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Figure 1: Exemplar snapshots of our interactive object categorization demo application. A user selects (sloppily) a region of interest
and our algorithm associates an object class label with it. Despite large differences in pose, size, illumination and visual appearance the
correct class label (e.g. cow, building, car...) is automatically associated with each selected object instance. Some of these test images
were downloaded from the web and none were part of the training set. A video of the interactive demo may be found at the above web site.

Abstract

This paper presents a new algorithm for the automatic
recognition of object classes from images (categorization).
Compact and yet discriminative appearance-based object
class models are automatically learned from a set of train-
ing images.

The method is simple and extremely fast, making it suit-
able for many applications such as semantic image re-
trieval, web search, and interactive image editing. It classi-
fies a region according to the proportions of different visual
words (clusters in feature space). The specific visual words
and the typical proportions in each object are learned from
a segmented training set. The main contribution of this pa-
per is two fold: i) an optimally compact visual dictionary is
learned by pair-wise merging of visual words from an ini-
tially large dictionary. The final visual words are described
by GMMs. ii) A novel statistical measure of discrimination
is proposed which is optimized by each merge operation.

High classification accuracy is demonstrated for nine
object classes on photographs of real objects viewed under
general lighting conditions, poses and viewpoints. The set
of test images used for validation comprise: i) photographs
acquired by us, ii) images from the web and iii) images from
the recently released Pascal dataset. The proposed algo-
rithm performs well on both texture-rich objects (e.g. grass,
sky, trees) and structure-rich ones (e.g. cars, bikes, planes).

1. Introduction

This paper studies the problem of constructing compact and
discriminative models of object classes and presents a novel

algorithm for the automatic recognition of objects from im-
ages. An example is shown in fig. 1 where the objects in
the manually selected test regions (marked as rectangles)
have correctly been recognized by the proposed algorithm
as instances of the classes cow, aeroplane, car, face etc.

Object categorization is difficult because differing pose,
scale, illumination and intrinsic visual differences produce
highly different images for objects of the same class. For
example fig. 1 shows deformable objects (sitting/standing
cows), and extreme partial occlusions (in the car and bike
images). Existing shape-based modeling techniques are not
designed to deal with these large variations. Thus, we have
built our algorithm upon appearance-based models drawn
from the material classification literature. Specifically, we
have borrowed the fexton-based models developed in the
context of texture recognition [9, 16] and extended by [1].

The challenge in object categorization is to find class
models that are invariant enough to incorporate naturally-
occurring intra-class variations and yet discriminative
enough to distinguish between different classes. In this pa-
per we propose a supervised learning algorithm which au-
tomatically finds such models. Additionally we require the
learned models to be compact and light-weight so as to en-
able efficient classification.

The learned models specify the typical proportions of
textons in each class, regardless of spatial layout. To our
surprise we have found that the learned models perform ex-
tremely well with both shape-free objects (sky, grass and
trees) and also with highly structured object-classes (faces,
cars, aeroplanes and bikes).



2. Previous work

Object class recognition is a well-studied vision problem,
with approaches ranging from voting independent patches
to full models of spatial layout and deformation. For ex-
ample, constellation models [3, 4, 5], fragment-based mod-
els [14] and pictorial structures [8] try to locate distinctive
object parts and determine constraints on their spatial ar-
rangement. While these approaches are potentially very
powerful, the spatial models which are typically used can-
not handle significant deformations such as large out-of-
plane rotations. They also do not consider objects with vari-
able numbers of parts such as buildings and trees. Our ap-
proach can be viewed as a simplified parts model in which
the parts can be arbitrarily rearranged but tend to occur in
particular proportions, such as leaves on trees or windows
on buildings. This approach runs the risk of not being able
to discriminate shapes, but surprisingly it seems sufficient
to recognize a wide range of object classes without explicit
shape modeling.

A similar image labeling task was considered in [2]
and [10]. These systems used machine learning techniques
to classify regions found by automatic segmentation. How-
ever such segmentations often do not correlate with seman-
tic objects, for example an object in shadow may be divided
into a shadowed versus non-shadowed part. Our solution to
this problem is to: i) take the region as input from the user
or ii) test a variety of regions and pick the one that is most
likely from the point of view of the classifier as opposed to
a separate segmentation algorithm.

