

Invited Research Overview:
End-User Programming

Abstract
In the past few decades there has been considerable
work on empowering end users to be able to write their
own programs, and as a result, users are indeed doing
so. In fact, we estimate that over 12 million people in
American workplaces would say that they “do pro-
gramming” at work, and almost 50 million people use
spreadsheets or databases (and therefore may poten-
tially program), compared to only 3 million professional
programmers. The “programming” systems used by
these end users include spreadsheet systems, web au-
thoring tools, business process authoring tools such as
Visual Basic, graphical languages for demonstrating the
desired behavior of educational simulations, and even
professional languages such as Java. The motivation for
end-user programming is to have the computer be use-
ful for each person’s specific individual needs. While the
empirical study of programming has been an HCI topic
since the beginning the field, it is only recently that
there has been a focus on the End-User Programmer as
a separate class from novices who are assumed to be
studying to be professional programmers. Another re-
cent focus is on making end-user programming more
reliable, using “End-User Software Engineering.” This
paper gives a brief summary of some current and past
research in the area of End-User Programming.

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Brad A. Myers

Human Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891

bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

Andrew J. Ko

Human Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891

ajko@cmu.edu

http://www.cs.cmu.edu/~ajko

Margaret M. Burnett

School of Elec. Engr. & Computer Science

Oregon State University

Corvallis, OR 97331

burnett@eecs.oregonstate.edu

http://web.engr.oregonstate.edu/~burnett/

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

75

90,000,000

12,000,000

3,000,000

50,000,000

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

U
sers

Spreadsheets
and D

Bs

Self-D
escribed

Program
m

ers

Professional
Program

m
ers

Keywords
End-User Software Engineering, Natural Programming,
Programming by Demonstration, Programming by Ex-
ample, Visual Programming, Empirical Studies of Pro-
grammers (ESP), Psychology of Programming

ACM Classification Keywords
D.3.2 [Programming Languages]: Language Classifica-
tions; D.2.6 [Programming Environments]: Integrated
environments; D.2.5. [Testing and Debugging]: De-
bugging aids; 1.3.6 [Computer Graphics]: Methodolo-
gies and Techniques-Languages.

End-User Programming: What and Why
One way to define “programming” is as the process of
transforming a mental plan of desired actions for a
computer into a representation that can be understood
by the computer [16]. Expressed this way, it seems
obvious that the study of humans and programming
should be a topic of HCI. Indeed, this area of study has
a long history, and has gone under many names, in-
cluding “Software Psychology” [49], “Psychology of
Programming” [7, 15] and the “Empirical Studies of
Programming” (ESP), which is also the name of a series
of eight workshops from 1986 through 1999.

Most of the early work focused on studying professional
programmers or novice programmers. A “professional”
programmer might be defined as someone whose pri-
mary job function is to write or maintain software. A
“novice” programmer might be defined as someone
who is learning how to program.

In contrast, “end-user programmers” (EUP) are people
who write programs, but not as their primary job func-
tion. Instead, they must write programs in support of

achieving their main goal, which is something else,
such as accounting, designing a web page, doing office
work, scientific research, entertainment, etc. End-user
programmers generally use special-purpose languages
such as spreadsheet languages or web authoring
scripts, but some EUPs, such as chemists or other sci-
entists, may need to learn to use “regular” program-
ming languages such as C or Java to achieve their pro-
gramming goals.

Why try to provide programming capabilities for every-
one? The computer is a unique tool in its malleability—
it can be programmed to perform almost any computa-
tion, but only by those who know how. Although pre-
packaged software applications come with increasingly
complex functions, they still cannot do every task
needed by every individual, and, in particular, cannot
be customized to each individual’s needs. Sometimes
software designed or customized in a particular social
context is so well situated in the community that uses it
(called “situated software” [48]) that it provides form-
fit solutions for very particular needs, even though it
might not have generally accepted notions of design
quality or generality. Spreadsheets are a case in point:
they have proven the enormous power of allowing indi-
viduals to create their own customized computations
[35], and much EUP research aims to generalize
spreadsheet’s success to other domains.

Research in End-User Programming
Programming has always been recognized as a difficult
task. This led to many research threads that tried to
make programming more accessible by pushing on dif-
ferent aspects of computing technology.

Estimates for the number of people in

the US in 2006 who use computers at

work, who use spreadsheets at work,

who describe themselves as pro-

grammers, and who say they are

professional programmers [47].

