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ABSTRACT 
Direct-manipulation editors for structured data are 
increasingly common. While such editors can greatly 
simplify the creation of structured data, there are few tools 
to simplify the creation of the editors themselves. This 
paper presents Citrus, a new programming language and 
user interface toolkit designed for this purpose. Citrus 
offers language-level support for constraints, restrictions 
and change notifications on primitive and aggregate data, 
mechanisms for automatically creating, removing, and 
reusing views as data changes, a library of widgets, layouts 
and behaviors for defining interactive views, and two 
comprehensive interactive editors as an interface to the 
language and toolkit itself. Together, these features support 
the creation of editors for a large class of data and code. 

ACM Classification Keywords: H.5.2. [Information 
interfaces and presentation]: User Interfaces—toolkits. 
General Terms: Human Factors, Languages 
Keywords: Structured editing, interface builder, toolkit. 

INTRODUCTION 
With the advent of XML, developers are creating a growing 
number of graphical editors for structured data, including 
HTML editors, forms-based interfaces, visual programming 
environments, editors for source code, diagram editors, and 
even calendars, as well as editors for specialized data types 
designed for particular needs. While many toolkits [1, 10, 
14, 18] exist that can be used to create these editors, several 
common implementation tasks involved in building these 
editors, such as expressing constraints, validating user 
input, responding to changes of the data, and synchronizing 
the models and views, are still cumbersome and error prone 
in many circumstances.  

In this paper we describe Citrus (Creating Interactive Tools 
for Reshaping and Utilizing Structure), a new language and 

user interface toolkit designed to simplify the creation of 
editors for structured data and code. Citrus distills what 
have traditionally been toolkit-level features into first-class 
language features, and offers toolkit-level support for 
features that have previously had to be implemented from 
scratch. The result is a simple, expressive and powerful 
language and accompanying user interface toolkit that is 
specifically designed for creating model-view-controller-
based direct-manipulation editors for highly structured data. 
In addition to including well-known features such as 
constraints and change notifications, Citrus includes 
language-level support for restrictions on primitive and 
aggregate data and for automatically synchronizing models 
and views as data changes. It offers toolkit-level support for 
drag and drop interactions and provides auto-completion to 
text fields with little to no additional code. Using these 
features and others, the Citrus language can describe a wide 
range of data types, from simple data such as addresses, to 
complex executable programs, as well as aid in the creation 
of interactive editors for these data types. Citrus can even 
be used as an alternative to parser-generators such as 
YACC by simplifying the creation of graphical structured 
editors for programming languages that will parse the 
resulting code as a programmer types. 
In the next section we offer an example of building the to-
do list editor seen in Figure 1. We then describe the 
features of the Citrus language and user interface toolkit in 
detail, followed by several examples of larger editors built 
with Citrus, including Citrus’s own specification editor and 
interface builder, a flow chart editor, and a prototype of a 
Java programming environment. We end with a discussion 
of related work and some brief conclusions. 

  
Figure 1. To-do list and address editors created with 
the Citrus language and toolkit. 
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CREATING A TO-DO LIST 
Creating a Citrus editor involves writing a specification of 
the classes of data to be edited and then designing views for 
each class. As an alternative to using Citrus’s textual syntax 
and parser, Citrus also provides a graphical editor for each 
step, as seen in Figure 2. All of the code for creating an 
editor can be specified interactively using these tools. 

As our example, we will create the to-do list editor seen in 
Figure 1. We begin by defining the model, creating three 
classes by dragging New Class from the toolbar at (a) in 
Figure 2. We name them ToDoItem, ToDoList, and 
ToDoDoc. Each is declared with the syntax “a Name is a 
Superclass,” followed by a list of declarations of the 
instance variables, which Citrus calls properties, of the 
form “Type name=expression restricted to [...].” 
For example, ToDoItems have two properties, which we 
dragged from the toolbar: done, a Boolean, and whatToDo, a 
text string that has the regular expression value restriction 
at (b), disallowing carriage returns. In Citrus syntax, []’s 
denote list creation, ()’s denote method calls and 
instantiations, and <>’s denote type arguments for generic 
classes (where List<ToDoItem> is a list of ToDoItems). A 
‘.’ gets a property’s value and @ gets a property itself. 

Next, we design views for the three classes, using the Citrus 
interface builder on the right in Figure 2. Rather than 
creating static displays like conventional builders, Citrus 
defines a view class that is instantiated for each instance of 
data of a particular type. We define a view by choosing 
views for each of a class’s properties. For example, for 
ToDoItemView, shown in Figure 2, we drag a checkbox and 
text field from the toolbar at (c). As we do so, the interface 
builder chooses an unused property in ToDoItem of the 
appropriate type. These can be changed, if necessary, in the 
“Children” panel, which shows the children that will be 
instantiated for each instance of ToDoItemView. 

