
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 86–105, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Improving Documentation for eSOA APIs
through User Studies

Sae Young Jeong1, Yingyu Xie1, Jack Beaton1, Brad A. Myers1, Jeff Stylos1,
Ralf Ehret2, Jan Karstens2, Arkin Efeoglu2, and Daniela K. Busse3

1 School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA 15213

2 SAP, AG
Walldorf, Germany

3 SAP Labs, LLC Palo Alto, CA 94304
tooth2@gmail.com, clare.xie@gmail.com, jackbeaton@cmu.edu,

bam@cs.cmu.edu, jsstylos@cs.cmu.edu,
{ralf.ehret,jan.karstens,arkin.efeoglu,daniela.busse}@sap.com

Abstract. All software today is written using libraries, toolkits, frameworks and
other application programming interfaces (APIs). We performed a user study of
the online documentation a large and complex API for Enterprise Service-
Oriented Architecture (eSOA), which identified many issues and recommenda-
tions for making API documentation easier to use. eSOA is an appropriate
testbed because the target user groups range from high-level business experts
who do not have significant programming expertise (and thus are end-
participant developers), to professional programmers. Our study showed that
the participants’ background influenced how they navigated the documentation.
Lack of familiarity with business terminology was a barrier we observed for
developers without business application experience. Participants with business
software experience had difficulty differentiating similarly named services.
Both groups avoided areas of the documentation that had an inconsistent visual
design. A new design for the documentation that supports flexible navigation
strategies seem to be required to support the wide range of users for eSOA. This
paper summarizes our study and provides recommendations for future docu-
mentation for developers.

Keywords: Usability, API Design, Service-Oriented Architecture, Web Ser-
vices, Documentation, Business Solution Architects.

1 Introduction

“Service-Oriented Architecture” (SOA) is a way to structure large and distributed
software systems, where services communicate over a network with the client and
with other services, and can be combined into composite applications. Enterprise
SOA (eSOA) is focused specifically on supporting business processes across an
enterprise by reusing existing services. When an eSOA application is being planned
and developed, many kinds of people are involved, some of whom are end-user

 Improving Documentation for eSOA APIs through User Studies 87

developers (EUD). For example, business process experts, who might be titled
“Solution Architects,” are knowledgeable about the business context but may not
necessarily be professional programmers, and are often responsible for identifying
and selecting which services will be used. Specifications they write will then be
passed to professional programmers, who are responsible for writing code that uses
the actual services. Therefore, the documentation and some of the tools must be ac-
cessible to both EUDs and professional programmers.

In a service-oriented architecture, code on the user’s machine communicates with a
remote service using messages across the internet. The communication is usually
encoded in XML, and the format of the messages is usually described using a WSDL
(Web Services Description Language) file, which has been formalized by the World
Wide Web Consortium (see, for example, http://www.w3.org/TR/wsdl).

As part of the “Natural Programming Project” [11], we are interested in a whole
range of usability issues around programming. Recently, we have begun to focus on
the usability of libraries, frameworks, toolkits, and other application programming
interfaces (APIs) [6, 14, 17]. APIs are crucial to professionals and EUDs alike, since
most of modern development of all kinds involves finding, understanding, and con-
necting pre-built items, from small library calls to large-scale components. SOA APIs
are particularly interesting to study, because they are often large and complex, and
therefore expose interesting issues of scale, and because they often target a wide
range of developers. As one typical example, we studied a sales order scenario from
SAP’s SOA services. SAP provides a large number of SOA services (over 2000) with
interdependencies between services, and each service has many parameters, with
interdependencies about which parameters are optional and required and what values
are allowed based on values of other parameters.

Our previous research has shown that programming using eSOA APIs is not simple
if APIs are providing access to powerful business functionality [1, 2]. Some barriers we
identified included long names for services, different behaviors of services due to dif-
ferent business behavior, parameters of the services as hierarchies of objects with com-
plex dependencies driven by internal, not exposed, business logic, and lack of example
code [1, 2]. The current paper presents the results of a new user study of the usability of
the online documentation provided by SAP for their SOA product.

In summary, our results are that when navigating eSOA API documentation, users
with business backgrounds did better, and they experienced the most benefit from
process component documentation. The process component documentation provides
diagrams showing the architecture of an eSOA API in terms of service interfaces, the
service operations they contain, and the business objects to which they are connected.
All users avoided sites with visual designs that were inconsistent with their starting
pages. Developers without business application experience were unfamiliar with
business terminology and so they focused on searching and scanning for individual
terms with limited success. Based on these results, we recommend that documentation
provide flexible ways to navigate for different users with different backgrounds.

2 Related Work

Some of the first work on applying usability principles to APIs comes out of Microsoft,
focused on specific APIs [4]. Inspired by this, we began working on the usability of

88 S.Y. Jeong et al.

API design patterns [6, 15, 17], and the barriers to programming faced by EUDs,
which includes the difficulties of identifying and understanding the appropriate re-
sources in the documentation, which we called “Selection Barriers” [10].

We also reported on our previous studies of the usability of eSOA APIs for
programming. We identified many barriers for installing and using the eSOA devel-
opment environments, including issues with generating the stubs that will interface
between the user’s code and the XML messages that are required to communicate
over the web, and issues with the long and confusing names of the services [2]. In a
second study, we asked experienced programmers to use four services which had
already been identified for them [1]. The current study complements these other
works by focusing on the task of finding the services in the first place.

