
Citrus: A Language and Toolkit for Simplifying the
Creation of Structured Editors for Code and Data

Andrew J. Ko and Brad A. Myers

Human Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
ajko@cs.cmu.edu, bam+@cs.cmu.edu

ABSTRACT
Direct-manipulation editors for structured data are
increasingly common. While such editors can greatly
simplify the creation of structured data, there are few tools
to simplify the creation of the editors themselves. This
paper presents Citrus, a new programming language and
user interface toolkit designed for this purpose. Citrus
offers language-level support for constraints, restrictions
and change notifications on primitive and aggregate data,
mechanisms for automatically creating, removing, and
reusing views as data changes, a library of widgets, layouts
and behaviors for defining interactive views, and two
comprehensive interactive editors as an interface to the
language and toolkit itself. Together, these features support
the creation of editors for a large class of data and code.

ACM Classification Keywords: H.5.2. [Information
interfaces and presentation]: User Interfaces—toolkits.
General Terms: Human Factors, Languages
Keywords: Structured editing, interface builder, toolkit.

INTRODUCTION
With the advent of XML, developers are creating a growing
number of graphical editors for structured data, including
HTML editors, forms-based interfaces, visual programming
environments, editors for source code, diagram editors, and
even calendars, as well as editors for specialized data types
designed for particular needs. While many toolkits [1, 10,
14, 18] exist that can be used to create these editors, several
common implementation tasks involved in building these
editors, such as expressing constraints, validating user
input, responding to changes of the data, and synchronizing
the models and views, are still cumbersome and error prone
in many circumstances.

In this paper we describe Citrus (Creating Interactive Tools
for Reshaping and Utilizing Structure), a new language and

user interface toolkit designed to simplify the creation of
editors for structured data and code. Citrus distills what
have traditionally been toolkit-level features into first-class
language features, and offers toolkit-level support for
features that have previously had to be implemented from
scratch. The result is a simple, expressive and powerful
language and accompanying user interface toolkit that is
specifically designed for creating model-view-controller-
based direct-manipulation editors for highly structured data.
In addition to including well-known features such as
constraints and change notifications, Citrus includes
language-level support for restrictions on primitive and
aggregate data and for automatically synchronizing models
and views as data changes. It offers toolkit-level support for
drag and drop interactions and provides auto-completion to
text fields with little to no additional code. Using these
features and others, the Citrus language can describe a wide
range of data types, from simple data such as addresses, to
complex executable programs, as well as aid in the creation
of interactive editors for these data types. Citrus can even
be used as an alternative to parser-generators such as
YACC by simplifying the creation of graphical structured
editors for programming languages that will parse the
resulting code as a programmer types.
In the next section we offer an example of building the to-
do list editor seen in Figure 1. We then describe the
features of the Citrus language and user interface toolkit in
detail, followed by several examples of larger editors built
with Citrus, including Citrus’s own specification editor and
interface builder, a flow chart editor, and a prototype of a
Java programming environment. We end with a discussion
of related work and some brief conclusions.

Figure 1. To-do list and address editors created with
the Citrus language and toolkit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST'05, October 23–26, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-1-59593-023-X/05/0010...$5.00.
Copyright 2005 ACM 1-58113-957-8/04/0010...$5.00.

CREATING A TO-DO LIST
Creating a Citrus editor involves writing a specification of
the classes of data to be edited and then designing views for
each class. As an alternative to using Citrus’s textual syntax
and parser, Citrus also provides a graphical editor for each
step, as seen in Figure 2. All of the code for creating an
editor can be specified interactively using these tools.

As our example, we will create the to-do list editor seen in
Figure 1. We begin by defining the model, creating three
classes by dragging New Class from the toolbar at (a) in
Figure 2. We name them ToDoItem, ToDoList, and
ToDoDoc. Each is declared with the syntax “a Name is a
Superclass,” followed by a list of declarations of the
instance variables, which Citrus calls properties, of the
form “Type name=expression restricted to [...].”
For example, ToDoItems have two properties, which we
dragged from the toolbar: done, a Boolean, and whatToDo, a
text string that has the regular expression value restriction
at (b), disallowing carriage returns. In Citrus syntax, []’s
denote list creation, ()’s denote method calls and
instantiations, and <>’s denote type arguments for generic
classes (where List<ToDoItem> is a list of ToDoItems). A
‘.’ gets a property’s value and @ gets a property itself.

Next, we design views for the three classes, using the Citrus
interface builder on the right in Figure 2. Rather than
creating static displays like conventional builders, Citrus
defines a view class that is instantiated for each instance of
data of a particular type. We define a view by choosing
views for each of a class’s properties. For example, for
ToDoItemView, shown in Figure 2, we drag a checkbox and
text field from the toolbar at (c). As we do so, the interface
builder chooses an unused property in ToDoItem of the
appropriate type. These can be changed, if necessary, in the
“Children” panel, which shows the children that will be
instantiated for each instance of ToDoItemView.

To arrange the checkbox and the text field, we type the
expression (a HorizontalLayout spacing=10.0) for the
layout property at (d). By default, the top and left
properties of all views are constrained to the result of the
getLeft and getTop methods of their parent’s layout. We
then type expressions for width and height at (e), fitting
the view to its layout. The <- indicates that these properties
are constrained, rather than initialized to these expressions.

