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Pursuit is a desktop interface designed to enable non-programmers to construct
programs that automate routine repetitive tasks in a way that is consistent with the
direct manipulation paradigm. Pursuit combines a Programming by Demonstration
(PBD) interface with an editable, visual program representation language. The repres-
entation language differs from existing visual languages because it explicitly represents
data objects and implicitly represents operations by changes to the data objects. In
addition, the language provides concise ways to handle and represent error conditions
and dialog boxes.
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1. Introduction

A peskrop interface or ‘visual shell’ is a direct manipulation interface to a file system.
Files and directories are represented as icons and operations are specified by directly
manipulating the icons. The Macintosh Finder was the first popular visual shell, and the
idea has gained widespread acceptance among end users. The ‘desktop’ metaphor has
spread to a variety of environments, notably PC Windows and even UNIX (e.g. NeXT).
For non-programmers, in particular, the illusion of manipulating data objects rather than
issuing textual commands makes interacting with computers more concrete and there-
fore simpler [25].

Unfortunately, the cost of this simplicity has been the decreased power available to
the end user. Most visual shells provide no mechanism for users to automate even the
simplest repetitive tasks. When programming is introduced, e.g. in macro languages like
QuicKeys® [3], the ‘conceptual simplicity’ that makes visual shells popular is often
sacrificed: programming is done off-line in a textual programming language. Users must
develop two very different bodies of knowledge: concrete, visual notations to interact
with the system and abstract, textual notations to program it.

Pursuit [18] is a visual shell aimed at providing end-user programming capabilities,
especially to non-programmers, 7 a way that is consistent with the direct manipulation paradigm.

Pursuit achieves its goal by combining Programming by Demonstration with an
editable, graphical representation of programs. As discussed in Section 2.1, Program-
ming by Demonstration enables users to specify programs in the same way that they
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normally interact with the system—by direct manipulation. This makes the program-
ming process mote concrete. Moreover, by representing the program in a visual
language that reflects the objects and actions in the interface, users can transfer
knowledge of how an object looks and behaves in the interface to how its representation
looks and behaves in a program.

This article describes the design and implementation of Pursuit and explains how
Pursuit attempts to provide a unified approach to programming in a visual domain using
visual language techniques. Previous papers have described the ideas for an initial
language design [21], ways to extend the techniques presented here to handle interface
objects other than files and folders [17] and evaluations of the system [19, 20]. This
article presents the first comprehensive explanation of the different features of the
language and interface, as well as the details of the architecture and implementation. We
begin (Section 2) by giving an overview of the main idea behind Pursuit—creating
a unified visual shell by combining visual language techniques. Section 3 reviews other
systems that have influenced the design of Pursuit. In order for the reader to get an idea
of the main features of Pursuit and how the user interacts with the system, Section 4
contains four detailed examples. Sections 5-9 discuss Pursuit’s implementation. We
conclude with the lessons learned in this research and some suggestions for possible
future work directions.

2. The Pursuit Visual Shell—An Overview

To bridge the gap between the concrete, visual notation of the direct manipulation visual
shell interface and traditional abstract, textual programming notations, Pursuit combines
two visual language techniques: Programming by Demonstration and an editable,
graphical program representation.

2.1. A Programming by Demonstration Interface

To enable users to construct file manipulation programs, Pursuit contains a Program-
ming by Demonstration (PBD) system [5]. In PBD environments, the user executes
actions on real data and the system infers a general procedure [23]. For example,
a Pursuit user can create a simple program to make a compressed backup copy of all .tex
files in the papers folder by (1) selecting the existing .tex files (e.g. a.tex, b.tex and c.tex) in
the papers folder, (2) executing the copy command, (3) selecting the output files (the
copies) and (4) executing the compress command. Pursuit generalizes the demonstration
from the specific set of .tex files (a.tex, b.tex, c.tex) to the more general description of a//
tex files in the papers folder. In addition to generalizing over data objects, Pursuit
generalizes over sequences of operations in order to identify loops and conditionals
based on the outcome of operations. Section 7 details Pursuit’s inferencing capabilities.

Although PBD systems have shown promise in enabling non-programmers to
automate tasks (e.g. Eager [4], SmallStar [9] and MetaMouse [16]), they have well-
known shortcomings: PBD systems can generalize incorrectly, most contain no static
representation of the inferred program, their feedback is often obscure or missing and
few provide editing facilities. These limitations pose several problems. First, because
PBD systems are heuristically based, inferential ambiguities often arise during program
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generation. PBD systems typically resolve these ambiguities by querying the user with
questions and answers (e.g. Peridot [22]) or dialog boxes (e.g. MetaMouse [16]) or by
highlighting the expected user action (e.g. Eager [4]). However, users sometimes find
these interactions disruptive and confusing, and often they simply select the default
option [4]. Furthermore, because most PBD systems have no way to represent pro-
grams, it is difficult for users to recall a program’s function or to share programs with
other users. Finally, without an editable representation, it is impossible for the user to
directly edit the generated code.

2.2. An Editable, Graphical Representation

To address the limitations of PBD, Pursuit represents the evolving program in an
editable, visual language while the user is demonstrating it. In this way, the user knows
immediately what the system has inferred (by observing the growing program repres-
entation) and can interactively and incrementally learn the syntax and semantics of the
representation language. By editing and saving the program representation, the user can
have an artifact to later examine, edit and share.

Pursuit’s visual language is unique in that, unlike other visual languages, which
explicitly represent operations and leave users to imagine the data in their heads,
Pursuit’s visual language explicitly represents data objects using icons and implicitly
represents operations by the visible changes to data icons.

The Pursuit visual language employs a comic strip metaphor [13] for operations and
graphical representations for control structure. Data objects, such as files and
folders, are explicitly represented with familiar icons. An operation is represented
with two panels: the prologue shows the data icons before the operation and the
epiloge shows the data icons after the operation. The operation is depicted implicitly
by the changes to data icons between the prologue and epilogue. Control constructs
are represented by graphical objects, such as enclosing rectangles for loops and
diverging lines for branches. A program is a series of operation panels concatenated
together, along with representations for loops, conditionals, variables and parameters.
Essentially, programs are a static representation of the dynamic changes to data objects
over time.

3. Related Work

In this section, we briefly review some of the work that has influenced Pursuit. In
particular, Pursuit draws on techniques from the areas of visual programming languages
and Programming by Demonstration.

3.1. Visual Representation Languages for Visual Shells

The idea of using a graphical representation language for a visual shell is not new. Other
systems (e.g. ConMan [8], Squish [10] and Jovanovic and Foley [11]) have employed
iconic command languages based on the dataflow metaphor. In the dataflow model,
programs are depicted as a collection of icons that explicitly represent commands.
Command icons are connected to show the data path through the program. This
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approach has several problems. Programs can be cumbersome and space inefficient.
Furthermore, users must learn to associate a symbol with each operation. If the pictures
for operations differ from the way in which operations are represented in the interface,
users must learn a mass of detail that is very different from the knowledge they have
already acquired by interacting with the system. Finally, programming is done oft-line by
wiring icons together, which differs from the concrete way users normally interact with
the system.

3.1.1. IShell

IShell [1], a design for a unix visual shell, is typical of the dataflow model of visual shell
languages. In the IShell visual shell design, the interface contains iconic representations
of each application (operation). These icons represent ‘machines’ to which the user
feeds data. In IShell programs, an application is represented by its familiar interface
machine icon. To construct a program, the user forms a program graph by connecting
application icons.

IShell is limited because users specify programs off-line by constructing them with the
IShell editor. They must learn the syntax and the semantics of the representation
language from the start. Moreover, IShell represents each application with a unique icon.
Not only does this take up a lot of space on the desktop, but also users must learn the
meaning of every icon and its functionality before they can transfer this knowledge to
the programming language. Finally, because an IShell machine can have only one
behavior, different machines are needed to specify only slightly different behaviors. This
places a burden on the user to differentiate between different machine behaviors, and it
also contributes to the desktop clutter.