To arrange the checkbox and the text field, we type the 
expression (a HorizontalLayout spacing=10.0) for the 
layout property at (d). By default, the top and left 
properties of all views are constrained to the result of the 
getLeft and getTop methods of their parent’s layout. We 
then type expressions for width and height at (e), fitting 
the view to its layout. The <- indicates that these properties 
are constrained, rather than initialized to these expressions. 

To hide completed items in the editor, we write a constraint 
on the scale property at (f) that uses the done property 
defined in ToDoDoc. It returns 0.0 if the done property of 
the ToDoItem and hide property of the ToDoDoc that 
“owns” the ToDoItem are both true, and 1.0 otherwise. 

To enable the insertion and removal of ToDoItems, we add 
behaviors to the view class by dragging them into the 
behavior panel at (g). When a carriage return is typed, a 
new ToDoItem will be inserted after the ToDoItem that the 
view represents; when a backspace is typed, the ToDoItem 
that the view represents will be removed; and when a tab is 
typed, the ToDoItem will be replaced with a ToDoList. 

The views for ToDoList and ToDoDoc, shown at (h) and (i), 
each have a placeholder that translates a property into an 
appropriate view for the property’s type. In this case, 
items, a List, is translated into a ListView, which updates 
itself as its list changes; list, of type ToDoList, is 
translated into an instance of the ToDoListView class that 
we defined. The “Save” button calls write on the ToDoDoc, 
which uses a built-in routine to serialize the data in a 
straightforward XML format. 

Building this editor with a more traditional toolkit would 
have required several lines of code to synchronize models 
and views, to generate new views as items are inserted, to 
validate whatToDo, to save the data, and to implement 
constraints. Citrus manages all of these automatically. 

 
Figure 2. The Citrus specification editor (left) and interface builder (right), used to create Citrus editors. 



OVERVIEW 
We have built several powerful applications using the 
Citrus language and user interface toolkit, including 
Citrus’s own specification editor and interface. The key to 
Citrus’s power and simplicity lies in its language and 
toolkit-level support for implementation tasks that typically 
must be done manually in other toolkits. In the following 
sections we describe this support in detail. 

THE CITRUS SPECIFICATION LANGUAGE 
Citrus is an object-oriented, statically-typed and interpreted 
language, with support for generic classes and reflection. 
Like other object-oriented languages, Citrus programs 
consist of classes that declare a list of named instance 
variables and methods. We refer to an instance of a Citrus 
class as an element to reinforce the notion that they 
generally represent data (just as XML elements represent 
data); for the same reason, we call the instance variables 
properties. In addition to basic features such as inheritance 
and method overriding, Citrus also allows property 
overriding, which lets programmers override property’s 
default values, constraints and types, either by subclassing 
or when instantiating an element. Everything in Citrus is an 
element, including the primitives (Booleans, integers, 
floating-point values, text strings, lists, and sets), the 
implementation of the properties themselves, as well as 
every other data structure described throughout this paper. 
Citrus classes can be defined using the Citrus language, 
using the interactive editor (Figure 2 left), its textual 
syntax, or by writing Java code (this last technique has only 
been necessary for bootstrapping the system). 

Expressions 
Citrus expressions are of the form (context method 
arguments), except for the syntax for list creation and 
conditionals. Methods are typically defined in a Citrus 
class, but Citrus also supports higher-order anonymous 
methods and quoted expressions, allowing code to be used 
as data (for examples, see the quoted expressions in the 
behaviors shown in Figure 2). Although this makes static 
type checking impossible in many cases, it adds a level of 
flexibility found in dynamically typed languages such as 
Lisp. Citrus also supports special methods for getting and 
setting a property’s value and getting a handle to the 
property itself (e.g., whatToDo refers to the property’s value 
and @whatToDo refers to the property itself). 

Properties 
The value stored in each Citrus property is a pointer to a 
single Citrus element. Unlike pointers in other languages, 
Citrus pointers can either own or refer to the element that 
they point to. This allows Citrus elements to represent both 
cyclic and acyclic graphs of elements. Each element also 
has a reference to the property that owns it and to the set of 
properties that refer to it. This is used when an element 
needs to know its context (for example, (f) in Figure 2 
shows how to determine the ToDoDoc that owns the 
ToDoItem using the ownerOfType method). 

Each property declaration has a value expression, which is 
must be supplied as either an initial value (using the 
symbol =), a constraint (using the symbol <-), or as a 
parameterized value that must be passed during 
instantiation (using the symbol ?). Value expression can be 
overridden in instantiation expressions using the property’s 
name. For example, the expression (a ToDoItem 
done=true whatToDo<-“work”) creates a new ToDoItem, 
overriding the done property’s initial value with true, and 
constraining whatToDo to the text string “work.” This 
avoids the need to subclass when the only changes to an 
instance are to initial values and constraints. Constraints on 
properties can also be set at runtime. 