To hide completed items in the editor, we write a constraint
on the scale property at (f) that uses the done property
defined in ToDoDoc. It returns 0.0 if the done property of
the ToDoItem and hide property of the ToDoDoc that
“owns” the ToDoItem are both true, and 1.0 otherwise.

To enable the insertion and removal of ToDoItems, we add
behaviors to the view class by dragging them into the
behavior panel at (g). When a carriage return is typed, a
new ToDoItem will be inserted after the ToDoItem that the
view represents; when a backspace is typed, the ToDoItem
that the view represents will be removed; and when a tab is
typed, the ToDoItem will be replaced with a ToDoList.

The views for ToDoList and ToDoDoc, shown at (h) and (i),
each have a placeholder that translates a property into an
appropriate view for the property’s type. In this case,
items, a List, is translated into a ListView, which updates
itself as its list changes; list, of type ToDoList, is
translated into an instance of the ToDoListView class that
we defined. The “Save” button calls write on the ToDoDoc,
which uses a built-in routine to serialize the data in a
straightforward XML format.

Building this editor with a more traditional toolkit would
have required several lines of code to synchronize models
and views, to generate new views as items are inserted, to
validate whatToDo, to save the data, and to implement
constraints. Citrus manages all of these automatically.

Figure 2. The Citrus specification editor (left) and interface builder (right), used to create Citrus editors.

OVERVIEW
We have built several powerful applications using the
Citrus language and user interface toolkit, including
Citrus’s own specification editor and interface. The key to
Citrus’s power and simplicity lies in its language and
toolkit-level support for implementation tasks that typically
must be done manually in other toolkits. In the following
sections we describe this support in detail.

THE CITRUS SPECIFICATION LANGUAGE
Citrus is an object-oriented, statically-typed and interpreted
language, with support for generic classes and reflection.
Like other object-oriented languages, Citrus programs
consist of classes that declare a list of named instance
variables and methods. We refer to an instance of a Citrus
class as an element to reinforce the notion that they
generally represent data (just as XML elements represent
data); for the same reason, we call the instance variables
properties. In addition to basic features such as inheritance
and method overriding, Citrus also allows property
overriding, which lets programmers override property’s
default values, constraints and types, either by subclassing
or when instantiating an element. Everything in Citrus is an
element, including the primitives (Booleans, integers,
floating-point values, text strings, lists, and sets), the
implementation of the properties themselves, as well as
every other data structure described throughout this paper.
Citrus classes can be defined using the Citrus language,
using the interactive editor (Figure 2 left), its textual
syntax, or by writing Java code (this last technique has only
been necessary for bootstrapping the system).

Expressions
Citrus expressions are of the form (context method
arguments), except for the syntax for list creation and
conditionals. Methods are typically defined in a Citrus
class, but Citrus also supports higher-order anonymous
methods and quoted expressions, allowing code to be used
as data (for examples, see the quoted expressions in the
behaviors shown in Figure 2). Although this makes static
type checking impossible in many cases, it adds a level of
flexibility found in dynamically typed languages such as
Lisp. Citrus also supports special methods for getting and
setting a property’s value and getting a handle to the
property itself (e.g., whatToDo refers to the property’s value
and @whatToDo refers to the property itself).

Properties
The value stored in each Citrus property is a pointer to a
single Citrus element. Unlike pointers in other languages,
Citrus pointers can either own or refer to the element that
they point to. This allows Citrus elements to represent both
cyclic and acyclic graphs of elements. Each element also
has a reference to the property that owns it and to the set of
properties that refer to it. This is used when an element
needs to know its context (for example, (f) in Figure 2
shows how to determine the ToDoDoc that owns the
ToDoItem using the ownerOfType method).

Each property declaration has a value expression, which is
must be supplied as either an initial value (using the
symbol =), a constraint (using the symbol <-), or as a
parameterized value that must be passed during
instantiation (using the symbol ?). Value expression can be
overridden in instantiation expressions using the property’s
name. For example, the expression (a ToDoItem
done=true whatToDo<-“work”) creates a new ToDoItem,
overriding the done property’s initial value with true, and
constraining whatToDo to the text string “work.” This
avoids the need to subclass when the only changes to an
instance are to initial values and constraints. Constraints on
properties can also be set at runtime.

Because a property’s value expression may depend on other
as yet uninitialized properties, properties are initialized
lazily (unless they are parameterized, in which case they are
initialized immediately). For properties that are
constrained, Citrus lazily evaluates the constraint as
dependencies change at runtime. Constraints are based on
Amulet’s dynamic one-way constraint algorithm [20], and
allow arbitrary expressions, including pointer variables (for
example, a reference to a view’s parent’s width). Each
property maintains bookkeeping about the incoming and
outgoing edges in its constraint’s dependency graph. Cycles
are detected at runtime, as in Amulet’s constraint system,
and use the “once around” method for breaking a cycle.

