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ABSTRACT 
RADAR is a multiagent system with a mixed-initiative user 
interface designed to help office workers cope with email 
overload. RADAR agents observe experts to learn models 
of their strategies and then use the models to assist other 
people who are working on similar tasks. The agents’ assis-
tance helps a person to transition from the normal email-
centric workflow to a more efficient task-centric workflow. 
The Email Classifier learns to identify tasks contained with-
in emails and then inspects new emails for similar tasks. A 
novel task-management user interface displays the found 
tasks in a to-do list, which has integrated support for per-
forming the tasks. The Multitask Coordination Assistant 
learns a model of the order in which experts perform tasks 
and then suggests a schedule to other people who are work-
ing on similar tasks. A novel Progress Bar displays the sug-
gested schedule of incomplete tasks as well as the com-
pleted tasks. A large evaluation demonstrated that novice 
users confronted with an email overload test performed 
significantly better (a 37% better overall score with a factor 
of four fewer errors) when assisted by the RADAR agents. 
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INTRODUCTION 
Email plays a central role in the work of many people. Un-
fortunately email client software is poorly suited to support 
the “collaborative quality of e-mail task and project man-

agement,” which results in people suffering from “email 
overload” [2]. When faced with a large number of emails, 
people can find it difficult to choose an order in which to 
handle them. Possible strategies include handling each 
email in the order received, scanning the list of email sub-
jects and senders for ones that appear to match various cri-
teria (important, quick to handle, and so forth), or using 
filters to file emails into folders. The order in which emails 
are handled can significantly affect the efficiency of the 
strategy, since performing similar tasks together reduces the 
overhead of switching between different types of tasks. 
People find it difficult to create an efficient order when 
sorting their inbox using email-centric properties, such as 
sender, subject, or date, because sorting by those properties 
will usually not group similar tasks together nor will it ac-
count for inter-task dependencies. Email threads can help in 
some situations, and other times people can rely on 
“crutches” such as asking senders to use a specific subject 
line in the email. However in general, a person would need 
to inspect each email, manually create task metadata, and 
then generate an order for handling the emails. Several re-
search projects have explored adding task-management 
features to email clients [2, 12, 23], and some email clients 
do provide features that facilitate task management such as 
tagging and separate to-do lists. The primary drawback of 
this approach is that users resist doing that additional work 
[24], and it forces them to read each email at least twice: 
once when creating the tasks, then again to actually do the 
task. Temporal factors further complicate email processing. 
High priority emails might need to be handled independent 
of efficiency concerns. Additionally, when time is tight 
people must decide which emails to ignore. 

We have developed a mixed-initiative email system, which 
uses Artificial Intelligence (AI) learning techniques, to help 
mitigate these problems and thereby reduce email overload. 
We evaluated our system in an experiment in which 
RADAR was trained by observing people who were not the 
test participants. While this tests a situation where a novice 
is filling in for an expert, we are also interested in how well 
our techniques will help when a person is processing their 
own email. The Email Classifier observes the types of tasks 
an expert creates from emails and then learns a model that it 
uses to automatically find tasks within new emails. Next, 
the Multitask Coordination Assistant (MCA) observes ex-
pert users perform the tasks found by the Email Classifier. 
The MCA uses these training observations to learn models 
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describing how to efficiently perform a set of tasks. The 
MCA uses these learned models to assist users working on 
a similar set of tasks. Its advice includes a suggested order 
for performing tasks and warnings when the user’s behavior 
differs significantly from the expert’s behavior. This ap-
proach reduces the number of times a person has to read an 
email and allows the tasks to be performed efficiently. 

This mixed-initiative email system was a central feature of 
the Reflective Agents with Distributed Adaptive Reasoning 
(RADAR) project. RADAR was a large interdisciplinary 
project to build a suite of intelligent agents that help office 
workers complete tasks more efficiently. Over 100 faculty, 
staff, and students worked on RADAR components includ-
ing the Email Classifier [25] and Multitask Coordination 
Assistant, along with other components including a Natural 
Language Processor [17], a Knowledge Base [7], a Sche-
dule Optimizer [9], a Webmaster [27], a Briefing Assistant 
[15], and a Task Management Architecture [11]. Freed pro-
vides a more detailed description of the overall RADAR 
approach, architecture, and agents [10]. We have previously 
described some of the user interfaces in a case study on 
usability issues for AI systems [8]. The current paper pro-
vides more details on the interface design and a significant-
ly more detailed analysis of the user study results. 