Because a property’s value expression may depend on other 
as yet uninitialized properties, properties are initialized 
lazily (unless they are parameterized, in which case they are 
initialized immediately). For properties that are 
constrained, Citrus lazily evaluates the constraint as 
dependencies change at runtime. Constraints are based on 
Amulet’s dynamic one-way constraint algorithm [20], and 
allow arbitrary expressions, including pointer variables (for 
example, a reference to a view’s parent’s width). Each 
property maintains bookkeeping about the incoming and 
outgoing edges in its constraint’s dependency graph. Cycles 
are detected at runtime, as in Amulet’s constraint system, 
and use the “once around” method for breaking a cycle. 

Property and Element Restrictions 
Property restrictions specify a property’s legal values. 
Unlike other toolkits with support for validation, such as 
XML Schema data types, Citrus’s property restrictions can 
be expressed using any Boolean-valued single-argument 
method, including those that refer to other properties. 
Citrus automatically records any dependencies in the 
method at runtime and revalidates the property as they 
change. For example, Citrus’ scroll bars use property 
restrictions to require that the bar remains within the 
bounds of the scroll bar track, and that the bar stay 
sufficiently tall and wide for interaction. Citrus also 
provides several common restrictions, such as ranges for 
continuous values and regular expressions for text strings 
(as seen in our ToDoItem’s whatToDo). A property’s validity 
can be requested, and elements can also be notified when a 
property’s validity changes (this is discussed shortly). 

To allow for flexibility in the enforcement of property 
restrictions, each restriction has an allowInvalid flag; if 
set, invalid values are assigned, but if not set, trying to set 
an invalid value causes the property to retain its old value. 
For example, in our to-do list editor, the regular 
expression’s allowInvalid is false by default, disallowing 
carriage-returns. In our Java editor, we use a regular 
expression to define a valid Java identifier, but we set the 
flag to true to allow temporarily invalid identifiers as 
programmers are typing. 



Many property restrictions can be represented as constraints 
(for example, a constraint containing min and max could be 
used in place of boundary restrictions for Citrus’s scroll 
bars), but there are several advantages to their separation. 
For example, a zip code property might be restricted to 
valid zip codes (as in the address dialog in Figure 1), but 
would not be constrained to a particular zip code. This 
separation also allows property restrictions to define a 
validValues method that computes a finite set of legal 
values for a property. Our Java editor defines this method 
to compute the set of valid names for variable references 
based on Java’s scoping rules. Citrus text fields take full 
advantage of this feature to support auto-completion. 

Just as properties can declare property restrictions, a class 
can declare any number of element restrictions, which are 
conditions that determine an element’s validity. For 
example, an element that represents a form might require 
that a specific set of fields be completed and that if a 
particular field is filled another field must be as well. 

Listeners and Notification 
It is often necessary to take some action when a property or 
element changes. This is typically achieved by adding and 
removing listeners to data. Citrus provides language-level 
support for such notification mechanisms, allowing 
notification about events on a single property’s value or of 
changes to any element it refers to indirectly (called “deep 
monitoring” by Rodham and Olsen [17]). Programmers 
simply write a declaration of the form when expression 
event action. At runtime, Citrus automatically adds and 
removes a listener to the property or element that 
expression evaluates to as dependencies in the expression 
change. When the event of interest occurs on the current 
property or element of interest, the action is executed. The 
willChange and changed events are sent before and after a 
property or element changes. The outOfDate event is sent 
when dependencies in property’s constraint or an element’s 
restriction change. The validityWillChange and 
validityChanged events are sent before and after a 
property is set to a value that changes its validity one when 
an element’s restriction is or is no longer violated. This is 
used to make the state and zip code fields in Figure 1 
change to red when invalid. The cycle event is sent when a 
cycle is detected in the dependency graph of the property’s 
constraint. This allows programmers to respond in an 
appropriate way to the cycle, possibly halting the editor, 
relaxing the constraint, or notifying the user.  

Serialization 
We take advantage of Citrus’s common data format to 
provide general support for serializing any Citrus element 
into XML. If a property is constrained or parameterized, it 
is not serialized under the assumption that it can be 
recovered later. Views of each element are serialized with 
their model in order to save any unrecoverable view state, 
such as absolute positions or collapsed/expanded state. 

Specifying Languages 
Many of the features of the Citrus language are suitable for 
creating graphical editors and interpreters for programming 
languages. For example, each Citrus element is roughly 
equivalent to a node in an abstract syntax tree, where the 
properties of the element correspond to the attributes on the 
node. Property restrictions can be used to express static 
scoping rules for references in a language; we have used 
these to specify some of the static scoping rules for Java. A 
collection of Citrus classes can be used to define the 
equivalent of a context-free grammar. Classes can also 
define an evaluate method, which “executes” an element. 
This is used, for example, to execute a form when its okay 
button is pressed, possibly by sending a database query 
consisting of the values of each property stored in the 
element. We have even used evaluate methods to 
implement the Citrus interpreter.  

