Graphical Styles for Building User Interfaces
by Demonstration

Osamu Hashimoto

C&C Systems Research Labs.
NEC Corporation

4-1-1 Miyazaki, Miyamae-Ku,
Kawasaki, Kanagawa 216, Japan
osamu@tsl.cl.nec.co.jp

ABSTRACT

Conventional interface builders allow the user interface
designer to select widgets such as menus, buttons and scroll
bars, and lay them out using a mouse. Although these are
conceptually simple to use, in practice there are a number
of problems. First, a typical widget will have dozens of
properties which the designer might change. Insuring that
these properties are consistent across multiple widgets in a
dialog box and multiple dialog boxes in an application can
be very difficult. Second, if the designer wants to change
the properties, each widget must be edited individually.
Third, getting the widgets laid out appropriately in a dialog
box can be tedious. Grids and alignment commands are
not sufficient. This paper describes Graphical Tabs and
Graphical Styles in the Gilt interface builder which solve all
of these problems. A *graphical tab” is an absolute position
in a window. A “graphical style” incorporates both property
and layout information, and can be defined by example,
named, applied to other widgets, edited, saved to a file, and
read from a file. If a graphical style is edited, then all
widgets defined using that style are modified. In addition,
because appropriate styles are inferred, they do not have to
be explicitly applied.

KEYWORDS: User Interface Builder, User Interface Man-
agement System, Demonstrational Interfaces, Styles, Tabs,
Garnet, Direct Manipulation, Inferencing

INTRODUCTION

The Gilt Interface Builder allows dialog boxes and similar
user interface windows to be created by selecting widgets
from a palette and laying them out by direct manipulation
(see Figure 1). Two sets of extensions have been added
to Gilt to make it significantly easier to create these user
interfaces. The first set helps eliminate many of the call-back
procedures which communicate to application programs.
This was described in a previous paper[8]. The second set
of extensions make it easier and faster for the designer to
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

o 1992 ACM 0-89791-550-X/92/0011/0117...$1.50

Brad A.Myers

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue,
Pittsburgh,PA 15213
brad.myers@cs.cmu.edu

achieve the desired appearance for the user interface, and is
described here.

In most toolkits, the widgets have many properties that
the designer can set, such as the color, font, label string,
orientation, size, the minimum and maximum values of a
range, etc. Many widgets in the Motif widget set, for
example, have nearly 50 different properties that can be set.
Most interface builders, including Gilt, provide “‘property
sheets” that allow the designer to specify the desired values
(see Figure 2). However, it can be quite difficult and time
consuming to find and set all of the appropriate properties.
To show the magnitude of the problem, many applications
contain over 2000 widgets, and the properties for each must
be set in a consistent manner. A study has shown that
achieving consistency in an interface is a frequently cited
problem [9].

Another problem for interface designers is laying out the
widgets in the window. When the designer places widgets
with the mouse, they tend to be uneven and look sloppy.
Therefore, most builders provide grids and alignment com-
mands. However, these can be clumsy to use, and they do
not insure that different dialog boxes will have a consis-
tent alignment (for example, that the titles will always be
centered at the top of the window).

To help solve these problems, Gilt introduces the notions of
Graphical Tabs and Graphical Styles. These are based on
the styles and tabs in text editors such as Microsoft Word.
A “graphical tab” is simply a horizontal or vertical position
in the graphics window to which objects can be aligned.
A “graphical style” is a named set of properties and layout
information, which can be applied to widgets. The designer
can edit a widget so it has the desired properties, select it,
and then define a named style based on it. The values of the
properties and the position of the widgets will be associated
with that style name. The style can then be applied to other
widgets.

Furthermore, Gilt will try to automatically guess when (o
apply a style, so the designer does not have to. By guessing
the appropriate properties and layout, Gilt makes the user
interface design process significantly faster, since users can
quickly and imprecisely place widgets, and the system will

November 15-18, 1992

uiST92

117

automatically neaten them. Since the inferencing is based
on the styles the user has defined, rather than based on
global, default rules, as in earlier systems like Peridot[5] and
Druid[11], the inferred properties and positions are more
likely to be correct.

A set of styles and tabs can be written to a file to form
a Graphical Style Sheet which can be used to insure that
multiple applications have a consistent appearance. If a
style is edited, all widgets that are based on that style are
automatically updated, so that the interfaces will continue 10
be consistent.