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

76

One such thread was motivated by a desire to harness
the power of the human visual system. This work
(starting as early as 1959! [13]) focused on using
graphics to help make the programming easier, which
is called “Visual Programming” (VP). Surveys of VP in-
clude [3, 6, 11, 33, 50]. Although at first, proponents
of visual programming expected it to be something of a
panacea, eventually, formal research (e.g., [12])
showed that every notation has advantages and disad-
vantages, and provided a vocabulary for comparing
visual notations to textual alternatives.

Another research thread has been to bring the advan-
tages of direct manipulation to the programming task,
by letting the user demonstrate the desired program by
example by going through the steps, which is called
“programming by example” (PBE), or “programming by
demonstration” (PBD). Some of these systems use arti-
ficial intelligence techniques to try to automatically
generalize the program from the user’s examples. Al-
though PBD systems have been shown to help people
create programs from scratch, if people make errors or
want to modify the resulting programs, there must be
some static representation, for which some PBD sys-
tems have used visual languages. Surveys of PBE/PBD
include [9, 26, 33], and notable research systems in-
clude [8, 14, 24, 25, 28, 30, 52]. PBD is also used by
macro recorders in commercial spreadsheets and other
“scriptable” applications.

Research has also focused on how to make the pro-
gramming environment more supportive of program-
ming, both to help with learning and to overcome vari-
ous difficulties. For example, “syntax-directed editors”
[29, 31, 41, 57] try to eliminate problems with syntax
for textual languages. Surveys of programming envi-

ronment research include [19, 36, 46]. Notable re-
search in programming support environments for nov-
ice and end-user programmers include [41, 54]. Com-
mercial systems include Apple’s HyperCard, Microsoft’s
Visual Basic, and Adobe/Macromedia’s products: Lingo
for Director, Authorware, and Flash.

Another way to classify EUP systems is by the commu-
nity or task for which they are aimed. For example
Logo and its derivatives [39, 40] were designed for
kids. Other kids’ languages include [17, 36, 41, 44, 53]
and the Lego Mindstorms commercial product. For sci-
entists, there have been many “domain-specific lan-
guages” (DSL) [10] that have features specifically for
particular areas of science. Other languages have been
devised to enable specific tasks such as the authoring
of software by teachers (e.g., Authorware and [58]),
and end-user authoring of web pages [2, 4, 18, 27,
45].

A problem is that the programs from EUPs tend to be
buggy and lack forethought in design. One thread of
research considers this problem by focusing on funda-
mental issues that relate to people themselves, such as
why programming is hard to learn and hard to perform
[20, 22, 23, 42, 51, 55, 56], and how people think
about programming concepts [37, 38, 47].

Another research thread that has received recent atten-
tion is the development of ways to make EUP software
more reliable using concepts from software engineer-
ing, such as explicit support for detecting the presence
of errors, tracking down bugs, and reuse [1, 5, 21, 43].
Two recent large collaborative efforts, one in the U. S.
(the EUSES Consortium http://eusesconsortium.org/),
and one in Europe (the Network of Excellence on End-

The Pursuit system [32] uses PBD

to create programs to manipulate

files, which are then represented

using a visual programming lan-

guage.

Microsoft Excel spreadsheet augmented

by the Ucheck system that tries to help

the user find errors [1].

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

77

User Development, http://giove.cnuce.cnr.it/eud-
net.htm, which resulted in a new book [59]) have pro-
duced a number of promising results in this area.

Future Directions
In spite of all this research, programming is still out of
reach of most people. It is still too difficult, and in-
volves concepts such as abstraction, iteration, condi-
tions, and recursion, that are foreign to people. Is it
possible to make what we have called a “gentle-slope
system” [34], where everyone can start programming
with little effort, and learn incrementally as needed?
Can the barriers to learning EUP systems be low
enough so that the power of customizing the computa-
tions can be accessible to everyone? How can systems
help the end-user programmer be more productive and
produce more reliable code? Can artificial intelligence
technologies be effectively applied to customize sys-
tems to do what users want? These and many other
questions are open for future research.

Acknowledgements
The authors are supported in part by the National Sci-
ence Foundation as part of the EUSES Consortium un-
der NSF grants ITR CCR-0324770 and CCR-0325273.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thors and do not necessarily reflect those of the Na-
tional Science Foundation.

