
The Journal of Systems and Software 126 (2017) 17–33

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Design annotations to improve API discoverability

André L. Santos a , ∗, Brad A. Myers b

a Instituto Universitário de Lisboa (ISCTE–IUL), ISTAR–IUL, Portugal
b Carnegie Mellon University, Human-Computer Interaction Institute, USA

a r t i c l e i n f o

Article history:

Received 25 January 2016

Revised 17 October 2016

Accepted 29 December 2016

Available online 4 January 2017

Keywords:

API usability

Annotations

Code completion

IDE

Eclipse

a b s t r a c t

User studies have revealed that programmers face several obstacles when learning application program-

ming interfaces (APIs). A considerable part of such difficulties relate to discovery of API elements and the

relationships among them. To address discoverability problems, we show how to complement APIs with

design annotations, which document design decisions in a program-processable form for types, methods,

and parameters. The information provided by the annotations is consumed by the integrated develop-

ment environment (IDE) in order to assist API users with useful code completion proposals regarding

object creation and manipulation, which facilitate API exploration and learning. As a proof of concept,

we developed Dacite , a tool which comprises a set of Java annotations and an accompanying plugin for

the Eclipse IDE. A user study revealed that Dacite is usable and effective, and Dacite’s proposals enable

programmers to be more successful in solving programming tasks involving unfamiliar APIs.

© 2017 Elsevier Inc. All rights reserved.

1

t

e

r

G

f

A

p

t

r

d

a

C

a

u

t

c

r

m

a

i

(

(

d

e

d

s

i

F

t

b

o

m

p

s

M

t

(

t

a

s

m

f

t

e

b

h

0

. Introduction

Writing programs and using application programming in-

erfaces (APIs) are inseparable activities in modern software

ngineering; it being nearly infeasible to write a program without

esorting to third-party APIs, for instance addressing data types,

UIs, or networking (Myers and Stylos, 2016). In this work, we

ocus on object-oriented APIs provided by libraries or frameworks.

PIs are developed by API designers , who represent a small pro-

ortion of the programmers’ universe and typically have strong

echnical skills, whereas API users program against the APIs and

epresent nearly everyone who writes code, many of whom have a

ifferent background than computer science (Scaffidi et al., 2005).

Software practitioners and researchers have raised awareness

s to the importance of good API design (Bloch, 20 06, 20 08;

walina and Abrams, 2008; Tulach, 2012; Myers and Stylos, 2016),

nd metrics have been proposed to automatically measure API

sability (e.g., Scheller and Kühn, 2015; Rama and Kak, 2015). As

he complexity of software increases, both due to intrinsic domain

omplexity and non-functional requirements (e.g., adaptability and

eusability), APIs can become more complex, and consequently,

ore difficult to use. Such requirements lead API designers to

dopt certain design decisions which may hinder API usabil-

ty from an API user’s viewpoint. For instance, object factories

 Gamma et al., 1995) have a significant impact on API usability
∗ Corresponding author.

E-mail address: andre.santos@iscte.pt (A.L. Santos).

m

e

2

ttp://dx.doi.org/10.1016/j.jss.2016.12.036

164-1212/© 2017 Elsevier Inc. All rights reserved.
 Ellis et al., 2007), as do decisions regarding method placement in

ifferent classes (Stylos and Myers, 2008). Design patterns (Gamma

t al., 1995) play a significant role in API design, since many design

ecisions relate to a pattern. Although the solutions offered by de-

ign patterns are needed, they often introduce design complexity.

Although design patterns are pervasive in software engineering,

t may not be apparent to API users when they are being used.

or instance, certain objects of an API might need to be created

hrough a static factory (Bloch, 2008) instead of using a constructor,

ecause underlying the design could be an instance of the singleton

r flyweight patterns (Gamma et al., 1995), of which the API user

ight be totally unaware. Previous research showed that even if

rogrammers were aware of certain patterns, they did not neces-

arily expect them when trying to learn an API (Ellis et al., 2007).

oreover, it has been shown that in contrast to simpler solutions,

he presence of design patterns may hinder understandability

 Prechelt et al., 2001). We argue that a design pattern whose par-

icipant classes are exposed in the API potentially introduces an

dditional difficulty to API users. For example, given that in certain

ituations users will not be able create API objects through the

ost “natural” way (that is, using constructors), they must discover

actory methods which are potentially located in different classes

hat will enable them to create the desired objects. As another

xample, essential functionality related to a certain object might

e available in methods contained in helper classes, which also

ight not be easy to find. User studies revealed that these discov-

ry barriers have a considerable impact on API learning (Ellis et al.,

007; Stylos and Myers, 2008; Duala-Ekoko and Robillard, 2012).

http://dx.doi.org/10.1016/j.jss.2016.12.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.12.036&domain=pdf
mailto:andre.santos@iscte.pt
http://dx.doi.org/10.1016/j.jss.2016.12.036

18 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Design annotations (API designers)

IDE code completion assistance on object creation (API users)

IDE code completion assistance on object manipulation (API users)

Fig. 1. With Dacite, API designers complement APIs with design annotations, from

which code completion proposals related to API discoverability are provided to API

users.

m

d

a

m

p

d

w

t

c

a

e

t

b

r

c

e

c

c

t

A

u

t

p

m

d

a

i

d

t

k

o

i

p

i

2

In this paper, we provide techniques to improve API dis-

coverability by means of complementing APIs with design

annotations , 1 which explicitly and formally contain information

regarding design decisions. The main purpose and advantage of

having these annotations is to enable integrated development en-

vironments (IDEs) to assist API users with useful code completion

proposals based on the information embodied in the annotations.

A further advantage is that empirical experiments have shown that

documenting design patterns in the implementation is beneficial

for system maintenance (Prechelt et al., 2002). Therefore, as a side

effect, our design annotations also play the role of documentation

artifacts in the source code, in addition to conventional documen-

tation. Even though it has been demonstrated that it is sometimes

possible to automatically detect design patterns in source code

(Tsantalis et al., 2006), this kind of approach has not been targeted

at API usage assistance but rather at program comprehension in

general.

We refer to the whole set of artifacts that we developed as

Dacite . 2 We designed a small set of Java annotations and an

annotation processor that can be used by API designers to apply

our approach in their APIs. The annotations are fairly simple for

the API designer to enter, given that in most cases they are merely

formalizing (i.e. in a program-processable form) information that

is otherwise typically present in informal documentation (i.e. free-

form text). The annotations have the advantage of being validated

by the processor against well-formedness rules. We developed a

plugin for the Eclipse integrated development environment (IDE)

that enables API users to gain leverage from design annotations,

in a form that integrates seamlessly with existing code completion

mechanisms. We address API designs that may cause a wide

variety of discoverability issues, involving common patterns and

idioms (Gamma et al., 1995; Bloch, 2008), namely static factories,

factory methods, object builders, helper methods, decorators , and

composite objects .

Dacite provides a unified mechanism to address API discov-

erability based on enriching the API with code annotations. We

integrate in a systematic way support for assisting with overcom-

ing difficulties that have previously been described (e.g., factory

methods (Mooty et al., 2010)), as well as new mechanisms target-

ing difficulties that have not been addressed before, namely object

composition based on decorator and composite patterns. Although

previous tools have augmented code completion proposals of IDEs

in similar ways to ours, in those approaches the intent of API

designers is not captured by the API implementation, a character-

istic that is unique to our approach. In this way, API developers

gain control over the code completion proposals pertaining to API

discoverability recommended by IDEs, since solutions based on

automated detection and mining of API design aspects are always

subject to precision/recall issues to some extent.

Fig. 1 presents two usage scenarios of our approach, illustrated

with Java’s Collections API. The class java.util.Collections
contains several static helper methods to manipulate collections,

such as for sorting and to create immutable collection views.

The upper part of the figure contains a snippet of two of those

methods with design annotations. In the first case, the method

emptyList() is annotated with @StaticFactory , denoting

that it consists of a static factory to create a List object (the

return type). In the second case, the method sort has a param-

eter annotated with @Helper , indicating that sort is a helper

method that can be used on a List object (the parameter type).

The figure also presents two screenshots of the code completion
1 Annotations is Java’s terminology; they are called attributes in C#.
2 Dacite is a kind of rock, and here stands for: D esign A nnotations for

C omplementing I nterfaces T argeting E ffectiveness. A prototype implementation is

available at github.com/andre-santos-pt/dacite .

l

w

t

2
enus of Eclipse, enhanced with proposals that are automatically

erived from the design annotations.

We envision that our design annotations would ideally be

pplied by the API’s developers, who are in control of its imple-

entation and should be the most well-informed people for this

urpose, as they are also typically in charge of writing the API

ocumentation. Design annotations can be applied to existing APIs

ithout breaking client code. However, it may also be desirable

o annotate an API one does not own (e.g., for an open-source

omponent), and therefore, we also provide a way to annotate

n API externally by a third-party. In the context of large-scale

nterprise software development, in-house components are reused

hrough their API across a number of other components developed

y different teams, and here API discoverability issues are also

elevant. In these cases, given that all the components are in

ontrol of the same organization, it would be relatively easy to

nforce that the API code has to be annotated, as with other

oding rules and conventions.

We conducted a user study to evaluate the effectiveness of the

ode completion proposals of Dacite from an API user’s perspec-

ive. The study was based on programming tasks using unfamiliar

PIs under time constraints. The results showed that programmers

sing Dacite were up to twice as successful in accomplishing

he given tasks within the given time, through the use of our

roposals. This provides evidence that Dacite’s code completion

echanisms are usable and effectively help programmers to

iscover needed information about the APIs.

The main contributions of this research are: (1) a unified

pproach based on design annotations to address both previously

dentified and other API design patterns that can hinder API

iscoverability, (2) identifying additional design patterns (such as

he decorator and composite patterns) that can benefit from this

ind of help, (3) enhancements to an IDE that can take advantage

f the design annotations to assist API users, and (4) empirical ev-

dence that the provided IDE enhancements are usable and enable

rogrammers to be more successful in solving programming tasks

nvolving unfamiliar APIs.