Gilt is a part of the Garnet system[7]. Garnet is a compre-
hensive user interface development environment containing
many high-level tools, including Gilt, the Lapidary inter-
active design tool[6], and others. Garnet also contains a
complete toolkit, which uses a prototype-instance object
model, constraints, and a separation of the behaviors from
the graphics. Gilt stands for the Garnet Interface Layout
Tool, and it supports interfaces built using either the Garnet
look-and-feel widget set or Motif look-and-feel widget set.
(The Motif-style widgets in Garnet are implemented on top
of the Garnet Toolkit intrinsics and do not use any of the Xtk
code in C. Although they look and behave like the standard
Motif widgets, they have the same procedural interface as the
Garnet widget set.) If you are interested in getting Garnet,
contact the second author. Gilt uses CommonLisp, but the
ideas presented here are applicable to interface builder tools
using conventional compiled languages.

RELATED WORK

Of course, there are a large number of commercial and
research interface builders that lay out widgets, includ-
ing the Prototyper for the Macintosh, UIMX for Motif,
DialogEditor[1], the NeXT Interface Builder[14], Druid[11]
and YUZU[12]. All of these have the same basic structure:
there are two or more windows. One is the work window
where the user interface is being created, and another is the
widget window, sometimes called the “paleite” containing
the widgets that can be placed. (Typically, in addition to the
standard interaction techniques like menus, radio buttons,
check boxes, and scroll bars, there are also decorations like
rectangles, lines and text labels that can be added to the
picture. In this paper, these are all included when the word
“widget” is used.) The designer selects a widget from the
palette and places it in the work window using a mouse.
Usually, the designer can change the position and size of
widgets using the mouse, and edit other properties using
dialog boxes or property sheets. The builders also provide
many editing functions such as moving, copying, deleting,
and aligning widgets, and reading and writing to a file.

Peridot[S5] guessed alignment of graphical objects using
global rules. Druid{11] applies a similar technique to widget
alignment. When the designer adds a new widget in a
window, Druid immediately tries to find other widgets in the
window that the new widget might be aligned with. For
example, when the designer creates a label below another
existing label, Druid guesses that the new label and the

Figure 1: Gilt Main Windows

The top is the work window where a dialog box for a text
editing application is being defined. The middle window is
the palette of Garnet Motif gadgets that can be added to the
work window. The bottom window is the main Gilt control
panel containing the Gilt commands. The position and size
of the selected widget is echoed in the text boxes at the left
of this window.

118 UIST 92

Monterey, California

Figure 2: Gilt Property Sheet Window
The Property Sheet window for a set of check boxes. The
designer can press with the cursor over any of the text fields,
and type a new value. Pressing on the icon next to Font or
Foreground-Color will bring up a sub-dialog box.

existing label should have the same left. It pops up a window
so the designer can confirm the guess, and if the designer says
yes, then Druid adjusts the objects automatically. However,
Druid does not infer other properties of the objects, and the
layout rules are hard-wired, rather than based on the user’s
preference, as in Gilt.

Many interface builders have provided interesting mecha-
nisms for specifying the positions of widgets. For example,
FormsVBT(2] and ibuild [13] use a “glue” model based on
TeX. Glue has a varying stretch, and using the right kinds
of glue between widgets causes the widgets to move ap-
propriately when windows change size. In Lapidary[6], the
designer can select two objects, and define arbitrary layout
constraints between them. The most common constraints
can be applied by using iconic menus. OPUS[3] shows
the specified constraints as wires between the objects. We
feel that the concept of tab stops will be more familiar to
users and will be easier to use than these other approaches,
while still providing most of the needed functionality. Also,
no previous interactive builder has incorporated a notion of
Graphical Styles, as used in Gilt.

The design for styles and tabs in Gilt is based on their use in
text editors, in particular Microsoft Word for the Macintosh.
This text editor allows the users to move a marker in a
graphical ruler to set a tab stop, and if the TAB key is typed,
the text cursor will move to the designated place. To define
a style in Microsoft Word, the user formats some text in the

Figure 3: Style Editing Window and TabStop Window
Row-Tab A is selected in the work window (top), and is a
horizontal tab that is 20 pixels from the top of the window,
as shown by the TabStop Editing window at the bottom. The
string “Font Selection:” is top-justified on Row-Tab A, and
centered horizontally on Col-Tab B, which is centered in the
window, so it will move if the window changes size., The
Style Editing window (center) shows that the title is using
the style Main-Title and Col-Tab B and Row-Tab A,

desired way, selects it, and then defines a new named style
based on it. More general text styles are supported in [10].