A large-scale user test evaluated several versions of 
RADAR over three years [19]. The test measured 
RADAR’s performance using quantitative metrics acquired 
through data logging, including an evaluation score that 
summarizes overall performance along with qualitative 
metrics collected with a post-test user survey [20]. 

The post-test user survey for the RADAR 1.1 system found 
that RADAR’s AI had little impact on user perceptions of 
the system. Although RADAR 1.1 included the Email Clas-
sifier, tasks were embedded as objects in each email. The 
system also exhibited usability and performance problems. 
It was hypothesized that the poor user interface was mask-
ing the potential benefit of the AI [20]. For RADAR 2.0, we 
designed a mixed-initiative task-centric email client in 
which the user’s inbox is augmented with a separate task 
list. The post-test survey for the RADAR 2.0 study found 
that the AI technologies now positively impacted user per-
ceptions of RADAR. In particular, participants were more 
confident that they had done tasks well, had found tasks 
easier to complete, and had been more immersed in the test. 
These qualitative metrics were supported by a significant 
improvement in the test’s evaluation score. 

While participants were more successful at performing in-
dividual tasks, many still struggled to find an efficient order 
for performing a group of tasks. We observed a wide va-
riance in performance including a long-tail of poor scores 
from participants who struggled. To address this problem, 
the RADAR 3.0 system introduced a task strategy compo-
nent called the Multitask Coordination Assistant. The MCA 
proposes a schedule for performing tasks, emphasizes high-
ly-important “critical” tasks, recommends tasks to skip if 

time is tight, and issues warnings if the user’s behavior de-
viates significantly from expert behavior. The results of 
testing RADAR 3.0 showed another significant increase in 
performance accompanied by a noticeable drop in variance. 

These results suggest that adding AI technologies to inter-
active systems can benefit users, a conclusion that has been 
met with skepticism within the HCI community [18]. While 
some of the concern focuses specifically on anthropomor-
phic agent interfaces, a major complaint against interactive 
AI is that it interferes with a user’s ability to easily predict, 
control, and monitor the system’s behavior. When the AI 
technologies make mistakes, will the user notice and correct 
the errors? When the system does act correctly, will the 
user notice what has been done? A related concern is that 
people will have difficulty understanding why an intelligent 
system made a particular decision or suggestion, which 
might lower a user’s trust or confidence in the system. 
However, the benefits of predictability and understandabili-
ty need to be weighed against the benefits of automation 
[13]. A direct manipulation system can be slower and have 
more errors than an intelligent system [21]. Predictability 
and understandability are subgoals of the ultimate goal, 
usable systems, and must be weighed against other subgoals 
such as performance, which also impact usability.  

RADAR makes specific contributions to address these is-
sues. The automatically detected tasks are presented in a list 
view and in a detail view along with the original email mes-
sage, so that users can easily understand, check and perform 
the tasks. The recommended ordering of the tasks is clear 
from the sort order in the task view and in a novel Progress 
Bar that shows future as well as completed tasks. Addition-
ally, RADAR is generally not allowed to take autonomous 
actions when such actions would be visible to other people 
or systems. RADAR has considerable flexibility to work on 
the user’s behavior without risking costly mistakes that 
might embarrass the user or leak private information. 

A user study showed that the user interfaces presented the 
AI assistance in a helpful manner: users who received AI 
assistance performed 37% better compared with users who 
did not. Additionally, users were able to recognize when 
RADAR made errors, correctly handling 89% of the tasks 
that the Email Classifier erroneously suggested. Overall, 
these users incorrectly completed 2.6 tasks per user. In con-
trast, the users without AI assistance incorrectly completed 
10.3 tasks on average, which accounted for 19% of the 
tasks they did. This is a factor of four more errors. 