. API discoverability

An exploratory study of API usability (Duala-Ekoko and Robil-

ard, 2012) identified types of questions programmers ask when

orking with unfamiliar APIs. The study collected data from

hink-aloud protocols, screen captures and interviews, involving

0 participants working on two programming tasks on different

http://github.com/andre-santos-pt/dacite

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 19

A

m

m

p

a

d

(

n

s

c

d

c

b

t

2

a

s

r

g

t

a

t

t

a

m

i

m

c

r

a

t

r

t

a

u

t

p

a

T

i

t

t

d

w

w

g

3

s

n

T

o

a

i

r

e

u

t

a

h

b

i

d

e

c

t

t

t

t

m

u

f

u

A

(

A

r

H

e

a

d

t

o

o

h

s

u

t

t

h

i

A

p

b

u

w

w

e

i

m

t

i

c

s

c

a

i

t

m

w

(

o

s

a

t

s
PIs. Some of the observed questions were characterized as being

ore difficult to answer than others. The level of difficulty was

easured based on the sequences of actions taken by the study

articipants that reflected a lack of progress in obtaining the

nswer to the questions. Among the five questions identified as

ifficult, three are directly related to the discovery of API elements

 Duala-Ekoko and Robillard, 2012):

(A) “How do I create an object of a given type without a public

constructor?”

(B) “Does the API provide a helper-type for manipulating objects

of a given type?”

(C) “How is the type X related to the type Y?”

All of these questions registered a high ratio between the

umber of times they were observed and the difficulty of an-

wering them each time. The remaining two questions that were

onsidered difficult pertain to other kinds of difficulties that we

o not address in our approach, namely high-level documentation

ontent (“Which keywords best describe a functionality provided

y the API?”) and operation-level semantics (“How do I determine

he outcome of a method call?”).

In another study not specific to API usability (Sillito et al.,

008), the authors cataloged types of questions programmers

sk during software maintenance tasks. Some of these questions

trongly relate to discoverability. Within a category of questions

elated to relationships between entities (“understanding a sub-

raph”), the authors identified the questions “How are instances of

hese types created and assembled?” (related to question A above)

nd “How are these types or objects related?” (related to B and C).

The questions listed above relate to two different issues related

o objects — creation (A) and manipulation (B and C). However,

hey have in common the problem that what the user wants to

chieve using an object type is not apparent just from the infor-

ation in the type that originates the question. (Although this

s not necessarily true for question A, given that a static factory

ethod might be present in the same type, often that is not the

ase, such as when having an object factory or an object builder).

A previous API usability study (Ellis et al., 2007), which strongly

elates to question A, investigated the effect of having the factory

nd abstract factory patterns used in an API. The study revealed

hat factories are detrimental to API usability, given that users

equired significantly more time when using factories in contrast

o constructors. The reasons relate to the difficulty in finding

nd using the factory types and methods. Another previous API

sability study (Stylos and Myers, 2008), which strongly relates

o questions B and C, investigated the implications of method

lacement in API learnability. Users often start their exploration of

n API from certain types they believe to be relevant to their goals.

he problem arises when the functionality that one wants to reach

s present externally in other types. The study revealed that when

he relevant API types are not accessible from the starting types,

he time to discover them tends to be significantly higher. These

ifficulties pertaining to discovering relations between API types

ere confirmed by another empirical study (Piccioni et al., 2013),

hich also concluded that accurate documentation is crucial for

ood API usability.

. Related work

The difficulties we detailed from the aforementioned user

tudies can be classified as discovery problems, given that it is

ot obvious to API users how to find the required API elements.

he survey by Robillard et al. (2013) overviews a wide range

f approaches for automated API property inference techniques

ddressing various goals, some of which related to discoverabil-

ty, namely API documentation, understanding, navigation, and
ecommendations. Our approach also targets these goals. How-

ver, although we provide automated support for assisting API

sage, our approach is not an inference technique, but rather a

echnique to augment APIs with the necessary information to

chieve the same outcomes. Several approaches to assist API users

ave been previously proposed, which can be divided into two

road categories: alternative forms of API documentation, and

ntelligent code completion in an IDE. Within these categories, the

ifferent approaches essentially rely either on existing API usage

xamples to propose recommendations, or additional artifacts that

omplement the API in order to assist their usage.

The Jadeite tool (Stylos et al., 2009) provides documentation in

he style of Javadoc that takes advantage of existing code corpora

o facilitate API learning and navigation through the documenta-

ion, featuring font size differentiation of API elements according

o frequency of usage found in the corpora, “placeholders” that are

anually inserted in the documentation for API operations that a

ser would expect to be there but are not, and Javadoc extensions

or including the most common ways of instantiating the API types,

sing examples that were found most frequently in the corpora.

nother alternative form of documentation is provided by Apatite

 Eisenberg et al., 2010), which supports visualizing and browsing

PI documentation through the associations among elements.

The Calcite tool (Mooty et al., 2010) is closest to Dacite with

espect to the code completion proposals presented to API users.

owever, the two approaches achieve the end goal very differ-

ntly, given that Calcite relies on existing API usage examples for

ssisting object creation and manipulation, capitalizing on Jadeite’s

atabase of discovered information. Calcite provides code comple-

ion proposals based on the most common ways of creating an

bject of a certain type, and method completion proposals based

n “method placeholders” compiled manually, providing the user

ints about how to achieve a certain goal, but in this case, without

upplying working code. Calcite improved the success rate of API

sers by 40% on a comparative user study where participants had

o complete programming tasks using APIs, providing evidence

hat discovery mechanisms combined with code completion may

elp API users significantly. The suggestions shown to API users

n Dacite are modeled on Calcite’s, but Dacite relies only on the

PI designer to annotate the API, while it also covers more design

atterns. With respect to the code completion proposals supported

y Calcite, Dacite’s proposals can be considered equivalent from a

ser viewpoint.

The Graphite tool (Omar et al., 2012) provides developers

ith active code completion by means of specialized palettes,

hich provide alternative forms of instantiating specific types. For

xample, developers can use a color palette to generate code for

nstantiating Color objects. Although the Graphite mechanism

ay be used to instantiate objects of an API, its scope is limited

o particular types, and it was not designed to provide assistance

nvolving inter-type relations.

The API Explorer tool (Duala-Ekoko and Robillard, 2011) derives

ode completion proposals automatically from structural relation-

hips between API types. Despite some differences in the way

ode completion proposals are presented and programmers are

ssisted, the main advantage of this approach over ours is that

t is automated, requiring no enhancements to the API itself. On

he other hand, in our approach, the intent of the API designer is

ade explicit, resulting in the API designer staying in control of

hat is recommended to API user. Regarding object manipulation

helper methods), our code completion proposals resemble the

nes of API Explorer, although the latter also exploits synonym

earch to find other methods that might be of interest, which has

n added risk of false positives which Dacite avoids. With respect

o object creation (factories), our code completion proposals are

ignificantly different than API Explorer’s. Our factory proposals

20 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Fig. 2. Dacite overview: (1) API designers annotate elements of a library; (2) the

annotation processor generates a descriptor of design elements to package with the

library; (3) third-party developers may write descriptors to define external design

annotations for an API; (4) the IDE plugin loads the design elements information of

all the available descriptors into an in-memory index; (5) API users program against

the library using Dacite’s code completion proposals.

A

t

h

t

w

c

t

p

p

f

p

f

a

4

s

t

i

p

h

D

o

e

c

w

g

c

r

t

s

t

t

w

T

d

s

l

c

3 In C#, this corresponds to the using directive.
follow a stepwise goal completion by directing the programmer to

the factory types, whereas API Explorer inserts the required code

all at once. Both approaches have trade-offs. Whereas the latter

may drive programmers to a solution in a faster way, the former

enables a stepwise path to the solution where the developer

decides at every step the direction to follow, becoming more

aware of the impact that those decisions have on the solution.

Several approaches take into account the context in which the

user is writing code in order to provide API usage recommenda-

tions. Keyword programming in Java (Little and Miller, 2007) is a

technique that can be used to obtain type-correct code expressions

that use an API from keywords typed by the API user, reducing the

burden of having to remember the exact names of identifiers and

forms of composition. The Strathcona tool (Holmes and Murphy,

2005) is capable of recommending source code examples from a

repository. The Prospector tool (Mandelin et al., 2005) synthesizes

code fragments using both the code examples of a repository and

API structural information. MAPO (Zhong et al., 2009) is a tool

to mine API usage patterns that helps users to locate useful code

examples. PARSEWeb (Thummalapenta and Xie, 2007) is a tool

that also relies on searches on code repositories, where users may

write queries that provide a source and destination type in order

to obtain relevant method-invocation sequences.

In Bruch et al. (2009) , the authors propose to modify how

code completion menus order the proposals, based on a previous

automated API usage learning process from source code reposi-

tories. The operations that are most likely to be used given the

current context have higher priority (appearing first in the list of

proposals). APISTA (Santos et al., 0 0 0 0) is a tool for code com-

pletion capable of recommending subsequent calls to complete

API sentences, based on training n-gram language models built

from source code repositories. The focus in that system is to

predict the next instruction that a programmer is likely to write

given the immediate context (instructions written before the code

completion is requested).

The main drawback of the approaches based on source code ex-

amples is that they are dependent on the existence of such a cor-

pus and on its quality. Therefore, for APIs that were recently cre-

ated or for which there is a limited collection of examples (cover-

age and amount), these approaches will not be effective. Another

aspect that differentiates our approach is that Dacite reveals all the

forms that API designers intended for an API task to be accom-

plished, instead of only the most frequently used ones. Approaches

for recommending related functions (e.g., Saul et al., 2007; Long

et al., 2009) generate associations between functions based on

static analysis of the API implementation, not relying on source

code corpora or additional documentation artifacts. However, these

approaches were designed for procedural programming (C lan-

guage), without taking into account the characteristics of object-

oriented APIs. On the other hand, (Robillard, 2005) proposes auto-

matic suggestion of object-oriented program elements of potential

interest for developers. Although this approach could be used for

API discovery, it was designed for program maintenance in general.

