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Theories

As described in the previous chapter, the classical view has taken a big fall. Into this
vacuum other theories developed that did not assume that concepts were repre-
sented by definitions and so were not subject to the problems the classical view suf-
fered. This chapter will consider the three main kinds of theories that arose after the
downfall of the classical view. The goal here is not to comprehensively evaluate
these theories, as that can be done only over the course of the entire book, after the

has been presented. Instead, this chapter will intro-

~ complete range of relevant data
duce the three general approaches that are most current in the field and explain how
¢ caused such a problem for the classical

they deal with the typicality phenomena tha

Th . Prototype View

f the main critics of the classical view of concepts was Eleanor Rosch, who
ovided much of the crucial evidence that revealed the shortcomings of a defini-
proach to concepts. Rosch’s writings also provided the basis for a number

garly alternatives to the classical view, all under the rubric of the prototype

ber of readers interpreted Rosch as suggesting that every category. is rep-
by a single prototype oOf best example. That is, perhaps your category of
epresented by a single ideal dog, which best embodies all the attributes
ound in dogs. I gave such an interpretation in the previous chapter as one
understanding the existence of typicality. For example, very typical items
Id be those that are similar to this prototype; borderline items would be only
imilar to this prototype and somewhat similar to other prototypes as
&rn experiments of Posner and Keele 1968, 1970, encouraged this
vell, as their categories were constructed from a literal prototype.)
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“made of metal” would not be. Where do these weights come from? One possibility
is that they are the family-resemblance scores that Rosch and Mervis derived {see

previous chapter). That is, the more often a feature appears in the category and does
not appear in other categories, the higher its weight will be. Unlike a best-example
representation, this list of features can include contradictory features with their
weights. For example, the single best example of a dog might be short-haired. How-
ever, people also realize that some dogs have very long hair and a few have short
hair, These cannot all be represented in a single best example. The feature list would
represent this information, however. It might include “short hair,” and give it a high
weight; “long hair,” with a lower weight; and “hairless™ with a very low weight. In
this way, the variability in a category is implicitly represented. Dimensions that have
low variability might have a single feature with high weight (e.g., “has two ears”
might have a high weight, and “has three ears” would presumably not be listed at
all). Dimensions with high variability (like the colors of dogs) would have many
features listed (“white,” “brown,” “black,” “orange-ish,” “spotted”), and each one
would have a low weight. Such a pattern would implicitly represent the fact that
dogs are rather diverse in their coloring. This system, then, gives much more infor-
- mation than a single best example would. :

* One aspect of this proposal that is not clearly settled yet is what to do with con-
tinuous dimensions that do not have set feature values. So, how does one represent
the size of birds, for example: as “small,” “medium,” and “large,” or as some con-
tifinous measurement of size? If it is a continuous measurement, then feature count-
ig must be somewhat more sophisticated, since items with tiny differences in size
E(_)'uld presumably count as having the same size feature, even if they are not iden-

al: Perhaps for such continuous dimensions, what is remembered is the average
her than the exact features. Another idea is that features that are distinctive are
counted, whereas those that are close together are averaged. So, for categories like

biné, the size differences are small enough that they are not represented, and we

ly remember the average size for a robin; but for categories like birds as a whole,
do not average the size of turkeys, hawks, robins, and wrens, which are too di-
“here is some evidence for this notion in category-learning experiments (e.g.,
11979), but it must be said that a detailed model for how to treat such fea-
W'i‘_hin prototype theory seems to be lacking. _

feature list is the concept representation, then how does one categorize new
ssentially, one calculates the similarity of the item to the feature list. For
eature the item has in common with the representation, it gets “credit” for
th é"_s' weight. When it lacks a feature that is in the representation, or has a
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e a dog, because these are all features assoctated with dogs, though
weighted features. If this creature does not have the shap‘e or
d -& dog, does not bark, does not drool, and does not have oth‘er highly
ghtéd dog features, one would not categorize it as a dog, even though it wears a
nd eats meat. So, the more highly weighted features an item has, the more
s to be identified as a category member.
explains the failure of the classical vi
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resent in order to categorize the item. The inability to find 51.1ch
ning features does not embarrass prototype theory the way it did the classical
Ieﬁf S5 long as an item has enough dog features, it can be called a dog_—no_ pat-
'cufar feature is defining. Second, it is perfectly understandable why some items
ht be borderline cases, about which people disagree. If an item has about equal
larity to two categoties (as tomatoes do t© fruit and vegetable), then people may