3.2. Visual Representation Languages for Programming
By Demonstration Systems

Although there are situations in which off-line specification is useful and even prefer-
able, e.g. if the user wants to demonstrate a program for a situation that rarely occurs,
there are other times in which Programming by Demonstration [5] can be better. In the
visual shell domain, Programming by Demonstration is more appealing than the oft-line
specification of programs because it allows users to specify a program in the same way in
which they invoke operations—rvia direct manipulation. Moreover, because data objects
are available and easily manipulated in the desired way, the program can be readily
demonstrated. Similatly, because the domain is limited, the PBD system is more likely to
generalize correctly from the demonstration, thus helping the user with the program-
ming task.

3.2.1. SmallStar

The SmallStar system [9] introduced demonstration as an alternative method for
specifying command language programs in a visual shell. SmallStar is a prototype of the
Xerox Star system, which pioneered the desktop metaphor and the direct manipulation
interface [26]. SmallStar contains a macro recorder that produces an ‘English-like’
transcript of user actions. In the transcript, icons are used to represent files and folders
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while keywords are used to represent operations. The user can generalize the transcript
by editing it via a menu of commands.

Although Pursuit is based on SmallStar, there are many differences. First, Pursuit
contains an inference mechanism that generalizes the user’s actions automatically. In
contrast, SmallStar records exactly what the user does—only the object that is pointed to
can be a parameter and the transcript consists of a straight-line sequence of commands.
To generalize the transcript, users must edit it after the demonstration via a menu of
editing commands. Second, Pursuit’s language contains explicit representations for
branches based on the exit code of an operation, user defined predicates, and visible
declarations. In SmallStar, these mechanisms are ‘hidden’ in property sheets. Finally,
Pursuit’s representation language contains abstract representations of sets that can be
manipulated as a single object. SmallStar does not contain this feature. Despite these
limitations, SmallStar illustrated that demonstration can have practical applications in
a commercial system. This provides evidence that a more sophisticated system like
Pursuit could have greater value.

3.2.2. Chimera

Chimera [13] is a graphical editor that creates an editable, graphical history of user
actions. As the user edits a picture, Chimera produces a series of panels, similar to
a comic strip, in a separate window. The panels are focused snapshots of the screen that
graphically depict important events in the editing history. A panel depicts an object both
before and after one or more editing operations. Using this representation, users can
review, edit and generalize a program. For example, to edit a macro, the user either
returns to a point in the history and edits the original drawing, or edits the history directly.

Although Pursuit’s representation language is similar to the editable histories of
Chimera, there are many important differences. First, Pursuit’s visual language contains
abstractions that resemble the real interface objects they represent. In contrast, Chimera
uses modified screen snapshots in its representations. Also, Pursuit panels contain only
the objects affected by the operation, because Pursuit objects can be identified by their
icons. On the other hand, Chimera panels contain objects not involved in operations
(such as the cursor) in order to provide contextual information to help identify objects
and operations.

Furthermore, Pursuit’s generalizations are displayed in the visual program and are
always visible, whereas Chimera’s inferences are contained in textual supplements and
are not visible in its histories. In addition, Pursuit scripts are two dimensional. As
discussed in Section 4.3, in Pursuit information is conveyed from left to right and top to
bottom. This makes the language more powerful than Chimera, which uses only a linear
(left to right) display. Finally, Pursuit programs visibly represent loops and conditionals,
which are inferred automatically. Chimera macros must be edited to contain loops,
which have no explicit representation, and Chimera contains no mechanism for
inferring, adding or representing conditionals.

3.3.3. Other Systems

Mondrian [15], a demonstrational graphical editor, also uses a similar representation
paradigm. Like Chimera, Mondrian produces a storyboard history of user edits. Each
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pair of panels of the storyboard represents a single operation and contains a focused
snapshot of the screen augmented with other objects needed for context. A program is
a one-dimensional sequence of panels. The user cannot edit the panels. Instead,
Mondrian creates a Lisp representation of the constructed program for the user to edit.
Of course, this requires the user to know the syntax and semantics of Lisp, which differs
significantly from the syntax and semantics of the storyboard language.

Kidsim [27] is a toolkit that enables children to construct and modify simulations by
programming their behavior. It employs graphical rewrite rules and PBD to enable users
to create programs for some types of simulations. The graphical rewrite rules are similar
to the prologue/epilogue ideas in Pursuit.

4. Examples

To illustrate some of the major features of Pursuit, we give four examples of program
construction. To construct a program in Pursuit, the user enters record mode and
demonstrates the program’s functionality on actual pieces of data. That is, the user
constructs a program by manipulating icons in the interface the way she normally
manipulates them when executing each operation. In Pursuit, this manipulation is very
similar to the menus and actions of the Apple Macintosh desktop. The only difference is
that during recording, Pursuit makes a transcript of the operations and presents the
evolving program in a special program window on the desktop. In addition, Pursuit
contains an inference mechanism (discussed in Section 7) that attempts to create
a general procedure from the operations by generalizing over both the properties of the
data and the sequence of operations.

4.1. Example 1—A Simple Program

The simplest programs that users can write consist of a straight-line (i.e. no loops or
conditionals) sequence of operation executed over a single data object. For example,
assume the user is editing the report file in the papers folder, and periodically wishes to
make a compressed backup copy of the file. To create a program to automatically do
this, the user (1) enters record mode by selecting start from the pull-down Recorder
menu in any window; (2) copies the report file using the copy command from the
pull-down File menu in the papers folder window; (3) selects, drags and drops the
copy-of-report file into the backups folder; (4) compresses the copy-of-report file using the
compress command from the File pull-down menu, which replaces the original file with
the compressed version (copy-of-report.z) and (5) exits record mode by selecting stop
from the pull-down Recorder menu in any window. Figures 1-3 show the evolving
program as the user demonstrates it.

4.1.1. Depicting Operations by Data Changes

Figure 1 illustrates the main idea of the Pursuit visual language: operations are
represented implicitly by explicit changes to data icons. These graphical changes reflect
the changes to the real data objects in the interface caused by the operation. In the first
panel of Figure 1 the papers folder only has one file: report. In the second panel the
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copy
papers papers
e—
copy-of- I
E—
regort I report -l report

Figure 1. The representation of the operation copy report that appears in the program window after the
user executes the copy operation on the report file

copy move
papers papers backups I
— R
copy-of- copy-of-
| report || I report 1 report report

Figure 2. After the user drags (moves) the copy to the backups folder, the third panel appears. Notice that
in the visual script the icon for the copy has moved from the papers folder to the backups folder, reflecting
the changes the user has seen in the actual interface when the real copy was moved

compress

copy move

papers I papers I backups | backups I

—

copy-of- copy-of-
report I re. 2

copy-of-
Leport

L_xeport | L report |

Figure 3. The visual representation of the program to place a compressed copy of the reports file into the
backups folder

papers folder has two files: report and copy-of-report. The change in the folder’s contents
between the two panels implies the copy operation. These differences reflect the change
in appearance of the real desktop folder when the copy operation is executed: a new file
with the name copy-of-report appears in the papers folder.
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4.1.2. Incrementally Displaying Programs

Figures 1-3 illustrate another principle behind Pursuit: programs are displayed in-
crementally as the user constructs them. In this way, users learn interactively how data,
operations and control constructs (i.e. program syntax) are represented, and how these
objects fit together to form a meaningful program. Moreover, by interactively construct-
ing the program, the user learns the semantics of the representations by associating them
with the corresponding interface actions. For example, demonstrating two or three
iterations of a loop helps users understand the semantics of the loop construct. This is
important because although users do not need to learn the details of the representation
language in order to construct programs, they must still be able to read and understand
program representations.