Many other people have provided recommendations and guidelines for APIs, but
most of these are just based on the writer’s intuitions or personal experience, rather
than usability studies with users. For example, API designers with experience build-
ing the Java [3] and Microsoft .NET [5] APIs have published API design guidelines.
For SOA, Jones lists anecdotal common mistakes made when developing SOA archi-
tectures, such as problems caused by service hierarchies that are either too fine-
grained or too coarse-grained [9].

Focusing on documentation in general, Purho adapted Nielsen’s 10 heuristics to
apply to documentation [13]. Friendly [8] applied an informal methodology of user
testing to JavaDoc, which is automatically generated from a Java project, and derived
clear and succinct recommendations for future API documentation designers. Unlike
JavaDoc, the eSOA documentation we studied contains a large amount of hand-
created content and addresses a larger, more complex framework.

Others have focused on the internal documentation for projects, focusing on the
software developers themselves (e.g., [7]), but this is not relevant for understanding
how documentation for external users should be designed.

3 Methodology

3.1 Participants

Based on the success of our earlier studies [15], we decided to use an informal lab
study with users who were representative of the target populations for the eSOA API.
Since we were told by SAP that the target API was designed for developers with a
wide range of expertise and background, we selected some experienced programmers
with little business background, and some experienced business EUDs with little
programming background, and some in between. We had 8 participants, all of whom
were male Masters students at our university, although all but one of them had work
experience before returning to school (see Table 1). The age ranged from about 25 to
35. None of the participants had ever seen the specific documentation web site we
were testing, and none had used the API that the documentation was for. Of the 8
participants, 4 had significant experience with business application development us-
ing business software such as SAP, PeopleSoft and Oracle. All four of these partici-
pants had experience with Enterprise Resource Planning (ERP), which is one of the
major areas of business software. Participant p2 had the most business application
experience, having used the SAP development environment and SAP’s programming

 Improving Documentation for eSOA APIs through User Studies 89

language called ABAP. The other 4 participants had no experience with business
applications. Three of the participants had moderate to extensive programming ex-
perience with Java (4 years or more), and the others had some experience. All of the
participants except p2 were enrolled in a Web Services course, but our study was
performed before they had gotten very far along. This means that the participants all
had an interest in SOA and had been introduced to some of the terms. Thus, we feel
that subject p5 could be representative of new hires who might be assigned to do SOA
work, p6-p8 might be representative of system integrators, p2 represents an all-around
expert, and p1, p3 and p4 be representative of Solution Architects who have moderate
knowledge of both business and programming. The experiment lasted about two
hours, and the participants were each paid $20.

Table 1. Characteristics of the participants in the user study, and whether the search feature
was available when they performed the study

 p1 p2 p3 p4 p5 p6 p7 p8
Years of Work Experience 3 3 3 1 0 2 1 2.5
Business Application Experience yes YES yes yes no no no no
Years Programming Experience 2 3 3 4 2 5 4 2.5
Were able to use Search yes yes

3.2 Tasks

The tasks for this study were to find the specific services necessary to perform a
“Create Sales Order” using the documentation. The participants did not use any pro-
gramming tools such as an Interactive Development Environment (IDE) and did not
have to produce any code. They were shown the introductory page of the documenta-
tion web site and were given a brief tutorial (about 10 minutes) describing the docu-
ment layout including the various ways to navigate away from the front page. We told
participants that they should consider themselves to be high-level architects in a com-
pany that was planning to implement a new sales order system using an existing ERP
system. They should find the services needed to create a sales order, starting from the
string names of a buying company, a selling company, and a product. They did not
need to actually implement an application; they only needed to identify the correct
services so that another developer could later implement the system. They were given
about 2 hours to finish all tasks.

One challenging part of this task was that when participants read the “Create Sales
Order” service documentation, they would discover that this service does not take
string names for the seller, product and buyer, but instead takes IDs, which the par-
ticipants had to find other service calls to look up. Therefore, successful task comple-
tion required finding four services we refer to here as “Create Sales Order”, “Find
Customer”, “Find Supplier”, and “Find Product” (although the actual names were
much longer and less clear). Participants were not told in advance about the need for
multiple inter-related services. Discovering that inter-related services were necessary
from the documentation was an essential part of the task.

During the study, we used the “think-aloud” protocol, in which participants are en-
couraged to talk to themselves and the moderator, because we were interested in gain-
ing insights as to what participants were thinking while performing the task. In order

90 S.Y. Jeong et al.

to be able to gain as much useful information from each participant as possible, after
seeing enough confusion to confirm that the participant was experiencing a usability
breakdown, we would offer help so the participant would not remain stuck on one
problem for the entire session. We wanted to know why problems occurred, not the
length of delays. However, explicit help was relatively rare because it was difficult to
give advice without giving away the whole solution.

3.3 Context – SOA Documentation

The participants used the actual then-released (February, 2008) online documentation
of SAP’s eSOA product. Based in part on the results of our study, SAP has since
improved the site significantly, and many parts now no longer match what the partici-
pants saw, which is described below.

There are several different paths that participants could use to navigate from the
starting page down to the pages of individual service operations (see Fig. 1). One path
grouped services into Enterprise Service (ES) “Bundles” that collected together a set
of services that are often used together. The ES Bundles navigation path was imple-
mented using a user-editable Wiki, so that users of the documentation could add and
update the bundles to show what services were actually used together in practice.
Since this navigation path led to a Wiki, the visual formatting of these pages was
quite different from other parts of the documentation web site. The bundles contained
a list of service operations, and from there, users could eventually navigate down to
the individual services, at which point they would leave the Wiki and return to the
previous “normal” format.