THE CITRUS USER INTERFACE TOOLKIT 
As with the Citrus language, the central design goals for the 
Citrus user interface toolkit were flexibility and 
expressiveness. Much of this was achieved by simply 
implementing the toolkit using the Citrus language. For 
example, views automatically repaint themselves when any 
of their properties change, simply by listening to changed 
and outOfDate events on themselves. In addition, 
flexibility and expressiveness were achieved by making all 
toolkit primitives dynamic and by providing a rich set of 
widgets that interact closely with Citrus language features. 

Views and Element Views 
Views are the basis of the Citrus user interface toolkit, 
acting as containers for other views and defining a local 
coordinate system. The majority of views in an editor, 
however, are ElementViews, which represent the current 
value of a particular property. The rationale behind these 
views was that when writing code to manipulate a model, 
programmers should not have to be concerned with 
managing and updating the model’s corresponding views as 
the model changes.  

To accomplish this, ElementViews listen to changes in the 
property that they represent, and on a change, either update 
themselves or replaces themselves with a view of their 
property’s new element. To illustrate, consider Figure 3, 
which portrays the elements and views involved in 
representing the ToDoItemView from our earlier example. 
The ToDoItemView listens to the property that currently 
points to the ToDoItem that the view represents. When this 
property changes, the ToDoItemView replaces itself with a 
view of the new element pointed to. For example, the 
replace statement in the behavior at (g) in Figure 2 sets the 
property that currently owns the ToDoItem to a new 
ToDoList, causing the ToDoItemView to replace itself with a 
new ToDoListView. The checkbox and text field listen to 
changes in the ToDoItem’s done and whatToDo properties 
and modify themselves on each change. 



To use this translation mechanism, the programmer simply 
calls the toView method on a property. For example, the 
ToDoDocView in Figure 2 uses the expression (model.@list 
toView) to create an appropriate view for it’s ToDoDoc’s 
list property. Citrus uses a global repository that maps 
Citrus classes to a corresponding view class, which is then 
instantiated. The view manages every change from then on, 
so that the programmer can focus on modifying the model. 
Because Citrus classes can be specialized (for example, 
lists can be declared to contain a particular class of 
element), this repository distinguishes between generic 
views of Citrus classes, and more specific views for more 
specific types. For example, as implemented, our to-do list 
editor implicitly used generic ListViews since a more 
specific type of ListView was not defined. To do so, we 
would define a subclass of ListView that specifies its model 
property’s type as List<ToDoItem>, and then proceed to 
add custom interactions, appearance, and layout 
specifically designed for lists of ToDoItems. 

In addition to each view class representing a particular class 
of element, it is also specified as one of three varieties. 
Ownership views (the default) represent a property that 
owns the element it points to (as defined in the Citrus 
language section). All of the views created for the to-do list 
editor were ownership views. Reference views represent 
properties that reference, rather than own the element they 
point to. This is used, for example, when a property refers 
to an element shown somewhere else onscreen, where it 
makes more sense to use the element’s name or some other 
summary, rather than its ownership view. Nothing views 
are used to represent properties that point to nothing. 
Unlike most languages, where a “null” pointer is always 
represented in the same way, Citrus allows a different view 
of nothing for each Citrus class. Citrus supplies generic 
ownership, reference, nothing views when none are 
specified for given class. 

Layout 
Layout tends to be a point of contention in many toolkits, 
and thus, in keeping with our goal of flexibility, we tried to 
offer several ways of defining view layouts. For full 
flexibility, the programmer can write custom constraints for 
each view’s top–left position. In many cases, however, the 
same constraint is applied to all of the children of a view. 
For example, in a vertical left-justified list layout, each 
view’s left is always zero and its top is always its previous 
sibling’s bottom (except for the first). Rather than requiring 
programmers to repeat these constraints, Citrus provides 
Layout elements, which contain two methods to define the 
top and left properties of each child of the associated view. 
By default, a view’s top-left position is constrained to the 
values returned by its parent’s layout element. Citrus offers 
several pre-defined and highly parameterized layouts, 
including vertical, horizontal, centered, and horizontal flow 
layouts. Custom layouts are made by simply subclassing 
Layout and defining its two methods. 

It is also straightforward to write layout algorithms, rather 
than use constraints or the layout elements described above. 
These can be invoked in a number of ways; for example, a 
listener could be added to a view’s children property so that 
any time a child is added or removed, the algorithm could 
be invoked. Or, a widget could be provided that invokes the 
algorithm. We later give an example of this when 
describing the connected graph editor. 