GRAPHICAL TABS

An important graphic design principle is that widgets should
be aligned evenly. This means that the edges or centers of
the widgets should be the same, and that they should be
evenly spaced. Furthermore, different dialog boxes should
use the same alignments. For example, if in one dialog box
a set of radio buttons is left justified under a title, and offset
below it by 10 pixels, the same offset and alignment should
generally be used in other dialog boxes.

Graphical tabs allow these kinds of relationships to be
defined. A “‘graphical tab” is a horizontal or vertical position
in a window. A horizontal tab position is specified relative to
the top, bottom or center of a window. Similarly, a vertical
tab is specified relative to the left, right or center. This allows
the tabs to move appropriately if the window is resized. Just
as with text editor tabs, the designer can specify whether the

November 15-18, 1992

uIST'92 119

Figure 4: Style Editing Window for Relative Position
The position for the radio buttons is defined relative to the
string “Size”.

widgets will be left-justified, centered, or right-justified on
the tab (or top-, centered, or bottom-justified for horizontal
tabs). Since Garnet is implemented on X/11 which uses a
pixel coordinate system, the offsets are specified in pixels.
Gilt names the tabs with letters (although user-named tabs
might be added in the future). Figure 3 shows a Gilt work
window with a set of tabs visible. Whether the tabs are
visible or not is controlled by a command.

New tab stops can be explicitly added by clicking on the
“add tab” buttons in the TabStop Editing window shown at
the bottom of Figure 3. Tabs can be selected by pointing on
the label next to the line in the work window. The selected
tab can then be deleted if no styles or widgets are using it.
Tabs can be edited by entering new values into the tabstop
editing window, or the tab stop labels in the work window
act as handles and can be directly dragged with the mouse.
When a tab is moved, all of the widgets defined using that
tabs are also moved.

GRAPHICAL STYLES

A graphical style includes a set of widget properties, and
optionally some position information as well. To create
a new style, the designer modifies a widget to the desired
appearance using the conventional property sheets, selects
that widget, and then issues the Define Style command. The
designer must then type a style name into the Style Editing
window that will appear. Gilt compares the widget’s current
properties with the default values for that widget and copies
all that are different. The widgets used to define the style are
surrounded with a dark outline rectangle in the work window
while the style is being defined or edited (“Font Selection:”
in the top window of Figure 3).

Figure 5: Set Style Window

This window allows designers to explicitly set a style. Allthe
current defined styles are listed on the left, and the designer
can choose one, and then specify whether the associated
properties, position or both should be applied to the selected
widget. If the selected style uses a relative position (Figure
4), then the Change Referent bution is not grayed-out, and
can be used to select the widget that the widget should be
relative to. '

Since all the widgets in the Garnet toolkit use the same names
and values for similar properties, a style defined on one type
of widget will often work on other types. For example, radio
buttons, check boxes, and button sets all allow the designer
to specify the orientation (horizontal or vertical) and fonts.
In the top window of Figure 1, all the buttons have the same
style properties. The types that styles are associated with
include strings, buttons (which include radio buttons, check
boxes and button sets), numeric sliders (which include both
sliders and scroll bars), text input fields, etc.

Styles can also include position information. For example,
a designer might specify that widgets with the Main-Title
style should use a very large bold and italic font, and be
centered at the top of the window. The position information
for styles can either be with respect to a graphical tab stop,
or relative to a previously created widget. For the first type,
the appropriate tab name can be entered into the style editing
window (see the center window of Figure 3). Either or both
of the horizontal and vertical tab name fields can be blank,
in which case no position information is recorded in that
direction.

To specify that a style’s position should be relative to another
widget, the designer selects the referent widget after the style
editing window is displayed. The style window will then
change, as shown in Figure 4. When a style is relative,
only the type of the referent widget is remembered. For
example, in Figure 4, the style is defined as offset from any
string. This will allow the Button-Below-Label style to be
used relative to other strings, which can be in other parts of
the window.

The Set Style window (see Figure 5) allows the designer to
choose any of the defined styles, and also whether the position
and properties aspects of the style should be applied. When
setting the properties, Gilt checks each property associated
with the style to see whether the widget accepts that property.