‘b uncertain and change their mind about it. Or even if the item 18 only similar
if it is not very similar—in other words, right near the catego-
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changes from one judgment to the other. Big Ben is a clock by virtue of telling time;
cdlocks are farniture by virtue of being objects that one puts in the home for decora-
tion and utility (not by virtue of telling time, because watches are not considered

furniture), However, Big Ben is not similar to the furniture concept, because it isn’t
in the home and is far bigger than any furniture. Thus, concept A can be similar to
concept B, and B can be similar to C, and yet A may not be very similar to C. This
can happen when the features that A and B share are not the same as the features
that B and C share (see Tversky 1977). On the classical view, this kind of intransi-
tivity is not possible, because any category would have to include all of its superset’s
definition, and so there is no way that deciding that something is a clock would not
also include deciding that it was furniture.

Smith and Medin (1981) discuss other results that can be explained by this feature- '
listing model. Most prominent among them are the effects of false relatedness: It
is more difficult to say “no” to the question “Is a dog a cat?” than to “Is a dog a
mountain?” I will leave it as an exetcise for the reader to derive this result from the

feature list view.

“More Recent Developments

Unlike the other views to be discussed in this chapter, the prototype view has not
been undergoing much theoretical development. In fact, many statements about
pr_dtotypes in the litcrature are somewhat vague, making it unclear exactly what the
writer is referring to-—a single best example? a feature list? if a feature list, deter-
mined how? This lack of specificity in much writing about prototype theory has
Allowed its critics to make up their own prototype models to some degree. As we
l'see in chapter 4, many theorists assume that the prototype is the single best
_ example, rather than a list of features, even though these models have very different

properties, for real-life categories, at least.

Feature: combinations. The view taken by Rosch and Mervis (1975), Smith and
(_1981), and Hampton (1979) was that the category representation should
ck of how often features occurred in category members. For example, people
ve expected to know that “fur” is a frequent property of bears, “white” is a
frequent property, “has claws” is very frequent, “eats garbage” of only mod-
eqp’_éncy, and so on. A more elaborate proposal is that people keep track not
individual features but configurations of two or more features. For example,
people notice how often bears have claws AND eat garbage, or have fur

white—that is, combinations of two features. And if we propose this, we
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ple notice combinations of three features su.ch
aving claws AND eating garbage AND being white. So, if you saw a bear with
brown fur eating campers’ garbage in a pational park, you would update your
by adding 1 to the frequency count for features
Brown,” “has fur,” “cats garbage,” “brown and has fur,” “brown and eat’s: gi{:—
" bage,” “has fur and eats garbage,” and “brown and has fur and eats gaurbage;1 This
proposal was first made by Hayes-Roth and Hayes-Roth (1977) and was made part
““5f a’ mathematical model (the configural cue model) by Qluck ar.ld Bower (195.383).f
One problem with such a proposal is that it immediately raises the q1llest10n o
Eomputational explosion. If you know 2.5 things about bears, say (which by no
), then there would be 300 pairs of features to be encoded.
the number of pairs would be N (N —~ 1)/2.) Further-
ets of features to encode as well and 12,650 guad-
you have now kept track of not

jight as well also propose that peo

ategory information about bears

means is an overestimate
(Iri- general, for N features,
‘more, there would be 2,300 tripk
: Even if you stopped at triplets of features, -
just 25 properties, but 2,635. For any category that you W(?re extremely i?in:ﬂiar
“with, you might know many more features. So, if ym.] are a b‘n-d watche1j an Tow
,000 properties of birds {this would include shapes,‘ sizes, habitats, behaviors, c; ggs(;
and patterns), you would also know 499,500 pairs of featu.res ,a’md 166,167, "
feature triplets. This is the explosion in «combinatorial explosion. Not only wou

this take up a considerable amount of memory, it would also re-quire much more
‘processing effort when using the category, since every time you v1etwed a new cate-
o update as many of the pairs, triplets, and quad-
hen making a category decision, you couldn’t just
hat you know about—you would also have to

ruplets.