The eMoose tool (Dekel and Herbsleb, 2009) adds directives

about API usage (i.e. rules or caveats about certain API operations).

Directives are written by API developers in free-form documenta-

tion text that is not strongly linked to the source code. IDEs can

then decorate in the code editor the operation calls that have as-

sociated directives, raising API users’ awareness of their presence.

However, directives do not aid API users with discoverability.

The extension method mechanism of C# partially addresses the

difficulty related to the discovery of helper methods. Extension

methods enable external classes to define static methods that can

be used as if they were instance methods of another type, facilitat-

ing exploration and code completion. However, the possibility of

using the extension methods in that way is only activated once the
PI user writes the import declaration

3 of the package in which

he extension methods are declared. Therefore, the problem of

aving to know which package to import, which may be unknown

o the API user, still results in a discovery barrier, given that

ithout knowing about the package beforehand this mechanism

annot help the user to discover the helper methods. In con-

rast, the code completion proposals of Dacite do not require the

rogrammer to write the relevant import statements previously.

The IDE IntelliJ IDEA (JetBrains, 2014) provides code completion

roposals on assignment by searching on the projects’ build path

or static methods that return a compatible type. Although these

roposals cover static factories, no support is given regarding

actory methods, helper methods, or object composition, which

re supported by Dacite.

. Approach overview

We address the API discovery difficulties identified in the

tudies detailed previously, providing an innovative approach

hat consists of annotating APIs with additional information that

s processed by IDEs, which in turn, provide code completion

roposals that help to discover API elements.

Fig. 2 presents an overview of our approach, for which we

ave implemented a proof of concept for Java and the Eclipse IDE.

acite annotations are used by API designers on libraries they

wn, inserting the annotations into their source code (a concrete

xample is shown in the upper part of Fig. 1). The annotation pro-

essor validates annotation usage, producing compile-time errors

hen they are used incorrectly. Validations are an important issue,

iven that a design annotation used incorrectly would significantly

onfuse the API user by providing misleading or even incorrect

ecommendations. The annotation processor also extracts informa-

ion from the annotations, outputting descriptors that conform to a

chema for describing design elements. Each descriptor is bundled

ogether with the library package. In some cases it will be useful

o annotate an API externally (as opposed to internally), such as

hen the API cannot be modified due to not having its ownership.

hird-party developers may define external annotations by writing

escriptors of design elements. Both internal and external de-

criptors of the available APIs are gathered in an in-memory index

oaded by the IDE. The index contains entries that encode asso-

iations (structural element �→ design element), for instance, repre-

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 21

s

a

c

w

t

(

m

o

A

d

d

A

w

d

t

p

i

i

A

T

t

i

t

4

a

t

a

p

(

a

t

c

t

e

A

t

t

d

r

i

i

t

c

s

I

T

s

a

a

f

p

t

b

l

d

C

Fig. 3. Example of design element descriptor representing a static factory annota-

tion.

r

a

a

4

d

s

f

c

m

e

t

t

t

T

e

i

r

e

(

J

b

m

a

p

a

t

t

5

m

h

a

t

S

G

u

(

u

2

s

e

m

d

enting that a given class (structural element of the API) embodies

 factory (design element). The Dacite IDE plugin provides code

ompletion proposals to API users based on the index information.

Annotations are a form of metadata for enriching source code

ith additional information. In the presence of non-obvious rela-

ions between API types, API designers annotate relevant members

types, methods, constructors, and parameters), explicitly docu-

enting the design with specific annotation types for each type

f design decision. For instance, the API designer may annotate an

PI type as representing a factory. Section 5 presents in detail the

ifferent annotations of Dacite, how they can be applied by API

esigners, and which code completion proposals are presented to

PI users.

The number of design annotations that an API designer must

rite is directly related to the API size and the number of design

ecisions that involve using the API in non-obvious ways. Given

hat the number of designers of an API is likely to be very small

roportional to the number of its users, the additional work involv-

ng the design annotations has a potentially large impact, because

t will bring benefits to the large population of API users. Several

PIs with design annotations can be used simultaneously by users.

his does not impose scalability issues regarding the code comple-

ion proposals, because the number of proposals that are presented

s directly related to the number of annotated design decisions

hat involve the specific API type with which the user is working.

.1. Implementation

In Java, annotations are treated like types (syntactically, they

re preceded by an “@”), and hence, they are type-checked by

he compiler. Further, annotations may have parameters whose

rguments hold values. When defining annotation types, it is only

ossible to specify on which kind of member they may be applied

e.g., method, constructor, parameter, etc). However, Dacite’s design

nnotations require more complex validations when applying them

hat we check. For example, the annotation @StaticFactory
an only be applied to a public static method returning a reference

ype. These validations are performed by the annotation processor,

mitting compiler error messages when violations are detected.

nnotations may have different retention policies, which imply

hat they are encoded in the binary .class files or not. Given

hat the information embodied in the annotations is stored in the

escriptors of design elements (recall Fig. 2), annotations are not

equired to be present at runtime 4 (all the relevant information

n gathered in the index). We developed the annotation processor

n Java through the provided standard infrastructure for extending

he compiler with respect to annotation handling.

We developed a prototype plugin for the Eclipse IDE using its

ode completion extensibility mechanisms, allowing several APIs

upplied with design annotations to be used simultaneously. The

DE code completion proposals are based on the in-memory index.

he index is populated with the information provided in the de-

criptors of design elements, which are XML files that encode the

nnotations on the structural members of the API. Fig. 3 presents

n example excerpt of a descriptor to annotate a static factory. So

ar, we have not developed a specialized editor for external third

arties to use to annotate APIs externally, but this would be easy

o achieve in the future.

For internal API annotations, the descriptors that are produced

y the annotation processor are packaged in the JAR file of the

ibrary. In order to populate the index, the IDE looks up for

escriptors in all the JAR files available in the build path. With
4 In Java, this is equivalent to an annotation retention policy of either SOURCE or

LASS .
espect to external annotations, descriptors are provided separately

s Dacite plugins (no code has to be provided), which are loaded

t runtime by the IDE and are also used to populate the index.

.2. Interface for API users

From a user perspective, there could be Dacite plugins for

ifferent IDEs, which make use of the design annotations in the

ame manner given that the annotation types are independent

rom the IDE plugin. API users are provided with the additional

ode completion proposals in the form of existing interactive

echanisms (as shown in Fig. 1), integrating seamlessly with

xisting IDE facilities for code completion. API users do not need

o be aware of the design annotations in order to benefit from

he code completion proposals. These proposals take into account

he code editing context in which the API user solicits proposals.

here are two types of context, namely when a certain type is

xpected (e.g., on assignment) and when a compatible operation

s expected (e.g., on invocation):

List list = (expected type)

list. (expected operation)

In the case of an expected type , it is appropriate that the IDE

ecommends expression proposals which are compatible with the

xpected type, i.e. that evaluate to the same type or a subtype of it

covariant). For instance, in the assignment above (considering the

ava API), the expression after the equals sign could, for example,

e an instantiation of ArrayList or LinkedList (both imple-

ent the interface List). On the other hand, in the presence of

n expected operation it is appropriate that the IDE recommends

roposals of operations available for the type, including the avail-

ble operations of its supertypes. In the example above, not only

he operations of List are appropriate to recommend, but also

he operations of Collection and Iterable (supertypes).

. Design annotations

This section describes the design annotations we have imple-

ented so far. Each annotation is explained in terms of its purpose,

ow it can be used, and how the information it embodies can

ssist API usage. We use diversified examples from existing APIs

hat are widely used, such as Java’s standard libraries, Eclipse’s

tandard Widget Toolkit 5 (for developing graphical user interfaces),

oogle’s Guava libraries 6 (that offer additional data structures and

tilities to complement Java’s standard libraries), and JFreeChart 7

for drawing various kinds of charts in a Java Swing application;

sed in our Section 7 and previous (Duala-Ekoko and Robillard,

012) user studies). We present the original type names and

ignatures (possibly omitting irrelevant parameters), as well as

xcerpts of the source code comments of their Javadoc docu-

entation when relevant. Occasionally, we underline parts of the

ocumentation text to emphasize the relation to our annotations.
5 www.eclipse.org/swt .
6 github.com/google/guava .
7 www.jfree.org/jfreechart .

http://www.eclipse.org/swt
http://github.com/google/guava
http://

22 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Fig. 4. @StaticFactory : validations, proposals, and example usage.

m

r

s

o

J

c

t

a

s

r

m

J

b

a

t

t

e

d

t

u

b

a

f

f

S

e

(

t

a

T

d

a

s

t

a

m

t

a

@

s

r

s

w

5.1. Static factories

The normal and simplest way to create objects of a certain

class is to use an available constructor of that class. However, the

solution to certain design problems may disallow having public

constructors in favor of static factories (Bloch, 2008). These are

static methods that create or obtain objects of a certain type,

enabling developers to control class instance creation in a more

flexible way. For instance, a static factory method may be used to

implement a design solution based on the flyweight or singleton

patterns (Gamma et al., 1995). Static factories may be located in

the class whose type matches their return type, but often they are

located externally in another class. As examples of static factories,

Java’s SocketFactory has a static method getDefault()
for obtaining the default socket factory, JFreeChart has a class

ChartFactory that contains several static factories for creating

the different kinds of charts.

In order to enable API designers to annotate static factories, we

provide the annotation @StaticFactory . Fig. 4 describes this

annotation in terms of the validations regarding where it can be

applied, the code completion proposals that are implied by using

the annotation, and an example of using the annotation on Java’s

SocketFactory class.

The information pertaining to static factories can be used by

the IDE whenever code completion is requested on any location

where the created object is compatible with the expected type

(e.g., variable assignment SocketFactory sf =). These

recommendations aid the API user in discovering static factories,

whose location might not be obvious.