Property and Element Restrictions
Property restrictions specify a property’s legal values.
Unlike other toolkits with support for validation, such as
XML Schema data types, Citrus’s property restrictions can
be expressed using any Boolean-valued single-argument
method, including those that refer to other properties.
Citrus automatically records any dependencies in the
method at runtime and revalidates the property as they
change. For example, Citrus’ scroll bars use property
restrictions to require that the bar remains within the
bounds of the scroll bar track, and that the bar stay
sufficiently tall and wide for interaction. Citrus also
provides several common restrictions, such as ranges for
continuous values and regular expressions for text strings
(as seen in our ToDoItem’s whatToDo). A property’s validity
can be requested, and elements can also be notified when a
property’s validity changes (this is discussed shortly).

To allow for flexibility in the enforcement of property
restrictions, each restriction has an allowInvalid flag; if
set, invalid values are assigned, but if not set, trying to set
an invalid value causes the property to retain its old value.
For example, in our to-do list editor, the regular
expression’s allowInvalid is false by default, disallowing
carriage-returns. In our Java editor, we use a regular
expression to define a valid Java identifier, but we set the
flag to true to allow temporarily invalid identifiers as
programmers are typing.

Many property restrictions can be represented as constraints
(for example, a constraint containing min and max could be
used in place of boundary restrictions for Citrus’s scroll
bars), but there are several advantages to their separation.
For example, a zip code property might be restricted to
valid zip codes (as in the address dialog in Figure 1), but
would not be constrained to a particular zip code. This
separation also allows property restrictions to define a
validValues method that computes a finite set of legal
values for a property. Our Java editor defines this method
to compute the set of valid names for variable references
based on Java’s scoping rules. Citrus text fields take full
advantage of this feature to support auto-completion.

Just as properties can declare property restrictions, a class
can declare any number of element restrictions, which are
conditions that determine an element’s validity. For
example, an element that represents a form might require
that a specific set of fields be completed and that if a
particular field is filled another field must be as well.

Listeners and Notification
It is often necessary to take some action when a property or
element changes. This is typically achieved by adding and
removing listeners to data. Citrus provides language-level
support for such notification mechanisms, allowing
notification about events on a single property’s value or of
changes to any element it refers to indirectly (called “deep
monitoring” by Rodham and Olsen [17]). Programmers
simply write a declaration of the form when expression
event action. At runtime, Citrus automatically adds and
removes a listener to the property or element that
expression evaluates to as dependencies in the expression
change. When the event of interest occurs on the current
property or element of interest, the action is executed. The
willChange and changed events are sent before and after a
property or element changes. The outOfDate event is sent
when dependencies in property’s constraint or an element’s
restriction change. The validityWillChange and
validityChanged events are sent before and after a
property is set to a value that changes its validity one when
an element’s restriction is or is no longer violated. This is
used to make the state and zip code fields in Figure 1
change to red when invalid. The cycle event is sent when a
cycle is detected in the dependency graph of the property’s
constraint. This allows programmers to respond in an
appropriate way to the cycle, possibly halting the editor,
relaxing the constraint, or notifying the user.

Serialization
We take advantage of Citrus’s common data format to
provide general support for serializing any Citrus element
into XML. If a property is constrained or parameterized, it
is not serialized under the assumption that it can be
recovered later. Views of each element are serialized with
their model in order to save any unrecoverable view state,
such as absolute positions or collapsed/expanded state.

Specifying Languages
Many of the features of the Citrus language are suitable for
creating graphical editors and interpreters for programming
languages. For example, each Citrus element is roughly
equivalent to a node in an abstract syntax tree, where the
properties of the element correspond to the attributes on the
node. Property restrictions can be used to express static
scoping rules for references in a language; we have used
these to specify some of the static scoping rules for Java. A
collection of Citrus classes can be used to define the
equivalent of a context-free grammar. Classes can also
define an evaluate method, which “executes” an element.
This is used, for example, to execute a form when its okay
button is pressed, possibly by sending a database query
consisting of the values of each property stored in the
element. We have even used evaluate methods to
implement the Citrus interpreter.

THE CITRUS USER INTERFACE TOOLKIT
As with the Citrus language, the central design goals for the
Citrus user interface toolkit were flexibility and
expressiveness. Much of this was achieved by simply
implementing the toolkit using the Citrus language. For
example, views automatically repaint themselves when any
of their properties change, simply by listening to changed
and outOfDate events on themselves. In addition,
flexibility and expressiveness were achieved by making all
toolkit primitives dynamic and by providing a rich set of
widgets that interact closely with Citrus language features.

Views and Element Views
Views are the basis of the Citrus user interface toolkit,
acting as containers for other views and defining a local
coordinate system. The majority of views in an editor,
however, are ElementViews, which represent the current
value of a particular property. The rationale behind these
views was that when writing code to manipulate a model,
programmers should not have to be concerned with
managing and updating the model’s corresponding views as
the model changes.

To accomplish this, ElementViews listen to changes in the
property that they represent, and on a change, either update
themselves or replaces themselves with a view of their
property’s new element. To illustrate, consider Figure 3,
which portrays the elements and views involved in
representing the ToDoItemView from our earlier example.
The ToDoItemView listens to the property that currently
points to the ToDoItem that the view represents. When this
property changes, the ToDoItemView replaces itself with a
view of the new element pointed to. For example, the
replace statement in the behavior at (g) in Figure 2 sets the
property that currently owns the ToDoItem to a new
ToDoList, causing the ToDoItemView to replace itself with a
new ToDoListView. The checkbox and text field listen to
changes in the ToDoItem’s done and whatToDo properties
and modify themselves on each change.