The approach proposed here can be considered an exten-
sion of the method of [1]. In that work, images were de-
scribed by histograms over a dictionary (of selected size) of
visual words!. The visual words were chosen by K-means
clustering, and features computed only on a sparse set of
interest points. We build upon [1] by automatically learning
the optimal visual words and dictionary size. Unlike [1],
our approach is dense; i.e. we process every pixel, avoiding
early removal of potentially useful regions, such as texture-
less blue/grey regions which can be distinctive of sky.

3. Training set and visual features

The training image set. Our class models are learned
from a set of 240 manually segmented and annotated pho-
tographs (fig. 2). Those photographs depict different ob-
jects in completely general positions, lighting conditions
and viewpoints. The objects belong to the nine classes:
building, grass, tree, cow, sky, aeroplane, face, car and bi-
cycle.

The training images were manually segmented (quickly
and sloppily) into object-defined regions by means of a

In the literature the terms “textons”, “keypoints” or “visual words”
have been used with approximately the same meaning, i.e. clusters of filter
responses/feature vectors in a high-dimensional space.
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Figure 2: The labeled training set. (Columns a-c) A selection of images
in the 240-image training set (image size is 320 x 213). Notice the large
within-class variability. (Column d) Ground-truth annotation for column c.
Labeling has been achieved for all training images by a simple, interactive
“paint” interface. Same colours correspond to same object class.

“paint”-like interface (fig. 2d), with the assigned colours
acting as indices into the list of object classes.

The face images were downloaded from the Caltech
dataset” while the other photographs were taken by us. The
entire annotated database is available on our web site.

Textons and texton histograms. Each training image is
convolved with a filter-bank to generate a set of filter re-
sponses [9, 16]. These filter responses are aggregated over
all the images in the entire training set (independently from
class labels) and clustered using a K-means approach. Ma-
halanobis distance between features is used during clus-
tering. Then, the set of estimated cluster centres (tex-
tons/visual words) and their associated covariances define a
universal visual dictionary (UVD). In this initial step large
values of K are employed (in the order of thousands), but
the next sections will show how to reduce the size of the
UVD without loss of class discrimination. Given a UVD,
any image can be filtered and each pixel associated with the
closest texton in the dictionary, thus generating a map of in-
dices into the UVD. At this point normalized histograms of
textons can readily be computed on a region or image basis.

Zhttp://www.vision.caltech.edu/html-files/archive html



Filter-banks. In this paper we have tested a number of
different filter-banks made of combinations of Gaussians,
first and second order derivatives of Gaussians and Ga-
bor kernels. Many filter-banks produced comparable re-
sults with the best one made of 3 Gaussians, 4 Laplacian
of Gaussians (LoG) and 4 first order derivatives of Gaus-
sians. The three Gaussian kernels (with ¢ = 1,2,4) are
applied to each CIE L,a,b channel [7], thus producing 9 fil-
ter responses. The four LoGs (with ¢ = 1,2,4,8) were
applied to the L channel only, thus producing 4 filter re-
sponses. The four derivatives of Gaussians were divided
into the two z— and y—aligned sets, each with two different
values of o (o = 2, 4). Derivatives of Gaussians were also
applied to the L channel only, thus producing 4 final filter
responses. Therefore, each pixel in each image has associ-
ated a 17—dimensional feature vector. Note that first order
derivatives of Gaussian kernels are not rotational invariant.
However, rather than deciding a-priori whether to remove
rotational dependency or not, we let our supervised learn-
ing algorithm decide for us. In addition to this filter-bank,
we also investigated the performance of raw 5 x 5 colour
patches (5 x 5 x 3 = 7H—dimensional feature vectors). In
our experiments using colour and intensity alone (only the
9 Gaussian filter responses) performed poorly.

4. Modeling object classes

This section describes the main contribution of this paper: a
statistical algorithm for learning a compact and yet discrim-
inative representation of object classes.