“gory member, you would have t
“ruplets that were observed. And w
“consult the 1,000 bird properties t

consult the relevant feature pairs, triplets, and so on. - "
For these reasons, this proposal has not been particularly popular in the field at

large. Models that encode feature combinations have been able to explain some data.
o psychology experiments, but this may in part be due to the fact that there are
tyijicaliy only four or five features in these experiments (Gluck and Bower 1988a,
pp. 187-188, limited themselves to cases 0 :
conceivable that subjects could be learning the feature pairs an ‘
éases. However, when the Gluck and Bower model has been compared systemati-

ally with other mathematically specified theoties, y
¢ the others {especially exemplar models), as discussed by Kruschke (1992) and

_Nbsofsky (1992). In short, this way of expan
‘on more generally. The question of whether people actua
of correlated features is discussed at greater length in chapter 5.

d triplets in these

f no more than three features), and so itis

it has not generally done as well '

ding prototype theory has not caught-
lly do notice certain pairs
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Schemata. One development that is tied to the prototype view is the use of schernata
(the plural of schema) to represent concepts. This form of representation has been
taken as an improvement on the feature list idea by a number of concepts researchers
(e.g., Cohen and Murphy 1984; Smith and Osherson 1984). To understand why,
consider the feature list view described above. In this view, the features are simply
an unstructured list, with associated weights. For example, the concept of bird might
have a list of features such as wings, beak, flies, gray, eats bugs, migrates in winter,
eats seeds, blue, walks, and so on, each with a weight. One concern about such a list
is that it does not represent any of the relations between the features. For example,
the features describing a bird’s color are all related: They are different values on the
same dimension. Similarly, the features related to what birds eat are all closely con-
nected. In some cases, these features are mutually exclusive. For example, if a bird
has a black head, it presumably does not also have a green head and a blue head
and a red head. If a bird has two eyes, it does not have just one eye. In contrast,
other features do not seem to be so related. If a bird eats seeds, this does not place
any restriction on how many eyes it has or what color its head is, and vice versa.

A schema is a structured representation that divides up the properties of an item
into dimensions (usually called slots) and values on those dimensions (fillers of the
slots). (For the original proposal for schemata, see Rumelhart and Ortony 1977. For
. a general discussion of schemata see A. Markman 1999.) The slots have restrictions
on them that say what kinds of fillers they can have. For example, the head-color
‘slot of a bird can only be filled by colors; it can’t be filled by sizes or locations, be-
cause these would not specify the color of the bird’s head. Furthermore, the slot may
place constraints on the specific value allowed for that concept. For example, a bird
“could have two, one or no eyes (presumably through some accident), but could not

tave more than two eyes. The slot for number of eyes would include this restriction,
ke fillers of the slot are understood to be competitors. For example, if the head
lor of birds included colors such as blue, black, and red, this would indicate that
the head would be blue OR black OR red. (If the head could be a complex pattern
'm_ixture of colors, that would have to be a separate feature.) Finally, the slots
nselves may be connected by relations that restrict their values. For example, if a

- does not fly, then it does not migrate south in winter. This could be represented
¢connection between the locomotion slot (which indicates how the bird moves
around) and the slot that includes the information on migration.

v do we need all this extra apparatus of a schema? Why not just stick with the
et feature list? The answer cannot be fully given here, because some of the evi-
r schemata comes from the topics of other chapters {most notably chapter
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The Exemplar View

The theory of concepts first proposed by Medin and Schaffer (1978) is in many
respects radically different from prior theories of concepts, In the exemplar view, the
idea that people have a representation that somehow encompasses an entire concept
is rejected. That is, one’s concept of dogs is not a definition that includes all dogs, nor
is it a list of features that are found to greater or lesser degrees in dogs. Instead, a
person’s concept of dogs is the set of dogs that the person remembers. In some sense,

there is no real concept (as normally conceived of), because there is no summary rep-

resentation that stands for all dogs. However, as we shall see, this view can account
for behaviors that in the past have been explained by summary representations.

