COVER FEATURE

James A.
Landay

University of
California,
Berkeley

Brad A.
Myers
Carnegie Mellon
University

Sketching Interfaces:

Towanrd

More Human
Interface Design

An interactive user-interface design tool supports electronic sketching,
giving designers more freedom to change sketches and more flexibility in
creating and evaluating a design prototype.

s computers grow more powerful, less ex-

pensive, and more widely available, people

are expecting them not only to perform

obvious computational tasks, but also to

assist in people-oriented tasks, such as writ-
ing, drawing, and designing. This shift is causing some
user-interface (UI) researchers to rethink the tradi-
tional reliance on methods that are more machine-ori-
ented and to look at ways to support properties like
ambiguity, creativity, and informal communication.
The idea is to bend computers to people’s way of inter-
acting, not the other way around.

This flexibility is particularly important in the early
stages of Ul design itself, when designers need the free-
dom to sketch rough design ideas quickly, the ability
to test designs by interacting with them, and the flex-
ibility to fill in the design details as they make choices.'
Tools at this stage must support conceptual design,
which is characterized by ambiguity and the need to
create several design variations quickly, as the “Why
Sketching Is Important” sidebar describes. Unfor-
tunately, with current UI tools, designers tend to focus
on issues such as colors, fonts, and alignment, which
are more appropriate later in the design. Thus, most Ul
designers resort to sketching ideas on paper, but these
are hard to edit and inconvenient for user evaluations.

Researchers at University of California, Berkeley and
Carnegie Mellon University (CMU) have designed,
implemented, and evaluated SILK (Sketching Interfaces
Like Krazy), an informal sketching tool that combines
many of the benefits of paper-based sketching with the
merits of current electronic tools.

Computer

With SILK, designers can quickly sketch an inter-
face using an electronic pad and stylus, and SILK rec-
ognizes widgets and other interface elements as the
designer draws them. Unlike paper-based sketching,
however, designers can exercise these elements in their
sketchy state. For example, a sketched scrollbar is
likely to contain an elevator or thumbnail, the small
rectangle a user drags with a mouse. In a paper
sketch, the elevator would just sit there, but in a SILK
sketch, designers can drag it up and down, which lets
them test the components’ or widgets” behavior. SILK
also supports the creation of storyboards—the
arrangement of sketches to show how design elements
behave, such as how a dialog box appears when the
user activates a button. Storyboards are important
because they give designers a way to show colleagues,
customers, or end users early on how an interface will
behave.

Designers can test the interface at any point, not
just when they finish the design. When they are sat-
isfied with their early prototypes, they can have
SILK transform the sketch into an operational inter-
face using real widgets, according to a particular
look and feel.

SILK’s design and implementation were based on a
survey of practicing UI designers™ and a review of
the literature. Our research team also conducted a
usability evaluation of the implemented system,
involving both professional and student designers. The
designers found SILK effective for both early creative
design and for communicating the resulting design
ideas to others. They were able to move quickly

0018-9162/01/$10.00 © 2001 IEEE

through several iterations of a design using gestures to
edit and redraw portions of the sketch.

HOW SILK WORKS

As the designer sketches an interface using a set of com-
ponents and gestures, SILK recognizes them and tells the
designer what it believes she has drawn. Although SILK
is designed for use with an integrated display tablet (sty-
lus, tablet, and LCD), designers can also use a mouse or
graphics tablet. The designer adds behavior through sto-
ryboarding—drawing arrows between related screens.

After the designer tests the interface and iterates the design
as needed, SILK transforms the rough design to a more
finished looking implementation.

Recognition and annotation

SILK recognizes four primitive components—rectan-
gle, squiggly line (to represent text), straight line, and
ellipse. These are single-stroke shapes, which means that
the designer must draw them without lifting up the pen
or mouse button until the stroke is finished. These prim-
itive components combine to form basic widgets. In

Why Sketching Is Important

Sketching and gesturing with a pen are
two modes of informal, perceptual inter-
action that have been shown to be espe-
cially valuable for creative design tasks.!
For designers, the ability to rapidly sketch
objects with uncertain types, sizes,
shapes, and positions is important to the
creative process. This uncertainty, or
ambiguity, encourages the designer to
explore more ideas without being bur-
dened by concern for inappropriate
details such as colors, fonts, and precise
alignment. Leaving a sketch uninter-
preted, or at least in its rough state, is key
to preserving this fluidity.”