4.1. Objects as texture conglomerates

In texture classification [9, 16] classes are modeled by his-
tograms of textons (visual words). The assumption being
that similar distributions of textons (from a unique dictio-
nary) apply to similar textures. In this paper we represent
objects as conglomerates of different texture regions and
thus we apply the same histogram-of-texton modeling tech-
nique. Note that we never need to explicitly recognize each
component texture (each “part”), as much as the overall dis-
tribution of the “words” from the dictionary.

Interestingly, the size and nature of the dictionary affects
the class models and thus the discrimination power. In [16]
it was noticed that there is an optimal dictionary size K for
which classification accuracy is maximum. Both larger or
smaller visual dictionaries do not perform as well.

Unlike previous techniques which manually fix the dic-
tionary size and then estimate the textons by unsupervised
clustering, here we infer both the best visual words and dic-
tionary size from the training data in a supervised fashion.
In fact, we propose a new statistical generative technique
that, by merging textons from a large initial dictionary, es-
timates a new, considerably smaller target dictionary with-
out loss of class discriminability. The two driving forces of

our supervised clustering technique are high class discrim-
inability and compactness of dictionary. Not only do we
estimate the appropriately small size of the UVD, but we
also make sure that we maintain high classification accu-
racy by only merging visual words which do not need to be
kept separate.

The next section will describe inference of the optimal
UVD and object class models.

4.2. Learning an optimal visual dictionary and
modeling compact object classes

Each image in the training database is convolved with each
of the P filters in the selected filter-bank. Then, each pixel
position is associated with a P—dimensional feature vec-
tor p. Note that here all available image data is processed,
rather than only some specified interest locations.

The whole set of feature vectors are then clustered using
K-means with a large value K (in the order of thousands).
The set of resulting P—dimensional clusters (textons) and
the associated covariances constitutes the initial dictionary
JF. The goal here is to “manipulate” F and come up with a
new discriminative dictionary 7 with size T’ < K.

We have given a set of NV annotated training regions, with
ground-truth class labels ¢ € {1---C}. Each training re-
gion has a texton distribution h (histogram over the initial
dictionary F ) associated with it; and also a corresponding
histogram of “target” textons H. All histograms are nor-
malized to sum to one. The aim is to find the best mapping
H = ¢(h). The strategy used here is to define ¢ as a pair-
wise merging operation acting on textons. The intuition is
that by merging textons which do not help distinguish be-
tween classes, one can produce a much more compact and
yet discriminative visual dictionary 7 .

4.2.1 The generative model for texton histograms

We wish our model to prefer that histograms over the final
dictionary are similar for regions of the same class (reduc-
ing intra-class variation). Hence, we model the set of his-
tograms for each class using a Gaussian distribution with
mean H, and diagonal covariance whose diagonal entries
form the vector 3. Thus, a key assumption is that whenever
an object of class c appears in an image, the corresponding
region histogram H is close to the mean class histogram
H.,, in terms of a Mahalanobis distance given by 3...

We define this relationship probabilistically for a class
with parameters 8 = (H, 3) by

T
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where H; denotes the i*" bin of a histogram. Note that the
value in each bin is raised to a power of a half. This is the
variance stabilizing transformation [6] of a multinomial (or
equivalently a Poisson distribution) which has the effect of



making the variance constant, rather than linearly depen-
dent on the mean H. Hence, it makes the assumption of a
Gaussian model with constant variance more accurate for
this multinomial data.

Applying Bayesian methodology, we define a common
prior over the parameters for each class 6

T
0) = [TV (71, (\8) ") 6(Bilat) @
i=1

where the hyper-parameters are fixed to {¢ = 0,A =
0.1,a = 0.01,b = 0.01}; with G denoting the gamma dis-
tribution.

Each training image region is assumed to contain a sin-
gle instance of an object class and so ¢ = [¢; - - - én] is the
vector of training labels associated with all of the N train-
ing regions. A particular mapping ¢ defines new texton his-
tograms Hy,--- ;Hpy. From (1) and (2), the distribution
over these histograms conditioned on the ground truth la-
bels is

P({H,}[¢) H/HP H,|0.)P(0.)d0, (3)

neER,

where R, is the set of regions with object label ¢ and we
have marginalised out the class parameters 6.