References
[1] Abraham, R. and Erwig, M. “Header and unit inference
for spreadsheets through spatial analyses,” in IEEE Sym-
posium on Visual Languages and Human-Centric Comput-
ing (VL/HCC). Sept. 27-30, 2004. pp. 165-172.
[2] Bolin, M., et al. “Automation and Customization of
Rendered Web Pages,” in ACM Conference on User Inter-

face Software and Technology (UIST). October 23–27,
2005. Seattle, WA: pp. 163-172.
[3] Burnett, M., “Visual Programming,” in Encyclopedia of
Electrical and Electronics Engineering, J.G. Webster, Editor
1999, John WIley & Sons Inc.
[4] Burnett, M., Chekka, S., and Pandey, R. “FAR: An End-
User Language to Support Cottage E-Services,” in Proc.
Human-Centric Computing Languages and Environments.
Sept. 5-7, 2001. Stresa, Italy: pp. 195-202.
[5] Burnett, M., Cook, C., and Rothermel, G., “End-User
Software Engineering.” CACM, Sept, 2004. 47(9): pp. 53-
58.
[6] Burnett, M., Goldberg, A., and Lewis, T., Visual Object-
Oriented Programming: Concepts and Environments. 1995,
Prentice-Hall/Manning Publications.
[7] Curtis, B., “Fifteen Years of Psychology in Software
Engineering: Individual Differences and Cognitive Science,”
in Proceedings of the 7th International Conference on
Software Engineering, 1984, IEEE Computer Society Press.
pp. 97-106.
[8] Cypher, A. “EAGER: Programming Repetitive Tasks by
Example,” in CHI. April, 1991. New Orleans, LA: pp. 33-39.
Proceedings SIGCHI'91.
[9] Cypher, A., ed. Watch What I Do: Programming by
Demonstration. 1993, MIT Press: Camb., MA.
[10] Deursen, A.v., Klint, P., and Visser, J., Domain-
Specific Languages: An Annotated Bibliography. 1998.
http://homepages.cwi.nl/~arie/papers/dslbib/.
[11] Glinert, E.P., ed. Visual Programming Environments:
Paradigms and Systems and Visual Programming Environ-
ments: Applications and Issues. 1990, IEEE Computer So-
ciety Press: Los Alamitos, CA.
[12] Green, T.R.G. and Petre, M., “Usability Analysis of
Visual Programming Environments: A 'Cognitive Dimen-
sions' Framework.” Journal of Visual Languages and Com-
puting, 1996. 7(2): pp. 131-174.
[13] Haibt, L.M. “A Program to Draw Multi-Level Flow
Charts,” in Proceedings of the Western Joint Computer
Conference. March 3-5, 1959. San Francisco, CA: 15. pp.
131-137.
[14] Halbert, D.C., Programming by Example. Computer
Science Division, Dept. of EE&CS, University of California,
1984, Berkeley, CA. 84. PhD thesis. Also: Xerox Office

Whyline [21] showing a user ask-

ing why an event did not happen,

and the resulting visualization.

Forms/3 annotates cells of a spread-

sheet to help the user test and debug

the formulas and values [5].

