
Fast Human Detection for Indoor Mobile Robots Using Depth Images

Benjamin Choi1, Çetin Meriçli1, Joydeep Biswas2, and Manuela Veloso1

Abstract— A human detection algorithm running on an
indoor mobile robot has to address challenges including oc-
clusions due to cluttered environments, changing backgrounds
due to the robot’s motion, and limited on-board computational
resources. We introduce a fast human detection algorithm
for mobile robots equipped with depth cameras. First, we
segment the raw depth image using a graph-based segmentation
algorithm. Next, we apply a set of parameterized heuristics
to filter and merge the segmented regions to obtain a set
of candidates. Finally, we compute a Histogram of Oriented
Depth (HOD) descriptor for each candidate, and test for human
presence with a linear SVM. We experimentally evaluate our
approach on a publicly available dataset of humans in an open
area as well as our own dataset of humans in a cluttered cafe
environment. Our algorithm performs comparably well on a
single CPU core against another HOD-based algorithm that
runs on a GPU even when the number of training examples
is decreased by half. We discuss the impact of the number of
training examples on performance, and demonstrate that our
approach is able to detect humans in different postures (e.g.
standing, walking, sitting) and with occlusions.

I. INTRODUCTION

Human detectors running on autonomous indoor mobile
robots encounter several challenges. The perceived motion of
the environment due to the motion of the robot itself makes it
difficult to isolate moving humans. Humans are observed in
a variety of postures depending on whether they are sitting
or standing, the type of furniture they are sitting on, and
the angle from which they are viewed. Furthermore, humans
interacting with the robot may only be partially visible
to the robot. Mobile robots possess limited computational
resources which are shared among various processes required
for autonomous operation, so the human detector must have
a small computational footprint.

We contribute a depth image based human detection
algorithm that addresses these challenges. The algorithm
successfully detects humans under challenging conditions
such as occlusion, clutter, and different postures (see Fig. 1).
Our algorithm first segments each observed depth image into
“regions” corresponding to geometrically distinct objects.
These regions are then filtered into a set of “candidates”
based on a series of parametric heuristics. The candidates
are then used to compute histograms of oriented depth
(HOD) [1], and the HOD descriptors are classified as humans
or not humans by a trained linear support vector machine
(SVM). The contributions of this work include:

1B. Choi, Ç. Meriçli, and M. Veloso are with the Computer Science
Department, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, PA
15213, United States {benchoi,cetin,veloso}@cmu.edu

2J. Biswas is with the Robotics Institute, Carnegie Mellon Uni-
versity 5000 Forbes Ave., Pittsburgh, PA 15213, United States
joydeep@cmu.edu

(a) (b)

(c) (d)

Fig. 1: Our proposed algorithm detecting a) partially oc-
cluded people, b) people at different distances, c) people
with different postures, and d) people amidst clutter.

• A novel adaptation of a graph-based segmentation algo-
rithm combined with randomized subsampling for fast
depth image segmentation;

• The application of a set of parameterized heuristics to
further reduce the number of candidate segments for
classification; and

• A performance evaluation of the proposed approach
on two different datasets (one a public dataset, and
one of our own from a cluttered environment) with an
investigation of the impact of the size of the training
set on performance.

In the remainder of this paper, we first discuss related
work, then detail our approach, and finally present empirical
results of our algorithm running on a standard dataset as well
as our custom dataset collected from a very crowded area.

II. RELATED WORK

Human detection is an extensively studied subject that
was confined mostly to color images. With the advent of
affordable RGB-D cameras such as the Microsoft Kinect and
Asus Xtion, depth image based human detection has recently
attracted attention in the robotics community.

Two widely adopted approaches to human detection are
detection of the whole body (e.g. [2]) and detection by parts
(e.g. [3]). In this section we focus on approaches based on
whole-body detection, and briefly discuss the related work
in the literature.

The common method of whole-body human detection
consists of determining regions in the image that may contain
humans, and then testing these candidate regions for human
presence using a classifier trained in a supervised manner.
A naive way of determining candidate regions in an image
is to slide a fixed-size window over the entire image, and
treat every region of that window size as a candidate.
This approach was proposed to detect pedestrians in RGB
images [2]. While covering the entire image and testing every
possible candidate, performing a brute-force search over
the entire image is computationally expensive. In scenarios
where humans may be seen at a range of distances, it is
necessary to search candidate windows of different sizes,
further increasing the computational cost.