A second path used the Enterprise Service Index, which listed business “process
components” in alphabetical order. The Process Component pages each contained a

Fig. 1. Different possible navigation paths

 Improving Documentation for eSOA APIs through User Studies 91

Table 2. Descriptions of webpage content for pages shown in Figure 1

Documentation Content
Solution Map Business value chains displayed as colorful diagrams. Colored bars

hyperlink to processes and scenarios. May apply across industries
(ERP, CRM, etc.) or for one industry. (Oil, Retail, etc.) (Fig. 2)

Scenario Group Similar to a Solution Map, but specific to a part of one industry.
Main or Business
Process, Scenario

Text description of a business process or scenario. Hyperlinks lead
further down, but often do not link to Service Interfaces.

Configuration
Variant

Text description of business use cases that may not be intended for
developers, but rather business analysts. Hyperlinks go only to other
Configuration Variants, and upwards.

Process
Component

This page contained both a diagram and text. The diagram linked to a
group of Business Objects, and all Service Interfaces and Service
Operations using those Business Objects. Text links below the dia-
gram went to the Objects and Interfaces only. (Fig. 3a)

Service
Interface

Text hyperlinks to some Service Operations sharing a Business Ob-
ject, which may have one or more Service Interfaces.

Service
Operation

Description of a service operation. Hyperlinks to the service WSDL
and parameters. (Fig. 3b)

Business
Object

Description of a distinct business “entity” (such as a sales order,
supplier, etc.) with links to Service Operations acting upon it.

WSDL XML file that describes the service in machine-readable form.

process component diagram and a textual description of the process component (see
Fig. 3a). From the process component diagram, participants could then navigate to the
relevant business objects and service interfaces. Participants could navigate using
hyperlinks located in the process component diagram or in a table below the diagram
listing the contents of the process component as text.

The third and fourth paths used two different kinds of graphical tables called “So-
lution Maps.” The cross industry solution maps (see Fig. 2) provided categories such
as ERP (Enterprise Resource Planning), CRM (Customer Relation Management),
SCM (Supply Chain Management), and then at the next level, groups of services such
as “analytics,” “financials,” and “sales and service.”. The industry solution maps
provided categories like “Retail,” “Airlines,” or “Oil & Gas”, and then groups of
services such as “Sales & Marketing” and “Vehicle Maintenance”. As shown in Fig.
1, all of the links in the Solution Maps lead to “Business Process” pages. Unfortu-
nately, some of these Business Process pages linked only to Configuration Variants,
and not to the Service Interfaces that link to Service Operations pages and the techni-
cal information necessary for implementation. The Configuration Variant pages were
dead ends and apparently not intended for use by developers. Instead they linked to
other variants or back to Business Processes, so this path proved useless to our par-
ticipants.

Once participants had navigated down to the “service operation” page (Fig. 3b),
they could find out information about the specific service, including the WSDL files
to download. On each of the service operation pages, there was a hyperlink to a sepa-
rate “Detailed Field” page with collapsible tree hierarchies of the input and output
parameters for calling the service. Since the web services can be accessed from a
variety of programming languages, coding examples were not provided in the API

92 S.Y. Jeong et al.

documentation. Instead, a browser-based service “testing jig” was available. By show-
ing all available fields of the complex input and output parameter structures of the
web services in a tree view, this testing jig allowed users to test service consumption
with real values. However, at the time, the only link to the testing jig was provided
inside a “Handbook” PDF guide hyperlinked from the main starting page of the
documentation. This guide provided an end-to-end walkthrough of the documentation
site and screenshots of pages along the navigational paths.

When we began this study, the web site had a search box, but it appeared to be in-
operable, in that all searches returned no results. By the time we ran the last two sub-
jects (p5, p8 – see Table 1), the search seemed to be fixed and began working.1

In summary, the documentation provided several architectural description pages to
help understanding of the overall architecture. Table 2 shows some of the different
architectural description pages, and their content.

4 Results

Table 3 shows a summary of the overall results – only two of the 8 participants (25%)
were able to find all of the services during the two-hour session. Three of the four
participants with business backgrounds (75%) were able to find the correct first ser-
vice (“create sales order”), however one was not sure that he had found the right one.
Similarly, two of the participants without business backgrounds found the right sales
order service, but were not sure, and none found any of the other services. Since there
are such a small number of participants, we are not able to establish statistical signifi-
cance between the two groups, although the trend is striking. From our observations
and the think-aloud comments of the participants, we were able to understand the
participants’ strategies and barriers at a much more detailed level.

4.1 Paths through the Documentation

Given the four starting entry points for navigating from a home page (Fig. 1), partici-
pants were confused with which one to use, and spent significant time reading text on
the home page to try to figure it out. The main page did not explain the motivations
and goals of the four different paths, leaving participants confused about why there
were multiple choices and which might be the most useful. This confusion made par-
ticipants feel frustrated right at the beginning. Table 3 summarizes where the partici-
pants started.

An interesting observation was the use of what we call rally points by participants
while navigating through unfamiliar areas (see Table 3). Participants would choose a
path, go down that path until they decided whether or not it was worth continuing, and
then return to an earlier page multiple times. Participant’s selection of a rally point
indicated a level of certainty that the navigation up to that point, at least, was correct.

Fig. 4 summarizes the paths of all of participants when trying to find the Create
Sales Order Service. Each row represents a type of web page, as described in Table 2.
Each circle represents web pages that the participant visited, with the size of the circle

1 A hazard of using a commercial on-line system for a study – one cannot guarantee all partici-

pants will have the identical system!