4.1.3. Using Color for Visual Variables

Using icons to represent data has two advantages: icons minimize the use of explicit
variables and remove a level of indirection that variables introduce. To identify an icon
in a script, Pursuit assigns it a unique color (in this document, color is denoted by
different shades of gray). Although an icon’s appearance may change throughout the
script, its color remains the same. For example, in the second panel of Figure 3 the icon
representing the copy is tall, has the name ‘copy-of-report’ and is in the papers folder. In
the final panel, the same file is short, has the name ‘copy-of-report.Z’ and is in the
backups folder. Users can tell that the two icons represent the same file because they
have the same color.

4.1.4. Saving and Parameterizing Programs

After demonstrating a program, the user can save it. The user indicates a program’s
parameters by clicking on those objects in the program that represent the actual
parameters. For example, clicking on the reports file in the first panel of Figure 3
indicates that the file that is copied is a parameter to the program. Henceforth, the user
can make a backup of any file with the program simply by selecting the desired file and
executing the saved program. Saved programs are added to the menu of user-defined
programs and can be executed, edited and re-saved, or deleted.

4.2. Example 2—Manipulating a Set of Objects

This next example is similar to the first example, except that instead of manipulating
only a single file, the program manipulates a set of files as a whole. The user constructs
a program to backup all the .tex files in the papers folder that were edited today. The
user’s actions are similar to those taken in Example 1, except that when selecting input
to an operation, the user selects a sez of files and then executes the operation.
Figures 4-6 show the developing visual representation during the demonstration.
Figure 4(A) (further explained in the following subsection) is a visual declaration and
defines the set of files over which the program executes. The files are first copied
[Figure 4(B)], then moved to the backups folder (Figure 5), and finally compressed

(Figure 6).



VISUAL PROGRAMMING IN A VISUAL SHELL 499

copy

papers I papers ] papers I

IS date = TODAYi
__<nl>.tex_ | —
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Figure 4. (A) A visual declaration binding the set to be all the .tex files in the papers folder that were edited
today. (B) The copy operation

Copy. move

papers I papers I backups I

|

[_<ni>.tex | [_<ni1>_tex |

)
<nl>.tex

Figure 5. After the user moves the copies to the backups folder, the third panel appears

copy move; compress

papers I papers I backups I

|

[_<nl>.tex [ |_<ni>.tex |

A || EEA
<nl>.tex <nl>.tex.Z

Figure 6. The completed program. The shadow beneath the third panel indicates that it represents
multiple operations. As shown in Figure 7, clicking on the shadow reveals the individual operation panels
for the move and compress operations

This example also illustrates how Pursuit supports zplicit set iteration; i.e. iteration
without the explicit use of a loop construct. Examples 3 and 4 illustrate explicit set
iteration.

4.2.1. Sets and Attributes

Because most shell programs that users write tend to operate over sets of objects related
in some specific way [2], the main model of computation of the Pursuit visual language
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copy move compress

papers papers l backups | backups I

EE
<nl>.tex

__<nl>. tex |

Figure 7. Clicking on the shadow beneath the third panel in Figure 6 reveals the individual operation
panels. To recombine the panels, the user clicks on the little black square between them

is the manipulation of sets of objects. In Pursuit, sets are represented by overlapping and
offsetting two icons of the same type. To define set membership, Pursuit constructs
a visual declaration.

In this example, the visual declaration [Figure 4(A)] appears after the user executes
the copy operation. The icon on the right represents the set of all .tex files in the papers
folder that were edited today. The icon on the left is the icon used in the script to
represent this set. The string ‘date = TODAY is an a#tribute. It constrains the set to
those files edited today. Attributes allow for abstract sets of objects and indicate the
PBD system’s generalizations. In addition, users can directly edit attributes to specify
desired properties of data objects or to fix incorrect generalizations. Currently, the
attributes Pursuit supports include an object’s name, date, location, size, owner and
contents. Attribute strings can be simple arithmetic expressions defining a single value
or a range of values (e.g. 256 < size < 1024°) and can contain variables and system
constants such as “TODAY”’ or ‘USER’. Section 7 details how Pursuit uses domain-
specific knowledge to generalize attributes.

Attributes and sets reduce the need for loops, conditionals and variables in the
language. For example, to define the above set in a traditional programming language,
one would have to write code to loop through all the files in the papers folder and test to
see which ones had names ending in .tex and were modified today. In Pursuit, such
looping and testing is implicit in the set and attribute notation so that the user does not
have to create explicit control constructs. This is important because novice program-
mers often have difficulty understanding and using loops and conditionals [6].

4.2.2. Space-Saving Heuristics

Because two panels per operation result in long programs that occupy a great deal of
screen space, the Pursuit visual language generator contains heuristics to make programs
more concise. As detailed in Section 9.1, these heuristics combine knowledge of the
domain with information about operations. There are two ways that Pursuit makes
programs more space efficient: combining epilogues with prologues and combining
multiple operations within a single panel.

Combining Epilognes and Prolognes. Pursuit determines when it can combine the prologue
of one operation with the epilogue of the previous operation. This eliminates redundant
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panels. In Figure 5 only one panel is added to the program because Pursuit notices that
the epilogue of the copy contains the prologue of the compress operation. When the
prologue of an operation cannot be combined with the previous epilogue, Pursuit leaves
a space between the two panels (an example is shown between the epilogue of the delete
operation and the prologue of the final compress in Figure 10.) Like the spacing between
paragraphs in text, the space between two panels in Pursuit’s visual language is a visual
cue indicating a change in the program’s focus. Section 9.2 details how Pursuit
determines when to combine a prologue with the previous epilogue.

Combining Multiple Operation Panels. Pursuit also determines when several operations can
be represented in a single panel. The shadow beneath the third panel of Figure
6 indicates that it contains both the move and compress operations. By clicking on it,
users can see the individual panels of the operations (Figure 7). In this way, programs are
more concise, while users still have full access to the complete representation. Section
9.3 details the mechanisms Pursuit uses to determine when to combine several opera-
tions into one panel.

4.3. Example 3—Inferring Loops and Conditionals

Although Example 2 is a valid program, it will work only the first time it is executed.
After that, the backups folder will always have a compressed copy of all the .tex files in
the papers folder that were edited today. The next time the user executes the program,
the compress operation may encounter an error condition because compress cannot
create another file with the same name as an existing file. This error condition will cause
the program as written to fail. This section illustrates how Pursuit automatically creates
a conditional and loop to handle the described failure.

To handle these types of conditionals, Pursuit uses explicit set iteration. Pursuit
automatically infers an explicit loop whenever the state conditions, such as those
illustrated here, preclude implicit iteration; i.e. whenever two or more members of the
iteration set have different outcomes for the same operation thereby requiring two
different epilogue panels and potentially two different subsequent program paths.

To construct a program that automatically handles an error condition, the user must
first decide what the program should do whenever it encounters such a condition. Let us
assume that whenever a compressed copy already exists, the program deletes the old
backup copy and makes a new copy to compress. Thus, the program must handle two
conditions in the state of the backups folder: one in which the compress operation
executes normally and one in which it fails because of the existence of an old backup
copy.

To create this program in Pursuit, the user must demonstrate actions for each of the
two conditions that the program may encounter. Pursuit then automatically creates
a program (Section 7 explains how Pursuit does this). The user begins by demonstrating
the first (no error) condition that the program must handle on a single file. After entering
record mode, the user (1) copies the abstr.tex file; (2) moves the new copy-of-abstr.tex file
to the backups folder and (3) compresses the copy-of-abstr.tex file. Figure 8 illustrates the
completed first iteration.