Various methods have been proposed to improve speed
over the brute-force sliding window search for extracting
candidate regions. Zhu et al. utilize salient features in the
image and only test the regions containing such features [4],
allowing significant speed increases. Spinello and Arras test
only candidate windows at depths corresponding to propor-
tions likely to fit a human in metric space [1]. Their algorithm
still needs to run on a GPU to process the incoming depth
image stream at full frame rate. Spinello and Siegwart utilize
clustered laser scan readings to test only the relevant areas in
an RGB image, allowing them to greatly reduce the number
of candidates tested [5]. Xu and Fujimura use a segmentation
based on connected components of depth images to identify
foreground objects [6]. Zhou and Hoang use background
subtraction to identify regions which can be tested against a
codebook to classify them as human or non-human [7]. Shi
and Malik present an algorithm that builds weighted graphs
for different color channels, and then uses normalized-cuts to
segment a given image [8]. Felzenszwalb and Huttenlocher
present a similar segmentation algorithm that has a better
asymptotic running time [9]. Pulli and Pietikäinen present
a method for segmenting depth images using normals [10].
We utilize a graph-based segmentation algorithm that uses
a combination of the depth values and surface normals to
identify the candidate regions in the image.

Once a candidate region is extracted, the common ap-
proach is to compute a feature descriptor for the candidate,
and then classify the computed descriptor to decide whether
the region contains a human or not. The most widely
used descriptor for human detecion is the Histogram of
Oriented Gradients (HOG) descriptor, proposed by Dalal and
Triggs [2]. The HOG descriptor divides a given image region
into a number of cells, and then computes a histogram of
edge orientations for each cell using gradients of the pixels
in that cell. Recently, Spinello and Arras proposed a variant
of the original HOG descriptor adapted to depth images
called Histograms of Oriented Depth (HOD) [1], where they
compute gradients using the depth values instead of color
information. We also use an HOD descriptor, combined
with our graph-based segmentation algorithm to effectively
process images captured by a moving camera on a mobile
robot traversing multiple types of surfaces imposing different
perturbations on the captured images.

III. APPROACH

We use the Microsoft Kinect depth camera for human
detection. Although the Kinect provides both color as well as
depth images, we only use depth images for human detection.
The Kinect provides depth images of resolution 640×480 at
a rate of 30Hz. Our algorithm processes each depth image
D individually to detect the humans in it. The raw pixel
values in the depth images (“raw depth”) obtained from the
Kinect sensor do not correspond proportionally to physical
units (“metric depth”). The metric depth D′x,y of a particular
raw depth Dx,y (where x, y denote the pixel location in the
image) is computed with

D′x,y =
1

a+ b ·Dx,y
(1)

where a and b are intrinsic parameters of the Kinect sensor
which are determined through calibration. Due to noise and
the hardware limitations of the Kinect sensor, some raw
pixels may have invalid values that do not translate to a
positive metric depth.

To calculate the 3D point p = 〈px, py, pz〉 (in the reference
frame of the Kinect sensor) corresponding to the metric depth
D′x,y we use

px = D′x,y

(y

w − 1
− 0.5

)
tan

(fh
2

)
(2)

py = D′x,y

(x

h− 1
− 0.5

)
tan

(fv
2

)
(3)

pz = D′x,y (4)

where fh is the horizontal field of view and fv is the vertical
field of view of the camera, and w and h are the image width
and height in pixels (for the experiments in this paper, we
used w = 640 and h = 480).

Our human detection algorithm takes a depth image D
and outputs a set of detected humans H in three steps:

1) Depth image segmentation: This step accepts a depth
image D and returns R, a set of regions corresponding
to distinct areas in the depth image. This is achieved
through sampling points on D, calculating their 3D po-
sition, and constructing the graphs Gdepth and Gnormal.
In Gdepth, the edge weights represent differences in
depth between neighboring points while in Gnormal,
they represent the angle between surface normals of
neighboring points. Gdepth and Gnormal are then seg-
mented to group the points into regions.

2) Region filtering and merging: This step takes a set of
regions R and returns a set of candidates C, where each
candidate is a smaller depth image constructed from
the parts of D corresponding to a region or several
merged regions. This step uses parametric heuristic
rules to reject regions of infeasible dimensions. The
remaining regions are merged based on their location.
The parts of D corresponding to these combined
regions are then extracted to form the candidates.