Graphic Objects 
A view’s appearance is determined by background, content, 
and foreground lists of retained GraphicObjects. Citrus 
provides primitives including rectangles, lines, polygons, 
circles, ellipses, and text, and an aggregate graphic object, 
which allows custom shapes to be defined from the addition 
or subtraction of primitive shapes and other aggregates. 
Each GraphicObject has several properties; for example, 
rectangles have a roundedness and filled property, lines 
have a thickness property, and all have primary and 
secondary colors and basic support for gradients. Each 
property can be set and constrained when a GraphicObject 
is instantiated, avoiding the need to subclass them. 

To reduce the need for constraints, each graphic object is 
rendered relative to a view’s top, left, right, and bottom, 
and includes both pixel and proportional offset properties. 
For example, to paint a 1-pixel border around a view, a 
graphic object’s offsets would be (–1, –1) for the top-left 
and (1, 1) for the bottom-right; a graphic object could be 
centered and half the size of a view by specifying its 
proportions to be 25% for the top, left, bottom, and right. 

Programmers can specify a view’s default graphic objects 
by dragging graphic objects from the toolbar in the 
interface builder to one of the three lists of graphic objects 
(seen in the bottom left of the interface builder in Figure 2). 
Graphic objects can also be added and removed at runtime 
using the standard list insert and remove methods. 

 
Figure 3. Entities involved in representing a 
ToDoItemView. Each view listens to changes the in a 
particular property’s value. When their properties 
change, the checkbox and text field update 
themselves, whereas the ToDoItemView replaces 
itself with a view the property’s new value. 



Behaviors and Devices 
Citrus uses an event-based input model that was designed 
to be flexible and dynamic. Events are generated by Device 
elements, such as a mouse and keyboard, which each 
declare a list of sub-devices and a list of events. For 
example, the Mouse device has several button devices, a 
scroll-wheel device, and a pointer device; each mouse 
button specifies pressed, released, clicked, and double-
clicked events. Each device has several additional 
properties: for example, the mouse pointer device has a 
position and a reference to the view currently picked by the 
pointer; keyboard keys have a down property. Because all 
devices and their properties are elements, they can be 
listened to and referenced in constraints. New devices can 
be defined with Java to support alternative input 
techniques, such as gesture or pen-based interactions. 

To respond to events, views have a list of Behavior 
elements, which react to a particular type of device event 
with particular parameters by executing an arbitrary 
Boolean-valued expression. Behaviors can consume events 
in two ways. By default, if an action returns true, the event 
is consumed only after all behaviors in a view that react to 
a particular event are executed. This allows for 
extensibility; for example, even though Citrus text fields 
consume the keyboard’s typed events, subclasses can still 
respond to the event in additional ways. Behaviors can also 
be set to immediately consume an event, overriding 
behaviors in a view that would have otherwise reacted to 
the event. Behaviors can be added and removed at runtime 
as part of other behaviors. For example, the toolbar widgets 
used in the specification editor and interface builder add 
Draggable behaviors (described shortly) to views that are 
not draggable by default, removing them afterwards. 

Pointer and Keyboard Focus 
The mouse pointer maintains a pointer focus, allowing 
views to temporarily redirect all mouse events to a 
particular view. For example, Citrus’s sliders obtain the 
pointer focus while being dragged, and release focus on the 
mouse button released event. Views specify a Shape 
element for mouse pointer picking purposes. 

Keyboard focus in Citrus works in the same way that it 
does in most user interface toolkits; each window has a 
keyboard focus, and all keyboard input goes to the current 
view in focus in the active window, or one of its parents. 
However, the movement of the keyboard focus is different 
than that in most toolkits, which typically specify a focus 
“ring”, relatively independent of the layout of the interface. 
Instead, Citrus views define several methods that determine 
the spatially nearest focusable view left, right, above, and 
below itself. These methods are used to map the keyboard’s 
arrow keys to movements of the keyboard focus to adjacent 
focusable views. Citrus also offers methods to mimic text-
editors. For example, pressing the right arrow key at the 
end of a line wraps to the beginning of the next line. This 

corresponds to a depth-first search through the view 
hierarchy for focusable views that are laid out top-to-
bottom, left-to-right. By default, all of these methods search 
for the deepest focusable view in a hierarchy, because most 
keyboard input goes to text widgets. This also avoids 
ambiguity: if a focusable view that contained other 
focusable children obtained focus, it would be unclear 
whether pressing the down arrow would give focus to the 
next focusable sibling or child. 