Given that often a class may contain several static factories

that return objects of the same type (or subtypes), we also provide

an annotation @StaticFactories that can be used to annotate

a class to denote that several static methods in that class are

static factories, avoiding having to annotate each method. In this

case, one has to specify in an annotation parameter the types that

should be considered to match the static factories.

5.2. Factory methods

The design patterns factory method and abstract factory (Gamma

et al., 1995) are appropriate when there is a need to abstract

the creation of particular object types, enabling client code not

to depend on the concrete classes of the created objects. These

solutions offer reuse and flexibility because new object types

can seamlessly be integrated in a system without changes to the

factory clients. A factory method is an abstract method that is
eant to be implemented in concrete methods, which possibly

eturn objects of a covariant type. An abstract factory groups

everal factory methods, providing an interface for creating related

bjects without specifying their concrete classes. As an example,

ava’s SocketFactory class consists of an abstract factory, which

ontains several factory methods for creating network sockets.

In order to enable API designers to annotate (non-static) fac-

ories and their methods, we provide the annotations @Factory
nd @FactoryMethod . The former is used to annotate an ab-

tract class or an interface, meaning that the corresponding type

epresents a factory. The latter is used to annotate the factory

ethods of a factory type. Fig. 5 describes these annotations, using

ava’s SocketFactory as an example. Although a class could

e considered a factory simply if it contains at least one method

nnotated with @FactoryMethod , we decided to enforce using

he @Factory annotation on the type because it corresponds

o a well-defined role of the Abstract Factory pattern (Gamma

t al., 1995), and hence, marking the type as such is useful for

ocumentation purposes.

As with static factories, the IDE can make use of the informa-

ion provided by these annotations in order to recommend the

sage of a factory. However, the case is slightly more complex,

ecause instead of a direct call (static) to obtain the desired object,

 factory object itself has to be obtained first, so that one of its

actory methods can then be invoked on it. In this way, when

or example code completion on assignment is requested (e.g.,

ocket s =), the proposals consist of obtaining a refer-

nce to a factory object that is able to create the desired object

 SocketFactory in this example). However, in accordance to

he abstract factory pattern, the factory type will most likely be

n abstract type, while several concrete factories are available.

herefore, a reference to the factory object may be obtained using

ifferent mechanisms (e.g., a constructor call or a static factory),

nd this step may consist of another discoverability hurdle. For in-

tance, in the given example, a SocketFactory may be obtained

hrough two static factories (one shown in the previous example

nd another in a different class, SSLSocketFactory). This is a

otivation for why the IDE only fills in one recommendation at a

ime, as illustrated in Fig. 10 .

Similarly to the case of static factories, abstract factories can

lternatively be specified using an optional parameter on the

Factory annotation. This parameter indicates which types

hould be considered to match factory methods, in order not to

equire each factory method to be annotated individually. For in-

tance, in SocketFactory there are actually 5 factory methods

hose return type is Socket .

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 23

Fig. 5. @Factory and @FactoryMethod : validations, proposals, and example usage.

5

n

p

f

c

t

o

p

d

a

e

F

t

p

n

c

o

c

s

T

t

d

t

t

m

o

t

e

b

s

l

I

5

u

t

S

t

s

t

d

w

m

p

i

a

i

i

m

c

a

h

o

m

a

w

r

t

a

h

@

o

t
.3. Builder objects

Both standard constructors and (static) factory methods do

ot scale well when facing the need of having a large number of

arameters, some of which may be optional. The problems stem

rom requiring several constructor variants, which can easily be

onfused, both by implementers and consumers, especially due to

he absence of named parameters. A builder (Bloch, 2008) is an

bject whose purpose is to assist the construction of another, com-

lex object (we are not addressing the Builder pattern exactly as

escribed in Gamma et al. (1995) , but a simpler and frequent vari-

tion of it). One may use a builder to address the described param-

ters problem, or to guarantee safe creation of immutable objects.

or instance, in Google’s Guava libraries, several immutable collec-

ion types (e.g., ImmutableList) have static member classes im-

lementing builders. A builder class always has a method typically

amed “build” or “create” that returns the object that it constructs.

As with factories, using object builders requires that objects

annot be created in the most obvious way, i.e., using a constructor

f their class. Moreover, most likely the builder classes are not ac-

essible from the class of the objects they create. Due to these rea-

ons, the discovery of builders may also be a barrier for API users.

he “build” method resembles a factory method, but given that the

ypical way object builders are used in client code is significantly

ifferent than factories, we decided to have a dedicated annota-

ion for these. Therefore, we provide the annotation @Builder
o mark object builders. This is done by annotating the “build”

ethod of a builder class, denoting that such class is a builder

f objects of the type equal to its return type. Fig. 6 describes

his annotation using Guava’s ImmutableList builder as an

xample.

As with factories, the IDE can recommend the use of a

uilder on expected type code completion requests. For in-

tance, on assignment to a variable of type List (e.g., List
 =), recommendations include a proposal to instantiate a
mmutableList.Builder . t
.4. Helper methods

Often API designers place helper methods (also referred to as

tility methods) that are essential or useful to objects of a certain

ype on classes other than the ones that implement that type.

uch design options have their advantages, which may be related

o information hiding or reuse. However, as found by previous

tudies (Stylos and Myers, 2008), placing the methods external

o the types where they are useful hinders API learnability and

iscoverability because API users typically use the types they are

orking with as starting points.

We provide the annotation @Helper to associate helper

ethods with other types. The annotation is used on a single

arameter of the helper method, denoting that the owner method

s a helper for the annotated parameter’s type. We decided to use

 parameter annotation rather than a method annotation because,

n the presence of several parameters, it would not possible to

nfer which parameter would represent the type to which the

ethod is a helper (without resorting to a convention that would

ompromise flexibility). Fig. 7 describes this annotation using as

n example JFreeChart’s ChartUtilities class to denote a

elper method which saves the chart as a PNG image.

Since users will often use autocomplete to try to discover

perations on a given variable, the IDE can include the helper

ethods based on the information provided by the annotations,

long with the available instance operations. Using this example, if

e have a variable compatible with the type JFreeChart , when

equesting code completion on expected operation (chart.),

he proposals include the static methods that are applicable

ccording to the annotated type.

Given that it is common to find classes that contain several

elper methods for a same type, we provide the annotation

HelperClass to annotate a class containing helper meth-

ds. The annotation requires a parameter to indicate which

ypes will be considered as targets of the helper methods con-

ained in the class. For instance, in the JFreeChartAPI there is

24 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Fig. 6. @Builder : validations, proposals, and example usage.

Fig. 7. @Helper : validations, proposals, and example usage.

Fig. 8. @Parent : validations, proposals, and example usage.

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 25

Fig. 9. @Decorate : validations, proposals, and example usage.

t

m

j

m

5

(

w

t

u

t

t

t

w

i

t

C

c

c

c

t

t

t

t

w

v

t

o

5

(

b

r

I

c

w

t

t

r

Table 1

Design annotations and their relation to API discoverability questions

(detailed in Section 2).

Question Annotations

A (object creation) @StaticFactory , @Factory , @Builder
B (helpers) @Helper
C (type relations) @Parent , @Decorate

a

r

t

S

i

(

5

i

c

c

q

t

b

6

a

t

i

a

m

e

p

l

f

6

t

c
he ChartUtilities class that contains more than 15 helper

ethods for JFreeChart objects. As another example, the

ava.util.Collections class also contains several helper

ethods for List and Collection objects.

.5. Object composites

When designing solutions based on the composite pattern

 Gamma et al., 1995), hierarchical tree structures are formed,

here parent objects hold child objects of different classes

hrough a uniform interface. The concrete child objects’ types are

nknown to the parent object, and therefore, despite the fact that

hey all have a common supertype, it is not obvious which child

ypes a composite object may hold. For instance, in SWT’s widgets,

here is the widget type Composite , which may hold child

idgets of type Button , Label , Text , etc., and Composite
tself. However, the operations of Composite do not enable users

o add children directly (that is, there is no “add” method on the

omposite). Instead each child must be included in the parent

omposite by passing a reference to the parent when the child is

onstructed. Given that the parent types have no direct dependen-

ies to their child types, it might not be obvious to API users which

ypes of children a certain composite type may have or how to add

hem.

We provide the annotation @Parent for making explicit in

he child role the relationship to its parent object. Fig. 8 describes

his annotation using the Button class of the hierarchy of SWT’s

idgets. In this example if code completion is requested on a

ariable of type Composite (comp.), the proposals include

he creation of a Button object using the variable as the parent

bject (new Button(comp, ...)).

.6. Object decorators

Also as a form of object composition, the decorator pattern

 Gamma et al., 1995) enables an object to be adapted at runtime

y wrapping it in a decorator object. As with composites, deco-

ator types are often not accessible using the documentation or

DE from the types they are able to decorate. Since a decorator is

apable of modifying the behavior of an object of a certain type,

e argue that references of that type are natural starting points

o discover the functionality offered by the decorators. We provide

he annotation @Decorate for making explicit in the decorator

ole the relationship to the decorated object. Fig. 9 describes this
nnotation using a method of Java’s Collections class to deco-

ate a Set so that it becomes wrapped in an immutable view. In

his example, if code completion is requested on a variable of type

et (set.), the proposals include the invocation the decorator

nstantiation operation using the variable as the decorated object

 Collections.unmodifiableSet(set)).

.7. Summary

The annotations presented in this section consist of structured

nformation that documents design decisions. The information

an be consumed by an IDE in order to assist API users with dis-

overability difficulties (see Section 6). In Section 2 we described

uestions related to API discoverability hurdles that were iden-

ified in empirical experiments. Table 1 summarizes the relation

etween the provided annotations and those discoverability issues.

. IDE integration

This section explains how IDEs may gain leverage from design

nnotations. We illustrate the code completion mechanisms with

he Dacite plugin that we developed for Eclipse. As explained

n Section 4 , the plugin makes use of the design annotations to

ssist API users, capitalizing on two existing code completion

echanisms that operate on the contexts mentioned earlier –

xpected type and expected operation . In this way, code completion

roposals that originate from the design annotations are seam-

essly integrated with the existing IDE facilities, which are already

amiliar to users.