To explain a bit mote, your concept of dogs might be a set of a few hundred dog
memories that you have, Some memories might be more salient than others, and
some might be incomplete and fuzzy due to forgetting. Nonetheless, these are what
you consult when you make decisions about dogs in general. Suppose you see a new
animal walking around your yard. How would you decide that it is a dog, according
to this view? This animal bears a certain similarity to other things you have seen in

“the past. It might be quite similar to one or two objects that you know about, fairly
- similar to a few dozen things, and mildly similar to a hundred things. Basically,
What you do is (very quickly) consult your memory to see which things it is most
similar to. If, roughly speaking, most of the things it is similar to are dogs, then
f)_u’ll conclude that it is a dog. So, if I see an Irish terrier poking about my garden,

thlS will remind me of other Irish terriers I have seen, which I know are dogs. 1

ould conclude that this is therefore also a dog.
s'in the prototype view, there must also be a place for similarity in this theory.

he Irish terrier in my yard is extremely similar to some dogs that I have seen, is

d;_i‘{é’i_"eiy similar to other dogs, but is mildly similar to long-haired ponies and
os as well. It has the same general shape and size as a goat, though lacking the

ns or beard. It is in some respects reminiscent of some wolves in my memory as

How do I make sense of all these possible categorizations: a bunch of dogs, a
ts, wolves, and the occasional pony or burre? Medin and Schaffer (1978)
ed that you should weight these itemns in your memory by how similar they are

em_._f'_The Irish terrier is extremely similar to some of my remembered dogs, is
ly similar to the wolves, is only slightly similar to the goat, and only barely
0 t:_h'éé_ ponies and burro. Therefore, when you add up all the similarities,

onsiderably more evidence for the object’s being a dog than for its being
. (I'will describe this process in more detail later.) So, it is not just the
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plars that an item reminds you of that determines how you catego-
s to each memory.

number of exem
rize it; just as important is how similar the object i
How does this view explain the phenomena that the prototype view explained?
First, this theory does not say anything about defining characteristics, so the prob-
lems for the classical view are not problems for it. Second, the view has a natural
explanation for typicality phenomena. The most typical items are the ones that are
So, a German shepherd is extremely simi-

highly similar to many category members.
gs and is not s0 similar to other animals. A dachshund is not as sim-

and it bears a certain resemblance to weasels and ferrets, which
g. A chihuahua is even less similar to most dogs, and it is
guinea pigs, and so it is even less typical. Basically, the
more sipnilar an item 1s 0 remembered dogs, and the less similar it is t© remembered

Borderfine cases are items that are almost

nondogs, the more typical it will be.
embers and noncategory members. So, a

milar to remembered category m
ar to some fruit in terms of its having sceds, being round with edible

ut is similar to some vegetables in terms of its taste and how it is

Jar to many do
ilar to other dogs,
count against it as a do
somewhat similar to rats and

equally si
tomato is simil
skin, and so forth, b
sormally prepared.
Typical items would be cate
similar to a large number of categor
. for their being members. When you se
" think of many dogs you have seen that are
there are fewer dogs that are similar to it. Thus,
3 quickiy when an item is typical (Lamberts 1995; No
© case of category intransitivity is explained in a way simil
" giew. For example, Big Ben is similar to examples of clocks ¥
- respects. Clocks are similar to furniture exemplars in different respects. But Big Ben
is pot very similar to most furniture exemplars (beds, dressers, couches, etc.), and so
it does not reach the categorization criterion, Whenever the basis for similarity
“changes, the exemplar model can explain this Jind of intransitivity.

" In short, the exemplar view can explain a number of the major results that led to
the downfall of the classical view. For some people, this vi
" For example, many people don’t consciously experience recallin,
in deciding whether something is a dog. However, conscious exper
is not in general a reliable guide to cognitive processing. Indeed, o
‘not have conscious experience of a definition or a list of features, either. Access €
the concept representation is often very fast and automatic. Second, some peopi
that they know things about do '

gorized faster than atypical ones, because they are very
y members, and so it is very easy t0 find evidence
¢ a German shepherd, you can very quickly
similar to it; when you se€ a chihuahua,

sofsky and Palmeri 1997). The
lar to that of the prototype

g exemplars of dogs

_-pbint out that they feel

the positive evidence builds up more -

ou have seen in many

ew is very counterintuitive. . :

ience of this sort
ne typically does:

gs, in general, not just about,
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individual e i
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'm generalizations (see R i
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were born in the twentieth century, Were Presidents of the United States,
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rence in age is not as large as
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However,
‘great deal on political beliefs,
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larity rule like
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d so would have higher scores.
multiply togethet the scores
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f()]: each feature. Because t}le II!ISIIlatCIl 5Cores [ailge betv‘iee” O alld 1, a fe“' ms-
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nowh‘e oni'y .12§ on a 0-1 scale (25 scores of 1 x .5 x .5 x .5 for the three mis-
matching dimensions}. This does not seem to be a very high number for two item