In this early phase, ambiguity also
improves communication, both with col-
laborators and the target audience of the
designed artifact. For example, an audi-
ence examining a sketched interface
design will be inclined to focus on the
important issues at this early stage, such
as the overall structure and flow of the
interaction, while not being distracted by
the details of the look.** When designers
are ready to move past this stage and
focus on the details, they can re-create the
interface more formally.

Sketching on Paper

Several researchers have recognized the
benefits that sketches provide. Frustrated
by colleagues who mistook her early pro-
totypes for more finished designs, Ying
Ying Wong" of Apple sketched her designs
on paper, scanned them into a computer,
and used Macromedia’s Director, a mul-
timedia scripting tool, to add behaviors
to the sketchy interfaces. Because the
interfaces looked rough, her colleagues no

longer mistook them for finished designs,
but scanning the paper-based designs and
then scripting their behavior was a lot of
work.

Other researchers have found that
sketches stimulate not only the clients or
target audience, but also the designers to
think more creatively. Vinod Goel® of UC
Berkeley observed designers who were
asked to solve design problems either by
sketching on paper or by using a com-
puter-based drawing program. When the
designers generated a new idea in a free-
hand sketch, they quickly followed it with
several variations. But those who used a
drawing program tended to focus more
on refining the initial design, without gen-
erating design variations.

Electronic Sketching

An electronic sketching system like
SILK has many advantages relative to
paper-based sketching, as the main arti-
cle describes. Key to the success of any
such tool is its ability to recognize graph-
ical elements common to a particular
domain as the designer draws them. The
designer can thus test the design at any
point, which enables iterative design. The
Electronic Cocktail Napkin' lets archi-
tects sketch designs on an electronic pad,
recognizing the graphical elements com-
mon in architectural drawings. Another
sketching system supports a free-form
design environment.® Designers structure
a sketch as a set of translucent, nonrec-
tangular patches and attach dynamic
interpretations so that the marks take on
definitions or perform actions. For exam-
ple, the designer can hand write a list of

numbers and apply a calculator behavior
to the list to add them up.

More recent work relies on standard
mouse-based direct manipulation tech-
niques for input while using fancy ren-
dering schemes to make the output appear
sketchy. The EtchaPad’ drawing program,
for example, uses a noise function to give
drawings a less formal look.

References

1. M.D. Gross and E.Y. Do, “Ambiguous
Intentions: A Paper-like Interface for Cre-
ative Design,” Proc. ACM Symp. User
Interface Software and Technology, ACM
Press, New York, 1996, pp. 183-192.

2. MLA. Hearst et al., “Sketching Intelligent
Systems,” IEEE Intelligent Systems, vol.
13, no. 3, 1998, pp. 10-19.

3. M. Rettig, “Prototyping for Tiny Fin-
gers,” Comm. ACM, vol. 34, no. 4, 1994,
pp. 21-27.

4. Y.Y. Wong, “Rough and Ready Proto-
types: Lessons from Graphic Design,”
Posters and Short Talks: Proc. Human
Factors in Computing Systems, ACM
Press, New York, 1992, pp. 83-84.

5. V. Goel, Sketches of Thought, MIT Press,
Cambridge, Mass., 1995.

6. A. Kramer, “Translucent Patches—Dis-
solving Windows,” Proc. ACM Symp.
User Interface Software and Technology,
ACM Press, New York, 1994, pp. 121-
130.

7. J. Meyer, “EtchaPad—Disposable Sketch
Based Interfaces,” Proc. Conf. Compan-
ion on Human Factors in Computing Sys-
tems, ACM Press, New York, 1996, pp.
195-198.