Drag and Drop Behaviors 
Because all Citrus views have the same programming 
interface, we were able to design general drag and drop 
behaviors for use in any Citrus view. They are implemented 
as aggregate behaviors that respond to the various mouse 
pointer events associated with dragging. A view that 
includes a Draggable behavior, for example, is hoisted 
when clicked, moved as the mouse pointer moves, and 
returned to its original location when released over an 
invalid location. When released over a view of a property 
with a compatible type as the model of the view being 
dragged, the behavior either sets, references, or duplicates 
the model being dragged, depending on its action property. 
A view that includes a Droppable behavior reacts to the 
draggedOver and droppedOver events by checking if the 
view that is being dragged represents an element of the 
expected class by the droppable view’s property, and if so, 
setting the property to the element being dragged. Citrus 
also provides an Insertable behavior for list views. These 
have been sufficient for all the editors we have developed. 

Animation 
When setting a property, a Transition element can be 
supplied to animate the change. Transitions, as in prior 
work [6, 11], consist of a method to map the property’s 
value based on elapsed time and a pacing function. In 
addition to single value transitions, Citrus also supports 
sequenced animations via two animation constructs called 
DoInOrder and DoTogether (borrowed from the Alice 
programming system [3]). By default, behaviors finish 
executing before returning control to the event loop; 
animations allow for behaviors to execute over time. Citrus 
uses animations in many of its pre-defined behaviors. For 
example, when a view is dropped over an invalid location, 
it is animated to its original position. 

Styles 
Each editor has a Style element, which is a repository for 
fonts, colors, graphics, line spacing, behaviors and any 
other shared elements. The default style provided by Citrus 
includes defaults for all of the pre-defined widgets in the 
toolkit. Each widget parameterizes its colors, behaviors, 
and graphics objects using the style, allowing every aspect 
of the widget to be modified, except for the widget’s view 
hierarchy. Programmers can subclass styles to include 
additional properties. For example, we created a custom 
style for the address editor seen in Figure 1, requiring the 
several new colors and graphics for text fields and buttons. 



EXAMPLES 
In the following sections we illustrate the range and 
expressiveness of Citrus by describing the implementation 
of four diverse editors built with its language and toolkit. 

THE CITRUS SPECIFICATION EDITOR 
One approach to building an editor for the Citrus language 
would have been to create a parser and use a regular text 
editor to edit specifications. However, adding programming 
support to the editor, such as auto-completion and 
immediate feedback about errors, would have required 
significant effort and incremental parsing algorithms. 

Creating a code editor with these features using Citrus was 
easy. We simply defined several Citrus classes to 
implement the specification language itself, including 
classes for classes, property declarations, property 
restrictions, primitives, and so on. Since we had no editor to 
begin with, these were bootstrapped using our Java API for 
defining Citrus classes.  We then defined views for each 
Citrus class. The only views we specified beyond the 
ownership view of each class were several types of views 
of lists containing particular types. 

Citrus’s drag and drop behaviors greatly simplified the 
creation of the editor. By simply adding Draggable, 
Droppable, and Insertable behaviors to the appropriate 
views, no additional code was necessary to implement the 
interactions in the editor. Duplicator widgets were used to 
create new code; when clicked, they duplicate a specified 
element and create a corresponding view. To support 
deletion, views responds to the backspace key by replacing 
themselves with nothing, or in the case of elements in lists, 
removing themselves from the list that owns them. 

EXAMPLE: THE CITRUS INTERFACE BUILDER 
The Citrus interface builder, seen in Figure 2, edits any 
subclass of View. Designing a view involves defining value 
expressions and restrictions for each property. For example, 
modifications to the lists of children, graphics, and 
behaviors are simply modifications to the list creation 
expressions assigned as each property’s value expression. 
Nearly everything can be defined interactively, since 
interactive views were defined for each part of the class 
definition, including layouts, graphics objects, children, and 
so on. The only details that must be specified with code are 
value expressions and behaviors, and even then, they can be 
created using the same drag and drop behaviors used in the 
specification editor. The interface builder also uses Citrus 
text fields, which have general support for auto-completion 
by asking their properties for their set of valid values.  

A key feature of the builder is its ability to provide 
immediate feedback by showing an instance of the class 
being defined. The editor uses a listener to respond to 
changes in each declaration’s value expression by updating 
the instance with the new expression. Because Citrus 
incrementally updates the expression’s validity, the editor 
is notified when it is unsafe to execute the expression. 

A BENCHMARK GRAPH EDITOR 
The second author has proposed several benchmarks for 
comparing the expressiveness and usability of user 
interface toolkits, and many people have implemented these 
benchmarks with dozens of toolkits [12]. The graph editor 
benchmark, which allows the creation of box and arrow 
diagrams, is particularly suitable for evaluating Citrus. The 
benchmark has six requirements: (1) the boxes are labeled 
with text; (2) each box is attached by a line with an arrow 
to the box that was previously drawn; (3) the layout is 
under the user’s control; (4) the boxes can be resized and 
moved; (5) the stroke thickness of the boxes and lines can 
be changed; and (6) the boxes and arrows can be deleted. 
The second author was able to implement this benchmark 
in Amulet [13] in about 90 minutes using 212 lines of code. 