To use this translation mechanism, the programmer simply
calls the toView method on a property. For example, the
ToDoDocView in Figure 2 uses the expression (model.@list
toView) to create an appropriate view for it’s ToDoDoc’s
list property. Citrus uses a global repository that maps
Citrus classes to a corresponding view class, which is then
instantiated. The view manages every change from then on,
so that the programmer can focus on modifying the model.
Because Citrus classes can be specialized (for example,
lists can be declared to contain a particular class of
element), this repository distinguishes between generic
views of Citrus classes, and more specific views for more
specific types. For example, as implemented, our to-do list
editor implicitly used generic ListViews since a more
specific type of ListView was not defined. To do so, we
would define a subclass of ListView that specifies its model
property’s type as List<ToDoItem>, and then proceed to
add custom interactions, appearance, and layout
specifically designed for lists of ToDoItems.

In addition to each view class representing a particular class
of element, it is also specified as one of three varieties.
Ownership views (the default) represent a property that
owns the element it points to (as defined in the Citrus
language section). All of the views created for the to-do list
editor were ownership views. Reference views represent
properties that reference, rather than own the element they
point to. This is used, for example, when a property refers
to an element shown somewhere else onscreen, where it
makes more sense to use the element’s name or some other
summary, rather than its ownership view. Nothing views
are used to represent properties that point to nothing.
Unlike most languages, where a “null” pointer is always
represented in the same way, Citrus allows a different view
of nothing for each Citrus class. Citrus supplies generic
ownership, reference, nothing views when none are
specified for given class.

Layout
Layout tends to be a point of contention in many toolkits,
and thus, in keeping with our goal of flexibility, we tried to
offer several ways of defining view layouts. For full
flexibility, the programmer can write custom constraints for
each view’s top–left position. In many cases, however, the
same constraint is applied to all of the children of a view.
For example, in a vertical left-justified list layout, each
view’s left is always zero and its top is always its previous
sibling’s bottom (except for the first). Rather than requiring
programmers to repeat these constraints, Citrus provides
Layout elements, which contain two methods to define the
top and left properties of each child of the associated view.
By default, a view’s top-left position is constrained to the
values returned by its parent’s layout element. Citrus offers
several pre-defined and highly parameterized layouts,
including vertical, horizontal, centered, and horizontal flow
layouts. Custom layouts are made by simply subclassing
Layout and defining its two methods.

It is also straightforward to write layout algorithms, rather
than use constraints or the layout elements described above.
These can be invoked in a number of ways; for example, a
listener could be added to a view’s children property so that
any time a child is added or removed, the algorithm could
be invoked. Or, a widget could be provided that invokes the
algorithm. We later give an example of this when
describing the connected graph editor.

Graphic Objects
A view’s appearance is determined by background, content,
and foreground lists of retained GraphicObjects. Citrus
provides primitives including rectangles, lines, polygons,
circles, ellipses, and text, and an aggregate graphic object,
which allows custom shapes to be defined from the addition
or subtraction of primitive shapes and other aggregates.
Each GraphicObject has several properties; for example,
rectangles have a roundedness and filled property, lines
have a thickness property, and all have primary and
secondary colors and basic support for gradients. Each
property can be set and constrained when a GraphicObject
is instantiated, avoiding the need to subclass them.

To reduce the need for constraints, each graphic object is
rendered relative to a view’s top, left, right, and bottom,
and includes both pixel and proportional offset properties.
For example, to paint a 1-pixel border around a view, a
graphic object’s offsets would be (–1, –1) for the top-left
and (1, 1) for the bottom-right; a graphic object could be
centered and half the size of a view by specifying its
proportions to be 25% for the top, left, bottom, and right.

Programmers can specify a view’s default graphic objects
by dragging graphic objects from the toolbar in the
interface builder to one of the three lists of graphic objects
(seen in the bottom left of the interface builder in Figure 2).
Graphic objects can also be added and removed at runtime
using the standard list insert and remove methods.

Figure 3. Entities involved in representing a
ToDoItemView. Each view listens to changes the in a
particular property’s value. When their properties
change, the checkbox and text field update
themselves, whereas the ToDoItemView replaces
itself with a view the property’s new value.

Behaviors and Devices
Citrus uses an event-based input model that was designed
to be flexible and dynamic. Events are generated by Device
elements, such as a mouse and keyboard, which each
declare a list of sub-devices and a list of events. For
example, the Mouse device has several button devices, a
scroll-wheel device, and a pointer device; each mouse
button specifies pressed, released, clicked, and double-
clicked events. Each device has several additional
properties: for example, the mouse pointer device has a
position and a reference to the view currently picked by the
pointer; keyboard keys have a down property. Because all
devices and their properties are elements, they can be
listened to and referenced in constraints. New devices can
be defined with Java to support alternative input
techniques, such as gesture or pen-based interactions.

