yalue
= Docurnent Length

Change Count
@ Per File
7 Altogether

@ Active Code Length

7 Expression Mode Count) AST Mode Count

Other Options
&dd two points for Replace event

—— PaintCanvas java
PaintObject java
—— PaintObjectConstructor java
—— PaintObjectConstructorListener jaa

Actions java
—— EraserPaintjava
PencilPaint java
—— PaintWindow java

—— Paint.java
—— LinePaint java

12000

10000 J/_P—Lk\ _+Commented out a large
o ﬁ [T block of code
E -
[}
£ 8000 r“’_n’
£ _r“’h ”\ 4"—‘.
= Used Copy & Paste several times
£ o0 |
= Typed new code
(]
-
5 4000
2
E — 1
=

2000

0

0 2000

Time (sec)

4000

6000

Figure 7. Example active code length graph drawn from one of our logs by the FLUORITE analyzer. We marked some
interesting points using ellipses and the corresponding code editing strategies are described. Y-axis value can be one of the
metrics described in Figure 5. Only line graphs of the files that have been changed during the session are drawn. The graph
can be zoomed with the mouse scroll wheel, and the user can double click on a point to jump to the events-list view.

Another interesting observation is that developers heavi-
ly use the backspace key in the code editor. This seems to
be a lot higher than the percent of backspacing in regular
typing, for example, as in MacKenzie and Soukoreff’s
report that 7.10% of keystrokes were backspaces [17]. This
provides further evidence, as mentioned in [14], that editing
code is different than editing documents.

4.4 Command distribution report

The command distribution report differs from the keys-
trokes in that it focuses on Eclipse commands rather than
just keystrokes. It is pretty close to the commands report of
the Eclipse Usage Data Collector (UDC) [1], but FLUORITE
also includes the commands missing from UDC. Consistent
with the keystroke report, the five most frequent commands
were InsertString (31.48%), down arrow (10.67%),
backspace (10.48%), MoveCaret (using the mouse) (8.63%),
and up arrow (8.27%), respectively. The proportion of
backspaces is very large here as well, but backspace is not
included in the UDC command report at all since back-
space commands are ignored in the UDC logs.

5. Other Issues

During our exploratory study, there was no measurable
performance loss caused by FLUORITE. This could be an
important issue since FLUORITE would be inappropriate for
field studies if it significantly slowed down the IDE.

The average log file size growth rate calculated from our
study is 236.8KB/hour. Assuming that a developer works
for 40 hours a week, that comes out to be 9.25MB/week,
which is not terribly large given that the typical hard disks
have hundreds of gigabytes. If FLUORITE compressed the
log files as the Mylyn Monitor does [2], it could be reduced
to approximately 1MB/week>.

Since the FLUORITE log files contain the actual source
code in them, it should not be used in a situation where the
source code is confidential. FLUORITE does not upload log
files automatically however, so in a field study the
investigator can ask the study participant to send the log
files whenever the code being edited is not confidential.

6. Future Work

Though FLUORITE is started from a macro plug-in, it does
not currently support log replay functionality, due to the
significant changes of the internal architecture. With a
replayer as in [8], FLUORITE could be used as an alternative
for video recording in the case where the subjects’ voice or
the usage data outside the code editor is not needed.
Moreover, as Kim et al. claimed [10], a replayer might
significantly reduce the effort for analyzing coding
behavior.

3 Estimated by concatenating all the log files and compressing it to a zip.

FLUORITE enables us to detect complex code editing
patterns from the log files as described in Section 4.1. It is
also possible to implement customized detection algorithms
for each pattern in which an experimenter is interested, but
it would be even better if there would be an easier way of
detecting such patterns rather than writing code.

One of the limitations of the current version of FLUOR-
ITE, is that it cannot tell how the commands were executed
(e.g., to distinguish whether a command was invoked using
a keyboard key, a menu item, or an icon). We speculate that
FLUORITE might be useful for analyzing usability problems
if it were possible to distinguish the commands executed by
keyboard shortcut from the ones executed by clicking menu
items for example.

Finally, providing FLUORITE for other popular IDEs is a
possible direction of future work. This would enable the
collection of usage data from a larger developer pool and
looking at issues that cross IDEs and languages. Since most
the code editors share common functionalities, it would
probably be possible to standardize the log format.

7. Conclusion

We are developing the FLUORITE logger and analyzer in the
hopes that it will be useful to the community for when
detailed analyses of programmers’ edits are required. In our
use of the current version, we have already uncovered a
number of interesting results, and we plan to continue to
develop and refine the tools, and hope that by providing
FLUORITE as an open-source plug-in, available at
http://www.cs.cmu.edu/~fluorite/, that it will also be
useful for the community.