 Improving Documentation for eSOA APIs through User Studies 93

representing how long the participant stayed at that page. In Table 3 and Fig. 4, we
can see that the page at which the participant started was a natural rallying point at
first, but participants would move the rally point around as they gained and lost confi-
dence in the usefulness of various paths through the documentation.

Most participants showed a tendency to choose the Solution Maps as a starting point
(as shown in Table 3), but five of the participants changed to the Enterprise Service
Index after failing to use the solution maps. The Enterprise Service Index page only
provided process component lists and integration scenario lists in alphabetical order. In
the process component lists, there were prominent business software categories such as
CRM, ERP, SCM and SRM. Participants with business application backgrounds used
the “Enterprise Service Index” pages as a rally point, and when they found the “Sales
Order Processing” component in the ERP and SRM category, they felt they were on the
right track. Most participants were frustrated by new and unfamiliar terms and acro-
nyms, but participants without business application backgrounds were particularly con-
fused by the large number of prominent acronyms such as ERP, CRM, SCM, SRM and
other business-specific terms that they did not understand.

When participants navigated to the Enterprise Service Bundles page (which was a
Wiki), they were surprised by the different look and feel of this part of the web site,
and felt they must have gone astray, so they quickly back-tracked. None of the par-
ticipants made use of the Bundles pages, so they do not appear in Fig. 4.

Participants spent a lot of time trying to use the solution maps (Fig. 2). Some par-
ticipants selected cross industry solution map, possibly because they were not told
about any specific industry in the task instructions, but others guessed an industry
they thought might be appropriate, and used an industry-specific map. However, the

Fig. 2. Cross industry solution map for ERP

94 S.Y. Jeong et al.

(a)

(b)

Fig. 3. (a) Process Component View Page for the Accounting process component which in-
cludes a diagram and text below the diagram (not shown). (b) Service Operation page for Cre-
ate Sales Order.

 Improving Documentation for eSOA APIs through User Studies 95

3Business Application Backgrounds

P1 P2 (Success) P3(Success) P4

ES Workplace
Homepage

Enterprise
Service Index

Cross
Industry
solution Map

Industry
Solution Map

List of
Process
Components

Business
Process

Process
Component

Service
Interface

Service
Operation
(create sales
order)

Business Application Backgrounds

P1 P2 (Success) P3(Success) P4

ES Workplace
Homepage

Enterprise
Service Index

Cross
Industry
solution Map

Industry
Solution Map

List of
Process
Components

Business
Process

Process
Component

Service
Interface

Service
Operation
(create sales
order)

C’

C’

ERP

C

ERP

C
V1 V2

C’

C’

C

C

C

V1 V2

“I found”SCM

W W

W’ lostW’

C

Retail

C
V1 V2

C’

C’

SRM
ERP

C

“I found”

“No link”

“I found”

No Business Application Backgrounds

P5 P6 P7 P8

No Business Application Backgrounds

P5 P6 P7 P8

CRM

WW

WW
lost

W

W

W

W

W

W

Consumer
ProductRetail

“I found”

SCM

C’

SRM ERP

C

“No link”

lost

S

C

C’

C’

ERP

C

C

lost S

stop

ES Workplace
Homepage

Enterprise
Service Index

Cross
Industry
solution Map

Industry
Solution Map

List of
Process
Components

Business
Process

Process
Component

Service
Interface

Service
Operation
(create sales
order)

ES Workplace
Homepage

Enterprise
Service Index

Cross
Industry
solution Map

Industry
Solution Map

List of
Process
Components

Business
Process

Process
Component

Service
Interface

Service
Operation
(create sales
order)

Same name but diff. service)Multiple instances W wrongC’C Correct V1 Version S search

Fig. 4. Summaries of the navigational paths of all of the participants when trying to find the
Create Sales Order service. The sizes of the circles represent the amount of time spent at web
pages of the type in the first column.

96 S.Y. Jeong et al.

Table 3. Starting and rally points for the participants (using page categories from Fig. 1), and
success of participants on finding the 4 services.
 Key: M=Solution Map; S=Search; I= ES Index, P=Process Component,
 L=List of Process Components, B=Business Process
 √=Success; √- =Success but not sure; Χ=Failure

 p1 p2 p3 p4 p5 p6 p7 p8 Total
Was able to use Search yes yes
First Entry Point M M M I M M I S
Other Rally Points I,P I,P B L,P M,B I,P L,P M,P

Found Correct Service Operation:
 Create Sales Order X √ √ √- X √- X √- 62.5%
 Find Customer Service X √ √ X X X X X 25%
 Find Supplier Service X √ √ X X X X X 25%
 Find Product Service X √ √ X X X X X 25%

participants without business backgrounds had difficulties in using the any of these
solution maps to navigate further due to the unfamiliar terminology and the large num-
ber of choices making a brute-force systematic search difficult. However, half of the
participants without business backgrounds used a map page as a rallying point (see Fig.
4). In the think-alouds, the participants expressed a desire to understand the
“big picture,” and the solution maps seemed to provide a good overview. The business-
background participants understood the category names such as ERP and SRM, and
their sub-grouping such as “financials,” “retail,” etc., but even these participants often
only had experience with some of the categories and sub-groupings. However, all par-
ticipants were confused by classifications with similar names such as: “sales”, “sales
execution”, “sales order” and “sales & service” in the solution maps.