March 2001

=] SILK Storyboard

Edit Sketch

X

TRAVELweather Daily

Today's weather for
Ppittsburgh is:

TRAVELweather

Tomorrow's weather for
Pittsburgh is:

Daily
Spay Forcast

TRAVELweather

SILK Sketch

TRAVELweather

S5Day Forcast

Figure 1. A SILK sketch (front) and storyboard (rear) for a weather application. An experienced user-interface designer created
the sketch in about 30 minutes during a usability test. SILK recognizes common shapes such as ellipses and rectangles and
provides feedback to designers about what it thinks they drew. The designer has sketched a screen that shows a five-day
weather forecast (front). The designer has also created buttons below the forecast and drawn arrows from the first two (rear) so
that when the user presses the buttons, he will go to the location settings dialog or see a weather report if he has set the right
location. The ability to rapidly create storyboards like this, which lets both designers and prospective users see interface ele-
ments interacting, is one of SILK’s main advantages over paper sketching.

Figure 1, for example, the designer sketched a rectangle
and then drew a squiggly line inside, which SILK recog-
nizes as the button widget. Later, the designer replaced
the squiggly line with a text label, for example, “set-
tings.” SILK recognizes seven basic widgets as well as
combinations of widgets, like panels, as Figure 2a shows.
As Figure 3 shows, SILK also recognizes editing ges-
tures. When the user holds down the button on the side
of the stylus, SILK interprets the strokes. Using ges-
tures allows designers to specify, with a single mark, a
set of objects, an operation, and other parameters. For
example, deleting a section of the drawing is as simple
as making an X-shaped stroke with the stylus.
Finally, SILK supports a mode for annotating sketches
with drawn, written, or typed comments. The designer
can display or hide the annotations, as desired. Practicing
designers often view the annotations of design sketches
as more valuable than the sketches themselves because
the annotations serve as a diary of the design process.”

Behavior specification
Making it easier to specify the interface layout and
structure solves much of the design difficulty, but there

Computer

must also be some way to specify and evaluate the
design’s behavior. Because it automatically recog-
nizes the behavior of the standard widgets, SILK lets
designers or target users test a design in its sketchy,
informal state. For example, as soon as SILK recog-
nizes the buttons in Figure 1, the designer can switch
to SILK’s run mode and select one of the buttons
with the stylus or mouse to show the user what the
button does.

Knowing the behavior of one widget does not give
a picture of the entire interface, however. For exam-
ple, SILK knows how a button operates but cannot
know what interface action should occur after the
user presses that button. To illustrate this before-and-
after behavior, designers use storyboards to simulate
interface functions. Storyboards are a natural repre-
sentation; they are easy to edit and designers need not
worry about a particular form of implementation.

Transformation

When the designer is satisfied with the interface,
SILK creates a new window that contains real wid-
gets and graphical objects corresponding to those in

= SILK Sketch

SILK Finished

0 e D snap

=
| file l S B

Co—

A

Menu 1 Menu 2 Menu 3

Label 1| Label 2|

v Label 1 _l snap
v Label 2

il PN o a—

] Label 2
] Label 3

(a)

(b)

Figure 2. Interface widgets that SILK recognizes (a) during sketching and (b) in the transformed interface. From top to bottom, left to right: menu bar,
scrolling window, palette, button, radio button, check box, and text field. SILK also recognizes vertical and horizontal sequences of some of these
widgets as panels—for example, a check box panel, illustrated in the lower right. The sketched shapes in the palette on the far right were not
transformed because they represent arhitrary bitmapped decorations. The designer can go back later and replace them with other images.

-

G

Figure 3. Editing gestures that SILK supports. From left, the first gesture deletes widgets or other objects in the sketch. The next three gestures help

inform the recognition process: group objects, ungroup objects, and cycle to the next best inference. The last gesture lets the designer insert typed text

or replace a text squiggle with typed text. The arrows show the direction to draw the gestures for best recognition.

the rough sketch. These objects take on the look of a
specified standard graphical user interface. SILK cur-
rently outputs either Visual Basic § code or Common
Lisp code using the Motif look-and-feel in the Garnet
user-interface development environment.’

Figure 2b shows how SILK transforms the widgets
in Figure 2a. The transformed interface is only par-
tially finished because the designer still needs to final-
ize details such as colors, alignment, and any
additional text labels. At this point, programmers can
add callbacks and constraints that include the appli-
cation-specific code to complete the application.