To demonstrate the second (error) condition, the user (4) copies the biblio.tex file; (5)
moves the new copy-of-biblio.tex file to the backups folder; and (6) compresses the
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copy move; compress

papers papers I backups |

copy-of- copy-of-
| abstr.tex I I abstr.tex I abstr.tex abstr.tex.Z

Figure 8. The first loop iteration of Example 3. The user begins by demonstrating a single iteration of the
loop showing what the program should do when no error is encountered: copy the input file, then move and
compress the output (copy) file

copy move compress

papers ] papers | backups l

exists PPP

biblio, tex

copy-of- copy-of-
biblio.tex biblio.tex biblio.tex biblio.tex

Figure 9. The beginning of the second iteration of Example 3 ( due to lack of space, the first iteration,
shown in Figure 8 is omitted). The compress operation has failed because of the existence of the file
copy-of-biblio.tex.Z. This is indicated by the conditional marker (i.e. the small black square) on the right side of
the last panel and the branch connector with the annotation exists. . . . The small icon at the end of the
annotation represents the dialog box that was displayed when the compress operation failed.

It B

[papors 1 papers | hackups [backups 1 m [backups 1 backups 1

L bibiio. tex | LB 2 X EBibllo tex biblic tex biklis i3 SN ot

Figure 10. The completed second iteration. The user has demonstrated how the program should handle
the encountered error condition: delete the error-causing file and re-execute the compress operation

dalete

copy-of-biblio.tex file. At this point the compress operation fails because a file with the
name copy-of-biblio.tex.Z—the same name that the output of the compress operation
would have—already exists in the backups folder. Figure 9 shows the program at this
point.

To finish this case, the user (7) deletes the exiting copy-of-biblio.tex.Z file and
(8) re-executes the compress operation. Figure 10 shows the updated program.

To complete the program, the user begins to demonstrate a third iteration on
a particular file. Pursuit then detects the loop and queries the user to verify the two loop
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iterations by highlighting the operations panels (i.e. the program panels shown in
Figures 8 and 10). After the user verifies the loop iterations, Pursuit pops up a dialog
box asking the user to select the members of the set over which to loop. The user selects
the desired files by clicking on them in the same way that files are ordinarily selected for
any operation. Pursuit then finishes executing the loop and updates the program
representation. The final program is shown in Figure 11.

4.3.1. Annotations: Representing Error Conditions

When an operation fails, Pursuit cannot construct an epilogue panel. Instead, it creates
a conditional marker (i.e. the black square on the right-hand side of the third panel in
Figure 9) and an annotation (or predicate) stating the exit condition for that operation.
In this example, the compress operation failed because a file with the required output
name already existed, so the annotation is ‘exists’ plus a named file icon. To see the
remaining exit conditions of the compress operation, the user can click on the condi-
tional marker. This helps the user to interactively consider all possible paths a program
could take so that, if desired, she can demonstrate what the program should do in
each case.

4.3.2. Dialog Boxes: Representing User Interactions

This example also illustrates how Pursuit handles dialog boxes. Applications use dialog
boxes to relay messages to the user or to obtain input from the user, such as the name of
an output file. When a program contains an operation that uses a dialog box, it is
questionable whether or not the user would like this dialog box to appear when the
program is subsequently executed, especially if the dialog box simply relays a message.
Furthermore, if the information that the user enters into the dialog box can be
determined automatically, the user may not wish that dialog box to appear. To address
this issue, Pursuit contains a special dialog box manager, which handles the two types of
dialog boxes in Pursuit: message-relaying dialog boxes and user-input dialog boxes.

Message-Relaying Dialog Boxes. The contents of dialog boxes that simply relay a message
to the user are constant and are determined by the executing operation. Hence, the user
need only specify whether or not the dialog box should appear if the program
encounters the particular error-causing condition when executing. To enable the user to
state this choice, Pursuit pops up a ‘meta’ dialog box containing the message-relaying
dialog box. The meta dialog box requests that the user specify whether the operation’s
dialog box should appear when the program executes (Figure 12). This interaction
occurs during program demonstration, immediately after the user acknowledges the
dialog box displayed by the operation.

In the Pursuit visual language, message-relaying dialog boxes are represented by
a dialog box icon next to the predicate describing the error-causing condition. An
example is shown next to the predicate of Figure 9. Clicking on the dialog box icon
displays the Pursuit meta dialog box shown in Figure 12. The user can change the meta
dialog box response (and hence whether or not the operation’s dialog box appears
during program execution) by clicking on the desired button choices.
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DISPLAY DIALOG BOX? | e i -|!'. [

Should this dialog box appear when the program is executed?

yes, this dialog box should always appear

no, this dialog box should not appear

(e

A file with the name
copy-of-biblio.tex.2
already exists in the folder.

Lt s s ; —— - - s |

Figure 12. The Pursuit ‘meta’ dialog box asking the user whether the inner dialog box should be displayed

if the compress operation fails when the program executes. This same ‘meta’ dialog box is displayed when the

user clicks on the dialog box icon in Figure 9. The user has indicated that the inner dialog box should not be
displayed during program execution

User-Input Dialog Boxes. User-input dialog boxes are more complex than message-
relaying dialog boxes because their contents are supplied by the user during program
execution and are not predetermined by operations. Because the contents of user-input
dialog boxes may not be constant, Pursuit must determine how the input information
will be obtained whenever the program executes.

There are three ways to obtain this information. First, the user can enter it during
execution. In this case, the user-input dialog box must appear. Second, the information
can remain constant for all program executions. Finally, Pursuit can attempt to compute
the information during execution using the same heuristics for generalizing data objects
from multiple examples (described in Section 7.1). If all the information is computable
or constant, then the dialog box need not be displayed during program execution.
Otherwise, the user must supply some of the information at runtime.

To determine how to obtain the user input during program execution, Pursuit
displays a special input meta dialog box. An example is shown in Figure 13. Using this
meta dialog box, Pursuit cycles through all the input fields in the operation’s dialog box
and asks the user to indicate how the information in that field is to be obtained during
program execution.

Like message-relaying dialog boxes, user-input dialog boxes are represented in the
Pursuit graphical language as a dialog box icon. However, because input dialog boxes
obtain information that serves as input to the operations, the dialog box icon appears in
the operation’s prologue.
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= OBTAIN DIALOG BOX INFORMATION e

Please indicate how the currently selected cbject
should be set:

Always have this value

Program should compute the value

User should set the value

cCo0e@

Please enter the output file name

[ [oackup.10g |

Figure 13. A Pursuit input meta dialog box. Using this dialog box, the user indicates how the input to the

enclosed dialog box is obtained during program execution. Each input gadget’s color is changed to match

the color of the associated radio button at the top of the meta dialog box. This dialog box appears during the

program demonstration and can be displayed afterwards by clicking on the dialog box icon contained in the
prologue of the operation that displayed the inner dialog box

4.3.3. Loop Constructs: Iterating Over Sets

Figure 11 is an example of an exp/icit loop containing an explicit conditional. The loop is
explicit because of the concrete syntactical representation of the loop construct—i.e. the
large outer rectangle enclosing the program operations. The declaration in the upper left
corner indicates that Pursuit has inferred that the loop iterates over the set of all .tex files
in the papers folder. The loop parameter is defined to represent a member of the
declaration set (foreach /loop parameter in declaration set) and the loop operations within
the outer loop rectangle are abstractions of the operations demonstrated by the user.

Note that the current version of Pursuit employs the explicit declaration to define the
loop iteration set. However, this is unnecessary, and an improvement to the visual
language design would be to define the loop iteration set directly in the foreach
statement, thus removing a level of the indirection in the visual language. Additionally,
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removing the indirection would decrease the vertical space used and therefore decrease
the empty space in the program window.