4.2 Process Component View

The Process Component view shows one or more related business objects and ser-
vices (see Fig. 3a). For example, in the “Sales Order Processing” process component
view, the user can navigate to the “ordering in” and “ordering out” service interfaces
and the “sales order” business objects. The page was composed of two parts: a dia-
gram, and a table. The diagram displayed business objects as small blocks and service
interfaces as large blocks that held groups of smaller blocks representing service op-
erations. The service operations were connected to the business objects they acted
upon with arrows. The titles of the blocks acted as hyperlinks to the appropriate busi-
ness object, service interface, and service operation pages. Due to the large number of
objects to be shown in the diagram, the font of the elements was extremely small and
yet horizontal and vertical scrolling was still needed.

In spite of these barriers, some participants spent an extensive amount of effort try-
ing to understand the diagrams. Many of the participants found this view to be a good
rallying point, since it provides a well-organized collection of related items to ex-
plore. However, some of the participants who were familiar with UML (Unified
Modeling Language) notation mentioned that they would have preferred UML class
diagrams, which have a standard notation for classes and their relationships.

 Improving Documentation for eSOA APIs through User Studies 97

Another cause for confusion was that the system provided many similar-sounding
services in the process component view, and even multiple versions of the same ser-
vice with similar names such as “create sales order v1”, “create sales order v2”, and
“check sales order creation”. Participants could not find any relevant information to
differentiate those three different versions of services from the process component
view. The participants had to drill down to the service operation level for each, to try
to determine which should be used. If the user could recognize the differences among
these different services at the process component view, this would have saved signifi-
cant time and confusion.

Beneath the diagram, a table contained text descriptions and hyperlinks to many of
the same locations as the diagram, with the exception of the service operations.

4.3 Service Descriptions

In the tasks we gave the participants, it was important to investigate the input and
outputs of the various services. However, this was difficult to verify from the detailed
service pages. Only three participants were able to find the “buyerID”, “sellerID” and
“materialID” parameters for the “Create Sales Order” service operation, which was
crucial to determining what other services were needed.

Other problems with understanding the services included unfamiliar technical
terms such as synchronous and asynchronous mode and inbound and outbound mes-
sages. The participants did not find any explanations of these terms in the documenta-
tion, although they are pervasive throughout all services. Some of the details of the
operation, such as which fields were required versus optional, were actually not
documented anywhere except in the generated WSDL XML files themselves, which
was too long and difficult to read to be effective documentation.

The detailed page for each service listed three classes of messages: input message,
output message and fault message, which participants did not understand. In fact, only
input messages are relevant (messages that go “in” to the server), but this was not
explained anywhere.

In general, many participants found the correct target service, but then were unsure
whether it was correct or not, and continued searching. For example, Table 3 and Fig.
4 show that participants p4, p6 and p8 found the right service operation for Sales
Order, but then navigated away and kept looking. Participant p4 eventually decided
that a different service was actually right, and p6 and p8 were never confident of
which service should be used.

4.4 Using Search

As mentioned above, the search box was present for all participants, but only began
working for the last two (Table 1). All of the participants expressed a desire to use
search to try to find the services. In general, if the participants knew the name of what
they wanted, they preferred to use search, and the participants for whom search
worked often returned to try searching when they were lost. Participants often tried to
search for phrases we used in the instructions, such as “create sales order”, “selling
company”, “buying company” and “product”, but these were not helpful, and then
participants tried related terminology such as “agency”, “supplier”, “customer,” etc.

98 S.Y. Jeong et al.

In general, participants were not successful at using search because there were always
either no results or too many matching results. Even the most experienced participants
had difficulty mapping the product in the instructions with the actual parameter name
of “material”.

When search began working, the results were presented grouped by the various
API documentation types shown in Table 2, such as solution map pages, process
component view pages, and service operation pages. This grouping proved helpful to
participants, and made it easy to find the appropriate process components and busi-
ness objects when they recognized them in the results. However, since there were
often too many search results, and the listing was in alphabetical order, often partici-
pants missed the answer even when it was included.

4.5 Individual Strategies

By performing a detailed time analysis of each participant, we were able to break
down their activities into various categories. We identified four categories of activi-
ties, with two opposing strategies in each:

• Focusing on scanning textual descriptions (“scan text”) vs. focusing on scanning
process diagrams (“scan diagrams”).

• Trying to understand how to use the web site by reading the provided PDF docu-
mentation (“PDF overview”), or just by looking through the web site itself, relying
on the documentation to be self-explanatory (“Self-explanatory”). Five participants
found the PDF document but three of them did not use it, because it was a separate
document.

• Browsing the documentation with a single specific key word in mind from the task
instructions, such as “buyer” (“Single word”), or else using a set of interrelated
synonyms (“Synonyms”).

• Skimming the documentation focusing on only the prominent text, such as the head-
ers (“Skim”), or systematically reading the pages line-by-line (“Line-by-line”).

We then analyzed each of the participants, looking for whether they tried to use
each of these strategies, and whether it worked for them. Note that each participant
might have used different strategies at different times. Fig. 5 provides a radar chart
averaged over all participants for the strategies. The opposing strategies are shown at
opposite ends of each line. The outer black line (connecting the circles) shows the
average of whether this was used or not (where 1 would mean everyone used it, and 0
would mean no-one used it). The inner red line (connecting the squares) shows our
estimate of how successful this strategy was.

Fig. 5 makes it clear that participants were split on using text and diagrams, they
strongly preferred the documentation to be self-explanatory, rather than using the
PDF overview, more tried single words rather than synonyms, and everyone
skimmed, but only a few systematically read line-by-line. As for the success of these
strategies, by-and-large, the success seemed to mostly correlated with participants’
expectations (they used a strategy about as much as it was successful, so the two lines
go in and out together), with the notable exception of the diagrams – as discussed
above, many participants wanted to use these, but they did not work out for them.
Another notable result is that the PDF overview was surprisingly un-helpful.