120 UIST 92

Monterey, California

Figure 6: Style Control Window
This window allows styles to be read and written to a file,
and style guessing to be turned on and off. Also, the style
of the selected widget is always echoed at the bottom of the
window.

Figure 7: Inferring Styles

If not, then that property is ignored. For example, a style
defined using radio buttons might have a value for the Text-
on-left-p property, which determines which side the diamond
is on. However, this is not relevant for push buttons (since
their text is inside the button), so it would then be ignored.
For styles with absolute positions, the widget simply moves
to the correct tab stop. For relative positions, the user can
specify the referent widget.

INFERRING STYLES

Although the styles mechanism as described above is already
quite useful, Gilt goes further and tries to automatically
determine when a particular style is appropriate. The Style
Control window (Figure 6) provides three options: no
inferencing of styles, styles applied immediately when they
are inferred, or a prompt-first mode where the designer
is asked if the style should be applied, as in Peridot and
Druid. If the system usually infers the correct style, then the
immediate mode will be the most efficient.

When inferencing is on, Gilt tries to infer a new style

Figure 8: Warning Window
This window pops up when the designer edits a widget that
has a style attached to it.

whenever a widget is created or moved. The algorithm looks

for styles that affect the same type as the widget, and checks

how close the widget matches the style’s position. For a style
with a relative position, in order to find its possible referent
widgets Gilt checks all the widgets of the appropriate type
near the new widget. A list is created of all the styles that
match, sorted according to the distance to the tab stops or
the referent widgets. For example, in Figure 1 the main-title
and the sub-titles use different styles with different fonts and
positions, and Gilt can infer the appropriate style from the
position when the designer places the new string.

Any inferencing system will sometimes guess wrong. Thus,
it is important to provide appropriate feedback so the users
are confident that they are in control and know what Gilt is
doing. In immediate mode, the first style on the style list is
immediately applied to the widget, and the name of the style
is shown at the bottom of the style control window (Figure
6). The widget will also jump to the inferred position and
change appearance. If the inferred style is not correct, the
designer can hit the Try Again button (Figure 6), which will
remove the guessed style and instead apply the next style in
the sorted list. The Undo button can also be hit to remove the
guessed style, and return the widget to its original position
and properties. In prompt-first mode, the sorted list of all
the inferred styles is presented in a window, with the most
likely selected. The designer can select a different style, if
necessary, and then hit OK or Cancel.

When a style is defined, it immediately becomes a candidate
for inferencing. This is very useful when a number of
widgets will all be created using the same style. In Figure 7,
after the designer defines a style which centers the text label
below the first scroll bar, when the second scroll bar and label
are created, the label will automatically be centered. This
highlights an advantage of the style approach over a rule-
based approach as used in Druid and Peridot. Those systems
might have put the label left-justified under the second scrotll
bar if it was placed closer to that alignment, but Gilt_only
matches against previously demonstrated styles, so it is more
likely to guess the designer’s intentions. This will also help
achieve a consistent design.

November 15-18, 1992

uIST'92 121

EDITING STYLES

When a style is applied to a widget, either explicitly or i
inferred, Gilt sets up appropriate pointers and back pointers Dialog Boxes for Task1:
so that if the style is ever edited, all widgets using that style DBox1

are immediately updated.

Styles can be edited in two ways. A property sheet can be
displayed which shows the current values of the properties
for the style, and this can be edited directly. This property
sheet has the same format as the ones for the standard widgets
(Figure 2). The position associated with the style can be
edited using the appropriate dialog boxes (Figure 3 and 4).

Alternatively, the designer can edit the styles in the same
way as they were created: by working on example widgets.
Whenever a widget is edited that has already been defined to DBox2
be of a particular style, Gilt pops up a dialog box asking if
the edit should change the style itself (Figure 8). The other
alternatives are to make the widget no longer belong to the
style, or to cancel the change and return the widget to its
appearance before the edit was attempted.

In the future, we plan to add the ability to have widgets
use a particular style with exceptions, but this is a complex
problem[4]. Some of the issues are whether to copy the
attributes or retain the link to the original style, what to do
to a style when the style it inherits from is changed, and
whether to save the inheritance links in the style files, or
write out all the style information to each file.

Dialog Boxes for Task2:
WRITING AND READING STYLES DBox3
A set of styles can be written to a file using the buttons in
the style control window (Figure 6). This file can then act
as a “Style Sheet.” Whenever a new dialog box is being
created, the style sheet file can first be read. Then, the
appropriate styles can be inferred or explicitly applied to
the widgets. This will help insure that the new dialog box
is consistent with previous dialog boxes created for this or
other applications.