4.3.4. Conditional Constructs: Branching Explicitly

Figure 11 also illustrates how Pursuit uses a combination of graphical constructs (boxes
and lines) along with annotations and layout to explicitly represent conditionals.
However, the dialog box in the annotation is not the same one that the user saw when
demonstrating the operation (i.e. the one in Figure 12). Rather it is an abstraction of that
dialog box and represents the generalization Pursuit has made for the file set name.
Hence, the string displayed is ‘A file with the name copy-of- < nl >.tex.Z already exists
in the folder’.

4.4. Example 4—Advanced Editing Features

Although the program in Example 3 adequately handles the error condition that the
compress operation may encounter, there is another valid way to construct a program to
deal with the possible existence of an old backup copy. The program can first delete the
old backup copies and then make new compressed ones. However, the program must
also handle the situation in which there may not be a backup copy. Thus, the program
should execute the delete operation only when an old backup copy exists. Otherwise, it
should make a compressed backup copy. This final example illustrates how to construct
such a program using some advanced editing features of Pursuit. It also illustrates
another way that users can construct explicit loops in Pursuit.

First, the user demonstrates one loop iteration (Figure 14): (1) delete copy-of-
biblio.tex.Z from the backups folder; (2) copy biblio.tex; (3) move copy-of-biblio.tex.Z to
backups and (4) compress the new copy-of-biblio.tex.

Next, the user exits record mode and begins to edit the program using the Pursuit
editor. The editor is similar to a direct manipulation text editor. Data objects are selected
by clicking on them and operations are selected by clicking and dragging the mouse
across their panels. Once an object is chosen, appropriate editing commands appear in
the Edit menu located in the program window.

4.4.1. Constructing User-Defined Branches

First, the user constructs a test for the existence of the file to be deleted. The test is
constructed by selecting from a set of pop-up menus (Figures 15 and 16). Similarly, the

delete co MOVe; COMPress

papers l papers | papers | backups

3T
biblio.tex.Z

mh
piblio. tex. 2 Lbiblio tex | biblio. tex biblic.tex

Figure 14. The user begins by demonstrating the main actions of the loop on a single data object
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delete LoRY MOV ; COMDERES

= <predicate menux [ I:( )) |

apers ] apers

—
~ piblio. tex. biblio.tex

prop obj is prop ohi

prop obj is constant

otherwise

Figure 15. By clicking on the left side of the delete operation, a visual cursor appears (not shown) and the

user can add a predicate menu (shown). To construct the predicate, the user selects the exists object menu

item, which replaces the predicate menu with the predicate-specific menu to check for the existence of an
object. (see Figure 16)

delete COpY

papers | papers |

» exists ob]’eci_

-
il

Figure 16. In this case, the predicate-specific menu consists of the word exists and the object menu. The

object menu consists of a list of possible data objects. The list contains miniature icons of the data objects

available to the user for constructing the predicate. Once the user selects the appropriate data object (the
gray-filled icon), the object menu is replaced with the program icon (the icon is shown in Figure 17)

oj 1L L 2

delete < e
|papers ] DApers | papers |

@

= I copy-of- I

otherwise

Figure 17. The user selects the operations to copy by dragging the cursor from the first panel of the copy
operation to the last panel of the compress operation

user employs the menus to construct a test for the case in which no backup exists. By
clicking on the black conditional marker, a new predicate menu appears. As shown in
Figure 17, the user selects the Otherwise predicate, because this branch will execute
whenever the predicate for the first branch is false (i.e. the backup copy does not
already exist).

4.4.2. Cutting, Copying and Pasting Operations

To complete the second branch, the user selects the copy, move and compress operations
(Figure 17) and copies them by selecting copy from the Edit menu in the program
window. She then pastes the copied operations into the program after the otherwise
predicate. Figure 18 shows the updated program.
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Figure 18. The result of pasting the copied operations after the otherwise predicate
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Figure 19. After the user highlights the program in Figure 18, selects Insert into Loop from the Edit menu
and clicks on any white-filled biblio.tex icon to indicate the loop parameter, Pursuit automatically creates an
explicit loop with a user-defined branch

4.4.3. Inserting Operations Into a Loop

Finally, the user wraps the program in a loop. She highlights all the operations, selects
Insert into Loop from the Edit menu and indicates the loop parameter by clicking on the
icon representing the parameter anywhere in the program (in this case, any biblio.tex
icon). She then indicates the set members by selecting them in the ordinary way, and
Pursuit generalizes the set’s attributes. The final program is shown in Figure 19.
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4.4.4. Additional Editing Features

Although not mentioned in this example, Pursuit’s editor contains additional features.
For example, a user can change, add or delete a set’s attributes either by directly editing
them using Pursuit’s text editing commands or by editing the set’s property sheet. To
help maintain consistency, edits are immediately propagated throughout the program.
For example, to make the program in Example 4 work for all .mss files, the user simple
changes .tex to .mss in the declaration and Pursuit automatically updates the names of all
the other files in the program. This update mechanism is limited to substitutions in text
strings, and the updates are propagated to all graphical objects that represent the data
item as well as all data objects related to the edited object. Thus, changing a text string
does not change a data object.

There are several other features, and we refer the interested reader to the complete
description of Pursuit [18].

i CShell
i translator
user
action Recorder Record
ecorder Exec &
save
Tnterface
action
stream
updated
internal program
—_—
Inference mechanism
altered Recorded
internal program internal
updated updated program
display internal program
-—
user
edits Translator updated
graphical program
D ————_—
Recorded
graphical
updated |
graphical program program
Editor
_—
altered

graphical program

Figure 20. The Pursuit architecture. User actions are recorded by the Recorder and generalized by the

Inference Mechanism. The generalized program is stored in an internal format which is used by the

Translator to generate the graphical representation. The user edits the graphical representation directly, and

the Editor automatically updates the graphical program representation, and these changes are propagated to
the internal representation



VISUAL PROGRAMMING IN A VISUAL SHELL 511

5. Implementing Pursuit—Pursuit’s Architecture

Pursuit is implemented in Lisp using the Garnet toolkit [24] and runs on any Sun
SPARC workstation or HP workstation containing a Common Lisp environment and
running X/11 windows. In this section, we give an overview of Pursuit’s architecture
and its basic implementation. For specific details, see the complete description of
Pursuit [18].

Figure 20 shows the general architecture of Pursuit. As the user demonstrates an
action, Pursuit’s Recorder makes a transcript of the action. Using this transcript, the
Inference Mechanism attempts to generalize data objects as well as detect sets of
repeated program operations. The latter could indicate that the user is demonstrating
a loop. The Inference Mechanism creates a record of the action in an intermediate
representation language. Using this representation, the Translator generates a graphical
representation of the action, which is displayed to the user. During editing, the user
directly edits the graphical representation, and the Editor automatically updates both
the graphical and internal program representations.

6. Creating an Intermediate Program Representation

When in record mode, Pursuit makes a record of each operation the user executes, and
appends it to the growing list of operation records. Internally, Pursuit represents the
program as a doubly linked list of operation records. This list represents a state machine
that defines the program.

6.1. The Internal Representations of Operations

Figure 21 is an example of an internal representation of an operation record describing
a single compress operation. The first field of the record contains the operation name.
The second and third fields contain program variable records for the parameters and
outputs, respectively, of the operation. Because compress produces no output, the
outputs field is empty.

The dialog-box field contains an array of pointers to dialog boxes, which correspond
to the dialog boxes for each exit condition of the operation. Pursuit uses information in
a dialog-box-info array entry during program execution to determine the contents of the
dialog box as well as to determine whether or not to display the dialog box.