To respond to events, views have a list of Behavior
elements, which react to a particular type of device event
with particular parameters by executing an arbitrary
Boolean-valued expression. Behaviors can consume events
in two ways. By default, if an action returns true, the event
is consumed only after all behaviors in a view that react to
a particular event are executed. This allows for
extensibility; for example, even though Citrus text fields
consume the keyboard’s typed events, subclasses can still
respond to the event in additional ways. Behaviors can also
be set to immediately consume an event, overriding
behaviors in a view that would have otherwise reacted to
the event. Behaviors can be added and removed at runtime
as part of other behaviors. For example, the toolbar widgets
used in the specification editor and interface builder add
Draggable behaviors (described shortly) to views that are
not draggable by default, removing them afterwards.

Pointer and Keyboard Focus
The mouse pointer maintains a pointer focus, allowing
views to temporarily redirect all mouse events to a
particular view. For example, Citrus’s sliders obtain the
pointer focus while being dragged, and release focus on the
mouse button released event. Views specify a Shape
element for mouse pointer picking purposes.

Keyboard focus in Citrus works in the same way that it
does in most user interface toolkits; each window has a
keyboard focus, and all keyboard input goes to the current
view in focus in the active window, or one of its parents.
However, the movement of the keyboard focus is different
than that in most toolkits, which typically specify a focus
“ring”, relatively independent of the layout of the interface.
Instead, Citrus views define several methods that determine
the spatially nearest focusable view left, right, above, and
below itself. These methods are used to map the keyboard’s
arrow keys to movements of the keyboard focus to adjacent
focusable views. Citrus also offers methods to mimic text-
editors. For example, pressing the right arrow key at the
end of a line wraps to the beginning of the next line. This

corresponds to a depth-first search through the view
hierarchy for focusable views that are laid out top-to-
bottom, left-to-right. By default, all of these methods search
for the deepest focusable view in a hierarchy, because most
keyboard input goes to text widgets. This also avoids
ambiguity: if a focusable view that contained other
focusable children obtained focus, it would be unclear
whether pressing the down arrow would give focus to the
next focusable sibling or child.

Drag and Drop Behaviors
Because all Citrus views have the same programming
interface, we were able to design general drag and drop
behaviors for use in any Citrus view. They are implemented
as aggregate behaviors that respond to the various mouse
pointer events associated with dragging. A view that
includes a Draggable behavior, for example, is hoisted
when clicked, moved as the mouse pointer moves, and
returned to its original location when released over an
invalid location. When released over a view of a property
with a compatible type as the model of the view being
dragged, the behavior either sets, references, or duplicates
the model being dragged, depending on its action property.
A view that includes a Droppable behavior reacts to the
draggedOver and droppedOver events by checking if the
view that is being dragged represents an element of the
expected class by the droppable view’s property, and if so,
setting the property to the element being dragged. Citrus
also provides an Insertable behavior for list views. These
have been sufficient for all the editors we have developed.

Animation
When setting a property, a Transition element can be
supplied to animate the change. Transitions, as in prior
work [6, 11], consist of a method to map the property’s
value based on elapsed time and a pacing function. In
addition to single value transitions, Citrus also supports
sequenced animations via two animation constructs called
DoInOrder and DoTogether (borrowed from the Alice
programming system [3]). By default, behaviors finish
executing before returning control to the event loop;
animations allow for behaviors to execute over time. Citrus
uses animations in many of its pre-defined behaviors. For
example, when a view is dropped over an invalid location,
it is animated to its original position.

Styles
Each editor has a Style element, which is a repository for
fonts, colors, graphics, line spacing, behaviors and any
other shared elements. The default style provided by Citrus
includes defaults for all of the pre-defined widgets in the
toolkit. Each widget parameterizes its colors, behaviors,
and graphics objects using the style, allowing every aspect
of the widget to be modified, except for the widget’s view
hierarchy. Programmers can subclass styles to include
additional properties. For example, we created a custom
style for the address editor seen in Figure 1, requiring the
several new colors and graphics for text fields and buttons.

EXAMPLES
In the following sections we illustrate the range and
expressiveness of Citrus by describing the implementation
of four diverse editors built with its language and toolkit.

THE CITRUS SPECIFICATION EDITOR
One approach to building an editor for the Citrus language
would have been to create a parser and use a regular text
editor to edit specifications. However, adding programming
support to the editor, such as auto-completion and
immediate feedback about errors, would have required
significant effort and incremental parsing algorithms.

Creating a code editor with these features using Citrus was
easy. We simply defined several Citrus classes to
implement the specification language itself, including
classes for classes, property declarations, property
restrictions, primitives, and so on. Since we had no editor to
begin with, these were bootstrapped using our Java API for
defining Citrus classes. We then defined views for each
Citrus class. The only views we specified beyond the
ownership view of each class were several types of views
of lists containing particular types.

Citrus’s drag and drop behaviors greatly simplified the
creation of the editor. By simply adding Draggable,
Droppable, and Insertable behaviors to the appropriate
views, no additional code was necessary to implement the
interactions in the editor. Duplicator widgets were used to
create new code; when clicked, they duplicate a specified
element and create a corresponding view. To support
deletion, views responds to the backspace key by replacing
themselves with nothing, or in the case of elements in lists,
removing themselves from the list that owns them.