s
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o these two items (pear 10
| similarity of almost 2.0.
every possum you know

to any other dogs. The animal will have high similarity ¢
1.0), which would make the dog category have an ovef:aﬁ
- Now i i hree features wit
' :magine that the animal shared t ‘ ,
1\;‘;“;; thfm) and was different on three features with every possui. 1f thfdt::rez
i av
o ( ismatching features each have mismatch values of .25, then l'hff am‘mal wog e
o flarity of 1 x 1 x1x 25 % 25 x .25 to each possum, wh1f:h is only . .
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'llr"lhis is b;cause the mismatching features result in very low similarities, whi

CaﬂﬂOt CaSlli be Illade up bs’ 11a\'“1g I[lally SuCh EXamples. It] Sll()rt, tj:'e Me’dlﬂ aﬂd
., . .

better to have high overla s

is pI tical one

bave moderate overlap with many items. This property turns out to be a cri R
" as the next chapter will reveal.?

I . m
Some empirical results initially discouraged researchers fro

lar approaches. One such result was the prototype ad-
d Keele (1968, 1970) and others. When sub-
(see above), they were
Though they were
as is commonly

" Prototype advantages.
“seriously considering exemp
vantage that was found by Posner and X
i.ects learned categories by viewing distortions of a prototyge
often better at categorizing the prototype than another new zite‘m. (
aot initially better at identifying the proto;ype ?in t};tiae:is ;e;n;tively o
epcated.) This suggested to many re:'searc exs t 'a su e s che s
he prototype from seeing the distortions. That is, they ha Jeamed e ecanee
fiad in common and stored this as a representation of the whole category.

:}lii(sinler and Keele 1968, actoally started \n;th a prototyfiot;)h:ii:g:; Ic;t;g;rr}g
fhembers, it is natural to think of subjects who are eXpose . nbere
“doi me process in reverse.} But from the above discussion, you ¢an ?e

: di‘:;g(;}:;ls:: mfdel could easily explain this result, Perh.afps t.he pr'otchiC): :;en;?;
similar to the learned exemplars than a new, nonpro.totyplcai item is. i :the e
asis for making all the other items, 1t must be similar to ait ©

ut this is not true for an arbitrary new item. 1
lar view. Posner and Keele

totype was the b

o some degree, b
. Another result was more of a problem for the exemp

(1970) examined categorization for items immediately' a
‘after a one-week delay. When tested immediately, su-b]ec
the specific items that they had been trainff_d on (old items o ot
the prototype, and less accurate for new 1tem§ they had not seen

“when tested a week later, memory for the old items decl
P offered only a slight decrement. Posner a

s were most accurate for

fter category learning and:.
}, next most accurate for:

ined precipitously, Wherea§
nd Keele argued that if the
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prototype advantage were due to memory for old exemplars, it should have shown
the same kind of decrement after a delay. They concluded that subjects formed a

prototype during learning, and this prototype is somehow more insulated against
memory loss than are memories for individual exemplars (perhaps because the pro-

totype is based on many presented items, not just one). A similar effect was reported
by Strange, Keeney, Kessel, and Jenkins (1970), and Bomba and Siqueland (1983)
found the same effect in infants. There are other variables that have similar effects.
For example, as more and more exemplars are learned for a category, the memory
for old items decreases, but the prototype advantage generally increases (e.g., Knapp
and Anderson 1984). If prototype performance is caused by memory for specific
exemplars, how could performance on the prototype and old exemplars go in dif-
ferent directions? '

An explanation for this kind of result was given by Medin and Schaffer (1978).
First, consider why it is that in many cases with immediate testing, old exemplars
are remembered best of all. This must be because when the item is presented at test,
it results in the retrieval of itself. That is, when item 9 is presented at test, you re-
member having seen it before, and this makes you particularly fast and accurate at
categorizing it. If you forgot this particular item, then it would no longer have this
good performance, because it must be less similar to any other item than it is to
itsell. Over time, however, this loss of memory is just what happens. So, perhaps
item 9 was a red circle over a green square. Even though you learned this item dur-
ing the first part of an experiment, after a weel’s delay, this memory would be
degraded. Perhaps you would only remember that it was a red circle over something
green. Now when you get item 9 at test, it is not so very similar to its own memory,
‘because that memory has changed. Similarly, if you learned 25 items as being in
ategory A, your memory for each individual item will not be as good as if you only