3) Candidate classification: This step takes a set of
candidates C and returns H , the set of humans (H ⊆

(a) The raw depth image (b) Regions after segmentation (c) Candidates after filtering and
merging

(d) Detected humans

Fig. 2: The steps of the detection process in our approach. The image (b) shows the regions separated by the segmentation
step in different colors (best viewed in color).

C). For each candidate, first the HOD descriptor is
computed. The computed descriptors are then classified
using an SVM. Finally, the set of candidates that are
classified as humans is returned.

Fig. 2 depicts the detection steps in our algorithm. In the
remainder of the section, we describe each step in detail.

A. Depth Image Segmentation

The purpose of this step is to obtain R, a set of regions
corresponding to distinct objects or parts of objects in a depth
image D. The resolution of depth images deteriorates rapidly
with distance. Therefore, it is not necessary to segment these
regions perfectly at larger distances. We subsample the depth
image to significantly reduce the amount of computation
needed for the segmentation and region filtering steps.

We consider the depth image D as a grid of cells. Each cell
contains α×α depth pixels from D. For each cell Ei,j at row
i and column j (where 0 ≤ i < h

α and 0 ≤ j < w
α), s pixels

are sampled at random from within the cell and the pixel
with the median depth value is selected. If its depth value
is valid, its corresponding point in 3D space 〈px, py, pz〉 is
calculated using Eq. 2-4 and stored as pi,j . Each point pi,j
corresponds to a distinct cell Ei,j , and so there are at most
wh
α2 points in the final subsampled image P = {pi,j : 0 ≤
i < h, 0 ≤ j < w}.

In the next step, we use a variation of an image seg-
mentation algorithm [9] initially designed for color images.
The original algorithm performs multiple segmentations on
separate graphs whose edges encode the similarity between
neighboring pixels in each color channel, and combines the
results. Each segmentation uses a single parameter k, which
sets the preferred size of connected components. We adapt
the algorithm to work on depth images, where we perform
two separate segmentations on graphs whose edges encode
similarity of depth and normals between neighboring points,
using parameters kdepth and knormal respectively.

First, we construct the graph Gdepth where the vertices are
the points in P , and each vertex is connected to its neighbors
(if they exist) in the 4 cardinal directions. The weight of an
edge between points of metric depth z1 and z2 is |z1 − z2|.
We then perform graph segmentation on Gdepth, grouping the
vertices into connected components based on the similarities
of the depth values.

For each point pi,j , we compute the normal ni,j by
performing least-squares regression on a list of samples
consisting of the point itself and those of its 8 neighbors
which lie on the same connected component in the segmented
of Gdepth. Including only neighbors on the same connected
component removes outliers which are far away in 3D space.

In the next step, we construct the graph Gnormal similarly to
Gdepth, except, here the weights of the edges are the angular
differences between the normals at the vertices they connect.
The weight of an edge between vertices with normals u and
v is thus computed by cos−1(u · v). We then perform graph
segmentation on Gnormal.

The final output of the segmentation step is a set of regions
R. Each region ri ∈ R is a distinct set of points from P
that are in the same connected component in both Gdepth
and Gnormal. R is sorted in decreasing order of size, so
|ri| ≥ |ri+1| is strictly true, and only regions with at least β
points are considered. This filtering helps removing a number
of regions that result from noisy data and are unlikely to
correspond to a human part.

B. Region Filtering and Merging

This step takes a set of regions R as input, discards those
a heuristic deems unlikely to be humans, and merges the
remaining regions, returning C, a set of candidates likely to
correspond to distinct objects.

For each region ri ∈ R its mean depth, height and width
in real space, center point µ(ri), and the proportion of points
that fit a plane are calculated. The mean depth of a region
is the mean depth of all the points in the region.

The top, bottom, left and right points of the region are
calculated using Eq. 2-4 on its mean depth and the midpoints
of each side of the bounding box that contains the region. The
metric height of a region is the difference in y between its top
and bottom midpoints, while the metric width of a region is
the difference in x between its left and right midpoints. The
center point 〈µx, µy, µz〉 of a region is defined by µx (the
midpoint between its left and right points), µy (the midpoint
between its top and bottom points) and µz (the mean depth
of the region). We denote the position of the region on the
XZ plane with µxz = 〈µx, µz〉.