When the work window is saved to a file, Gilt will optionally
include the style information in that file. In this case, the file
is self-contained. Alternatively, the file can simply contain DBox4
a pointer to the appropriate style file. Then, whenever the
window is used by applications or read back into Gilt, the
style file will be re-read, so any subsequent edits to the styles
will be reflected. However, this can cause the window to
look ugly (for example, if the style for a set of radio buttons
changes from horizontal to vertical, the buttons are likely to
overlap other widgets). Therefore, a version number is kept
in the style file, so at least a warning can be issued when an
old window is opened with an edited style file.

EVALUATION

As a small, informal experiment to see how quickly users
could create interfaces, using grapical styles and tabs, four))
subjects were given two tasks. Each task has two similar Figure 9: Dialog Boxes for Task1 and Task2
dialog boxes. For the first box in each task (i.e.DBox1 and
DBox3), the properties for all widgets were set using the

122 uIST 92 Monterey, California

property sheets. Their positions were determined using tabs.
Then, several styles were defined using these properties and
positions. For the second box in each task (i.e.DBox2 and
DBox4), the properties and positions for all widgets can be
inferred automatically, using the styles defined in the first
box (Table 1, Figure 9). The same four dialog boxes are
created without any styles by a Gilt expert. The results were
used to compare with above results (Table 2 and 3).

Table 1; Task Description

Task1 Task2
DBoxl DBox2 || DBox3 DBox4
Widgets 8 9 7 11
Defined TabStops 3 0 1 0
Defined Styles 6 0 4 0
Guessed Widgets 2 9 3 11

From Table 2 and 3, it is clear that the dialog box, where
all widgets are inferred, is created in less than half the time
for dialog boxes without styles: a 0.45 ratio for DBox2 and
a 0.42 ratio for DBox4. In guessing the styles for users
on DBox2 and DBox4, Gilt guessed correctly almost all the
time. The over-heads for defining styles and tabs are small:
a 1.73 ratio for DBox1 and a 1.28 ratio for DBox3. Note,
however, that the longer time for DBox1 is mostly due to
the learning time since this was the first time using Gilt and
styles for almost all subjects. In addition, novices can learn
Gilt styles and tabs quickly, because, in DBox1, they needed
a 1.73 ratio, but, in DBox3, they needed only a 1.28 ratio.

The verbal protocols for these subjects indicated that they
felt that Gilt style guessing was useful and comfortable.
Two subjects said that the “Try Again” button is very good.
Subject A, who took this test twice, using styles and without
any styles, felt that defining relative styles was very useful,
because the conventional layout mechanism did not support
“offset” among widgets, so he often had to calculate “left
+ width + offset” values for the referent widget, in order
to determine the left hand position for the new widget. He
indicated that graphical tabs were good for aligning some
widgets at particular fixed lines. However, all subjects
claimed that they had to think about style names, whenever
defining any styles. They indicated that it was difficult
to give good names for all styles. Also, they said that
sometimes they couldn’t remember whether this name had
already been used or not. Thus, we plan to prepare a default
style name in the style editing window.

STATUS AND FUTURE WORK

An earlier version of Gilt has been released to all Garnet
users. The version described here has been mostly imple-
mented, and is expected to be debugged and released in the
next few months,

In the future, we plan to investigate unifying tabs with the

Table 2: Task1 Results

[sec] DBoxl DBox2 DBoxl+2
Style: Subject A 420 160 580
Style: Subject B 1000 200 1200
Style: Subject C 910 300 1210
Style: Subject D 1060 270 1330
Style: Average 847 233 1080

[No Style: Subject A | 490 510 1000 |

[Ratio [173 045 1.08 |

Table 3: Task2 Results

[sec] DBox3 DBox4 DBox3+4
Style: Subject A 250 110 360
Style: Subject B 400 300 700
Style: Subject C 380 180 560
Style: Subject D 500 180 680
Style: Average 383 193 575

{ No Style: Subject A | 300 460 760 |

[Ratio | 1.28 042 0.76 |

relative styles. It seems like there should be a convenient
way to define “relative tabs” that will achieve the desired
results. Asdiscussed above, we would also like to investigate
exceptions to the styles. There might be a way to copy just
some values from one style into another, and ways to read
just a few styles from a file. Further work is needed on ways
for the system to automatically generalize styles, so that, for
example, the font property or color defined on a radio button
will be applied to a circular gauge, even though they have
different types.