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

78

Systems Division, Systems Development Department, TR
OSD-T8402, December, 1984. PhD thesis. Also: Xerox Of-
fice Systems Division, Systems Development Department,
TR OSD-T8402, December, 1984.
[15] Hoc, J.-M., et al., eds. Psychology of Programming.
1990, Academic Press: London.
[16] Hoc, J.-M. and Nguyen-Xuan, A., “Language Seman-
tics, Mental Models and Analogy,” in Psychology of Pro-
gramming, J.-M. Hoc, et al., Editors. 1990, Academic
Press. London. pp. 139-156.
[17] Kahn, K., “ToonTalk -- An Animated Programming
Environment for Children.” Journal of Visual Languages and
Computing, 1996. 7(2): pp. 197-217.
[18] Kandogan, E., et al. “A1: end-user programming for
web-based system administration,” in UIST '05: Proceed-
ings of the 18th annual ACM symposium on User interface
software and technology. 2005. Seattle, WA: pp. 211-220.
[19] Kelleher, C. and Pausch, R., “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers.” ACM Comput.
Surv., 2005. 37(2): pp. 83-137.
[20] Ko, A.J. and Myers, B.A. “Development and Evaluation
of a Model of Programming Errors,” in IEEE EUP/VL/HCC.
2003. New Zealand: pp. 7-14.
[21] Ko, A.J. and Myers, B.A. “Designing the Whyline, A
Debugging Interface for Asking Why and Why Not ques-
tions about Runtime Failures,” in CHI. 2004. pp. 151-158.
[22] Ko, A.J., Myers, B.A., and Aung, H.H. “Six Learning
Barriers in End-User Programming Systems,” in IEEE
VL/HCC. Sep 26-29, 2004. pp. 199-206.
[23] Lewis, C. and Olson, G. “Can principles of Cognition
Lower the Barriers to Programming?” in Empirical Studies
of Programmers: Second Workshop. 1987. Norwood, NJ:
Ablex Publishing Corporation.
[24] Li, Y. and Landay, J.A. “Informal prototyping of con-
tinuous graphical interactions by demonstration,” in UIST
'05: Proceedings of the 18th annual ACM symposium on
User interface software and technology. 2005. Seattle, WA:
pp. 221-230.
[25] Lieberman, H. “Constructing Graphical User Interfaces
by Example,” in Proceedings Graphics Interface. May,
1982. Toronto, Ontario, Canada: pp. 295-302. GI'82.

[26] Lieberman, H., ed. Your Wish is My Command. 2001,
Morgan Kaufmann: San Francisco.
[27] Lin, J., et al. “DENIM: finding a tighter fit between
tools and practice for Web site design,” in CHI. Apr 1-6,
2000. The Hague, The Netherlands: pp. 510-517. Proceed-
ings CHI'2000.
[28] McDaniel, R.G. and Myers, B.A. “Getting More Out Of
Programming-By-Demonstration,” in Proceedings CHI'99:
Human Factors in Computing Systems. May 15-20, 1999.
Pittsburgh, PA: pp. 442-449.
[29] Miller, P., et al., “Evolution of Novice Programming
Environments: The Structure Editors of Carnegie Mellon
University.” Interactive Learning Environments, 1994.
4(2): pp. 140-158.
[30] Miller, R.C. and Myers, B.A. “Interactive Simultaneous
Editing of Multiple Text Regions,” in Proceedings of USENIX
2001 Annual Technical Conference. June, 2001. Boston,
MA: pp. 161-174.
[31] Minas, M. “Diagram Editing with Hypergraph Parser
Support,” in 1997 IEEE Symposium on Visual Languages
(VL). Sept. 23-26, 1997. Capri, Italy: pp. 226-233.
[32] Modugno, F. and Myers, B.A., “Visual Programming in
a Visual Shell -- A Unified Approach.” Journal of Visual
Languages and Computing, 1997. 8(5/6): pp. 276-308.
[33] Myers, B.A., “Taxonomies of Visual Programming and
Program Visualization.” Journal of Visual Languages and
Computing, Mar, 1990. 1(1): pp. 97-123.
[34] Myers, B.A., Smith, D.C., and Horn, B. “Report of the
`End-User Programming' Working Group,” in Languages
for Developing User Interfaces. 1992. Boston, MA: Jones
and Bartlett. pp. 343-366.
[35] Nardi, B.A., A Small Matter of Programming: Perspec-
tives on End User Computing. 1993, Cambridge, MA: The
MIT Press. 162.
[36] Pane, J.F. and Myers, B.A., Usability Issues in the
Design of Novice Programming Systems. School of Com-
puter Science Technical Report, Carnegie Mellon University,
CMU-CS-96-132, August, 1996. Pittsburgh, PA.
http://www.cs.cmu.edu/~pane/tr96/. Also appears as Car-
negie Mellon University Human-Computer Interaction Insti-
tute Technical Report CMU-HCII-96-101.
[37] Pane, J.F. and Myers, B.A. “Tabular and Textual Meth-
ods for Selecting Objects from a Group,” in Proceedings of