4.2.2 Compactness v discrimination trade-off

If we attempted to find the mapping that maximises the
probability of the histograms (3), we would end up merging
all the bins together into a single bin, since all histograms
for any class would then be identical. Of course, we would
be completely unable to discriminate between classes.
Instead, we wish to set up a trade-off between making the
histograms more similar within each class and making them
more discriminative between classes. Consider finding the
conditional probability of the class labels; using Bayes’ rule

P(E/{H, = 6(b,)}) = AP

Yo PU{HL}e)P(c!)
where the sum in the denominator is over all of the C™V pos-
sible object labelings and P(c) is the prior over labelings,
which we set to be uniform.

We now aim to find the mapping ¢ which maximizes
this conditional probability (4). The term in the denomina-
tor acts to penalise mappings which reduce discriminability
(i.e. which make the observed data likely under class label-
ings other than the true one). The numerator still favours
mappings which lead to small intra-class variances, ensur-
ing that the texton histograms are similar for regions of the
same object class. This double pressure enables learning
of the correct level of intra-class compactness in relation
to inter-class discrimination power and represents the main
contribution of this paper. As we are compressing the his-
togram whilst preserving meaningful information about the

“4)

class labels, our approach can be considered as an applica-
tion of the information bottleneck method [13] to the prob-
lem of object categorization.

We consider a mapping ¢ which merges bins rather than
dropping them. However, if some bins are uninformative
about the class label then they will be merged together and
large variances will be learned for the merged bin.

4.2.3 Learning the mapping ¢

The goal of our learning algorithm is to find the mapping ¢
which maximises the conditional probability of the ground
truth labels, given the texton histograms of all training re-
gions. To achieve this, we first, need to compute (3), which
can be re-written as

pe) = TIT1 [ TT Pl P doe
c=11i=1 neR,
c T
= [IIIE- 5)
c=1i=1
where 0.; = (H;,3;) and E,; is an evidence term for a

particular class ¢ and histogram bin. The integral for F;
can be found analytically to be

o mfA 3 o I'(a)
Bei = (2m)” (/\> b’ T(a) ©

where \' = = (u)\JaneRHé) /N, d =

a+ |R[/2and b = b+ (Au? = Np?+ 3, cp Hn) /2.
It follows that we can evaluate the conditional probability
of the histograms {H,,} given a labeling ¢ by finding the
product of (6) over both bins and classes.

To evaluate the conditional probability of the labels
(4) exactly would require computing P({H,, }|c) for each
of the CV labelings — clearly an intractable proposition.
However, we are only interested in the relative values of
P({H,, }|c) as we change the c. We wish it to have a high
value for the ground truth ¢ and low values for other ‘com-
petitive’ labelings. To achieve one-vs-all discrimination, we
need only consider the alternate labeling where all regions
are given the same label c**™°. Hence, we make the approx-
imation that we can maximise (4) by instead maximising the

quantity P given by
P({H,}|¢)

PEED = 5,770 + PE.Je)
where the prior terms have canceled because of the choice
of a uniform prior distribution. Now we can rewrite P in
terms of the mapping ¢ to give

o P({6(h,)}]e)
PO) = Bame) + P({o0n,) ey

The algorithm we use to learn the mapping which max-
imises P consists of the following stages,

)
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Figure 3: Reducing the dictionary by merging visual words (texton
bins). Textons pairs which do not contribute to class discriminability are
merged together by our learning algorithm (the pair ab in the figure).

1. Initialise ¢ to the identity mapping (where no bins are
merged).

2. Let ¢;; be the mapping that merges the pair of bins ¢
and j in ¢. Compute P(¢;;) for each pair i and j.

3. Find the mapping ¢’ = arg max; ; 15(¢u)

4. If P(¢') > P(6), set ¢ = ¢’ and go to step 2. Other-
wise return ¢ as the learned mapping.

The mapping ¢ given by this algorithm defines a grouping
of the words in the original dictionary F. This grouping
defines a more compact visual dictionary 7 which remains
discriminative between object classes, with the optimal dic-
tionary size 7' determined automatically.