-arnied 4 items in this category. As you learn more and more, there is interference

moig the items which causes the exemplar memory for any one of them to be less

urate. This explains the decrements obtained in performance on old items.

that happens when you present the prototype {which was never seen during
1ing) at test? If it is an immediate test, the prototype is fairly similar to many
msin the category, and so it is easy to categorize. However, it is not identical to
mdiﬁ._:'idual item, and so it is still not as fast as the old exemplars are. So, the

tage: of old items over prototypes on immediate test is, according to the ex-
plar model, caused by the fact that the former has a perfect match in memory but
latter does not. (Note that this explanation relies on the exemplar model’s
“close similarity to one item more than moderate similarity to many items.)
yed testing, the prototype is still very similar to a number of items. In fact,
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Calculating Similarity According to the Context Model

Imagine that you have been learning categories made up of geometric figures printed on
cards. Fach figure is defined by shape, color, size, and position (left or right on the
card). After you've learned the categories, SUppOse you're shown a new item, a large,
green triangle on the teft of the card, How do you calculate its similarity to the other
items in order to decide its membership? The discussion in the main text gives the gen-
eral outline of how this would be done. This box describes in a bit more detail how this
is actually calculated in experiments that attempt to derive exact predictions for the
context model.

Given the large green triangle on the left, one wonld have to compare it to each
remembered exemplar. Suppose that you also remember seeing a large blue triangle on
the right. We need t0 decide the matching and mismatching value for each dimension to
see how similar it is. The two stimuli match on two dimensjons, size and shape, and so
these will be given values of 1.0. The two stimuli mismatch on two dimensions, and so
these will be given values of s¢ (for color} and s, (for position). The s indicates how
similar the green of one stimulus is to the blue of the other samulus. 1f these are con-
sidered fairly similar, the value will be close to 1; if they are considered rather different,
then the value would be closer to 0. The sp correspondingly indicates how similar the
feft and right positions are. By using the multiplicative rule, we can calculate the entire
similarity of these two stmuli as 1 X1 % sp X S The problem is, how do we know
exactly what sy and s, are so that we can come up with an actual number? In general,
the answer 18 that these numbers will be calculated from the results of the experiment
itself. For example, we can sec how likely people are to categorize an item that is just
like a learned item but differs in color; and we can see how likely people are to catego”
rize an item that is just like a learned item but differs in shape; and so on. By using 2
mathematical modeling prograt, researchers in this area can put in the expected for-
mulas for each item (1., how similar each test item is to each learned item according to
the multiplication rule), and the program will provide the values of sp, S, and the other
milarities that make the model perform as well as possible. These are called free
parameters of a model, because they are estimated from the data, rather than being
stated by the theory in advance. (Other theories also have free parameters. For exam-
ple, 1 said that prototype theory often has weights on how important cach feature is for
a category. These could be estimated from the data as free parameters, though they
could also be directly measured through means analogous to those described in the next
paragraph.)

Unfortunately, this is not entirely the end. Recall that Medin and Schaffer also dis-
cussed the possibility that some dimensions might be atrended to more than others.
Suppose, for example, that subjects never paid attention t0 the position of the figures
for some reason, perhaps not thinking that it was relevant. Now, the value for sp that
we calculate by the above procedure would include both the intrinsic similarity of the
iterns and the attention that subjects give to it. If subjects really ignored position, then
s, would equal 1—suggesting that the right and left positions were viewed as identical.

That is, there is no way to separate the mismatch score from the amount of attention .
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“because some of ifici .
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dog. Or, to put it another way, how often I happen to see one particular bulldog
should not greatly influence my decisions about bulldogs in general.