EXAMPLE: THE CITRUS INTERFACE BUILDER
The Citrus interface builder, seen in Figure 2, edits any
subclass of View. Designing a view involves defining value
expressions and restrictions for each property. For example,
modifications to the lists of children, graphics, and
behaviors are simply modifications to the list creation
expressions assigned as each property’s value expression.
Nearly everything can be defined interactively, since
interactive views were defined for each part of the class
definition, including layouts, graphics objects, children, and
so on. The only details that must be specified with code are
value expressions and behaviors, and even then, they can be
created using the same drag and drop behaviors used in the
specification editor. The interface builder also uses Citrus
text fields, which have general support for auto-completion
by asking their properties for their set of valid values.

A key feature of the builder is its ability to provide
immediate feedback by showing an instance of the class
being defined. The editor uses a listener to respond to
changes in each declaration’s value expression by updating
the instance with the new expression. Because Citrus
incrementally updates the expression’s validity, the editor
is notified when it is unsafe to execute the expression.

A BENCHMARK GRAPH EDITOR
The second author has proposed several benchmarks for
comparing the expressiveness and usability of user
interface toolkits, and many people have implemented these
benchmarks with dozens of toolkits [12]. The graph editor
benchmark, which allows the creation of box and arrow
diagrams, is particularly suitable for evaluating Citrus. The
benchmark has six requirements: (1) the boxes are labeled
with text; (2) each box is attached by a line with an arrow
to the box that was previously drawn; (3) the layout is
under the user’s control; (4) the boxes can be resized and
moved; (5) the stroke thickness of the boxes and lines can
be changed; and (6) the boxes and arrows can be deleted.
The second author was able to implement this benchmark
in Amulet [13] in about 90 minutes using 212 lines of code.

Our Citrus implementation of the benchmark is seen in
Figure 4. Every view in the editor is custom made, except
for the selection handles, slider, and buttons. Nodes are
created by clicking and dragging on the canvas. The stroke
thickness of nodes and arrows can be modified with the
slider at the bottom right, whose property is constrained to
the stroke property of the graphic object of the view
currently selected. All of these behaviors were
implemented with the Citrus interface builder.

Our implementation adds several other features beyond
those required by the benchmark. For example, nodes can
also be created by dragging them from the toolbar. Each
arrow has a clickable region that is a line shape with a
thickness twice that of the line, allowing for easier clicking.
The flow chart editor has a “Clean up” button that invokes
a method that arranges the nodes in the editor in a grid.

Figure 4. A simple connected graph editor,
supporting multiple interaction techniques for
creating nodes and arrows, control over the line
stroke thickness of any object, and automatic
“neatening” of the layout.

Even with the additional features, the first author was able
implement the benchmark in just 30 minutes and 63 lines of
code. This included 11 lines for the specification, and 25
lines of custom behaviors, 12 lines of pre-defined layouts
and constraints, 4 lines of custom constraints for the
arrows, and 11 for the “clean up” layout method. This is
despite the fact that Citrus is not even focused on creating
applications of this type.

A JAVA EDITOR
Because Citrus classes describe a structure similar to an
abstract syntax tree, it is easy to map a programming
language’s syntax to Citrus classes. For example, the
formal syntax for a Java class declaration is:

ClassDeclaration::
ClassModifiers class Identifier
Super Interfaces ClassBody

This syntax is represented as the Citrus class seen in Figure
5. The ClassModifiers non-terminal is represented as
three properties: a text string, restricted to “public,”
“protected,” “private,” and “default,” and two Booleans
representing the abstract and final keywords. A text string
represents the class declaration’s identifier, which may not
contain whitespace, but may temporarily contain non-
alphanumeric characters. A list of ClassBodyDeclarations
represents the ClassBody non-terminal.

Because this Citrus class separates the specification of a
Java class declaration from its visual representation, we can
represent a class declaration in the most appropriate way
for the data. For example, Figure 6 shows our prototype
Java editor’s view of a class declaration, laid out from left
to right and top to bottom. It places a scroll view around the
class body part, allowing the class header to always remain
at the top of the screen as context. Alternative views could
easily be created; for example, a view with an absolute
positioning layout would allow programmers to visually
arrange the class body declarations in whatever way was

most appropriate for their task, grouping declarations
together, or placing related declarations side by side for
comparison. Such a view would be difficult to implement
in a text editor, but here would only require a single change
to the class declaration view’s layout property.

Because property restrictions were used throughout the
specification to define valid identifiers for classes, methods,
and variables, and to define Java’s static scoping rules,
every text field and pop-up menu in the prototype
automatically supports auto-completion and immediate
feedback about errors (as seen in Figure 6). The element
restrictions at the bottom of Figure 5 use the List class’s
ofType and unique methods to require that the Fields and
MethodDeclarations in the declarations list are not
equivalent to any other declaration in the list, based on each
class’s definition of equivalence. Fields define
equivalence by name and MethodDeclarations define it by
their method signature.