 Improving Documentation for eSOA APIs through User Studies 99

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked

Fig. 5. Strategies the participants tried, and how well each strategy worked

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked
 (a) (b)

Fig. 6. Breakdown for participants with (a) and without (b) business backgrounds

Fig. 6 provides the same data broken down by whether the participants had busi-
ness background or not. In terms of what they tried, it is clear that the non-business
participants did not use synonyms (because they did not know the other terms that
might be related), and the non-business participants were more systematic, trying to
extract more meaning from the pages (whereas the business participants were more
likely to be able to pick up the meaning from skimming). It is clear that few strategies
worked for the participants without business backgrounds, and only scanning the text
was overall successful.

5 Threats to Validity

There are many reasons why the results of this study may not generalize. First, we
only used a small number of participants, and we were not able to get statistically
significant results about their different behaviors. Most of the results reported here
are impressions and informal analyses based on our observations of their behaviors,

100 S.Y. Jeong et al.

barriers and successes. The participants are also not necessarily representative of the
target population for the documentation. eSOA APIs may be used only by people with
some business background or people who have specific, relevant training. For exam-
ple, SAP offers various training courses that would have explained many of the fun-
damental terms about which the participants were confused. Our participants were all
completely unfamiliar with the documentation or the API.

The experimental set-up may have also biased the results. In real-life, users would
have more than two hours to perform tasks, and they would likely go to more experi-
enced colleagues for help when they were stuck, which was not an option in this
study. Also, our task was much simpler than real-world eSOA tasks.

6 Discussion

In spite of these concerns, we feel that useful information can be learned from our
study. As with other usability analyses [12], when multiple user-study participants
have difficulty with something, it is highly likely that at least some of the target audi-
ence will also have trouble, so the documentation is likely to be improved by elimi-
nating the barriers reported here.

The differences in strategies and success between the people with business experi-
ence and those without are also interesting. These can mainly be attributed to the
differences in their ability to understand the many terms and acronyms used in the
documentation. Participants with business backgrounds were aware of interrelated
business concepts and terminology, and so understood more explanations on the web
site. The navigational strategies were also very different between the two groups.

Of the four ways to navigate to the service operation, the ES index was found to be
most useful to many developers, who then used the process component diagrams as a
rally point. The graphical solution maps were frequently used by all participants, but
tended to lead developers to the wrong services. The frequent use of the maps and
process diagrams strongly suggests that a good diagram of the system is important to
users. The presence of the many alternative navigation paths was itself a barrier to
participants, since they had to investigate which one to use.

This study particularly focused on identifying services based on their input/output
characteristics, but this turned out to be surprisingly difficult to determine from the
documentation. Our previous study showed that understanding the dependencies
among the parameters is also a key barrier to developers [1], since which parameters
are required and which are optional depends on the values supplied for other parame-
ters. This means that more attention is needed on documenting the parameters of
services, where it is possible2.

A consistent look and feel for the documentation was found to be important.
When participants encountered the different format of the Wiki, they immediately

2 Some services deal with highly customizable business processes. Customer can set up the

system for their special business needs and therefore the behavior of the services can change
from customer to customer. So a “create sales order” service can be used in a simple retail
scenario, where you just buy 100 pencils, as well as in the aerospace industry when you order
20 Airbus A380 airplanes, which have quite different requirements.

 Improving Documentation for eSOA APIs through User Studies 101

backtracked without studying the new location. As a result, the grouped services on
the wiki went unseen and unused by all of the participants.

The names of services and their types were found to be a problem. We observed
one participant confused with several versions of “create sales order v1” and “v2”, the
differences between the same service name with “in” and “out” appended, and also
with the difference between the “synchronous” and “asynchronous” versions of the
same service. Another problem was the length and construction of the names them-
selves, which some participants found confusing (for example, SalesOrderERPCre-
ateRequestConfirmation_In_V1).

7 Implications for Design

How can the documentation be designed to best serve developers across the whole
spectrum? Improvements in the usability of the documentation are clearly necessary if
users such as our participants are to succeed. We are happy to report that many of
these recommendations have been implemented in the current version of the SAP
documentation, and others are being investigated for future versions.

Based on our observations and user study results, we recommend the following as
documentation guidelines:

• Consistent Look-and-Feel. Overall, the entire documentation web site should
have a consistent, yet unique, format, so that developers who leave the path know
it instantly, and developers who find a useful area do not backtrack. This may
mean that more developer participation in a Wiki might occur if its format is not
visibly different from the rest of the API documentation.

• Provide an Overall Map. When we were trying to understand the SAP documen-
tation ourselves before we ran the user study, we created early versions of Fig. 1
and Table 2, which we found very helpful. Having such information at the front of
the documentation web site would likely benefit users.

• Explain Starting Points. Make the purpose of various starting points clear. It seems
that some of the paths on the eSOA documentation may be targeted at different
classes of users, such as Business Experts versus developers. Alternatively, they
might be used for different tasks. Users would benefit from a better explanation of
why there are multiple paths, and how they are intended to be used.

• Provide “bread crumbs” the documentation structure. Users were often lost in
the documentation. Providing a trail that shows where they are in the documenta-
tion structure, and what are the main nodes along the path to that page, would be
helpful. However, the documentation is a graph and not a tree because some paths
are in multiple paths (e.g., the same service may be used by multiple industries).
This means that the trail will have to be careful to differentiate multiple possible
paths to the current page, hopefully highlighting the path actually used.