Our Citrus implementation of the benchmark is seen in 
Figure 4. Every view in the editor is custom made, except 
for the selection handles, slider, and buttons. Nodes are 
created by clicking and dragging on the canvas. The stroke 
thickness of nodes and arrows can be modified with the 
slider at the bottom right, whose property is constrained to 
the stroke property of the graphic object of the view 
currently selected. All of these behaviors were 
implemented with the Citrus interface builder. 

Our implementation adds several other features beyond 
those required by the benchmark. For example, nodes can 
also be created by dragging them from the toolbar. Each 
arrow has a clickable region that is a line shape with a 
thickness twice that of the line, allowing for easier clicking. 
The flow chart editor has a “Clean up” button that invokes 
a method that arranges the nodes in the editor in a grid.  

 
Figure 4. A simple connected graph editor, 
supporting multiple interaction techniques for 
creating nodes and arrows, control over the line 
stroke thickness of any object, and automatic 
“neatening” of the layout. 



Even with the additional features, the first author was able 
implement the benchmark in just 30 minutes and 63 lines of 
code. This included 11 lines for the specification, and 25 
lines of custom behaviors, 12 lines of pre-defined layouts 
and constraints, 4 lines of custom constraints for the 
arrows, and 11 for the “clean up” layout method. This is 
despite the fact that Citrus is not even focused on creating 
applications of this type. 

A JAVA EDITOR 
Because Citrus classes describe a structure similar to an 
abstract syntax tree, it is easy to map a programming 
language’s syntax to Citrus classes. For example, the 
formal syntax for a Java class declaration is: 

ClassDeclaration:: 
ClassModifiers class Identifier  
Super Interfaces ClassBody 

This syntax is represented as the Citrus class seen in Figure 
5. The ClassModifiers non-terminal is represented as 
three properties: a text string, restricted to “public,” 
“protected,” “private,” and “default,” and two Booleans 
representing the abstract and final keywords. A text string 
represents the class declaration’s identifier, which may not 
contain whitespace, but may temporarily contain non-
alphanumeric characters. A list of ClassBodyDeclarations 
represents the ClassBody non-terminal. 

Because this Citrus class separates the specification of a 
Java class declaration from its visual representation, we can 
represent a class declaration in the most appropriate way 
for the data. For example, Figure 6 shows our prototype 
Java editor’s view of a class declaration, laid out from left 
to right and top to bottom. It places a scroll view around the 
class body part, allowing the class header to always remain 
at the top of the screen as context. Alternative views could 
easily be created; for example, a view with an absolute 
positioning layout would allow programmers to visually 
arrange the class body declarations in whatever way was 

most appropriate for their task, grouping declarations 
together, or placing related declarations side by side for 
comparison. Such a view would be difficult to implement 
in a text editor, but here would only require a single change 
to the class declaration view’s layout property. 

Because property restrictions were used throughout the 
specification to define valid identifiers for classes, methods, 
and variables, and to define Java’s static scoping rules, 
every text field and pop-up menu in the prototype 
automatically supports auto-completion and immediate 
feedback about errors (as seen in Figure 6). The element 
restrictions at the bottom of Figure 5 use the List class’s 
ofType and unique methods to require that the Fields and 
MethodDeclarations in the declarations list are not 
equivalent to any other declaration in the list, based on each 
class’s definition of equivalence. Fields define 
equivalence by name and MethodDeclarations define it by 
their method signature.  

In addition to drag and drop interactions, which are 
supported throughout the Java editor, we are currently 
focusing on improving the keyboard-based interactions. We 
have implemented several novel types of edits that have the 
potential to improve the flexibility of structured editors. For 
example, typing “if” and a space inside a statement replaces 
the empty statement with an if statement, just like typing 
tab replaced a ToDoItem with a ToDoList in our to-do list 
editor. Though the keyboard-based interaction techniques 
have potential, we feel they still need considerable work 
before they will be smooth enough for regular use. 

 
Figure 5. A partial specification of the Java 
programming language’s class declaration construct. 

      
Figure 6. A prototype of a Java editor, created using 
Citrus. The editor supports incremental error 
checking and code completion. 



DISCUSSION AND RELATED WORK 
Each design choice we made for Citrus focused on 
providing a generic, semi-automated solution for specifying 
model-view-controller based graphical editors. Because of 
this focused intent, one way to think of Citrus is as a 
“scripting” language, like Mathematica, Visual Basic, Perl, 
PHP, Tcl and others. This perspective offers many insights 
into Citrus’s scope and limitations. For example, because it 
focuses on optimizing flexibility and expressiveness for a 
particular class of software architectures, Citrus is less 
suitable for applications that are not easily architected with 
models and views; Citrus may therefore not be the right 
language for exploring AI or mathematical computations. 
Furthermore, just as with other scripting languages, the 
applications that Citrus helps develop can be developed 
with more general languages such as Java, but with more 
code and hassle. Citrus does, however, share the same 
advantages as other scripting languages including being 
platform independent and supporting more rapid 
prototyping than compiled languages. 