We use RANSAC [11] to fit planes to the region in a
manner similar to Fast Sampling Plane Filtering [12]. At
each of n iterations, 3 points in the region are randomly

picked and used to model a hypothesis plane πk (where k
is the iteration number). The proportion of points that fit a
plane is the maximum over all n iterations:

n
max
k=1

(|{p ∈ ri : distance of p to πk < ε}|
|ri|

)
A list of parametric heuristic rules specifying valid ranges

for mean depth, height and width, and the minimum inlier
fraction (proportion of points that can fit a plane) is found
by measuring the ranges of positive examples in the training
set. These rules are then used to eliminate candidate regions
that could not contain humans.

The regions are processed in order from the largest one to
the smallest. If a region ri satisfies all of the heuristic rules
except that it is too small (its height or width are below the
minimums) and appears to be planar (proportion of points
fitting plane is large), then we check whether a larger region
rj exists such that

‖µxz(ri)− µxz(rj)‖ < δxz and |µy(ri)− µy(rj)| < δy

If such rj is found, then ri is merged into rj , and the new
position of the merged region is the mean position of all
regions incorporated into it, weighted by their sizes. This
step is important, especially for humans further from the
camera and subject to distortion due to resolution loss: limbs
and other parts are sometimes detached from the torso by
the segmentation step, but their close proximity in 3D space
allows them to be merged again with the torso.

Our final classification step requires candidates of a fixed
size, so the pixels corresponding to each region must be
scaled and copied into a wc × hc array called a candidate
image. They are positioned such that the image of the region
is centered in the candidate image, and the entire bounding
box of the merged region fits inside the candidate image.
The set of pixels to be copied from a region ri (after scaling
to fit inside the candidate image) is

{d ∈ Ej,k : pj+a,k+b ∈ ri where a, b ∈ {−1, 0, 1}}

The candidate image is thus composed of wc × hc values
that are either raw depth pixels (if a pixel was copied to that
position from a depth pixel in the above set) or undefined
otherwise. Each candidate c ∈ C consists of the candidate
image along with the bounding box of the merged region the
candidate was derived from. This step returns the set C

C. Candidate Classification

The last step of our approach takes the set C and returns
H , which is the subset of C classified as human. We use the
HOD descriptor [1]. First, we compute the metric depth of
each pixel in the candidate window using Eq. 1. Then we
compute the HOD descriptor, where the gradient between
any undefined value and some other value is always zero.
We use signed gradients since the sign of gradients between
metric depths is significant (objects, if not occluded, are
always closer to the camera than their background).

In the final classification step, we use a Support Vector
Machine (SVM) with linear kernel to classify the computed

descriptor for a region and decide whether the region con-
tains a human or not.

D. Training the Algorithm

To train the classifier, the algorithm is run on depth
image frames from a training set, the candidates saved, and
subsequently labeled as positive or negative. The heuristic
rules used in the region filtering step can also be derived
by choosing ranges that include all positive examples while
including as few negative examples as possible.

IV. EXPERIMENTAL RESULTS

We evaluate our human detector with two sets of experi-
ments. In the first set of experiments, we evaluate the accu-
racy of our approach, while in the second set we investigate
the impact of varying the number of training examples on
the accuracy of the human detector. We used two datasets
with different characteristics for our experiments. The first
dataset consists of depth images from a publicly available
RGB-D dataset provided by Spinello and Luber [1], [13]. The
dataset contains images of people passing by three vertically
mounted Kinect sensors and is collected in a university
hallway. We call this dataset “the Hallway dataset”. The en-
vironment is not cluttered, and there are humans at different
distances with varying occlusion levels, but all humans in
this dataset are in the upright position. We collected a second
dataset which we call “the Café dataset” from a crowded café
area in our university by driving our service robot around.
There is substantial environmental clutter including plants,
counters, pillars, and various types of tables and chairs.
Standing, sitting, and walking humans are mixed and are
often occluded by other humans, by furniture or plants, or
by backpacks and other items they are carrying.

A. Accuracy

We evaluate the performance of our algorithm on both
the Hallway and Café datasets (Fig. 3). On the Hallway
dataset, we compare our algorithm against the HOD11
approach [1] using the annotated depth data from the same
Hallway dataset. Our HOD calculation is similar to the HOD
descriptor calculation in [1] (gradients are computed between
metric depths). The candidates extracted by our algorithm
also only contain pixels from the relevant regions, reducing
background clutter in the HOD window. Since the original
implementation of the HOD11 was not available to us, we
were not able to compare the performance of our approach
against HOD11 on our Café dataset.