.1. Expected type proposals

In Eclipse, expected type proposals can be requested from

he IDE when writing an assignment statement by typing

ontrol-space. In order to illustrate expected type proposals,

26 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

1

2

3

regular
Javadoc

Previous step
proposal

Static factory
proposals

Factory method
proposals

Fig. 10. API usage assistance in an expected type context. Illustration based on the examples introduced in Sections 5.1 and 5.2 . (1) Proposal to obtain a SocketFactory
to create Socket objects; (2) proposals to obtain the SocketFactory via static factories; (3) proposals to use the factory methods to create the socket.

g

a

o

t

c

t

6

m

v

u

o

o

v

a

a

e

o

w

o

w

p

i

w

f

u

a

a

p

t

u

a

i

v

w

a

C

a
we present a user interaction example in Fig. 10 , involving Java’s

SocketFactory class which we mentioned earlier. Assume that

the static factory and factory methods related to this part of the

API are annotated as in the code snippets of Sections 5.1 and

5.2 .

As a starting point, in step 1 of Fig. 10 , the user is writing an

assignment to a variable of type Socket , whose instances can be

created through a factory (SocketFactory). When requesting

code completion assistance, the user is presented with a proposal

for obtaining a reference to an object of type SocketFactory .
This proposal is derived from the fact that this type has factory

methods (@FactoryMethod) that return references that are

compatible with the expected type. This proposal leads the user

to the accomplishment of a previous step (obtaining the factory).

When accepting the proposal, the reference initialization instruc-

tion for the factory type is inserted before the instruction where

the request was triggered, and the required import declaration is

inserted in the class header if not present. A complete instruction

is not inserted, as there might exist more than one way to obtain

a compatible factory object. In step 2, the user again requests code

completion assistance, this time for obtaining a SocketFactory
reference. Given that there are static factories (@StaticFactory)
on two classes (SocketFactory and SSLSocketFactory),
the system provides two proposals, one for each. After selecting

one of the proposals, the code is inserted on the right-hand side

of the assignment. At this point, the user has completed the

recommended previous step of acquiring a reference to a relevant

factory. In step 3, the user requests code completion assistance

as in step 1 once again, returning to the initial goal of creating

a Socket object. At this point, given that there is an available

reference for an appropriate factory, the proposals consist of using

that reference to create the desired object through the factory

methods which are available. Note that the Dacite code completion

proposals change depending on the context with respect to other

code that is already above the invocation point.

The design element involved in each proposal appears in

the documentation tooltip, accompanied by the regular Javadoc

contents for the API element. As in conventional settings, these

tooltips assist the user in making decisions regarding which el-

ements to use. An alternative to the adopted stepwise approach

(suggesting previous steps) would be to suggest the factory obtain-

ment and factory method usage as a single step (e.g., as in Calcite

(Mooty et al., 2010) and API Explorer (Duala-Ekoko and Robillard,

2011)). We decided to decompose the process as explained here,
 w
iven that in cases where several factory types and methods exist,

 large number of proposals would be presented to the user at

nce. Calcite does not have this problem since it provides only

he most popular operations to create objects, rather than the

omprehensive technique here, which provides users with all of

he relevant operations provided by the API developers.

.2. Expected operation proposals

In Eclipse, when manipulating a reference type variable, users

ay request code completion assistance for manipulating that

ariable to see all of the available operations. The fact that the

ser wrote the variable name can be interpreted to mean that he

r she wants to do something with it. Based on this assumption,

ur system adds additional code completion proposals where the

ariable can be used as a parameter by annotated helper methods

nd object compositions.

Regarding the helper methods (see Fig. 11), the Dacite plugin

dds additional proposals interleaved with the regular type op-

ration proposals. The proposals appear according to alphabetical

rder, considering the name of the helper method. In the example,

e can see that the user wrote an “s” after the dot for invoking an

peration on chart , and that the two helper methods (that start

ith an “s”) are being recommended. When accepting one of these

roposals, the line of code that the user is writing is “tweaked”

n order to form a method call instruction that uses the variable

hich the user is working with. The user is then responsible

or filling in the remaining parameters. Although it is somewhat

nusual for a code completion action to “tweak” the code that has

lready been written, the alternative is to simply add comments

s in Calcite (Mooty et al., 2010), but that requires the API user to

erform edits manually that the IDE is able to do automatically.

With respect to object composition proposals (see Fig. 12),

he Dacite plugin introduces object creation proposals on the

pper part of the code completion menu. This group of propos-

ls is sorted alphabetically according to the name of the class

nvolved the proposal. In the example, we can see that for the

ariable composite , the plugin recommends the creation of

idgets (Button , Group , etc.) having the composite object

s parent, as well a proposal recommending the creation of a

ontrolDecoration object. As with helper methods, when

ccepting a proposal of this kind, the line of code that the user is

riting is “tweaked” in order to form an instruction that invokes

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 27

Helper method
proposals 1

2

regular
Javadoc

Regular
operation
proposals

Fig. 11. API usage assistance regarding helper methods in an expected operation context, illustrated with the example of Section 5.4 . (1) Proposals of helper methods for the

JFreeChart type; (2) code insertion of the selected proposal.

Object
composition

proposals

Regular
operation
proposals

regular
Javadoc

1

2

Fig. 12. API usage assistance regarding object composition in an expected operation context, illustrated with the example of Section 5.5 . (1) Proposals of object compositions

for the Composite type; (2) code insertion of the selected proposal.

a

p

7

i

t

a

p

D

q

g

7

a

b

r

D

a

a

u

p

t

d

p

e

7

E

t

r

i

t

e

b

s

t

e

(

g

a

a

g

s

t

p

a

r

i

c

b

p

r

e

o

s

o

r

i

c

e

m

p

d

D

t

s

t

b

t

t

s

t

t

A

q

a

a

i

 constructor of the recommended class using the variable as a

arameter.

. Evaluation

Section 6 provides evidence that our features would be useful

n helping developers answer discovery questions, but it remains

o be shown that our design is usable. Therefore, we conducted

 user study where programmers were asked to accomplish

rogramming tasks on unfamiliar APIs. Our hypothesis was that

acite’s mechanisms would help programmers discover the re-

uired information about the APIs and therefore accomplish the

iven tasks more successfully.

.1. Method

The study was composed of two programming tasks, each on

 different API that was unfamiliar to the participants. We used a

etween-subjects design for each task, with a control group using

egular Eclipse and an experimental group using Eclipse with the

acite plugin.

We recruited participants from both institutions to which the

uthors of this paper are affiliated (Carnegie Mellon University

nd University Institute of Lisbon). Even though conducted at

niversities, we only accepted participants who were experienced

rogrammers. Study participants were recruited at our institutions

hrough mailing-list posts and direct invitation or recommen-

ation from previous participants. In a pre-study questionnaire,

articipants indicated they had on average 4 years of programming

xperience with Java. Using a 7-point Likert scale (1–very little,

–very much), we asked participants how familiar they were with

clipse (median response 5) and how often they use code comple-

ion menus (median response 6). Given that previous experiments

evealed that the answers given by participants in questionnaires

s not always reliable (Siegmund et al., 2014), before performing

he actual study tasks, participants were screened on-site to

nsure that they had reasonable programming experience in Java

y requiring them to accomplish a small warm-up task. Three

tudy candidates were excluded after failing or taking excessive

ime to accomplish the task (i.e. more than 10 min, given that the

xpected time was 2 min). This resulted in 16 actual participants

10 males, 6 females) with ages ranging 21–35. The academic back-
round of participants was distributed among Computer Science

nd Engineering, Information Systems, and Telecommunications

nd Networks. There were 10 participants enrolled or recently

raduated from an MSc program, and 6 participants who were PhD

tudents. Participants were compensated for their participation in

he study with 15 American Dollars (USA) or 10 Euro (Portugal).

The study sessions took place on both sites using the same

rocedure. The tasks were performed on a Mac computer with

 21-inch screen, using Eclipse 4.2. Study sessions were screen-

ecorded for detailed analysis. Each participant performed one task

n the control condition and the other task in the experimental

ondition. (We classify this as a “between subjects” experiment

ecause in the results below, we compare only by task, not by

articipant – that is, we compare the 8 control and 8 experimental

esults for the JFreeChart task, and separately the 8 control and 8

xperimental results for the JAXP task. Since the tasks were not

f identical difficulty, it would not have been valid to compare a

ingle participant’s results from the two tasks.) The assignment

f participants to the two tasks and different conditions was

andomized, considering that each task would have 8 participants

n each condition, 4 of which performing first in the control

ondition and the other 4 participants performing first in the

xperimental condition, counter-balancing the condition order to

inimize possible learning effects.

Before carrying out the task in the experimental condition,

articipants were given a 3–5 min walk-through tutorial in or-

er to demonstrate the types of code completion proposals that

acite could suggest. The tutorial was carried out by participants

hemselves and the examples were based on classes from the

tandard Java API (e.g., collections, sockets), which do not relate to

he classes used in the study. Therefore, the study tasks were not

lind experiments in that the participants knew which condition

hey were in. We felt that it was necessary to inform them about

he new kinds of code completion so that they would not be

urprised when facing them during the tasks. However, although

his may have biased the participant’s reported opinions about

he tool, we do not feel it impacted the performance measures.

fter the study session, each participant filled in a post-study

uestionnaire containing subjective questions related to the us-

bility and desirability of Dacite’s code completion proposals

nd open questions concerning feedback and suggestions for

mprovement.

28 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Fig. 13. Possible solution for the JFreeChart task.

Fig. 14. Possible solution for the JAXP task.

Table 2

Success rate of task completion.