WIDGET RECOGNITION

To recognize a widget, SILK first attempts to iden-
tify primitive components using a gesture recognition
algorithm. After it recognizes a primitive component,
it looks for spatial relationships between the new com-
ponent and other components in the sketch. Finally, it
tries to identify the most likely widget that includes
these components and rechecks the spatial relation-

ships between the newly inferred widget and the rest
of the components in the sketch.

Recognizing components

SILK recognizes gestures through Rubine’s algo-
rithm,® which uses statistical pattern-recognition tech-
niques to train classifiers. The resulting classifier is
based on features extracted from several examples.
For SILK, we used 15 to 20 examples for each prim-
itive component.

To classify an input gesture stroke, the algorithm
computes its distinguishing features—angles and
point-to-point distances, for example—and returns
the best match with the learned gesture classes. This
limits SILK to recognizing single-stroke primitive
components, but we could eventually overcome this
by combining independent strokes that occur within
a specific timeframe or that are connected spatially.

SILK can also learn gestures that particular design-
ers use to form the primitive components. Figure 4
shows SILK’s control window. When SILK recognizes

March 2001

SILK also provides

feedback about its

inference results
so that designers
can change the
results when the
system infers
incorrectly.

a primitive component, it highlights the appro-
priate button in the window. If SILK doesn’t
recognize the component correctly, the designer
merely clicks on the correct button, and SILK
uses that type instead. From the points that
compose the corrected stroke, SILK produces a
new gesture classifier that more accurately rec-
ognizes the designer’s way of drawing the prim-
itive components. This retraining is transparent
to the designer.

Detecting spatial relationships
As the designer sketches each component,
SILK classifies it and passes it to an algorithm
that looks for spatial relationships among both prim-
itive and widget components. The algorithm asks

® Does the new component contain, or is it con-
tained by, another component? This is the most
important relationship for classifying widgets.
Designers can express many common interface
widgets via containment relationships among the
widget’s primitive components. For example, a
scroll bar is a tall, skinny rectangle that contains
a smaller rectangle.

o [s the new component near (left, right, above,
below) another component? This relationship lets
the algorithm recognize widgets such as check
boxes, which usually consist of a box with text
next to it.

o [s the new component in a vertical or horizontal
sequence of any combination of components that
are the same type or are sequences of that type?
This relationship allows groupings of related
components that make up a set of widgets, such
as a panel of radio buttons.

Designers can specify hints to override the normal
calculation of these spatial relationships. For example,
many applications have a menu bar at the top left of
the window but also locate some menus at the far right
of the window. Unfortunately, sequences are defined
as a series of the same object type such that each item
is “near” the preceding item. This rules out a split
menu bar, such as the Macintosh’s help menu. Thus,
the distance calculation ignores the distance between
objects if the designer explicitly selects multiple objects
at the time of inference. This is also useful when the
designer sketches the text of a radio button or check
box too far from the circle or rectangle.

Determining the intended widget

After identifying the basic relationships between the
new component and the other components in the
sketch, SILK passes the new component and the iden-
tified relationships to a rule system that uses basic

Computer

knowledge of Ul structure to infer which widget the
designer intended. Each rule attempts to match the
new component and relationships.

There is at least one rule for each widget that SILK
recognizes, and each rule has two parts. The test part
checks whether the rule applies. For example, the test
for a vertical scroll bar makes sure that one compo-
nent contains the other, that both components are rec-
tangles, and that the container is skinny. The then part
of the rule simply returns a list containing a confi-
dence value for that match, the widget type, and a
function that when evaluated can add the correct
interactive behavior to the sketched components.

After the rule system tries each rule, it chooses the
match with the highest confidence value and adds the
proper interactive behavior to the sketched compo-
nents. If no rules match, SILK assumes that there is
not yet enough detail to recognize the widget.

SILK also provides feedback about its inference
results so that designers can change the results when
the system infers incorrectly. One form of feedback
is that SILK draws the primitive components of wid-
gets it recognizes in purple to indicate that the com-
ponents are related. Designers can also look at the
SILK controls window to see what widget SILK
believes it has recognized. In Figure 4, for example,
SILK has recognized a button. If this is not accurate,
the designer merely selects another widget. If SILK
made no inference on the widget in question, the
designer can select the primitive components and click
on the New Guess button in the controls window.