• Directly support rally points. In addition to the bread crumbs, there should be
other support for users to backtrack to well-known pages that are serving as “rally
points”. For example, we created a prototype which included an always-visible
bookmark list into which the user could easily save pages while continuing naviga-
tion, and then these could serve as shortcuts for navigating back to a rally point.
Another idea is to provide pages that other users or the system designers have iden-
tified as useful rally points.

102 S.Y. Jeong et al.

• Integrate “How-To-Use” Information. We discovered that although a PDF guide
explained how the documentation could be used, users were reluctant to leave their
browsing to read a document in an external format, so the explanations should be
in html format. Even better would be if the documentation was self-explanatory,
with explanations integrated with the main documentation content, so there would
be no need for separate documents explaining how to the API documentation. For
example, pop-ups or special hyperlinks might explain “What is this?” for items that
users may not be familiar with.

• Effective Search. The participants for whom search did not work were unhappy,
so a good search facility needs to be part of all documentation. Since participants
tried to search on all aspects of services, all parts of the API should be included in
the search, including the parameter names and types, and the documentation of the
names and types. It should be easy to navigate from data types to the fields that use
those types. In order to reduce the size of the answers, the search should allow us-
ers to qualify what they are looking for (e.g., limit the answers to service opera-
tions). The grouping of the search results into categories is a good idea, but each
result should be presented in a way that is easy to understand, so the user does not
need to navigate into each result item to see if it is the desired one or not.

• Provide Familiar Diagram Formats. Our participants expected UML Class dia-
grams or other well-known architectural presentations to help them understand the
services. Users should be surveyed on what formats they will find familiar before
the decision is made to create new formats.

• Balance of Diagrams and Text. Some participants focused on diagrams showing
the relationships among services, so these need to be clear and concise, with ap-
propriate labels that are understandable yet not too big. At the same time, other us-
ers skipped the diagrams in favor of text, so both should be supported.

• Curtail User Focus on Esoteric Terminology. Specialized terminology for spe-
cialized users and use cases is absolutely necessary in API documentation. How-
ever, we observed that participants who are exploring tend to focus on unfamiliar
terms, even if they are unnecessary as part of their task, and so waste time while
increasing their level of confusion and frustration. However, most users will (at
least eventually) be familiar with the terminology, so it is important that any defini-
tions or other help not interfere with expert use. It is also important that users be
able to quickly tell what parts of the document are important to them, so they can
skip large parts (and any unfamiliar terminology in those parts).

• Explain Crucial Terminology. Participants could not find the correct services in
our study without understanding the difference between synchronous and asyn-
chronous services, or the meaning of “in” and “out” services. To the extent that all
users must understand certain “esoteric” terminology, make sure it is clearly ex-
plained, or even better, use more generally-understood terms so less explanation is
needed.

• Make the Parameters for Services More Prominent. Participants cited the pa-
rameters of the service signature as the main indicators of the usefulness of a ser-
vice. Therefore, parameters should be given a prominent position in the description
of a service operation. Our previous research showed that the distinction between
optional and required parameters, and parameters used to call the service and those
filled in by the service as return values was not clear to developers [1]. This needs

 Improving Documentation for eSOA APIs through User Studies 103

to be particularly well explained, and certainly not left to be deduced from the
WSDL files.

• Support Comparing Services. There are many similar services, and participants
needed to compare services to find out the differences. In the current system,
sometimes they needed to open up the low-level WSDL files and try to manually
determine the differences. Instead, direct comparisons and explanations should be
available to differentiate services. For example, side-by-side visualizations of two
services might emphasize the differences in parameters or actions. If a service is an
updated version of another service, the modification dates and differences should
be clear with cross-links and explanations of when each might be used.

• Clear Names for Services. The user should be able to recognize what a service
does by its name. If there are multiple versions, it should be clear why there are
multiple versions, and whether they are all intended to be useful (vs. some being
deprecated, for example), and which one should be selected.

• Present Related Services. The documentation should present related services and
business objects. For example, to create a sales order required providing three differ-
ent parameters that were returned by other services. Listing each of these parameters
and services could help the user understand and find related services. The Bundles
idea in the current documentation may help with this goal, but we were not able to
evaluate how well it worked because our participants did not try the Bundles.

• Provide Code Examples. While web services are often advertised for their ability
to be consumed in any programming language, this does not excuse the provider
from showing sample code snippets. Even if it is not possible to provide example
code in every target language, then it is still useful to provide some examples
rather than none. It should be noted that standardization across similar services will
mean that fewer examples need to be provided, because a pattern that works for
one service will also work for its “sibling” services.

• Online Service Testing. Developers who want to see how a service works before
starting to program may benefit from an interactive way to provide parameters and
run the service. The current SAP documentation does have a “Test” function,
where users can try out a service and see what it returns for various parameters.
This kind of online service testing can have a positive effect on developers’ under-
standing of web service consumption. It has the potential to display required and
optional parameters, and allow users to verify their understanding of the service.
However, without valid test data to use as parameters, the user may never be able
to get a useful return value. Therefore, the testing mechanism should be combined
with multiple examples, and cross-linked to other services that might return the
kinds of values required for the service to operate correctly. Furthermore, once the
user has configured a test call interactively, it would be useful if there was some
way to generate code in the desired target language that would do the same thing.