Task Control Experimental

JFreeChart 3 / 8 (37 .5%) 7 / 8 (87 .5%)

JAXP 5 / 8 (62 .5%) 8 / 8 (100%)

p

t

j

l

D

f

o

t

S

r

t

H

o

7

W

a

t

g

g

c

t

t

t

o

c

l

t

s

a

r

w

t

8 We used the melogit package of the statistical environment R .
7.2. Study tasks

We used the same tasks as in the exploratory study (Duala-

Ekoko and Robillard, 2012) mentioned in Section 2 , given that

many of the API discoverability issues that we address with Dacite

were identified in the context of those tasks. The tasks required

using two different APIs, which we refer to as “JFreeChart” and

“JAXP”.

The tasks were described on a sheet of paper. A task de-

scription walk-through was given by the session supervisor in

order to make sure that participants understood the task goals

correctly. While performing the tasks, participants could not use

the Web, but were provided offline with the Javadoc for the APIs.

This ensured that the subjects only used the official standard

documentation for the APIs. For each task, the main API package

of interest was indicated to the participants, so we could focus

on the discoverability of classes and methods within the package.

We have been asked why we did not allow the participants to use

search engines on the Internet during the study. For both tasks, the

correct answer is readily available as a top search result, so this

would not have measured the participant’s ability to understand

and use Dacite, which is the goal of the study.

Participants were given a maximum of 30 min to accomplish

each task. If the participants indicated they thought they were

done before the time expired, the session supervisor checked if

the task was correctly completed, and if not, the participant was

asked to continue working on it.

7.2.1. JFreeChart

This API renders charts in Java Swing windows. The program-

ming task consisted of rendering a pie chart with a given data

in a window and saving that same chart into a PNG image file.

The code snippet in Fig. 13 presents one of the possible solutions

for the task, omitting the code skeleton that was provided for

launching the graphical application.

This task had 3 main discoverability hurdles where Dacite

proposals could be helpful, namely with respect to static factories

(createPieChart(...)), object composition (ChartPanel),
and helper methods (saveChartAsPNG(...)). Although we did

not anticipate that obtaining the dataset (first instructions) would

consist of a barrier, since there was no “hidden” information with

respect to dependencies, we noticed during the study sessions

that this step did pose a barrier for some of the participants.

7.2.2. JAXP

This API addresses XML processing (construction, parsing,

validation, etc.). The programming task required validating a given

XML file against a given XML Schema. The code snippet in Fig. 14
resents one of the possible solutions for the task, also omitting

he given code skeleton, which included instantiated File ob-

ects with the paths to the necessary files and the XML Schema

anguage version identifier.

This task also had 3 main discoverability hurdles where

acite proposals could be helpful, namely one regarding static

actories (newInstance(...)) and two related to factory meth-

ds (newSchema(...) and newValidator(...)). As with

he JFreeChart task, we did not anticipate that obtaining the

treamSource object would be consist of a barrier, for the same

eason that there was no “hidden” dependencies. Again, we found

hat this step turned out to be a barrier to some participants.

owever, in this case there was an object composition proposal to

btain a StreamSource object from a file.

.3. Results

We scored each participant task as successful or unsuccessful.

e considered a task as successful if the task goal was correctly

chieved within the 30 min. We were flexible and did not require

hat the solution was done the same way that we were expecting,

iven that in both tasks there were different ways to achieve the

oals.

We found that the groups in the experimental condition were

onsiderably more successful in both tasks. Table 2 summarizes

he results for both tasks under the two conditions. Across both

asks, almost twice as many tasks were finished successfully by

he experimental groups using Dacite (15 out of 16 vs. 8 out

f 16). Only one participant failed both tasks (under the two

onditions), whereas all the other participants succeeded in at

east one task. All the participants that could not complete one of

he tasks, failed the task on the control condition.

We analyzed our results by means of a model to predict task

uccess obtained through mixed effects logistic regression (fixed

nd random effects) 8 . We considered a participant id variable

epresenting each of the study participants as a random effect,

hereas the following variables were treated as predictor factors:

ask (JFreeChart or JAXP), condition (control or experimental), order

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 29

Table 3

Usage of Dacite code completion proposals.

Task Static Factory Helper Object

Factory Method Method Composition

JFreeChart 6 / 8 — 6 / 8 3 / 8

JAXP 7 / 8 7 / 8 — 1 / 8

(

a

t

w

m

t

c

o

b

d

T

s

s

o

p

s

m

p

o

=

o

n

b

b

7

o

o

b

t

p

t

t

t

t

d

c

w

f

c

c

u

t

t

c

l

t

t

b

p

fi

w

t

t

t

c

o

c

J

a

7

h

b

i

o

a

e

p

b

t

m

t

i

t

t

u

n

m

D

b

t

c

m

c

n

7

e

a

s

t

w

a

c

o

m

w

g

b

a

c

7

7

w

w
performing first or second under the experimental condition). We

lso considered an additional interaction variable task × condition

o verify if the effect of being under the experimental condition

as not reliably different among tasks.

The regression model revealed that being under the experi-

ental condition was a strong predictor of being successful in

he task (p-value = 0.0252). Therefore, we conclude that our tool

ontributed to the success of accomplishing the tasks, namely on

vercoming the discovery barriers. This is backed up by the num-

er of participants under the experimental condition that used the

ifferent types of proposals offered by Dacite (when applicable).

his information was gathered from analyzing the recorded ses-

ions and we summarize it on Table 3 . On the JFreeChart task, the

tatic factories and helper method proposals were used by most

f the participants (6 out of 8), whereas the object composition

roposals were less used (3 out of 8). On the JAXP task, both the

tatic factories and the factory method proposals were used by al-

ost all participants (7 out of 8), whereas the object composition

roposal was used by a single participant.

The regression model also revealed that: (a) the greater success

f accomplishing the JAXP task was marginally significant (p-value

 0.0533), indicating that this task was somewhat easier; (b) the

rder in which participants performed on the two conditions had

o impact on the results (p-value = 0.9014); and (c) the effect of

eing under the experimental condition was not reliably different

etween the two tasks (p-value = 0.1612).

.4. Observations

By analyzing the sessions’ recordings, we collected a number

f observations that either explain some of the obtained results

r provide further insights regarding difficulties or participants’

ehaviors.

We observed that with the JFreeChart task when using Dacite,

here were two participants that made use of a single code com-

letion proposal, whereas regarding the JAXP task using Dacite

here was only one participant that did not use any code comple-

ion proposals. By taking a closer look at the recordings, we found

hat these participants spent most of their time navigating through

he Javadoc API documentation in the browser. These participants

id not come across most of the relevant proposals simply be-

ause they requested code completion rarely, even though they

ere explicitly told during the tutorial that additional proposals

rom Dacite would be available. One of these three participants

ould not complete the JFreeChart, whereas the other two were

omfortably successful (< 15 min.).

We conclude that the object composition proposals were less

sed because in JFreeChart some participants found by themselves

he relevant class that Dacite would recommend when browsing

he documentation (still, 3 out of 8 used Dacite’s proposals suc-

essfully). In the case of JAXP, the object composition case was

ess critical for accomplishing the task and participants tended not

o request code completion proposals for it. Therefore, we believe

he non-use of Dacite’s features in these cases does not reflect

adly on Dacite’s usability with respect to object composition

roposals.

We surprisingly found that many of the participants had dif-

culty and spent considerable time in dealing with the situation
here they were faced with API calls involving parameters whose

ype was an API interface (cases mentioned in Section 7.2). Having

o browse the documentation to find an appropriate implementa-

ion of the interface was generally time-consuming, and in some

ases revealed some participant disorientation while trying to

vercome this difficulty. This issue is not about hidden dependen-

ies, since all the necessary navigation links were available in the

avadoc, but perhaps due to a lack industrial experience involving

spects of object-orientation pertaining to abstract types.

.5. Post-study questionnaire

In the post-study questionnaire, participants were mostly

ighly positive towards the code completion proposals provided

y Dacite. Table 4 summarizes the results of the questions pertain-

ng to the usability and usefulness of Dacite. Answers were given

n a 7-point Likert scale, and the table presents median values

nd median absolute deviation (MAD).

The questionnaire included an open question for participants to

xpress what they liked the most regarding the code completion

roposals. Four participants mentioned issues related to the possi-

ility of being able to discover API methods not accessible through

he variable that is being manipulated, and two participants

entioned that the type inference and adaptation to the code that

he user is writing was efficient.

The questionnaire also included an open question for partic-

pants to indicate drawbacks and suggest possible improvements

o the code completion mechanisms. Three participants expressed

he desire to have code completion aids to help choose a partic-

lar interface implementation, possibly taking into account the

earby variables. Two participants expressed the desire to have a

ore obvious visual distinction between the regular proposals and

acite’s ones, such as through visual elements such as icons and

ackground colors.

In informal post-study conversations we became aware of

wo situations where participants successfully applied a Dacite

ode completion without noticing it, both pertaining to helper

ethods. This may be considered as anecdotal evidence that the

ode completion “tweaks” are so smooth that sometimes they are

ot even noticed.

.6. Discussion

The results indicate that the Dacite mechanisms are usable and

ffective for helping participants overcome the targeted discover-

bility problems. Further, the presence of the Dacite mechanisms

ignificantly improved the success of the participants with respect

o task accomplishment. Participants in the experimental condition

ere able to successfully use the Dacite proposals in several situ-

tions as evidenced by data given on Table 3 . Especially the code

ompletion proposals pertaining to static factories, factory meth-

ds, and helper methods were clearly useful and usable, given that

ost of the participants using Dacite made use of them. Therefore,

e conclude that the greater success rate of the experimental

roup was due to the aid provided by Dacite’s proposals.

The high scores obtained in the subjective evaluation (Table 4)

ack up the study results, and we conclude that participants

ppreciated the added value that our code completion proposals

ould represent in real settings.

.7. Threats to validity

.7.1. Construct validity

We decided to evaluate our approach under controlled settings

hile having tasks that reflect real scenarios, i.e. a programmer

ants to achieve a certain goal using a certain API. We replicated

30 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

Table 4

Post-study questionnaire results on Dacite’s usability and usefulness (n = 16).