To use widgets or graphical objects that SILK does
not recognize (other than those in Figure 2), the
designer can switch from sketch mode to decorate
mode and bypass the inferencing process.

STORYBOARD CREATION

Figure 1 is an example of storyboarding in SILK.
Each sketch shows the interface in a particular state.
Designers connect these sketches, or screens, by draw-
ing arrows from any of one screen’s graphical objects,
widgets, or background to another screen. The arrow
indicates that when the user clicks on the object from
which the arrow originates, SILK should display the
screen where the arrow points instead of the original
screen. Thus, designers can simulate the changes on
screen that will occur in the final interface. This visual
representation, which designers can later view and
edit, is much easier to use than the hidden-text rep-
resentations of other systems, such as HyperCard.

Screens might differ only in the orientation of a
primitive component, such as a rectangle. Designers
can redraw the rectangle at a different angle in each
succeeding screen to illustrate a behavior like rota-
tion that the underlying tools, SILK and Garnet, do
not even support. Designers can also hide underlying

= SILK Controls

File Edit Arrange Recognition Storyboard

Design Name:

Button-Panel l Radio-Button-Panel I

A sketch v Run wv Annotate wv Decorate
New Guess I Widget Type: Button
I Button Check-Box I Radio-Button I Menu-Bar I
Text-Field I Scroll-Bar l Scroll-Win I Palette I

Check-Box-Panel Multiple Objects I

| Rectangle I Circle I

Primitive Type:

Line

I Text I Unrecognized I -

Figure 4. SILK’s controls window. The designer can see what primitive component or widget SILK has recognized and correct
the inference if needed. Here, the designer is in skeich mode, and SILK has recognized that the designer has sketched a butfon.
The designer selects run mode to see how the interface widgets interact, annotate mode to add comments, and decorate mode
to draw widgets or insert objects that are not in SILK’s set of recognizable widgets (listed in Figure 2).

objects, which is useful in illustrating pull-down
menus and dialog boxes.

Designers construct storyboards by sketching
screens with a stylus or a mouse in the SILK sketch
window (see Figure 1) and then copying the screens
to the SILK storyboard window. After modifying the
screens as desired, designers draw arrows to indicate
screen sequencing and produce additional screens if
needed.

When designers are ready to test the specified inter-
action, they switch to run mode. If desired, users can
start interacting with the sketch. SILK displays feed-
back mechanisms while in run mode so that designers
can debug their storyboards. For example, SILK high-
lights the active screen (the one in the sketch window)
in the storyboard window. It also highlights the object
that caused the last transition along with the arrow
leading to the current screen.

MEASURING SILK’S USABILITY

To determine if UI designers would find an infor-
mal electronic sketching and storyboarding tool like
SILK practical, we conducted a usability test to answer
several questions:

 Can designers use SILK effectively to design user
interfaces? Can they use it to produce more than
trivial designs, and does it support their creativ-
ity by, for example, letting them work on more

than one idea per session and focusing them on
the creative process rather than on the detailed
look and feel?

» Will SILK enable designers to communicate a
design idea more easily with other design and
development team members, as well as prospec-
tive users? Do these discussions concentrate on
the structure and behavior of the interface, rather
than the “look?” Can designers make changes
immediately as a result of these discussions?

* How well will SILK perform? Do the recognition
algorithms work? Can designers understand
what SILK is doing? Is it easy to learn? How
often does it perform the correct operation from
the user’s view?

The results of the study show that SILK is an effec-
tive tool for interface design, and the tool also pro-
vides an effective way of communicating design ideas
to engineers. Designers found that learning SILK was
not too difficult, although they noted the need for
implementation and performance improvements in
several areas.