The fifth field of the operation record contains a list of (exit-code, operation-record)
pairs. This list determines the operation that is executed after compress. In Pursuit, all
operations must return an exit code. A zero exit code indicates that the operation

operation-record-1

name: " do-compress
parameters: program-variable-1
outputs:

dialog-box: dialog-box-info-1

next: ((0 operation-record-2))
previous: ((operation-record-0 0))

Figure 21. A pseudo-code description of the internal representation of a compress operation
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program-variable-1

name attribute: <n1 > .tex
date attribute: Jan 21 < date
size attribute: 5000 < size < 10,000

owner attribute:
other attribute:

initial folder: papers
current values: aa.tex ab.tex ac.tex
history:

Figure 22. The program variable record for all the .tex files in the papers folder that were modified after
January 21 and that have a size between 5000 and 10000 bytes

executed successfully (without errors). A non-zero exit code indicates an error. When
a program executes, the next operation to execute is the operation that is paired with the
exit code returned by the current operation. In this example, if compress returns
successfully, then the operation in operation-record-2 will execute next. Because the next
field can contain a list, an operation record implicitly can contain a branch. We refer to
a branch based on the exit code of an operation as an exit branch. Example 3 in Section
4 illustrated this type of branch. Hence a single compress operation record can cover
multiple instances of a compress operation that have been observed in a trace of the
uset’s actions and that represent those compress operations that have been coalesced
when forming a loop.

Finally, the previous field of an operation record is a list of (operation-record,
exit-code) pairs containing all the operations that immediately precede the compress
operation, along with the exit code they return in order for compress to execute next. The
previous field can contain a list because Pursuit contains exit branches. When two or
more branches merge, the operation at the merge point has multiple predecessors.

6.2. The Internal Representations of Variables

Figure 22 illustrates the internal representation of a program variable. The name, date,
size, owner and other attribute fields contain the attributes that Pursuit generalized for the
set. Section 7.1 discusses how Pursuit generalizes the attributes of a set. The initial folder
slot contains the folder from which the set is initially chosen. The current value field lists
the data objects currently in the set.

The history field is used by single object variables (i.e. a file or a folder). It contains
a list of (gperation-record, object state vector) pairs. Every time the user executes an operation
that affects the state of the object, Pursuit records the operation’s record and the state of
the object immediately prior to the operation. As discussed in Section 7.2, Pursuit may
use this information when constructing a loop.

7. A Simple Inference Mechanism

To create a general procedure from the user’s actions, Pursuit must generalize over both
the data the user inputs to operations and the sequence of the operations that the user
executes. The former generalization defines why a set of objects is chosen by the user.
The latter generalization identifies loops and exit branches in the operation sequence.
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To do both types of generalizations, Pursuit contains a very simple inference
mechanism. There are three reasons why we chose to use a simple inference mechanism.
First, the focus of this research is on representing the demonstrated program and
providing editing capabilities to users. We were not interested in ways to improve
inferencing. Second, by using a simple inference mechanism we were able to explore
how well users would be able to understand the representation and fix inference errors.
A system with greater inferencing power might make fewer errors but would not have
allowed us to explore the editing issue as deeply. Finally, we designed the system to be
independent of the inference mechanism so that advances in that area of research could
be incorporated into Pursuit in the future.

7.1. Inferring Data Objects

When the user selects a set of objects to input to an operation, Pursuit attempts to
determine why those particular items were chosen. To generalize data sets, Pursuit
applies a set of simple heuristic rules. The rules can be divided into two classes: domain
heuristics and context heuristics.

7.1.1. Domain Heuristics

Domain heuristics incorporate knowledge of how users typically operate in the visual
shell (the domain), as well as knowledge about the behavior of operations. For example,
it is common practice to name a file with a prefix followed by an extension indicating the
file’s type, such as ‘.c’ for C-code files, “tex’ for Latex files, etc. Similarly, the copy
operation always produces a file whose name begins with ‘copy-of-’.

We developed domain heuristics by informally examining a random sampling of shell
scripts written by members of the Carnegie Mellon School of Computer Science. We
noted how these scripts selected the data to manipulate and used this information to
order a set of rules for examining the properties of the members of a set of objects. An
interesting observation was that most often users write programs to manipulate a set of
files based on a prefix or suffix string in the files’ names, such as all .PS files. Moreover,
rarely did more than one property determine the members of a set.

7.1.2. Context Heuristics

The second class of rules contains context heuristics. These heuristics use information
about the particular configuration of the system at the time of the demonstration to
identify the set’s common properties. Context heuristics suggest an ordering on the
domain heuristic rules. For example, if the user has ordered the files in a folder by their
date of modification, then Pursuit will first examine the date property of a set to
determine whether it adequately defines the set’s membership.

7.1.3. Data-Inferring Algorithms

For simplicity, Pursuit generalizes only four properties: name, date of modification, size
and owner. For each property, Pursuit first determines whether there is a suitable way
for that property alone to describe exactly the members of the data set.
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Every set is a subset of all objects within a folder, and hence once the user chooses
a set, Pursuit has both positive (the selected files) and negative (the unselected files)
examples of set members. For a given data set and property, Pursuit determines how
that property describes all members of the set. Once Pursuit determines the property’s
value, it checks to see if that property is true for any of the negative examples. If so, then
the property alone cannot sufficiently define set membership.

When no single property defines the set, Pursuit checks to see whether the conjunc-
tion of any pair of properties can define the set. When no pair of properties sufficiently
defines the set, then Pursuit checks the conjunction of three-tuples of properties to find
a group of properties that exactly defines set membership. Likewise, when no three-
tuple of properties defines the set, all four properties together are considered. If this
fails, Pursuit uses the name property as a default, and adds an other property to the set
definition. The other property produces a graphical representation of a blank other
attribute and indicates to the user that she needs to define a way to determine set
membership. Currently, Pursuit enables the user to define set membership only by
creating conjunctions of the four properties mentioned above.

A limitation of this approach is that it assumes that the user has selected a/ the
positive examples and that the remaining examples are only negative. If the user accidently
missed a positive example, then Pursuit will not generalize the set correctly. The editing
features of Pursuit were incorporated to enable the user to handle these types of
situations. An extension of the inferencing system might allow the user to introduce
additional positive examples later on so that the system can automatically correct itself.

7.2. Inferring Loops and Conditionals

After recording an operation and inferring over any data objects, Pursuit attempts to
identify any loops in the sequence of recorded operations. There are two types of
explicit loops that Pursuit can detect: without exit branches and with exit branches.

7.2.1. Explicit Loops Withount Exit Branches

An explicit loop without exit branches is a straight-line sequence of operations con-
tained in a loop construct. When Pursuit detects two consecutive, identical subsequen-
ces each containing at least two operations, it infers an explicit loop (note that
a subsequence of two identical operations with the same outcome is generalized as
a single operation over a set). Because each of the two subsequences represents a single
loop iteration, Pursuit replaces the subsequences with an explicit loop whose operations
are an abstraction of the operations in the repeated sequences.

7.2.2. Explicit Loops With Exit Branches

The second type of explicit loop that Pursuit can detect is a loop containing a branch on
the exit conditions of an operation. Example 3 (Figure 11) is an example of such a loop.
The techniques Pursuit uses for this type of inferencing are similar to those found in the
Tinker system [14].

To detect an explicit loop with exit branches, Pursuit notices a sequence of operations
containing two subsequences that begin with the same operation(s) but then diverge
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when the outcome of an operation in one subsequence is different from the outcome of
the corresponding operation in the second subsequence. To ensure that the two
subsequences are two loop iterations, Pursuit first verifies that the parameters of paired
operations are the same type (file or folder). In this case, Pursuit infers that the user may
be demonstrating a loop containing a branch based on the exit conditions of the
operation. An example of such a sequence is shown in Figures 8-10.