One step of the merging algorithm is illustrated in the toy
example in fig. 3. We have only the two classes blue and red,
and the original dictionary F consists of the three words a,
b and c. Pixels in regions of the blue class tend to lie only
in clusters a and b, whilst pixels of the red class lie pre-
dominantly in cluster c, leading to class texton-histograms
of the form shown in fig. 3a. Our learning algorithm has
three possible merges to consider ab, ac and be. Merging
either ac or bec will lower P because it will reduce the dis-
criminability between the two classes. However, merging
ab (projection along the green arrows in fig. 3b) will in-
crease P because it makes the points in the blue class closer
together in histogram space without affecting discrimina-
tion between the two classes (fig. 3b). Iterating this basic
step produces dictionary size reduction with no loss in class
discriminability.

Algorithm efficiency. The computation of ﬁ(qf)i ;) for
each pair of bins can be carried out efficiently since only
the terms in (5) relating to bins ¢ and j differ. The number
of single bin evidence computations required for the entire
learning process is O(C'K?). The efficiency could be fur-
ther improved by considering only a subset of the possible
merges at early stages in the algorithm. We did not find this
necessary since we were able to apply the full algorithm to
initial dictionary sizes up to K = 5000.

4.3. Classification

Once a compact UVD has been obtained we can choose to
model object classes in a number of ways. For instance, we
could think of describing a class as a set of histograms, each
associated with the training regions labeled with the same
class label and use nearest neighbour classification. This
is clearly a highly multi-modal, non-parametric representa-
tion. Given an input test region the closest (e.g. in terms
of Euclidean or Mahalanobis distance) training histogram
is found and the corresponding object class label returned.

Alternatively, we could use the Gaussian class models
with the posterior over the parameters 6. that we have
learned from the training data. We classify each new
(test) histogram H’ by finding the setting of ¢ which max-
imises [ P(H'|¢,0.)P(0./{H,},¢)df.. The unimodal-
ity of Gaussian distributions may be seen as a disadvan-
tage, however the results section will show how the multi-
modal nature of the data is captured by the supervised word
merging process. Advantages of the Gaussian class mod-
els over nearest neighbours ones are: i) their compactness
(storing all training examples can be avoided), and ii) the
fact that Gaussian models provide proper parametric densi-
ties. In the following sections we evaluate and compare the
behaviour of parametric and non-parametric class models
for object class recognition.

5. Results

In this section we assess the effectiveness of the pro-
posed class-modeling technique by: i) measuring object
class recognition accuracy with respect to different image
databases, ii) comparing compactness of class models, iii)
measuring the effect of our learning algorithm on the class
discrimination ratio, iv) showing results from our interac-
tive categorization demo application.

Accuracy of classification in in-house dataset. In order
to measure classification accuracy we have split the 240-
image in-house database (fig. 2) into 50% training set and
50% test set. The training images are used to estimate both
the visual dictionary and the nine class models.

Accuracy of classification for different class models are
shown in table 1. If the test image region boundaries were
determined from our ground-truth segmentation (and ignor-
ing ground-truth class labels) then a nearest neighbour clas-
sification approach (with or without dictionary compres-
sion) and Gaussian class models reached pretty much the
same accuracy of about 93%. However, the combination
of learned Gaussian models and learned UVD achieves the
highest compactness of modeling and thus the highest clas-
sification efficiency. For this training set classification via
multi-class SVM techniques or Gaussian mixture models
produced inferior results.



Recognition accuracy
Dict. size | Accuracy | Accuracy (bbox)
N. Neigh. | K=2000 93.4% 76.3%
N. Neigh. T=216 92.7% 78.5%
Gaussian T=216 93.4% 77.4%

Recognition accuracy
Dict. size | Accuracy (bbox)
Nearest Neighbour | K=1200 76.9%
Nearest Neighbour | T=134 74%
Gaussian T=134 73.3%

Table 1: Accuracy of classification for in-house dataset. The Gaussian
method is over 140 times faster than nearest neighbours with K = 2000.

True Inferred label
label ||Build.|Grass|Tree|Cow|Sky|Aerop.|Face|Car|Bicyc.
Building || 38 2 11 112] 1
Grass 66 | 1
Tree 1 1 130 1
Cow 21 2
Sky 46
Aeroplane|| 4 11
Face 15
Car 15
Bicycle 1 14

Table 2: Confusion matrix for in-house data with learned Gaussian
class models. Final dictionary size 1" = 216.