CONCLUSIONS

The Graphical Styles mechanism described in this paper
can help designers more quickly create user interfaces, be-
cause many of the properties and alignments can be applied
with a single specification, or even inferred automatically.
In addition, the styles can help insure consistency across
muitiple dialog boxes in an application, and even across
multiple applications, since Style Sheets can be developed
and re-used. The Graphical Tab mechanism seems to be
an easier-to-understand and easier-to-edit mechanism than
other layout approaches. Finally, in addition to being useful
for user interface builders, such as Gilt and YUZU, we feel
that the graphical styles and graphical tab mechanisms would
be useful for a wide range of graphical editors, including
drawing programs and CAD/CAM.

ACKNOWLEDGEMENTS

Andrew Mickish helped to implement the features described
in this article. Brad Vander Zanden and other members of

November 15-18, 1992

UIST'92

123

Garnet project provided useful advice and help with the de-
sign and implementation. For help with this paper, we want
to thank Dave Kosbie, Richard McDaniel, Andy Mickish,
Francesmary Modugno, Bernita Myers, Brad Vander Zan-
den, Tomonari Kanba, Hiroshi Yamada, Kin-ichi Hisamatsu,
Kyoji Kawagoe, the YUZU development members and the
reviewers.

This research was partially sponsored by NEC Corporation,
and partially by the Avionics Lab, Wright Research and De-
velopment Center, Aeronautical Systems Division(AFSC),
U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 un-
der Contract F33615-90-C-1465, Arpa Order No.7597. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government.

REFERENCES

[1] Luca Cardelli. Building User Interfaces by Direct ma-
nipulation, In Proceedings of UIST’ 88, Alberta, Canada,
1988, pp.152-166.

[2] Gideon Avrahami, Kenneth P.Brooks, and Marc
H.Brown. A Two-View Approach To Constructing User
Interfaces, In Proceedings of SIGGRAPH’§9, Boston,
1989, pp.137-146.

[3] Scott E.Hudson and Shamim P.Mohamed. Interactive
Specification of Flexible Interface Displays, ACM Trans-
actions on Information Systems 8,3, 1990, pp.269-288.

[4] Jeff Johnson and Richard J.Beach. Styles in Document
Editing Systems, /IEEE Computer 21,1, 1988, pp.32-43.

[5] Brad A .Myers. Creating User Interfaces by Demonstra-
tion, Academic Press, 1988.

[6] Brad A.Myers, Brad Vander Zanden, and Roger
B.Dannenberg. Creating Graphical Interactive Appli-
cation Objects by Demonstration, In Proceedings of
UIST’ 89, Williamsburgh, 1989, pp.95-104.

[7] Brad A.Myers, Dario A.Giuse, Roger B.Dannenberg,
Brad Vander Zanden, David S.Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. Garnet: Com-
prehensive Support for Graphical Highly-Interactive
User Interfaces, IEEE Computer 23,11, 1990, pp.71-
85.

[81 Brad A .Myers. Separating Application Code from Toolk-
its: Eliminating the Spaghetti of Call-Backs, In Proceed-
ings of UIST’ 91, Hilton Head, 1991, pp.211-220.

[9] Brad A.Myers and Mary Beth Rosson. Survey on User
Interface Programming, In Proceedings of CHI'92,
Monterey, 1992, pp.195-202.

[10] Brad A.Myers. Text Formatting by Demonstration, In
Proceedings of CHI’'90, New Orleans, 1991, pp.251-
256.

[11] Gurminder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A System for Demonstrational Rapid
User Interface Development, In Proceedings of UIST’ 90,
Snowbird, 1990, pp.167-177.

[12] Takahiro Sugiyama et al. CANAE User Interface
Builder: YUZU (In Japanese), In Proceedings of the
45th National Convention of Information Processing
Society of Japan, Tokushima, 1992, 5Q-3.

[13] John M.Vlissides and Steven Tang. A Unidraw-Based
User Interface Builder, In Proceedings of UIST' 91,
Hilton Head, 1991, pp.201-210.

[14] Bruce F.Webster. The NeXT Book, Addison-Wesley
Publishing, 1989.

124

UIST 92

Monterey, California