1) Hallway Dataset: For training, our algorithm was run
on the training set (700 frames from each of the 3 Kinects in
the dataset), and extracted candidates were checked against
the annotated bounding boxes. Positive training examples
were taken from candidates intersecting with bounding boxes
denoting unobstructed people, while negative examples were
taken from candidates which did not intersect with the
annotated bounding boxes. We performed our test under
similar conditions to the experimental evaluation in [1]:
we used 1000 positive examples where each example was

TABLE I: Parameters used for evaluation on the Hallway
and Café datasets, determined by parameter sweeps.

Parameter Hallway Café
α Height/width of cell 8 8
s Samples per cell 13 16
kdepth Depth segmentation parameter 0.4 0.22
knormal Normal segmentation parameter 0.04 0.024
β Min region size 5 13
ε RANSAC plane distance threshold 0.025 0.03

RANSAC min inlier fraction 0.975 0.97
n RANSAC iterations 20 20

Region height (meters) [1.0, 2.4] [1.0, 3.0]
Region width (meters) [0.3, 1.2] [0.3, 1.5]

δxz Max merge distance (meters) 0.5 0.5
δy Max vertical merge distance (meters) 1.5 1.5

Candidate size (pixels) 64x128 192x192
HOD cell size (pixels) 16x16 16x16
HOD number of bins 18 18
HOD normalization block size 2x2 2x2

mirrored horizontally for a total of 2000 positive examples,
and we randomly selected 5000 negative examples. We used
300 frames from another sequence on each of the 3 Kinects
for the testing. Similarly to [1], humans identified by the
algorithm were counted as detections if the bounding boxes
of the regions overlapped by 40% or more with the annotated
boxes, and a no-reward-no-penalty policy was applied to
detections of partially obstructed people.

Our algorithm achieved an Equal Error Rate (EER) of
84% using the parameters in Table I, which is comparable
to the 83% of HOD11. For applications where recall is
less important than precision, our algorithm achieves 96%
precision at 70% recall(Fig. 3a), compared to the 85%
precision of HOD11. Each point on the precision-recall graph
was obtained by taking the mean precision and recall over
20 runs. Our algorithm processed each frame in an average
of 25ms on a single core of an Intel Core i5 processor.

2) Café Dataset: For the purposes of this test, the algo-
rithm was only required to detect people at up to 5 meters
away. Detections were counted where bounding boxes over-
lapped by at least 40% vertically and the detected bounding
boxes were horizontally at least 70% inside and occupying at
least 30% the width of the annotated box (the modified width
overlap requirement allows the algorithm to detect multiple
overlapping humans at close proximity to one another as a
single human). However, it was required to identify people
in any pose (standing, walking, or sitting) even if partially
obstructed by up to 50%.

We performed the evaluation using three separate depth
image sequences containing about 1000 frames each. We
used two sequences for training. We selected a total of 1300
positive and 1350 negative training examples, which were
candidates extracted from the training sequences.

We then tested the trained system on 500 randomly
selected frames from the third sequence. The no-reward-no-
penalty policy was applied to indistinct humans, humans
obstructed by more than 50% or less than 50% visible,
humans closer than 0.5 meters, and humans further than
5 meters from the robot. Our algorithm achieved an EER
of 75% on the Café dataset (Fig. 3b) using the parameters

in Table I. Each point on the precision-recall graph was
obtained by taking the mean precision and recall over 20
runs. On average, our algorithm processed each frame in
about 33ms on a single core of an Intel Core i5.

(a)

(b)

Fig. 3: Performance evaluation of our algorithm on a) the
Hallway dataset, and b) the Café dataset.

B. Impact of the Number of Training Examples on the
Performance

We investigate how the number of training examples af-
fects the performance of the algorithm by conducting several
tests using a different number of training examples. We
performed the tests on both the Hallway and Café datasets.
For each dataset, we ran experiments with 100 to 1000
(for the Hallway dataset) or 100 to 1300 (for the Café
dataset) randomly selected positive training examples and
a fixed SVM margin threshold θ (we used θ = 0). Each
experiment was performed 20 times, each time with the
training examples being randomly reselected.