Question Median ± MAD

How helpful were the completion proposals related to object creation?

(1–very unhelpful, 7–very helpful) 7 ± 0

How helpful were the completion proposals related to object manipulation?

(1–very unhelpful, 7–very helpful) 6 ± 1

How confusing do you find the code completion proposals that perform small changes in the code previously written by the user?

(1–very confusing, 7–not confusing at all) 6 ± 1

Would you like to have the new type of completion proposals along with the standard Eclipse completions for your actual programming?

(1–definitely not, 7–definitely) 7 ± 0

7

f

d

b

a

i

d

s

c

m

a

p

d

s

i

n

p

d

t

8

d

(

b

p

w

w

c

e

d

a

s

o

n

G

t

i

r

c

t

a

c

t

a

H

t

v
the study tasks of a previous experiment (Duala-Ekoko and Robil-

lard, 2012), from which the discoverability hurdles were identified

(Section 2). Since the tasks were previously successfully used in

an experiment, this gave us some confidence that they would be

adequate in our case. Further, the clearly identified discoverability

hurdles stemmed from those tasks, and therefore, these would

be good candidates to evaluate if our approach would help on

overcoming the associated difficulties.

The relatively low number of study participants could give

rise to uneven control/experimental groups with respect to Java

programming skills. This led us to alternate between roles, so

that each participant would fulfil one task under each condition.

Informally, differences in Java skills seemed evenly distributed

across conditions.

We previously mentioned the unexpected difficulty involving

interfaces that some participants faced in the tasks. Participants in

both conditions faced this difficulty, and therefore this issue had

no significant impact on the results.

7.7.2. Internal validity

The selection of study participants may face a possible bias,

since some of them (roughly half) were carrying out their work

in the same or related research institute as the authors. We

believe that this fact has no impact in terms of better or worse

performance in the tasks. In order to minimize the possibility of

participants being influenced by working nearby, we made sure

that they did not have any sort of prior knowledge regarding the

project.

The performance of participants could have been different if

they were allowed to browse the Web, namely as a quest for

examples that resemble or relate to the task goal. As mentioned

above, we decided not allow participants to access the Web

since this would not be testing Dacite’s usability or effectiveness.

Furthermore, using the Web would add an independent variable

that is difficult to control. For instance, search hits of search

engine such as Google vary from day to day, and participants

would potentially obtain different search hits for the same query.

Moreover, the original study (Duala-Ekoko and Robillard, 2012)

that we replicated ran the tasks in two groups, one allowed to use

the Web and the other not, and their results concluded that there

was no significant difference in the performance of participants

(Duala-Ekoko, 2012). However, since our study was carried out

2–3 years later, the results could be different since the search hits

could potentially be significantly different now.

Furthermore, although we tested APIs that are used widely,

there are other APIs that are proprietary (and hence, examples

are not found in the Web) and that are less used (and hence,

examples might be difficult to find). Our focus was to evaluate

the usability of Dacite and the intrinsic API difficulty, which stems

from the API’s design, and therefore we minimized the presence

of extrinsic factors such as the existence of code snippets from the

Web and their search hit ranks.
.7.3. External validity

The generalizability of our results could be threatened by the

act that the study only involved two APIs, despite that their

omain was substantially different and that they were authored

y different people. However, given that most of the discover-

bility hurdles stem from the exposure of certain design patterns

n the API, and given that patterns are pervasive in software

evelopment, many other APIs will manifest those issues under

imilar contexts, and there is no apparent reason that our code

ompletion proposals would not be useful there as well.

Another threat pertains to the programming experience, and

ostly code design skills, of the participants. We believe that

 developer that has implemented solutions using the design

atterns will likely overcome the discoverability hurdles faster,

ue to the intuition gained with experience in developing similar

olutions. Although we have no available data, we argue that

t is reasonable to assume that the “average” programmer may

ot be experienced in applying design patterns. Therefore, the

articipants are likely to be representative in terms of software

evelopment skills, within the realm of junior programmers, given

hat most of them were graduate students.

. Limitations and future work

The API designs that we addressed in Dacite were partially

riven by the difficulties that were identified in previous studies

 Ellis et al., 2007; Stylos and Myers, 2008; Duala-Ekoko and Ro-

illard, 2012). The current state of our work does not cover other

ossible designs that are not captured in the API design patterns

e have addressed. Nevertheless, with respect to object creation,

e argue that we achieved a broad coverage, given that all the

reation patterns described in the design patterns book (Gamma

t al., 1995) were addressed. (Although we did not explicitly ad-

ress the prototype pattern, it can be handled the same way as the

bstract factory pattern, while Java libraries already provide some

upport for it through the java.lang.Cloneable interface and

bject clones.)

Dacite can be extended with additional annotations by defining

ew annotation types and extending the annotation processors.

iven that there is no obvious reason for new design patterns

o interfere with existing ones, the extensions would be purely

ncremental. Additional support for other design elements would

esult in having other types code completion proposals that would

oexist with the current ones. However, in our current implemen-

ation we did not consider a plugin-based solution as a structured

nd black-box infrastructure for third-party extensibility.

Adopting design annotations in API development practice

omes at the expense that API designers must write the annota-

ions. The task of including the relevant annotations is essentially

 form of structured and program-processable documentation.

owever, in contrast to regular documentation, documenting in

his manner is safer given that the annotation processor performs

erifications that reduce the chance of inconsistencies that are

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 31

m

a

w

e

r

a

d

u

c

p

c

r

l

t

t

(

d

e

t

d

r

a

t

9

w

t

w

a

w

o

i

T

f

t

A

v

C

a

fi

m

t

F

u

R

A

h

m

i

R

B

B

B

C

D

D

D

D

E

E

G

H

J

L

L

M

M

M

O

P

P

P

R

R

R

R

S

S

S

S

ore prone to occur with regular textual documentation. We

rgue that the annotations we describe here constitute a light-

eight mechanism that does not require significant development

ffort or skills. The main drawback regarding maintenance is the

isk of inconsistency with the underlying code (e.g., a missing

nnotation on a factory), a problem that is generally present in

ocumentation maintenance as well.

The structured information provided by the annotations is

seful for automating processes that inspect the API (such as code

ompletion, which is the focus of this work), or other inference

rocesses for different purposes, such as generating documentation

ontaining more detail with respect to the API design. The en-

ichment of the API with this form of precise documentation adds

ittle overhead, while it opens possibilities for automated processes

o be carried out externally. A field study of API learning concluded

hat the main obstacles faced by users pertain to documentation

 Robillard and Deline, 2011). Currently, we have only integrated

esign annotations with IDE code completion mechanisms, using

xisting forms of documentation in the proposals’ description

ooltips. However, design annotations can be easily integrated into

ocumentation generation tools (e.g., Javadoc), to insure that the

esulting documentation includes the information embodied in the

nnotations. Although we did not implement such a documenta-

ion generator, this could be achieved in a straightforward way.

. Conclusions

The approach taken in this work improves API discoverability

ith a novel technique based on augmenting the API implemen-

ation code with design annotations. The main advantage of what

e provide over existing approaches is to enable API users to be

ssisted in the IDE with respect to the discovery of API elements,

ithout relying on code examples, corpora or alternative forms

f documentation exploration. In our approach, API designers are

n control of making explicit the relations between API elements.

he Dacite implementation stands as a proof of concept for the

easibility of our approach, and our user study provides evidence

hat it is usable and effective from the API user’s standpoint.

cknowledgments

This work was partly carried out while the first author was a

isiting faculty at Carnegie Mellon University, sponsored by the

arnegie Mellon Portugal Program. Funding for this research comes

lso from NSF grants IIS-1116724 and IIS-1314356. Any opinions,

ndings and conclusions or recommendations expressed in this

aterial are those of the authors and do not necessarily reflect

hose of Carnegie Mellon Portugal Program or the National Science

oundation. We would like to thank Martin Robillard for providing

s the study materials used in Duala-Ekoko and Robillard (2012) ,

obert Kraut for his advice regarding our statistical analysis, and

ndrew Faulring, YoungSeok Yoon, and Stephen Oney, for their

elp with the Dacite pilot studies. Finally, we thank the anony-

ous reviewers for their valuable comments and suggestions to

mprove earlier versions of this paper.

eferences

loch, J., 2006. How to design a good API and why it matters. In: Companion to
the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems,

Languages, and Applications. In: OOPSLA ’06, pp. 506–507. doi: 10.1145/1176617.
1176622 . ACM, New York, NY, USA

loch, J. , 2008. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR .

ruch, M., Monperrus, M., Mezini, M., 2009. Learning from examples to improve
code completion systems. In: Proceedings of the 7th Joint Meeting of the Eu-

ropean Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering. In: ESEC/FSE ’09, pp. 213–222.

doi: 10.1145/1595696.1595728 .
walina, K. , Abrams, B. , 2008. Framework Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET Libraries, 2nd edition Addison-Wesley Profes-

sional .
ekel, U. , Herbsleb, J.D. , 2009. Improving API documentation usability with knowl-

edge pushing. In: Proceedings of the 31st International Conference on Software
Engineering. In: ICSE ’09, pp. 320–330 .

uala-Ekoko, E. , 2012. Using structural relationships to facilitate API learning Ph.d.
thesis. McGill University, Montreal, Que., Canada, Canada .

uala-Ekoko, E., Robillard, M.P., 2011. Using structure-based recommendations to fa-

cilitate discoverability in APIs. In: Proceedings of the 25th European Conference
on Object-oriented Programming. In: ECOOP’11, pp. 79–104. http://dl.acm.org/

citation.cfm?id=2032497.2032505 . Berlin, Heidelberg
uala-Ekoko, E., Robillard, M.P., 2012. Asking and answering questions about un-

familiar APIs: An exploratory study. In: Proceedings of the 34th International
Conference on Software Engineering. In: ICSE ’12, pp. 266–276 . URL http://dl.

acm.org/citation.cfm?id=2337223.2337255 .