RELATED WORK 
Much task-management research has studied adding task-
management features to email client software [2, 12, 23] 
and making it easy to move tasks from email client software 
to dedicated task managers [21, 23, 27]. This work focuses 
on email because users often use email client software as a 
task manager since many tasks arrive as emails and the in-
formation necessary to complete a task is commonly con-
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tained in the email as well. Hence, the inbox becomes an 
informal to-do list [6]. Unfortunately, email applications are 
not designed to perform the task-management duties that 
users demand from them [24]. For example, when an inbox 
collects a large number of emails, it can become difficult to 
find information. Email software allows users to create 
folders and email filters, label emails, perform searches, 
and so forth. Unfortunately these features are not always 
implemented in a way that makes task management easy 
[23]. For example, Gwizdka found that most of the Micro-
soft Outlook users he studied did not use many of Outlook’s 
features, such as the to-do list, email flags, reminder flags, 
and journal [12]. Dedicated task-management applications 
do not provide the answer to this problem since users dis-
like the tedious process of entering task metadata such as 
dependencies, due dates, and priorities [1]. TaskMaster [2], 
which did not use AI, took a hybrid approach like RADAR, 
providing features of both email clients and task managers. 

Task managers generally display to-do tasks in a list [1, 3, 
16], as does RADAR. One notable exception is TaskView 
[12], which displays future tasks within an email client by 
arranging emails in a grid where time runs along the hori-
zontal axis and an email property, such as sender or subject, 
runs along the vertical axis. However, TaskView requires 
that task information be manually entered, whereas 
RADAR calculates task priorities and orders tasks automat-
ically in both the Action List and the Progress Bar. Towel 
[4], the user interface for the PExA time- and task-
management tool [16], allows the user to delegate tasks to 
humans or software agents. RADAR automatically creates 
tasks from emails and fills in the forms used to do the tasks. 

The SmartMail system automatically identifies sentences in 
emails that contain tasks and flags the emails in the inbox 
[5]. However, it does not classify the tasks by type nor does 
it add the tasks to a to-do list. RADAR implements both of 
those features as part of its task-centric user interface. 

The Priorities system used email headers, content, and reci-
pient availability to calculate the urgency of an email [14]. 
RADAR orders emails based upon the associated tasks, 
which include information from the email. 

TASK-CENTRIC EMAIL PROCESSING 

Initial Contextual Inquiries 
We began exploring how to address the email overload 
problem by performing a set of contextual inquiries with 
approximately two dozen office workers to understand the 
problems that they encountered when handling their email. 
We quickly saw a pair of roles emerge, which we labeled 
Initiator, the person who needs assistance, and Human Ser-
vice Assistant (HSA), the person who can provide the help. 
HSAs regularly received email requests that are performed 
by filling out forms, so their work serves as a good example 
for informing the design of the Action List interface. Ob-
servations of HSAs processing requests revealed that they 
would regularly save a small set of related tasks and then 

perform them together as a group. They claimed that this 
saved them time by sharing the overhead costs of connect-
ing to different IT systems among multiple tasks. 

Inspired by these observations, we designed the Action List 
as a mechanism for transforming the processing of email 
requests from the traditional email-centric workflow to a 
task-centric workflow. This new perspective offered two 
distinct advantages over current email systems for an HSA. 
First, by providing a view of all tasks to be processed, 
HSAs could focus on completing one type of task at a time. 
We hypothesized that this would reduce the amount of con-
text switching taking place, allowing HSAs to work more 
efficiently. Second, by interacting with a task-level view of 
incoming requests, HSAs could better prioritize their work. 

We employed an iterative design process, building multiple 
working versions of the system. This approach helped us to 
assess both what kinds of errors the agents would make and 
to learn how well our users could recognize and repair these 
errors. One important discovery from the usability testing 
was that the term “action” works better than “task,” so we 
used the former term in the user interface. However, we 
will continue to use the term “task” throughout this paper, 
except when referring to specific user interface elements. 

The Action List 
The Action List design supports a mixed-initiative interac-
tion style for creating and completing tasks contained with-
in emails. The Email Classifier examines the content of 
each email for evidence that it contains any requests of the 
eight known task types [25]. The Email Classifier dumps all 
available tokens and knowledge features of the email into 
one bag-of-words model and uses a regularized logistic 
regression algorithm, which scales to thousands of labels 
[26]. When it finds sufficient evidence for a given task type, 
it applies the label for that task type to the email. The clas-
sifier considers the evidence that supports each task type 
independently, and so it applies zero, one, or more different 
labels to each email. However, it cannot determine if an 
email contains multiple tasks of the same type. To improve 
classification performance, Scone [7], which is RADAR’s 
knowledge base, provides additional ontological informa-
tion that is not contained in the email’s content. Examples 
include basic facts, such as “the Connan room is in the Uni-
versity Center,” and higher-level concepts, such as “a pea-
nut is kind of food that people might be allergic to.” 