Evaluation parameters

The evaluation involved six UI designers and six
graduate students in computer science, robotics, or
language technology, who acted as engineers. Four UI
designers were “advanced”—had been practicing

March 2001

An electronic

sketching tool leads

interface design for more than a year. Two were
“intermediate”—had taken at least one course
that required significant work in creating actual
interface designs. The designers were split

designers to focus evenly between male and female, with an
on the overall average age of 30 years. All but one of the engi-
interaction and neers were male, with an average age of 27.
We allowed four hours for the evaluation,
structure rather than

on the detailed look

and feel.

which had five parts: an overview, a demonstra-
tion of SILK, a practice-run design task, a design
task from which we took measurements, and a
post-design discussion with the engineer to
review and possibly change the design. After the
discussion, we gave the designers a short ques-
tionnaire to evaluate whether they liked the underlying
methodology or felt it would be practical and to capture
any other comments.

Each designer used an HP Workstation (HP-735)
with a three-button mouse. The designers received $25
each for their time, and the one with the best interface
design, as judged by a CMU Human-Computer
Interaction Institute faculty member, received an addi-
tional $100. The engineer participants received $8 each.

We asked designers to design an interface to a weather
information system for travelers, a task based on a prob-
lem in Usability Engineering.” The finished interface was
to provide information about the weather for the current
day and predict the weather for the next two days. The
designers’ stated goal was to explore the possible design
space and eventually present several good alternatives to
the rest of their design team or to a client.

We took several measurements for each design ses-
sion by observing the participant’s actions, automat-
ically logging events in SILK, videotaping, and having
the participants fill out a post-evaluation question-
naire. We also used a set of measures tailored to our
three objectives.

Design effectiveness

To measure SILK’s design effectiveness, we looked
at the time to complete the task, the formality and
complexity of the designs produced, how often design-
ers used the run mode, and SILK’s capabilities relative
to other tools.

Each designer spent about 1.5 hours on the task and
came up with two designs on average. The resulting
sketches were nontrivial, and the designers did not fix-
ate on a single design idea. Overall, they felt that
SILK’s “ability to prototype screen-based interactions
is GREAT,” but that the tool needed better support
for visual effects (such as color and multiple type sizes)
and more support for nonstandard interactions.

The designs varied both between designers and for
an individual designer. On average, the designs used
six screens, with two transitions per screen. Four
designers added interaction for objects that SILK did

Computer

not recognize—another sign that the designs were not
trivial. This, together with the variation in designs, led
us to conclude that SILK does indeed support cre-
ativity in the early design stages.

Focus on creativity. Participants tended to leave parts
of the interface in an especially rough and ambigu-
ous state. For example, they did not spend much
effort trying to align objects exactly but put things
roughly where they wanted them and moved on with
the design. They also left text rough until they had
more details or until the end of the design session.
Half of the designers liked the roughness or paper-
like sketching that SILK provides. They appreciated
the “ability to be fast and sloppy” and the “way it
remains sketchy.”

Most of the designers used cut, copy, and paste to
reuse widgets or portions of screens and to revise indi-
vidual designs. These editing features are another
advantage of electronic over paper-based sketches.

Overall, the designers were fairly positive about
SILK as a tool for early creative design, describing it
as “an excellent first draft tool” that would be “use-
ful for quickly structuring information.” One designer
said that SILK “is great for giving the idea of a pro-
gression through a program without getting into the
details of the visual design.” A few designers still pre-
ferred pencil and paper but found that SILK was sim-
ilar in many ways.

These observations and comments confirm the
hypothesis that an electronic sketching tool leads
designers to focus on the overall interaction and struc-
ture rather than on the detailed look and feel.

Storyboarding. The designers typically used story-
boards to illustrate a few important sequences. One
designer wrote that SILK was “as quick as paper
sketching and provides a basis for interaction.” After
running their designs, designers would often notice
that they had left out necessary transitions, objects,
or screens. They would then make the necessary
changes and test it again. One designer said she “liked
the ease with which you could test the interaction—it’s
a very tight loop.”

Two designers confirmed that SILK let them illus-
trate behavior that the underlying tools do not directly
support. For example, they repeatedly implemented
their own state feedback on unrecognized radio but-
tons. The other designers also liked the ability to “see
and edit the storyboard.” Another wrote, “better than
Director—the linking with drawings rather than Lingo
[Director’s scripting language] is excellent.” Designers
continually referred positively to the interaction and
navigation possible via storyboards. All but one
designer saw storyboarding as SILK’s advantage over
Director and HyperCard.