Nosofsky (1988) addressed this question in an experiment using colored patches as
stimuli. The patches varied in how saturated and bright the colors were: The more
saturated and bright colors tended to be in one category, and the less saturated and
bright colors in another. He varied the frequency with which items were presented:
One of the items was presented five times as often as the other items during learning.
If each exemplar is considered as a type, then this frequency manipulation should
not influence later category decisions. The fact that one color keeps reappearing
would be like the fact that I live next door to Wilbur, not a relevant indication of the
category in general. But if exemplars are defined as tokens, then stimuli that were
like the more frequent item would be better category examples than stimuli that
were like other, less frequent items, because there would be “more exemplars™

remembered for the more frequent one. This is exactly what Nosofsky found. After
learning, he showed subjects the items and asked them to rate their typicality. The
more frequent item and other items that were close to it were rated as being more
typical than the less frequent items. By this result, then, an exemplar is not an actual
thing but rather the encounter with a thing. So, if I encounter Wilbur a hundred
times, this creates 100 exemplars, not just one. Nosofsky also provided a simulation
of the exemplar model, showing that it accounted for the results much better if it

considered each presentation of the stimulus as an exemplar, rather than each type
as being an exemplar.

Barsalou, Huttenlocher, and Lamberts (1998) raised a possible problem with this
interpretation of Nosofsky’s experiment. They pointed out that we do not know
- what subjects thought about the reappearing colors. Perhaps they thought that the

stimuli were somehow different objects even if they looked identical. (It is difficult
to know how to interpret the reappearance of these items, since they were color
patches rather than objects.) Furthermore, as color patches are difficult to remember
p:r'_éacisely, perhaps people did not realize that exactly the same item was being shown
50 often, Perhaps they thought that the colors were slightly different. If so, then they
would naturally count them as separate exemplars,
arsalou et al. performed a clever experiment in which they showed two groups
ubjects the exact same stimuli during learning, but they varied whether subjects
ught that each stimulus was unique, or whether they were seeing some of the

s multiple times. Under most conditions, they found that this manipulation had
ually no effect on the concepts people formed; the very frequent exemplar had
strong effect in both conditions. That is, to return to my example, it makes no
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other conceptual processes may be a reasoning process that infers properties or
constructs explanations from general knowledge.

Let me just give a simple example of the kind of knowledge involved here. One
area of knowledge that is often studied in research from this perspective is that of
biology. We know things about evolution, reproduction, physiology, and ecology,
part of which we have just learned “naively” {on our own or informally from
parents}, and part of which we learned through more formal study. However, even
young children seem to have basic ideas about biology (Gelman and Wellman 1991,
Keil 1989) that they use in making judgments of the foliowing sort. If a child sees a
fuzzy, gray, tiny animal paddling around after a large, white, goose, the child may
conclude that the animal must be a goose as well, even though it looks very different
from other geese it has seen. Apparently, the child is using the logic: “Babies are
smaller than their parents, and they often stick close to their parents. Any baby of a
goose must itself be a goose. So, this much smaller animal could well be a baby,
even though it looks rather different from the goose, and so it is also a goose.” Of
course, the child doesn’t say this out loud, but there is reason to think that children
are sensitive to notions of inheritance and parentage—basic biological properties
that then influence their categorizations. In general, this approach says that people
use their prior knowledge to reason about an example in order to decide what cate-
gory it is, or in order to learn a new category.

In one description, this aspect of concepts was referred to as “mental theories
about the world” (Murphy and Medin 1985), which is accurate enough if one
understands that people’s naive theories are incomplete and in some cases contra-
dictory, given our incomplete knowledge and understanding of the things around

~.us. The child in the above example doesn’t have a complete theory of biology but
- does know some basic facts and principles that are partly integrated. Thus, this

approach is sometimes called the theory view (or even the theory theory by those
ess easily embarrassed than I am). However, the term theory suggests to many
something more like an official scientific theory, which is probably not an accurate
description of people’s knowledge (see, e.g., Gentner and Stevens 1983). This has
caused some confusion about exactly what the approach is claiming, so I will tend
_6.'1:1_56 the term knowledge rather than theory, to avoid this potential confusion.
Some of the discussion of schemata discussed in the prototype view is relevant
te as well. For example, one reason given for using schemata for representing
n?epts was that they can represent relations between features and dimensions.
nis is just one way of representing knowledge about the domain. For example, we
g"k_now that animals without wings cannot fly, and so there may be a relation
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between the schema slot describing body parts and the slot describing behaviors that

manifests this relation.
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Conclusions
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s.A.PPEND]X: THE GENERALIZED CONTEXT MODEL
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