For the Hallway dataset, in each experiment with n
positive training examples, each was mirrored horizontally
to give a total of 2n positive examples, and 5n negative
examples were randomly selected from the set of negative
examples. This follows the ratios used for the evaluation
against HOD11. For the Café dataset, in each experiment

(a)

(b)

Fig. 4: Variation of our algorithm’s performance with the
number of training examples on a) the Hallway dataset, and
b) the Café dataset. The whiskers denote the minimum and
maximum, and the error bars denotes the middle quartiles.

with n positive training examples, n negative training exam-
ples were randomly selected and used.

For the Hallway dataset, the results show that precision
levels remain similar even with fewer training examples, and
recall levels only began to decrease at below 500 training ex-
amples (Fig. 4), therefore, our algorithm achieved precision
and recall levels comparable to the HOD11 algorithm even
with half as many training examples.

Our algorithm tests considerably fewer candidates due
to segmentation and filtering as compared to a brute-force
search. This accounts for the improved precision compared
to HOD11 and similar overall accuracy even with smaller
training sets. Also, the number of false positives is reduced
since the windows which may appear human-shaped under
the HOD descriptor but are actually implausible (not occu-
pying a contiguous region in 3D space) are filtered out.

For the Café dataset, both precision and recall decreased

with fewer training examples. This can be accounted for
by the high levels of clutter in the dataset, which resulted
in a large number of candidates being tested. This made it
more important for the classifier to be better trained so that
it would filter out these non-human candidates.

V. CONCLUSION AND FUTURE WORK

We presented an algorithm to detect people in indoor
environments using depth images provided by an RGB-
D camera. Our approach uses a graph-based segmentation
algorithm on a depth image to determine regions of interest
and tests considerably fewer candidates using the HOD
descriptor than previous approaches. We demonstrated better
precision, comparable Equal Error Rate, and higher speed
than an informed scale-space search on a publicly available
dataset of depth images. Our algorithm runs at 30Hz on a
mobile robot using a single CPU core, allowing computa-
tional headroom for the possibility of algorithmic extensions
to further improve the detection performance.

Possible future work includes the use of SVMs with non-
linear kernels to classify the descriptors, concatenating the
feature vectors resulting from running HOD with different
block sizes, utilizing RGB data along with depth to improve
candidate classification accuracy (especially of people at
farther distances), and employing a parts-based approach
to better handle partially occluded people in a variety of
postures in cluttered environments.

REFERENCES

[1] L. Spinello and K. Arras, “People Detection in RGB-D Data,” in
Proceedings of IROS 2011, pp. 3838–3843.

[2] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in Proceedings of CVPR 2005, pp. 886–893.

[3] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human Detection
Based on a Probabilistic Assembly of Robust Part Detectors,” in
Proceedings of ECCV 2004, pp. 69–82.

[4] Q. Zhu, M. Yeh, K. Cheng, and S. Avidan, “Fast Human Detection
using a Cascade of Histograms of Oriented Gradients,” in Proceedings
of CVPR 2006, pp. 1491–1498.

[5] L. Spinello and R. Siegwart, “Human Detection using Multimodal and
Multidimensional Features,” in Proceedings of ICRA 2008, pp. 3264–
3269.

[6] F. Xu and K. Fujimura, “Human Detection using Depth and Gray
images,” in Proceedings of AVSS 2003, pp. 115–121.

[7] J. Zhou and J. Hoang, “Real Time Robust Human Detection and
Tracking System,” in CVPR 2005 Workshops, pp. 149–149.

[8] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 22, no. 8, pp. 888–905, 2000.

[9] P. Felzenszwalb and D. Huttenlocher, “Efficient Graph-based Image
Segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, 2004.

[10] K. Pulli and M. Pietikäinen, “Range Image Segmentation based on De-
composition of Surface Normals,” in Proceedings of the Scandinavian
conference on image analysis, vol. 2, 1993, pp. 893–893.

[11] M. Fischler and R. Bolles, “Random Sample Consensus: a Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[12] J. Biswas and M. Veloso, “Depth Camera Based Indoor Mobile Robot
Localization and Navigation,” in Proceedings of ICRA 2012, pp. 1697
–1702.

[13] M. Luber, L. Spinello, and K. Arras, “People Tracking in RGB-D Data
with On-line Boosted Target Models,” in Proceedings of IROS 2011,
pp. 3844–3849.