Perceived problems. All but one designer used SILK’s
built-in widgets in their designs, but recognition accu-

racy was low enough to be a hindrance. One designer
felt that the “widget detection and sketching allows
for fast low-level interaction,” but we observed oth-
ers become frustrated when faced with repeated recog-
nition errors.

Communication effectiveness

To measure communication effectiveness, we
looked at whether the post-design discussion focused
on structure and behavior. We also evaluated the use
of storyboarding, editing, and run mode during the
discussion.

Three designers used the storyboard during the dis-
cussion to illustrate the design’s overall structure. All
but one designer used run mode to exercise the inter-
face during the design review.

Four engineers asked critical questions. One asked;
“What is the most direct way to move to a city that is
not on the map?” This illustrates that the engineers
understood the interface designs and were looking for
places where the ideas may have needed more thought.
We observed that these conversations concentrated on
the interface’s structure and functionality, not on its
visual details.

Finally, half the designers made real-time changes
to their designs during the discussions. One designer
used the engineer’s feedback—too many mouse clicks
to get the desired information—to rapidly modify his
first design. The modifications, which involved com-
bining screens, took under five minutes, so the
designer could make them while the engineer was
there.

These examples show that SILK successfully
achieved the objective of letting designers effectively
communicate a design idea to other members of a
design team.

Performance

To measure SILK’s performance, we looked at how
well the gesture and widget recognition algorithm per-
formed and reviewed the designers’ comments.

All the performance results have some ambiguity
because we could not always know what the design-
ers were trying to draw. For example, we know only
the percentage of primitive components that SILK rec-
ognized minus the percentage that the user explicitly
corrected. We don’t know of others that were wrong
but that the user never bothered to correct. However,
we still believe the overall results represent a good esti-
mate of SILK’s practical application performance.

Opverall, the designers rated SILK a 6.2 on a scale of
0 (worst) to 10. The main criticisms were of the imple-
mentation specifics and the “UI of the tool itself.”

Gesture recognition. SILK recognized editing gestures
about 89 percent of the time. Five designers stated
that the editing gesture recognition worked “well”

or “OK.” This rate might improve with the use
of a stylus rather than a mouse. The recogni-
tion rate for primitive component gestures was
93 percent. We considered an error to be when
the designer had to correct SILK’s component
inference.

Widget recognition. On average, SILK recog-
nized the correct widget only 69 percent of the
time. Designers repeatedly failed to notice that
SILK had earlier misrecognized one of the prim-
itive components they now wanted grouped
into a widget. For example, designers often
drew buttons that were wider than SILK’s rules
permitted. SILK’s failure to provide sufficient
feedback about its recognition was the source of
most of the confusion over the widget recogni-
tion algorithm. The rate might improve if SILK could
learn new rules for inferring widgets. On the other
hand, any widget recognition algorithm might be too
error-prone and thus hurt the design process more
than it helps. If this is true, a more explicit widget typ-
ing technique may be called for.

Other implementation issues. The designers encoun-
tered several problems with SILK’s interface. They
misunderstood the sketch-storyboard relationship,
how to enter and manipulate typed text, and how to
select, group, and move objects. The problems with
selection had to do with SILK’s nonstandard mapping
of mouse buttons to editing and drawing functions.

ing effectively supports the early stages of Ul

design. On average, designers produced two
designs in about an hour and a half. Despite the prob-
lems the usability test revealed, particularly widget
recognition, SILK is still a promising tool for early
UI design. As one designer put it, “SILK works like
pencil and paper; is simple, and shows the logic of
navigation.” The designers finished the SILK tutor-
ial in less than an hour and were able to use all of
SILK’s major features.

Addressing the widget recognition problems will
require more research. SILK could learn a widget by
learning the spatial relationships between its primi-
tive components, as it already computes these rela-
tionships to recognize widgets, and adding these to its
rule systems. Bayesian belief networks® could help
SILK’s rule system learn better confidence values. By
noticing how a designer corrects its widget inferences,
SILK could adjust its probabilities and make better
inferences.

But even with its current recognition accuracy, SILK
is an effective informal design tool for a specific cre-
ative task. Providing this kind of tool was the main
goal in creating SILK, and UC Berkeley researchers
are now working on several similar tools for other

T he usability test showed that electronic sketch-

SILK successfully
achieved the
objective of

letting designers

effectively
communicate
adesign idea to
other members of
a design team.