• New Organizations for Hierarchical Browsing. In their think-alouds, we noticed
that various participants, especially the ones without business experience, seemed
to be trying to navigate based on different starting points and hierarchies. For ex-
ample, some participants seemed to be trying to find particular operations (verbs)
first (such as create or find), then the objects on which those operations occurred
(the nouns), and finally, other parameters of the operation (adverbs such “by what”
the find should get the object, or “using what” to create the object). The current

104 S.Y. Jeong et al.

documentation does allow users to start from a business object and find all of its
services, or to get a global list of services, but these are always organized alpha-
betically. Since the services are named based with the affected business object at
the front of the name (e.g., SalesOrderERPCreateRequestConfirmation_In_V1), both
lists are essentially noun first. Allowing a sort by operation (sorting all the “create”
service operations together) might be helpful.

8 Future Work and Conclusions

This informal study is just the beginning of a long investigation into improvements
that can be made to API documentation. We are currently working on interesting new
designs to see how we can make documentation even easier to search and browse, and
how to make the important information more salient (e.g., [16]). For example, more
commonly used items in the documentation might use a bigger font, so they stand out
compared to the lesser used items.

Meanwhile, SAP is continuing to improve their APIs and the documentation for
them. We plan to repeat this study with the new designs to see what problems have
been solved, and if there are any new problems introduced. In the new study, it will be
interesting to investigate more classes of users, from Business Expert EUDs with little
programming experience to experienced programmers, and hopefully get some non-
university participants from local businesses. It would also be useful to compare peo-
ple who are expert users of the system and documentation to the novice users that we
focused on in this study. Good documentation should also be efficient for experts, as
well as helpful for novices.

In addition to providing insights into how to improve the current documentation,
these kinds of studies can provide generalizable knowledge that is useful for all
documentation writers for all kinds of systems, since many of the challenges will be
similar. Since all programmers, from EUD to novices and to professionals, spend
significant time trying to understand and use APIs, improvements to documentation
can have significant impacts on the overall usability of the system as a whole.

Acknowledgements

For help with this paper, we thank many people at SAP (especially Paul Hofmann,
Dan Rosenberg, Ike Nassi, Claudius Fischer, Bernhard Drittler, and Oliver Schmidt)
and the participants for sharing in user study. This research was partially funded by a
grant from SAP and partially by NSF under grant ITR-0325273 through the EUSES
Consortium, and CCF-0811610. Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
those of the NSF or SAP.

References

1. Beaton, J., et al.: Usability Challenges for Enterprise Service-Oriented Architecture APIs.
In: 2008 IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2008, Herrsching am Ammersee, Germany, September 15-18, pp. 193–196
(2008)

 Improving Documentation for eSOA APIs through User Studies 105

2. Beaton, J., et al.: Usability Evaluation for Enterprise SOA APIs. In: 2nd International
Workshop on Systems Development in SOA Environments, SDSOA 2008 (Co-located
with ICSE 2008), May 12, pp. 29–34. Leipzig, Germany (2008)

3. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley, Boston (2001)
4. Clarke, S.: Measuring API Usability. Dr. Dobbs Journal, S6–S9 (May 2004)
5. Cwalina, K., Abrams, B.: Framework Design Guidelines. Addison-Wesley, Upper-Saddle

River (2005)
6. Ellis, B., Stylos, J., Myers, B.: The Factory Pattern in API Design: A Usability Evaluation.

In: International Conference on Software Engineering (ICSE 2007), May 20-26, Minnea-
polis, MN, pp. 302–312 (2007)

7. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools, and tech-
nology: a survey. In: DocEng, McLean. pp. 26–33 (2002)

8. Friendly, L.: The design of distributed hyperlinked programming documentation. In: Inter-
national Workshop on Hypermedia Design, June 1-2, pp. 151–173. Springer, Montpellier
(1995)

9. Jones, S.: SOA Anti-Patterns. Jun 19, C4Media Inc.: InfoQ.com (2006),
http://www.infoq.com/articles/SOA-anti-patterns

10. Ko, A.J., Myers, B.A., Aung, H.H.: Six Learning Barriers in End-User Programming Sys-
tems. In: IEEE Symposium on Visual Languages and Human-Centric Computing, Rome,
Italy, September 26-29, pp. 199–206 (2004)

11. Myers, B.: Creating More Natural Programming Languages. In: VL 2000: IEEE Sympo-
sium on Visual Languages, Seattle, Washington, September 10-14 (2000) (Invited Keynote
Address), http://www.cs.orst.edu/~burnett/vl2000

12. Nielsen, J.: Usability Engineering. Academic Press, Boston (1993)
13. Purho, V.: Heuristic inspections for documentation-10 recommended documentation heu-

ristics. STC Usability SIG Newsletter, 6(4) (April 2000),
http://www.stcsig.org/usability/newsletter/
0004-docsheuristics.html

14. Stylos, J., et al.: A Case Study of API Design for Improved Usability. In: 2008 IEEE Sym-
posium on Visual Languages and Human-Centric Computing, VL/HCC 2008, Herrsching
am Ammersee, Germany, September 15-18, pp. 189–192 (2008)

15. Stylos, J., Clarke, S.: Usability Implications of Requiring Parameters in Objects’ Construc-
tors. In: International Conference on Software Engineering (ICSE 2007), Minneapolis,
MN, May 20-26, pp. 529–539 (2007)

16. Stylos, J., Myers, B.A., Yang, Z.: Improving API Documentation Using API Usage Infor-
mation (submitted, 2009)

17. Stylos, J., Myers., B.A.: The Implications of Method Placement on API Learnability. In:
Sixteenth ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE
2008), Atlanta, GA, November 9-14, pp. 105–112 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