As the last column of table 1 shows, using the regions’
bounding boxes rather than the more accurate delineation
reduced the classification performances. However, we ex-
pect more clutter-robust histogram distances [12] to im-
prove the performance even in the case of bounding-box
region selection. Furthermore, automatic region segmenta-
tion [11] may also bring large improvements in this case.

The confusion matrix for classification using the learned
Gaussian class models is reported in table 2. It can be seen
that most image regions have been classified correctly into
one of the nine object classes (numbers on the main diago-
nal). However, a few mistakes were made, e.g. four aero-
planes were incorrectly classified as buildings.

Accuracy of classification in the Pascal dataset. Similar
experiments were run on the Pascal Visual Object Classes
challenge training dataset® (587 images*). In order to test
our algorithm we have once again split the dataset into two
equally large training and test sets. The measured classi-
fication accuracy is reported in table 3. Notice that in the
Pascal dataset only bounding boxes of image regions are
provided. By comparing the results in the two tables 3
and 1 we would expect classification accuracy to increase
substantially if better region delineation was provided, e.g.
through GrabCut automatic segmentation [11].

3http://www.pascal-network.org/challenges/VOC/voc/index.html

4We have ignored the grey-level car-only UTUC images since the sim-
ple classification rule “grey image — car”” would have artificially boosted
our classification results.

Table 3: Accuracy of classification for Pascal dataset. The Gaussian
method is over 310 times faster than nearest neighbours with K = 1200.

True Inferred label
label ||Car|Bicyc.|[Motor.|Person
Car 65| 4 4 2
Bicycle || 9 | 36 4 10
Motorbike|| 11| 12 | 81 4
Person || 1| 10 | 4 24

Table 4: Confusion matrix for Pascal data with learned Gaussian class
models. Final dictionary size 7' = 134 textons, with bounding-box only
region selection.

The corresponding confusion matrix for Gaussian class
models is shown in table 4. Unsurprisingly motorbikes and
bicycles are confused with one another. Furthermore, high
level of confusion is detected for the class “person” due to
the high variability of people’s clothing. However, the large
majority of object instances have been classified correctly.

Comparing performance of Gaussian class models be-
fore and after learning. Figure 4 shows the improvement
in classification accuracy when using Gaussian class models
before and after learning, for different sizes of the initial vi-
sual dictionary. It can be observed that our supervised learn-
ing algorithm improves the classification accuracy dramati-
cally, especially for larger numbers of visual words; where
the highest accuracy is reached. Notice that, without our
learned dictionary, it would be impossible to achieve above
90% accuracy with the Gaussian model (red curve). With
the learned dictionary, performance comparable to nearest
neighbour classification is achieved.

Figure 5 compares the accuracy of Gaussian class mod-
els and nearest neighbour classification for different initial
dictionary sizes K. For small initial dictionaries, nearest
neighbours is slightly superior to Gaussian models, though
the difference has similar magnitude to the differences from
different runs of K-means. Then for K > 2000, their per-
formance becomes the same (if not inverted), which sug-
gests that the merged textons are absorbing the multi-modal
nature of the visual object classes.

Model selection. Observing fig. 5 we can notice that for
large values of K the performance of nearest neighbour
classification starts to degrade. However, ignoring K-means
noise the blue performance curve is monotonically non-
decreasing. This effect is advantageous since now we need
not to worry about choosing the ‘optimal’ dictionary size
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Figure 4: Classification performance for Gaussian class models. Be-
fore (red) and after learning (blue), for different sizes of the initial UVD.
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Figure 5: Comparing classification performance for Gaussian class
models vs nearest neighbours classification.

since selecting a sufficiently large value (e.g. K > 3000)
suffices.

Learning features. As an alternative to the hand crafted
17-dimensional filter responses we have also tested our al-
gorithm using 75-dimensional, 5x5 colour patches in the
hope of learning automatically discriminative features from
raw input pixel data. Interestingly, we found that compara-
ble classification accuracy was achieved if the initial dictio-
nary size was large enough (K > 1000) (cf. [15]). However,
the larger dimensionality of the feature vectors affected both
training and testing efficiency.