Acknowledgments

Funding for this research comes in part from the Korea
Foundation for Advanced Studies (KFAS) and in part from
NSF grant CCF-0811610. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
those of KFAS or the National Science Foundation.

References

[1] Eclipse Usage Data Collector (UDC),
http://www.eclipse.org/org/usagedata/.

[2] Mylyn/Integrator Reference,
http://wiki.eclipse.org/Mylyn/Integrator Reference.

[3] Practically Macro Eclipse plug-in,
http://sourceforge.net/projects/practicalmacro/.

[4] Aversano, L., Cerulo, L. and Di Penta, M. 2007. How
Clones are Maintained: An Empirical Study. In Proc. 11th
European Conf. on Soft. Maint. and Reengineering
(CSMR’07). 81-90.

[S] Bettenburg, N., Weyi, S., Ibrahim, W., Adams, B., Ying, Z.
and Hassan, A. E. 2009. An Empirical Study on Inconsistent

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

(21]

Changes to Code Clones at Release Level. In Proc. 16th
Working Conf. on Reverse Eng. (WCRE’09). 85-94.

Coman, I. D. and Sillitti, A. 2008. Automated Identification
of Tasks in Development Sessions. In Proc. 16th IEEE Int’l
Conf. on Program Comprehension (ICPC’08). 212-217.

Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P.
and Hudson, S. E. 2005. Examining task engagement in
sensor-based statistical models of human interruptibility. In
Proc. CHI'2005. 331-340.

Hattori, L., D’Ambros, M., Lanza, M. and Lungu, M. 2011.
Software Evolution Comprehension: Replay to the Rescue.
In Proc. 19th IEEE Int’l Conf. on Program Comprehension
(ICPC’11). 161-170.

Kersten, M. and Murphy, G. C. 2006. Using task context to
improve programmer productivity. In Proc. 14th ACM
SIGSOFT Int’l Symp. on Foundations of Soft. Eng.
(FSE’06). 1-11.

Kim, M., Bergman, L., Lau, T. and Notkin, D. 2004. An
ethnographic study of copy and paste programming practices
in OOPL. In Proc. Int’l Symp. on Empirical Soft. Eng.
(ISESE’04). 83-92.

Kim, M., Cai, D. and Kim, S. 2011. An empirical
investigation into the role of API-level refactorings during
software evolution. In Proc. 33rd Int’l Conf. on Soft. Eng.
(ICSE’11). 151-160.

Kim, M., Sazawal, V., Notkin, D. and Murphy, G. 2005. An
empirical study of code clone genealogies. In Proc. 10th
Euro. Soft. Eng. Conf. & 13th ACM SIGSOFT Int’l Symp. on
Foundations of Soft. Eng. (ESEC/FSE’05). 187-196.

Ko, A. J., Aung, H. and Myers, B. A. 2005. Eliciting design
requirements for maintenance-oriented IDEs: a detailed
study of corrective and perfective maintenance tasks. In
Proc. 27th Int’l Conf. on Soft. Eng. (ICSE’05). 126-135.

Ko, A. J., Aung, H. H. and Myers, B. A. 2005. Design
requirements for more flexible structured editors from a
study of programmers’ text editing. In Proc. Extended
Abstracts of CHI2005. 1557-1560.

Ko, A. J. and Myers, B. A. 2003. Development and
evaluation of a model of programming errors. In Proc. [EEE

Symp. on Human Centric Computing Languages and
Environments (HCC’03). 7-14.

Ko, A. J. and Myers, B. A. 2004. A framework and
methodology for studying the causes of software errors in
programming systems. J. Visual Languages & Computing,
16, 1-2, 41-84.

MacKenzie, I. S. and Soukoreff, R. W. 2002. Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction, 17, 2, 147-198.

Murphy-Hill, E., Parnin, C. and Black, A. P. 2009. How we
refactor, and how we know it. In Proc. 31st Int’l Conf. on
Soft. Eng. (ICSE’09). 287-297.

Murphy, G. C., Kersten, M. and Findlater, L. 2006. How are
Java software developers using the Elipse IDE? /IEEE Sofi.,
23, 4, 76-83.

Parnin, C. and Rugaber, S. 2009. Resumption strategies for
interrupted programming tasks. In Proc. 17th IEEE Int’l
Conf. on Program Comprehension (ICPC’09). 80-89.

Xing, Z. and Stroulia, E. 2006. Refactoring Practice: How it
is and How it Should be Supported - An Eclipse Case Study.
In Proc. 22nd IEEE Int’l Conf. on Soft. Maintenance
(ICSM’06). 458-468.