To identify the loop parameter, Pursuit selects the input parameter in each iteration
that appears most often and is not the output of any operation in the iteration. For
instance, in Example 3, Section 4.3, Pursuit infers that abstr.tex and biblio.tex represent
the loop parameter because they are both the only input parameters found in both
branches. (In the second iteration, copy-of-biblio.tex is also an input parameter, but there
is no corresponding input parameter in the first iteration. Hence, Pursuit eliminates it
from the set of input parameters that could represent the loop parameters.)

Next, Pursuit determines how the remaining input parameters are chosen: either they
are constant, they are the output of an operation in the loop or they are derived from the
loop parameter via a simple string-transformation function (e.g. by appending a prefix to
the loop parameter’s name). Details of the algorithms to determine how parameters
are chosen and of the Pursuit string transformation functions are in the complete
description of Pursuit [18].

After defining all parameters, Pursuit must generalize over dialog boxes. To accom-
plish this, Pursuit requires all operations to use the Pursuit dialog box manager. When
displaying a dialog box, an operation passes the dialog box and a list of initial values for
all its fields to the dialog box manager. This enables Pursuit to record information about
the dialog box’s contents in the dialog-box field of the operation record (shown in Figure
21). Pursuit abstracts over this recorded information when identifying a loop.

Finally, Pursuit must identify the actual set over which the loop will iterate. There are
two possible ways to define the loop set. First, the two representative loop parameters
can already be members of an identified set. In this case, Pursuit pops up a dialog box
asking the user to verify that this is indeed the set of objects over which to loop.

If there is no set containing the two instantiated loop parameters or if the user does
not want to use an existing set, Pursuit highlights the two instantiated loop parameters
and asks the user to identify the remaining members of the set. Using its data-inferring
algorithm (Section 7.1.3), Pursuit abstracts over the set’s members to define the set’s
properties. However, because a demonstrated iteration might change the relevant
properties of the members of a set (e.g. by changing a file’s name) in order to make the
proper inference, Pursuit examines the state of the set members at the point in time
immediately prior to the first demonstrated iteration, which it recorded in the history field
of the program variable (discussed in Section 6.2).

Once Pursuit completes all its inferences, it finishes executing the loop and updates
both the internal and graphical program representations.

8. The Declarative Specification Language
To generate the graphical representation of operations and to make it easy for

application programmers to add new operations to the system, Pursuit contains
a declarative language for specifying operations. An operation’s specification defines its
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compress-spec

inputs: Afile
outputs: nil
required inputs: A

required properties: name (A), icon (A)
changed properties: name (A), icon (A)
contents (A)

exit codes:
0: predicate: ‘“‘no errors”
actions: name (A)=name (A) @".z"
icon (A)= “compressed-icon
1: predicate: ‘“‘exists’’ B where

name (B)=name (A) @".z”
location (B) =location (A)
dialog box: “compress1-gadget where
file-name =name (B)
2: predicate: ‘“‘is-compressed’”’ A
dialog box: “compress2-gadget where
file-name =name (A)
3: predicate: ‘“‘is-folder” A
dialog box: “compress3-gadget where
file-name =name (A)

Figure 23. A pseudo-code representation of the declarative specification of the compress operation.

visual representation, its error conditions and dialog boxes and how it affects the
graphical appearance of data objects. During a demonstration, Pursuit uses this speci-
fication to generate automatically a representation of the operation in the visual program
as well as to generalize over dialog boxes. Pursuit also uses the specification to produce
the graphical annotations for operations that encounter an error condition.

Figure 23 shows the specification for the compress operation. An operation’s speci-
fication has several fields. The inputs and outputs fields contain a list of variables along
with their types, (e.g. A: file). These variables represent the inputs and outputs of the
operation. The required inputs field lists those inputs that must be present in the
representation of an operation. For example, the file that is compressed must be visibly
depicted in order for Pursuit to fully represent the compress operation. Inputs that are
not required may or may not be represented in the graphical representation of the
operation. If the preceding operation contained those inputs in its graphical depiction,
then Pursuit will depict those inputs in the current operation’s representation. Other-
wise, the graphical representation of non-required inputs is omitted.

The required properties field lists those properties of the required inputs that must be
present in the graphical depiction of the input. A property of an objectis described by its
name applied to the variable representing the object. For example, name(A) represents
the name of the object represented by variable A. Currently, the properties of an object
include its name, location, size, contents and type.

The changed properties field lists the graphical properties of the inputs that are affected
by the operation. For example, the changed properties field of the compress operation lists
the name, icon and contents of the input file.

The exit codes field lists the possible exit codes that the operation can return. Each
exit code lists its associated predicate, dialog box and actions. By default, an operation
always returns a zero exit code whenever it executes without problems. The predicate for
the zero exit code is always ‘no errors,” and the only dialog box that #ay be associated
with it is a user-input dialog box.
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Non-zero exit codes signal that an operation encountered an error condition. The
predicate field for error conditions describes how the annotation (predicate) for the error
condition is graphically represented. The dialog box field points (denoted by the caret) to
the message-relaying dialog box displayed by the operation. It also contains a list
of the dialog box’s fields and how the values of those fields are constructed. For
example, the file-name field of the compress1-gadget states that its value is the same as the
name of the error-causing file (whose name is the name of the input file with 2’
appended). These are the fields that Pursuit uses when determining how to obtain the
contents of a dialog box via an input meta dialog box and when abstracting over a dialog
box’s contents.

The actions field of an exit code describes how the operation affects the graphical
representation of the input and output icons. For example, the actions of the compress
operation append a “Z’ to the file’s name and replace the file’s icon with a compressed
icon.

Of course, we could not describe every effect of every operation in such a simple way;
nor could we graphically depict the effects of some operations with the simple graphics
of the visual language. For example, it would be very difficult to graphically display the
effects of compiling a file by trying to represent the changes between the source code
and object code. Instead, we designed the declarative specification language so that
operations could specify some surface characteristics that would provide enough
context to graphically depict them.

We close this section by noting that not all operations can be represented easily in this
declarative representation language. For example, delete requires a special icon for the
trash; therefore, when specifying delete we had to incorporate a special pointer in its
specification. Thus, some operations may require additional programming beyond the
declarative specification. Nonetheless, we think that the declarative specification lan-
guage does capture most of the main operations represented in the desktop metaphor
along with the main file manipulation operations found in Unix C-shell and therefore
will provide sufficient coverage.

9. Generating Graphical Representations

Pursuit uses the declarative specification of operations to create the visual representation
that it displays for the user. This includes creating an operation’s prologue and epilogue
and possibly an exit branch, as well as combining multiple operations into a single panel
in order to save space. Pursuit is the first system to define this automatically from the
specification. In previous systems like Chimera [13], the programmer had to determine
how to display and combine panels.

9.1. Creating A Prologue

Before creating a prologue, Pursuit determines whether the epilogue of the previous
operation can serve as the prologue of the new operation by verifying that all the
required inputs and properties of the new operation are found in the epilogue of the
previous operation. If the previous epilogue cannot be used as the prologue for the new
operation, then Pursuit creates a new prologue.
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To generate a new prologue, Pursuit constructs the graphical representation for all the
required inputs and their required properties. Pursuit uses a similar procedure to create
the location objects (i.e. the folders) of the input variables.

Once Pursuit constructs all the graphical representations for the inputs and their
locations, the file and file set icons are added to their location folder icons, and all the
folder icons are added to a panel (the outer rectangle) representing the prologue. The
panel is then added to the visual program and a gap is added to indicate that the
prologue of the new operation is not contained in the epilogue of the previous operation
(e.g. panel 3 in Figure 9).

9.2. Creating An Epilogue

If an operation returns zero as its exit code, then there was no error and Pursuit creates
the operation’s epilogue.