In addition to drag and drop interactions, which are
supported throughout the Java editor, we are currently
focusing on improving the keyboard-based interactions. We
have implemented several novel types of edits that have the
potential to improve the flexibility of structured editors. For
example, typing “if” and a space inside a statement replaces
the empty statement with an if statement, just like typing
tab replaced a ToDoItem with a ToDoList in our to-do list
editor. Though the keyboard-based interaction techniques
have potential, we feel they still need considerable work
before they will be smooth enough for regular use.

Figure 5. A partial specification of the Java
programming language’s class declaration construct.

Figure 6. A prototype of a Java editor, created using
Citrus. The editor supports incremental error
checking and code completion.

DISCUSSION AND RELATED WORK
Each design choice we made for Citrus focused on
providing a generic, semi-automated solution for specifying
model-view-controller based graphical editors. Because of
this focused intent, one way to think of Citrus is as a
“scripting” language, like Mathematica, Visual Basic, Perl,
PHP, Tcl and others. This perspective offers many insights
into Citrus’s scope and limitations. For example, because it
focuses on optimizing flexibility and expressiveness for a
particular class of software architectures, Citrus is less
suitable for applications that are not easily architected with
models and views; Citrus may therefore not be the right
language for exploring AI or mathematical computations.
Furthermore, just as with other scripting languages, the
applications that Citrus helps develop can be developed
with more general languages such as Java, but with more
code and hassle. Citrus does, however, share the same
advantages as other scripting languages including being
platform independent and supporting more rapid
prototyping than compiled languages.

There are several alternative design choices that we could
have made throughout the language and toolkit. These are
best described by comparing Citrus to related tools, toolkits
and languages that have similar and overlapping goals.

Citrus is closely related to previous work in syntax-directed
and structured editors [10, 15, 16, 19], which derive views
of data from the data itself. Many of these systems, most
notably the GNOME and MacGnome environments [10]
have the explicit goal of supporting partial automatic
generation of structured editors from syntax grammars.
However, the resulting editors typically have generic views
and fixed interaction techniques. Citrus takes the approach
of instead simplifying the development of custom, hand-
designed structured editors. Many of the toolkits designed
for building structured editors also support the specification
of static semantics for code, but using a separate language.
Citrus allows programmers to use the same language, and
specify the semantics in the same place as the syntax.

Also related is work on “syntax-recognizing” editors [1, 2,
4, 18], in which a document is derived from the view,
instead of the view from the document, typically via
parsing. Although these toolkits often result in editors with
more flexible keyboard-based interaction techniques, they
do so by limiting the presentation of data largely to text.
For example, the Proxima toolkit [18] restricts the layout of
views to rows and columns. Citrus focuses on the
alternative approach of allowing whatever presentation
arrangement is most appropriate for the data being
presented, even absolute positioning. This is potentially at
the expense of the usability of its keyboard-based
interaction techniques. To investigate this, we are currently
designing new interaction techniques based on studies of
Java programmers’ use of unstructured text [7] that we
hope will increase the flexibility of editors for highly-

structured data such as code. We have begun to prototype
the Java environment seen in Figure 6, in order to explore a
class of programming tools that are difficult or impossible
to implement with unstructured text, due to parsing
ambiguities and limitations of the visual representation [8].

In recent years that has been a renewed interest in
developing structured editors for end-user and novice
programmers, including the Alice 3D programming system
[3] and Scratch [9], which both support drag and drop
interactions to construct code. Citrus is not a direct
competitor to these systems, but rather, a language and
toolkit that could simplify the development of such
programming systems through its support for specifying
languages and its generalized drag and drop behaviors.

The Citrus user interface toolkit shares many features with
user interface toolkits such as Amulet [13] and SubArctic
[5], including its support for constraints, graphics objects,
and animation. Where Citrus differs is in its dynamic
treatment of what are typically statically defined code in
these toolkits, such as drawing, constraints, and layout, as
dynamic, reusable, and sharable data. For example,
Amulet’s “graphical objects” combine positioning and
appearance, where as Citrus separates the two, allowing
layout and appearances to be more easily shared and
modified at runtime.

Modern web tools, toolkits, and languages are also relevant.
For example, XForms is an XML standard that helps
separate the presentation from content for form-based web
applications. The key difference from Citrus is that XForms
focuses specifically on forms and transaction-based user
interfaces. Citrus’s property restrictions are similar to those
in XML Schema datatypes, the difference being that
Citrus’s property restrictions can be defined with arbitrary
expressions that can refer to any properties in the local
context of their declaration. XML Schema types are
restricted to a set of stereotypical restrictions and do not
support dynamic references to other data. One central
difference between Citrus and many of these web
technologies is that it integrates several useful features into
a single language; many XML-based languages and toolkits
require programmers to learn several new languages.

Haystack [14], a platform for authoring semantic web
applications, is similar to Citrus in many respects, offering
customizable views for browsing, searching, and
associating semi-structured data, a mechanism for choosing
“view prescriptions” based on a data element’s type, and a
generalized data representation. Citrus and Haystack differ
in the type of user activities they support: Haystack focuses
on information management and searching applications,
whereas Citrus focuses on information authoring and
presentation (although both can support all of these
activities to differing degrees). These different focuses
result in different interaction techniques, data
representations, and language support.