Information summarization. Reducing the dictionary
size to increase classification efficiency without compro-
mising accuracy is fundamental when dealing with large
numbers of object classes (e.g. in the order of hundreds
or thousands). Moreover, even for a limited number of
classes speed may be important i) when scanning entire
photographs to detect and classify all the objects contained
within, ii) for content-based clustering of web images, or
iii) for the analysis of videos. Figure 6 illustrates the com-
pression effect by plotting the automatically computed final
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Figure 6: Dictionary size compression. The relationship between initial
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Figure 7: Ratio between inter- and intra- class distances on test set
with initial and learned dictionaries. In this experiment the initial dic-
tionary size was fixed at K = 2000.

UVD size T in relation to the original size K. The relation-
ship is highly non linear, with the ratio 7'/ K shrinking as K
grows (the line 7' = K is drawn for comparison). As K be-
comes very large, 7" asymptotically approaches a maximum
UVD size T* ~ 230.

Discrimination ratio. It is informative to look at how our
algorithm affects the ratio between average inter-class and
intra-class distances. In general, greater classification accu-
racy is achieved for a greater distance ratio. Figure 7 com-
pares the distance ratio before and after learning. The intra-
class distance is the log-probability of a region known to be
in the class. The inter-class distance is the log-probability
of a region known not to be in the class. We take the aver-
age of both and then the ratio. As it can be seen, learning
increases the discriminability of all nine classes, in many
cases quite considerably. The least effect is on the grass and
sky classes probably due to the fact that these homogeneous
‘objects’ are already modeled well by only a small number
of textons in the initial dictionary. The most positive effect
is on structured objects such as bicycles, faces and cars.

Interactive classification application. In order to further
test the findings of this paper we have built an interactive



Figure 8: Applications and extensions. a) Single click object categorization: the user “touches” an object and the algorithm associates a category label.
b-d) Multi-class object detection: our algorithm automatically lists the object classes contained in the input image. No user interaction is required here.

object recognition demo application where a user selects a
rectangular region in an image and the system instantly es-
timates the associated class label. Twelve exemplar snap-
shots are shown in fig. 1. Thanks to our appearance-based
models, selecting just a portion of the object of interest suf-
fices, thus demonstrating high robustness with respect to oc-
clusions and missing parts.

Single click categorization. High algorithmic efficiency al-
lows us to: i) select a single image point X, ii) run a whole
range of classification tests for different sizes and shapes of
the regions of interest centred in x, and iii) determine the
MAP object class at the selected location in real time. An
example of single click class recognition is shown in fig. 8a.
Applications in image understanding. Useful applications
of our class modeling algorithm include: i) multi-class ob-
ject detection, ii) object localization, iii) content-based im-
age segmentation and iv) content-based clustering. For in-
stance, applying single click classification to a regular grid
of image positions enables automatic detection of all objects
within an image, as shown in fig. 8b-d. Space restrictions
negate a more detailed explanation. The reader is kindly
invited to browse our web pages for more examples and a
video of our interactive recognition demo.

6. Conclusion

This paper has studied the problem of defining and esti-
mating descriptive and compact visual models of object
classes for efficient object class recognition. A new super-
vised learning algorithm has been proposed for estimating
appearance-based models from training images. The algo-
rithm is designed to produce highly compact class descrip-
tions with large discrimination power; accuracy and effi-
ciency of classification being essential prerequisites for se-
mantic image retrieval, clustering and editing.

In contrast to previous work here we have avoided focus-
ing only on sparse sets of interest-points or parts. Instead,
all pixels are taken into account; with the discriminative
features learned automatically. This enables treating both
texture-rich and texture-less objects in a unified way.

Surprisingly, our learned Gaussian class models have
performed comparably to multi-modal nearest neighbour
classification. Advantages of the Gaussian models are their
compactness and the fact that they are parametric densities.

Finally, our appearance-based models have turned out
to be surprisingly powerful for categorizing both “texture-

rich” and “structure-rich” objects.

Currently, we are investigating integration of appearance
with local shape information to maintain high class discrim-
inability while increasing the number of object classes. The
statistical framework developed in this paper readily allows
such integration.
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