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

79

VL 2000: IEEE International Symposium on Visual Lan-
guages. September 10-13, 2000. Seattle, WA: IEEE Com-
puter Society. pp. 157-164.
[38] Pane, J.F., Ratanamahatana, C.A., and Myers, B.A.,
“Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems.” Inter-
national Journal of Human-Computer Studies, February,
2001. 54(2): pp. 237-264.
http://www.cs.cmu.edu/~pane/IJHCS.html.
[39] Papert, S., Teaching Children Thinking. MIT, AI Memo
No. 247 and Logo Memo No. 2, 1971. Cambridge, MA.
[40] Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas. 1980, New York: Basic Books. 230.
[41] Pausch, R., et al., “Alice: A Rapid Prototyping System
for 3D Graphics.” IEEE Computer Graphics and Applica-
tions, 1995. 15(3): pp. 8-11. May.
[42] Pea, R.D. and Kurland, D.M., “On the Cognitive Effects
of Learning Computer Programming,” in Mirrors of Minds:
Patterns of Experience in Educational Computing, R.D. Pea
and K. Sheingold, Editors. 1986, Ablex Publishing Corp.
Norwood, NJ. pp. 147-177.
[43] Raz, O., Koopman, P., and Shaw, M. “Semantic
Anomaly Detection in Online Data Sources,” in 24th Inter-
national Conference on Software Engineering (ICSE). May
19-25, 2002. Orlando, FL: pp. 302-312.
[44] Resnick, M. and Silverman, B. “Some Reflections on
Designing Construction Kits for Kids,” in Proceedings of
Interaction Design and Children conference. 2005. Boulder,
CO:
[45] Rode, J. and Rosson, M.B. “Programming at Runtime:
Requirements and paradigms for nonprogrammer web ap-
plication development,” in IEEE Symposium on Human-
Centric Computing Languages and Environments. 2003.
[46] Rosson, M.B., Carroll, J.M., and Bellamy, R.K.E.,
“Smalltalk Scaffolding: A Case Study of Minimalist Instruc-
tion,” in Proceedings of ACM CHI'90 Conference on Human
Factors in Computing Systems, 1990, pp. 423-429.
[47] Scaffidi, C., Shaw, M., and Myers, B. “Estimating the
Numbers of End Users and End User Programmers,” in
IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC'05). 20-24 September, 2005. Dallas,
Texas: pp. 207-214.

[48] Shirky, C., Economics & Culture, Media & Community,
Open Source. March 30, 2004.
http://www.shirky.com/writings/situated_software.html.
(First published on the "Networks, Economics, and Culture"
mailing list).
[49] Shneiderman, B., Software Psychology: Human Fac-
tors in Computer and Information Systems. 1980, Cam-
bridge, MA: Winthrop Publishers.
[50] Shu, N.C., Visual Programming. 1988, New York: Van
Nostrand Reinhold Company.
[51] Sime, M.E., Green, T.R.G., and Guest, D.J., “Scope
Marking in Computer Conditionals: A Psychological Evalua-
tion.” International Journal of Man-Machine Studies, 1977.
9: pp. 107-118.
[52] Smith, D.C., Pygmalion: A Computer Program to
Model and Stimulate Creative Thought. 1977, Basel, Stutt-
gart: Birkhauser Verlag. PhD Thesis, Stanford University
Computer Science Department, 1975.
[53] Smith, D.C., Cypher, A., and Spohrer, J., “KidSim:
Programming Agents Without a Programming Language.”
CACM, Jul, 1994, 1994. 37(7): pp. 54-67.
[54] Soloway, E., Guzdial, M., and Hay, K.E., “Learner-
Centered Design: The Challenge for HCI in The 21st Cen-
tury.” interactions, 1994. 1(2): pp. 36-48.
[55] Soloway, E., et al. “Learning Theory in Practice: Case
Studies of Learner-Centered Design,” in Proceedings
CHI'96: Human Factors in Computing Systems. April 14-
18, 1996. Vancouver, BC, Canada: pp. 189-196.
[56] Soloway, E. and Spohrer, J.C., eds. Studying the Nov-
ice Programmer. 1989, Lawrence Erlbaum Associates:
Hillsdale, NJ.
[57] Teitelbaum, T. and Reps, T., “The Cornell Program
Synthesizer: A Syntax-Directed Programming Environ-
ment.” CACM, 1981. 24(9): pp. 563-573.
[58] Wiedenbeck, S. “Facilitators and inhibitors of end-user
development by teachers in a school environment,” in IEEE
Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). Sept. 20-24, 2005. Dallas, TX: pp. 215-
222.
[59] Wulf, V., Paterno, F., and Lieberman, H., eds. End
User Development. 2006, Kluwer Academic Publishers.

CHI 2006 • Invited Research Overview • End-User Programming April 22-27, 2006 • Montréal, Québec, Canada

80