To construct the epilogue, Pursuit copies the operation’s prologue and then creates
graphical representations for all the outputs of the operation. Since the outputs are
newly created by the operation, Pursuit must construct an icon for each output. Once
Pursuit creates all the data objects, it updates them by executing all the actions for the
zero exit condition as specified in the operation’s declarative specification.

Like the prologue, Pursuit adds the folder icons representing the locations of the file
icons to a new panel. Pursuit then adds the new panel to the graphical program
representation, aligning the left side of the panel with the right side of the previous panel
so that the epilogue is attached to the prologue, as shown in Figure 1.

9.3. Combining Panels

Pursuit also uses operation specifications to determine when more than one operation
can be depicted in the same panel. After Pursuit constructs an operation’s epilogue, it
determines whether the new operation’s epilogue can be combined with the previous
operations’ epilogues. Pursuit first checks that the prologue panel of the previous
operations can be used as the prologue of the new operation (in the same way it checked
to see that the epilogue of the previous operation could be used as the prologue of the
new operation). If so, it then checks to make sure that the intersection of the changed
input properties of all the involved operations is empty. This ensures that no two
operations contained in the same panel change the same graphical properties of an
object. Thus, each operation’s effects are identifiable.

For example, in order for the compress operation in Figure 6 to be combined with the
move operation, the second panel, which is the prologue of the move operation, must
contain the prologue of compress (the file to be compressed) and the set of changed
input properties of move (the file’s location) must be independent of that of compress
(the file’s contents, size and name). Since these conditions are met, the two operations
are combined into a single panel. The individual epilogues of the move and compress
operations are stored so that when the user clicks on the shadow beneath the combined
panel, the panel is replaced by the two original epilogues. As a second example, the
compress operation would never be combined with the rename operation because both
operations change the name of the input file.
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9.4. Creating An Exit Branch

When an operation returns a non-zero exit code, Pursuit cannot construct an epilogue.
Instead, it constructs a branch with a predicate depicting the error condition encoun-
tered by the operation. Usually a predicate consists of a keyword followed by an icon for
a file or folder. The word and icon together describe some condition of the system that
caused the operation to fail. For example, in Figure 9 the predicate consists of the word
exists followed by the icon for the copy-of-biblio.tex.Z file. The predicate indicates that the
existence of the copy-of-biblio.tex.Z file caused the compress operation to fail.

The information describing the state condition that caused the operation to fail
(i.e. the keyword and any description of an object) is contained in the predicate slot for
the returned exit code. For example, the predicate slot for exit code 1 of the compress
operation specification (Figure 23) contains the keyword ‘exists’ and the variable B. The
variable B represents the object that is located in the same folder as the input object (A)
and whose name is the same as the input object’s name with a 2’ appended.

To construct an exit branch, Pursuit simply adds a conditional marker (i.e. a little
black square) to the right edge of the last panel in the program (which is the prologue of
the current operation). Then Pursuit constructs the predicate (annotation) for the
branch using the information in the predicate slot for the exit code found in the
operation’s specification. The keyword is added to the program after the conditional
marker. Finally, Pursuit adds the icon for the error-causing data object, which it obtains
from the operation record.

10. Evaluations of Pursuit

This paper has presented the design and implementation details of Pursuit. Other papers
detail the evaluations of Pursuit. Briefly, we performed a pencil and paper evaluation of
the system [20] using Cognitive Dimensions [7] as well as a user study [19] comparing
a version of Pursuit containing the language presented here with a version of the system
containing a less graphical language that is similar to the SmallStar [9] language which
was tested and shown to be usable by non-programmers. Although conceptually
different, the languages in the two Pursuit versions are functionally equivalent. There is
a 1-to-1 mapping between their commands and constructs. Moreover, actions to
construct programs are identical in both languages, so that the concepts users need to
learn do not vary between the languages.

Sixteen non-programmers were randomly assigned to use either the version of Pursuit
presented here or the equivalent less graphical version. The user study had two parts:
program generation and program comprehension.

In the generation part, users were given four task descriptions and asked to construct
programs. The tasks were similar in complexity to the examples shown in this paper.
With less than 2 hours of training, users in both groups were able to accurately construct
programs more than 70% of the time. However, a two-way ANOVA showed that the
group using the more graphical version of Pursuit (presented in this paper) was twice as
accurate in generating programs, /(1, 28) = 13.00, p < 0.002.

In the comprehension part, users were shown a program and a task description and
asked if the program implemented the task. Users in both groups correctly identified
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a program more than 70% of the time, with the users of the version of Pursuit
presented here performing better on more complex programs [#(14) = 1.84, p < 0.04].

The user study, as well as the cognitive dimension analysis, confirmed that Pursuit
did provide programming capabilities to non-programmers. However, we were sur-
prised to see the great effect that the particular representation language had on users’
ability to generate programs, since the user actions in constructing programs are
identical across languages. One reason could be the representation of control constructs
in the more graphical language. The fact that users of the less graphical version rarely
constructed complex programs correctly and did much worse for complex programs in the
other studies suggests that possibly the more graphical representation of loops and
conditionals enhanced users’ understanding of these concepts. Responses in a post-
study questionnaire support this hypothesis. The group using the more graphical version
cited branches, loops, and operations as the most intuitive features in the language,
whereas the other group cited only files and folders. Further studies are needed to assess
this hypothesis.

We wish to state that although the user studies were encouraging, they were not
definitive and only suggest that the more graphical approach is promising. The study
was small and only covered a limited subset of Pursuit’s capabilities. For example, the
users did not need to specify parameters for programs once they finished the demon-
stration. Thus, the study could not provide feedback on the success of Pursuit’s
approach for parameter specification. Nonetheless, the study does suggest that further
research along this path is warranted.

11. Conclusions

Visual shells are easy to use because of the constantly visible, concrete, familiar
representations of data objects and the illusion of concretely manipulating these
data objects [25]. Unfortunately, this ‘conceptual simplicity’ is often lost when
programming is introduced: users interact with the system visually, but usually
program it off-line in a textual programming language. Users must develop two
very different bodies of knowledge: one for interacting with the system and one for
programming it.

The Pursuit visual shell attempts to bridge this gap. By specifying programs by
demonstration and by representing programs in a visual programming language that
reflects the desktop, users can apply knowledge of the interface and its objects to the
visual language and its objects when constructing, viewing and editing a program.

The purpose of the research behind Pursuit was to investigate a way to enable
non-programmers to create file manipulation programs without developing program-
ming expertise. Moreover, we were interested in exploring the relationship of visual
languages to Programming by Demonstration systems. As the user studies showed,
Pursuit met its goal. In addition, the studies suggested that the more visual language
presented here, when compared to a conceptually equivalent but less graphical language
that used text for command names and control constructs and visual objects only for
data objects, enabled users to construct and comprehend programs more readily. This
suggests that more graphical languages may be more successful for PBD systems,
especially in the visual shell domain. Hence, this work is an important stepping stone for
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using Program by Demonstration and graphical programming language techniques to
address the end-user programming problem.

However, the problem is not completely solved. For example, Pursuit’s solution can
only address PBD systems in which programs are explicitly invoked by the user. There is
no support for specifying alternative invocation methods nor for allowing users to
specify conditions in which programs will automatically execute. Incorporating Hier-
archical Event Histories [12] into Pursuit’s record of user actions could address part of
this problem.

Additionally, while Pursuit enables users to create programs to manipulate files, it
does not enable users to construct programs that manipulate other objects, such as
dates. This limits Pursuit’s utility. We have recognized this problem and have sug-
gested ways to address it [17]. One such solution is to make all interface objects
manipulable and introduce generic visual objects to represent the interface objects
within the visual programs. Only additional research can determine whether our
solutions are feasible. If so, our work will bring us one step closer to applying the
technologies of Programming by Demonstration and graphical programming languages
to commercial applications.
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