There are several alternative design choices that we could 
have made throughout the language and toolkit. These are 
best described by comparing Citrus to related tools, toolkits 
and languages that have similar and overlapping goals. 

Citrus is closely related to previous work in syntax-directed 
and structured editors [10, 15, 16, 19], which derive views 
of data from the data itself. Many of these systems, most 
notably the GNOME and MacGnome environments [10] 
have the explicit goal of supporting partial automatic 
generation of structured editors from syntax grammars. 
However, the resulting editors typically have generic views 
and fixed interaction techniques. Citrus takes the approach 
of instead simplifying the development of custom, hand-
designed structured editors. Many of the toolkits designed 
for building structured editors also support the specification 
of static semantics for code, but using a separate language. 
Citrus allows programmers to use the same language, and 
specify the semantics in the same place as the syntax.  

Also related is work on “syntax-recognizing” editors [1, 2, 
4, 18], in which a document is derived from the view, 
instead of the view from the document, typically via 
parsing. Although these toolkits often result in editors with 
more flexible keyboard-based interaction techniques, they 
do so by limiting the presentation of data largely to text. 
For example, the Proxima toolkit [18] restricts the layout of 
views to rows and columns. Citrus focuses on the 
alternative approach of allowing whatever presentation 
arrangement is most appropriate for the data being 
presented, even absolute positioning. This is potentially at 
the expense of the usability of its keyboard-based 
interaction techniques. To investigate this, we are currently 
designing new interaction techniques based on studies of 
Java programmers’ use of unstructured text [7] that we 
hope will increase the flexibility of editors for highly-

structured data such as code. We have begun to prototype 
the Java environment seen in Figure 6, in order to explore a 
class of programming tools that are difficult or impossible 
to implement with unstructured text, due to parsing 
ambiguities and limitations of the visual representation [8]. 

In recent years that has been a renewed interest in 
developing structured editors for end-user and novice 
programmers, including the Alice 3D programming system 
[3] and Scratch [9], which both support drag and drop 
interactions to construct code. Citrus is not a direct 
competitor to these systems, but rather, a language and 
toolkit that could simplify the development of such 
programming systems through its support for specifying 
languages and its generalized drag and drop behaviors. 

The Citrus user interface toolkit shares many features with 
user interface toolkits such as Amulet [13] and SubArctic 
[5], including its support for constraints, graphics objects, 
and animation. Where Citrus differs is in its dynamic 
treatment of what are typically statically defined code in 
these toolkits, such as drawing, constraints, and layout, as 
dynamic, reusable, and sharable data. For example, 
Amulet’s “graphical objects” combine positioning and 
appearance, where as Citrus separates the two, allowing 
layout and appearances to be more easily shared and 
modified at runtime. 

Modern web tools, toolkits, and languages are also relevant. 
For example, XForms is an XML standard that helps 
separate the presentation from content for form-based web 
applications. The key difference from Citrus is that XForms 
focuses specifically on forms and transaction-based user 
interfaces. Citrus’s property restrictions are similar to those 
in XML Schema datatypes, the difference being that 
Citrus’s property restrictions can be defined with arbitrary 
expressions that can refer to any properties in the local 
context of their declaration. XML Schema types are 
restricted to a set of stereotypical restrictions and do not 
support dynamic references to other data. One central 
difference between Citrus and many of these web 
technologies is that it integrates several useful features into 
a single language; many XML-based languages and toolkits 
require programmers to learn several new languages.  

Haystack [14], a platform for authoring semantic web 
applications, is similar to Citrus in many respects, offering 
customizable views for browsing, searching, and 
associating semi-structured data, a mechanism for choosing 
“view prescriptions” based on a data element’s type, and a 
generalized data representation. Citrus and Haystack differ 
in the type of user activities they support: Haystack focuses 
on information management and searching applications, 
whereas Citrus focuses on information authoring and 
presentation (although both can support all of these 
activities to differing degrees). These different focuses 
result in different interaction techniques, data 
representations, and language support. 



CONCLUSIONS 
In addition to designing more pre-defined behaviors and 
widgets, we are currently focusing on improving the text-
based interaction techniques of Citrus editors in the context 
of our Java editor. We hope to have the toolkit and editors 
ready for user tests and deployment in the near future. We 
have found the Citrus language and toolkit to be a flexible, 
expressive and powerful way to create graphical editors for 
structured data and code. We expect it to be increasingly 
useful as such data becomes more ubiquitous, and 
especially as end users become involved in creating and 
modifying structured data as part of their everyday work. 
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