CONCLUSIONS
In addition to designing more pre-defined behaviors and
widgets, we are currently focusing on improving the text-
based interaction techniques of Citrus editors in the context
of our Java editor. We hope to have the toolkit and editors
ready for user tests and deployment in the near future. We
have found the Citrus language and toolkit to be a flexible,
expressive and powerful way to create graphical editors for
structured data and code. We expect it to be increasingly
useful as such data becomes more ubiquitous, and
especially as end users become involved in creating and
modifying structured data as part of their everyday work.

ACKNOWLEDGMENTS
We thank David Weitzman, James Fogarty, Jeff Nichols,
Andrew Faulring, and Jeffrey Stylos for their input. This
research was funded by the National Science Foundation
under NSF grant IIS-0329090, and as part of the EUSES
consortium under NSF grant ITR CCR-0324770. The first
author is supported by an NDSEG fellowship.

REFERENCES
1. Ballance, R. A., Graham, S. L., and Vanter, M. L. V.

d., The Pan Language-Based Editing System, ACM
Transactions on Software Engineering and
Methodology, 1, 1, 95-127, 1992.

2. Boshernitsan, M., Harmonia: A Flexible Framework
for Constructing Interactive Language-Based
Programming Tools., University of California,
Berkeley Technical Report CSD-01-1149, 2001.

3. Dann, W., Cooper, S., and Pausch, R., Learning to
Program with Alice: Prentice-Hall, 2003.

4. Horgan, J. R. and Moore, D. J., Techniques for
Improving Language-Based Editors, ACM
SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments, 7-
14, 1984.

5. Hudson, S. and Smith, I., Supporting Dynamic
Downloadable Appearances in an Extensible User
Interface Toolkit, ACM SIGGRAPH Symposium on
User Interface Software and Technology, Banff,
Alberta, Canada, 159-168, 1997.

6. Hudson, S. E. and Stasko, J. T., Animation Support in
a User Interface Toolkit: Flexible, Robust, and
Reusable Abstractions, ACM SIGGRAPH Symposium
on User Interface Software and Technology, Atlanta,
GA, 57-67, 1993.

7. Ko, A. J., Aung, H., and Myers, B. A., Design
Requirements for More Flexible Structured Editors
from a Study of Programmers' Text Editing, CHI '05:
Human Factors in Computing, Portland, OR, USA, (to
appear), 2005.

8. Ko, A. J., Aung, H., and Myers, B. A., Eliciting
Design Requirements for Maintenance-Oriented IDEs:
A Detailed Study of Corrective and Perfective
Maintenance Tasks, International Conference on
Software Engineering, St. Louis, MI, to appear, 2005.

9. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,
B., and Resnick, M., Scratch: A Sneak Preview, 2nd
International Conference on Creating, Connecting,
and Collaborating through Computing, Kyoto, Japan,
104-109, 2004.

10. Miller, P., Pane, J., Meter, G., and Vorthmann, S.,
Evolution of Novice Programming Environments: The
Structure Editors of Carnegie Mellon University,
Interactive Learning Environments, 4, 2, 140-158,
1994.

11. Myers, B. A., Miller, R. C., McDaniel, R., and
Ferrency, A., Easily Adding Animations to Interfaces
Using Constraints, ACM Symposium on User Interface
Software and Technology, Seattle, WA, 119-128,
1996.

12. Myers, B. A., Altman, N., Amiri, K., Centurion, M.,
Chang, F., Chen, C., Derby, H., Huebner, J., Kaylor,
R., Melton, R., O'Callahan, R., Tarpy, M., Unyelioglu,
K., Wang, Z., and Warner, R., Using Benchmarks to
Teach and Evaluate User Interface Tools, 1997.
http://cs.cmu.edu/~amulet/papers/benchmarks.pdf

13. Myers, B. A., McDaniel, R. G., Miller, R. C.,
Ferrency, A., Faulring, A., Kyle, B. D., Mickish, A.,
Klimovitski, A., and Doane, P., The Amulet
Environment: New Models for Effective User
Interface Software Development, IEEE Transactions
on Software Engineering, 23, 6, 347-365, 1997.

14. Quan, D., Huynh, D., and Karger, D. R., Haystack: A
Platform for Authoring End User Semantic Web
Applications, 2nd International Semantic Web
Conference, 2003.

15. Read, M. and Marlin, C., Generating Direct
Manipulation Program Editors within the Multiview
Programming Environment, SIGSOFT Worshop, San
Francisco, CA, 232-236, 1996.

16. Reiss, S. P., Graphical Program Development with
Pecan Program Development Systems, Proceedings of
the first ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software
development environments, 30-41, 1984.

17. Rodham, K. J. and Olsen Jr., D. R., Nanites: An
Approach to Structure-Based Monitoring, ACM
Transactions on Computer Human Interaction, To
appear.

18. Schrage, M. M., "Proxima - a Presentation-Oriented
Editor for Structured Documents," Utrecht University,
2004.

19. Teitelbaum, T. and Reps, T., The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment, Communications of the ACM, 24, 9,
563-573, 1981.

20. Vander Zanden, B., Myers, B. A., Giuse, D., and
Szekely, P., Integrating Pointer Variables into One-
Way Constraint Models, ACM Transactions on
Computer Human Interaction, 1, 2, 161-213, 1994.