isenberg, D.S. , Stylos, J. , Faulring, A. , Myers, B.A. , 2010. Using association metrics
to help users navigate API documentation. In: Proceedings of the IEEE Sympo-

sium of Visual Languages and Human-Centric Computing. In: VL/HCC ’10, pp.
23–30 .

llis, B., Stylos, J., Myers, B., 2007. The factory pattern in API design: A usability
evaluation. In: Proceedings of the 29th International Conference on Software

Engineering. In: ICSE ’07, pp. 302–312. doi: 10.1109/ICSE.2007.85 .

amma, E. , Helm, R. , Johnson, R. , Vlissides, J. , 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA .
olmes, R., Murphy, G.C., 2005. Using structural context to recommend source code

examples. In: Proceedings of the 27th International Conference on Software En-
gineering. In: ICSE ’05, pp. 117–125. doi: 10.1145/1062455.1062491 .

etBrains, 2014. Intellij IDEA IDE. http://www.jetbrains.com/idea .

ittle, G., Miller, R.C., 2007. Keyword programming in java. In: Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated Software En-

gineering. In: ASE ’07. ACM, New York, NY, USA, pp. 84–93. doi: 10.1145/1321631.
1321646 .

ong, F., Wang, X., Cai, Y., 2009. API hyperlinking via structural overlap. In: Pro-
ceedings of the the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering. In: ESEC/FSE ’09, pp. 203–212. doi: 10.1145/1595696.1595727 .
andelin, D., Xu, L., Bodík, R., Kimelman, D., 2005. Jungloid mining: Helping to

navigate the API jungle. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. In: PLDI ’05, pp. 48–61.

doi: 10.1145/1065010.1065018 .
ooty, M. , Faulring, A. , Stylos, J. , Myers, B.A. , 2010. Calcite: Completing code com-

pletion for constructors using crowds. In: Proceedings of the IEEE Symposium

of Visual Languages and Human-Centric Computing. In: VL/HCC ’10, pp. 15–22 .
yers, B.A., Stylos, J., 2016. Improving API usability. Commun. ACM 59 (6), 62–69.

doi: 10.1145/2896587 .
mar, C., Yoon, Y., LaToza, T.D., Myers, B.A., 2012. Active code completion. In: Pro-

ceedings of the 34th International Conference on Software Engineering. In: ICSE
’12, pp. 859–869 . URL http://dl.acm.org/citation.cfm?id=2337223.2337324 .

iccioni, M. , Furia, C.A. , Meyer, B. , 2013. An empirical study of API usability. In: Pro-
ceedings of the ACM/IEEE International Symposium on Empireical Software En-

gineering and Measurement, pp. 5–14 .

rechelt, L. , Unger, B. , Tichy, W.F. , Brossler, P. , Votta, L.G. , 2001. A controlled exper-
iment in maintenance: comparing design patterns to simpler solutions,. IEEE

Trans. Softw. Eng. 27 (12), 1134–1144 .
rechelt, L. , Unger-Lamprecht, B. , Philippsen, M. , Tichy, W.F. , 2002. Two controlled

experiments assessing the usefulness of design pattern documentation in pro-
gram maintenance,. IEEE Trans. Softw. Eng. 28 (6), 595–606 .

ama, G.M., Kak, A., 2015. Some structural measures of API usability. Software 45

(1), 75–110. doi: 10.1002/spe.2215 .
obillard, M.P., 2005. Automatic generation of suggestions for program investigation.

In: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. In: ESEC/FSE-13, pp. 11–20. doi: 10.1145/1081706.1081711 .
obillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T., 2013. Auto-

mated API property inference techniques. IEEE Trans. Softw. Eng. 39 (5), 613–

637. doi: 10.1109/TSE.2012.63 .
obillard, M.P., Deline, R., 2011. A field study of API learning obstacles. Empir. Softw.

Eng. 16 (6), 703–732. doi: 10.1007/s10664- 010- 9150- 8 .
antos, A. L., Prendi, G., Sousa, H., Ribeiro, R.,. Stepwise API usage assistance using

n-gram language models. Journal of Systems and Software (to appear). doi: http:
//dx.doi.org/10.1016/j.jss.2016.06.063 .

aul, Z.M., Filkov, V., Devanbu, P., Bird, C., 2007. Recommending random walks. In:

Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering. In: ESEC-FSE ’07, pp. 15–24. doi: 10.1145/1287624.1287629 .
caffidi, C., Shaw, M., Myers, B., 2005. Estimating the numbers of end users and

end user programmers. In: Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. In: VL/HCC ’05, pp. 207–214. doi: 10.

1109/VLHCC.2005.34 .

cheller, T., Kühn, E., 2015. Automated measurement of API usability:
the API concepts framework. Inf. Softw. Technol. 61, 145–162. http:

//dx.doi.org/10.1016/j.infsof.2015.01.009 . http://www.sciencedirect.com/science/
article/pii/S09505849150 0 0178 .

http://dx.doi.org/10.1145/1176617.1176622
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0002
http://dx.doi.org/10.1145/1595696.1595728
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0006
http://dl.acm.org/citation.cfm?id=2032497.2032505
http://dl.acm.org/citation.cfm?id=2337223.2337255
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0009
http://dx.doi.org/10.1109/ICSE.2007.85
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0011
http://dx.doi.org/10.1145/1062455.1062491
http://www.jetbrains.com/idea
http://dx.doi.org/10.1145/1321631.1321646
http://dx.doi.org/10.1145/1595696.1595727
http://dx.doi.org/10.1145/1065010.1065018
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0016
http://dx.doi.org/10.1145/2896587
http://dl.acm.org/citation.cfm?id=2337223.2337324
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0021
http://dx.doi.org/10.1002/spe.2215
http://dx.doi.org/10.1145/1081706.1081711
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1007/s10664-010-9150-8
http://dx.doi.org/10.1016/j.jss.2016.06.063
http://dx.doi.org/10.1145/1287624.1287629
http://dx.doi.org/10.1109/VLHCC.2005.34
http://dx.doi.org/10.1016/j.infsof.2015.01.009
http://www.sciencedirect.com/science/article/pii/S0950584915000178

32 A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33

T

T

T

Siegmund, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S., 2014. Measuring and
modeling programming experience. Empir. Softw. Eng. 19 (5), 1299–1334.

doi: 10.1007/s10664- 013- 9286- 4 .
Sillito, J., Murphy, G.C., De Volder, K., 2008. Asking and answering questions during

a programming change task. IEEE Trans. Softw. Eng. 34 (4), 434–451. doi: 10.
1109/TSE.2008.26 .

Stylos, J. , Faulring, A. , Yang, Z. , Myers, B.A. , 2009. Improving API documentation us-
ing API usage information. In: Proceedings of the IEEE Symposium of Visual

Languages and Human-Centric Computing. In: VL/HCC ’09, pp. 119–126 .

Stylos, J., Myers, B.A., 2008. The implications of method placement on API learn-
ability. In: Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. In: SIGSOFT ’08/FSE-16, pp. 105–112.
doi: 10.1145/1453101.1453117 .
hummalapenta, S., Xie, T., 2007. PARSEWeb: A programmer assistant for reusing
open source code on the web. In: Proceedings of the Twenty-second IEEE/ACM

International Conference on Automated Software Engineering. In: ASE ’07. ACM,
New York, NY, USA, pp. 204–213. doi: 10.1145/1321631.1321663 .

santalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S., 2006. Design pattern
detection using similarity scoring,. IEEE Trans. Softw. Eng. 32 (11), 896–909.

doi: 10.1109/TSE.2006.112 .
ulach, J. , 2012. Practical API Design: Confessions of a Java Framework Architect.

Apress .

Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H., 2009. MAPO: Mining and recom-
mending API usage patterns. In: Proceedings of the 23rd European Confer-

ence on Object-Oriented Programming. In: ECOOP ’09, pp. 318–343. doi: 10.1007/
978- 3- 642- 03013- 0 _ 15 .

http://dx.doi.org/10.1007/s10664-013-9286-4
http://dx.doi.org/10.1109/TSE.2008.26
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0031
http://dx.doi.org/10.1145/1453101.1453117
http://dx.doi.org/10.1145/1321631.1321663
http://dx.doi.org/10.1109/TSE.2006.112
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30262-X/sbref0035
http://dx.doi.org/10.1007/978-3-642-03013-0_15

A.L. Santos, B.A. Myers / The Journal of Systems and Software 126 (2017) 17–33 33

A and Technology, University Institute of Lisbon (ISCTE-IUL). He received a PhD in Informat-
i am comprehension, API usability, object-oriented frameworks, domain-specific languages,

a

B egie Mellon University’s School of Computer Science. His research interests include pro-
g s received a PhD in computer science from the University of Toronto. He is a Fellow of

I est Group on Computer-Human Interaction.
ndré L. Santo s is an Assistant Professor at the Department of Information Science
cs in 2009 from the University of Lisbon. His research interests are related to progr

nd integrated development environments.

rad A. Myers is a professor in the Human-Computer Interaction Institute in Carn
ramming environments, programming-language design, and user interfaces. Myer

EEE and ACM and belongs to the IEEE Computer Society and the ACM Special Inter

	Design annotations to improve API discoverability
	1 Introduction
	2 API discoverability
	3 Related work
	4 Approach overview
	4.1 Implementation
	4.2 Interface for API users

	5 Design annotations
	5.1 Static factories
	5.2 Factory methods
	5.3 Builder objects
	5.4 Helper methods
	5.5 Object composites
	5.6 Object decorators
	5.7 Summary

	6 IDE integration
	6.1 Expected type proposals
	6.2 Expected operation proposals

	7 Evaluation
	7.1 Method
	7.2 Study tasks
	7.2.1 JFreeChart
	7.2.2 JAXP

	7.3 Results
	7.4 Observations
	7.5 Post-study questionnaire
	7.6 Discussion
	7.7 Threats to validity
	7.7.1 Construct validity
	7.7.2 Internal validity
	7.7.3 External validity

	8 Limitations and future work
	9 Conclusions
	 Acknowledgments
	 References