March 2001

creative tasks. Denim,’ for example, lets Web site
designers quickly prototype some of a site’s more inter-
active portions. Suede is a speech interface prototyp-
ing tool that lets designers rapidly create prompt/
response speech interfaces.'” It offers an electronically
supported Wizard of Oz technique that captures test
data, allowing designers to analyze the interface after
testing. Even nonexpert designers of speech Uls can
quickly create, test, and analyze prototypes.

Finally, Berkeley researchers have incorporated
some of SILK’s ideas into a communication tool.
NotePals!! is a lightweight meeting support system
that automatically combines individuals’ meeting
notes into a shared meeting record. Users take notes
in digital ink, which frees group members from hav-
ing to learn a shorthand method or to continually cor-
rect a handwriting recognition engine.

All these projects (available for download at
http://guir.berkeley.edu/projects) are a step toward
letting designers and others concentrate on the
creative part of their work—without forcing them
to use solutions that are suitable only when precision
is necessary. [J

area of expertise? Computer Society

I ooking for a community targeted to your

Technical Committees explore a variety
of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

Join @ community that targets your discipline.

In our Technical Committees, you're in good company.

computer.org/TCsignup/

Computer

References

1. A. Wagner, “Prototyping: A Day in the Life of an Inter-
face Designer,” The Art of Human-Computer Interface
Design, B. Laurel, ed., Addison-Wesley, Reading, Mass.,
1990, pp. 79-84.

2. J.A. Landay, “Interactive Sketching for the Early Stages
of User Interface Design,” PhD dissertation, tech. report
CMU-CS-96-201, CS Dept., Carnegie Mellon Univ.,
Pittsburgh, Pa., 1996; http://www.cs.berkeley.edu/~lan-
day/research/ publications/Thesis.pdf.

3. J.A. Landay and B.A. Myers, “Interactive Sketching for
the Early Stages of User Interface Design,” Proc. Human
Factors in Computing Systems, ACM Press, New York,
1995, pp. 43-50.

4. D. Boyarski and R. Buchanan, “Computers and Com-
munication Design: Exploring the Rhetoric of HCL,”
Interactions, vol. 1, no. 1, 1994, pp. 24-35.

5. B.A. Myers et al., “Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces,” Com-
puter, Nov. 1990, pp. 71-85.

6. D. Rubine, “Specifying Gestures by Example,” Com-
puter Graphics, vol. 25, no. 3, 1991, pp. 329-337.

7. J. Nielson, Usability Engineering, Academic Press,
Boston, 1993, pp. 272-275.

8. J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann,
San Francisco, Calif., 1988.

9. J. Lin et al., “DENIM: Finding a Tighter Fit between
Tools and Practice for Web Site Design,” Proc. CHI
Conf. Human Factors in Computing Systems (CHI00),
vol. 2, no. 1, 2000, pp. 510-517.

10. S.R. Klemmer et al., “SUEDE: A Wizard of Oz Proto-
typing Tool for Speech User Interfaces,” CHI Letters:
Proc. ACM Symp. User Interface Software and Tech-
nology, vol. 2, no. 2, 2000, pp. 1-10.

11. J.A. Landay and R.C. Davis, “Making Sharing Perva-
sive: Ubiquitous Computing for Shared Note Taking,”
IBM Systems J., vol. 38, no. 4, 1999, pp. 531-550.

James A. Landay is assistant professor of computer
science at the University of California, Berkeley. He is
also the chief technical officer and cofounder of
NetRaker. His research interests include Ul design
tools, gesture recognition, pen-based Uls, mobile com-
puting, and Web-site evaluation tools. Landay received
a PhD in computer science from Carnegie Mellon Uni-
versity. Contact him at landay@cs.berkeley.edu.

Brad A. Myers is a senior research scientist in the
Human-Computer Interaction Institute in the School
of Computer Science at Carnegie Mellon University,
where he is researching Uls for hand-held devices,
making programming more accessible, Ul software,
and programming by example. Contact him at
bam@cs.cmu.edu.