The RADAR evaluation uses novice users, who may have 
difficulty effectively judging whether the email classifier’s 
labels are correct. We were concerned that too many false 
positives might confuse them, so we tuned the classifier to 
favor precision over recall. An examination of the classifi-
er’s behavior showed that it did perform as desired. The 
latest evaluation had 123 emails, which contained 102 task 
labels. The classifier correctly found 47 task labels and in-
correctly suggested 6 other task labels (false positives): 
precision = 0.887 (47/53) and recall = 0.461 (47/102). 
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For each task label applied to an email, RADAR creates a 
task object, which is managed by the Task Manager [11]. 
Information stored includes the web form for that kind of 
task, if applicable. As we observed for real-life HSAs, in 
RADAR, many tasks require filling out web-based forms. 
RADAR’s Natural Language Processor [17] attempts to 
specify task-specific parameters in the form, including the 
database record that the form should modify, if applicable. 
If RADAR can identify the record, then it will also try to 
fill in the other fields in the form. This novel integration of 
a to-do list with the forms for completing the tasks removes 
unnecessary steps from the process of performing a task. 

The resulting tasks are displayed by the Action List, which 
provides a task-centric view of the user’s email inbox (see 
Figure 1). The Action List allows a user to inspect the tasks 
that RADAR created, add ones that were missed, delete 
ones that should not have been created, and launch web 
pages to perform some of the tasks. The Action List con-
tains seven tables divided into two groups: the first for 
tasks, and the second for emails (see Figure 1). The task 
group contains four tables that list “Incomplete” (a), “Over-
flow” (b), “Completed” (c), and “Deleted” (d) tasks. Tasks 
that the user has yet to perform are split between the In-
complete and Overflow table, with the latter table contain-
ing tasks that the MCA (to be described later) recommends 
that the user should skip due to time constraints. An email 
message will appear multiple times in the Action List if it is 

associated with multiple tasks of the same type (a.ii and 
a.iii), multiple tasks of different types (a.i and a.iv), or both. 
Tasks completed by the user appear in the Completed table, 
which provides the user with a record of their progress and 
allows them to go back and revisit previous tasks. 

The tabular task display allows the user to sort their tasks 
with respect to task-centric properties such as “Description” 
or “Order” (by clicking on the column title), in addition to 
standard email-centric properties such as sender, subject, 
and date. The “Description” column sorts tasks alphabeti-
cally by type and within each type by the date of the asso-
ciated email. When an email contains multiple tasks of dif-
ferent types, each of those tasks will be grouped with the 
other tasks of the same type when the table is sorted by the 
Description column. The other columns use a standard sort 
order based upon their data type. 

The second set of tables (e, f, and g) display emails that are 
not associated with any non-deleted tasks. These tables are 
designed like a traditional inbox, with columns for the sub-
ject, sender, and date. The row for each email includes an 
excerpt from the beginning of the email body to help the 
user determine whether an email contains a task without 
opening the email. The user opens an email by clicking on 
either the subject or the “Add an Action” link. The email 
display includes the header and body sections along with 
the list of tasks that the user can add to the email. 

(a) 

(a.i) 
 
(a.ii) 
(a.iii) 
 
 
(a.iv) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

 
Figure 1: The RADAR Action List provides a task-centric view of an email inbox. The “Incomplete Actions” (a), “Overflow 
Actions” (b), and “Completed Actions” (c) tables list the tasks contained within email messages, allowing the user to sort by 

task-centric properties. The three email tables contain emails for which no tasks have been created (e, f, and g). 
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The emails are divided among the three tables. The “Possi-
bly Conference-Related Emails” table contains emails that 
RADAR thinks may contain tasks but for which it could not 
confidently identify the exact task type (e). This partial 
classification focuses the user’s attention on emails likely to 
contain tasks without risking errors that might result if 
RADAR incorrectly classified the task as being of a par-
ticular type. The second table contains other emails that 
RADAR did not identify as task-related (f). The third table 
contains emails that the user deleted (g). 

PROVIDING TASK ORDERING ADVICE 
The evaluation of the RADAR 2.0 system showed that the 
task-centric workflow enabled by the AI technologies helps 
users. However, user performance varied significantly. 
Based upon analyses of the data logs, we hypothesized that 
some users had had difficulty finding a high-level strategy 
for completing the work. The novice users likely lacked 
meta-knowledge about tasks such as task importance, ex-
pected task duration, and task ordering dependencies. An 
expert user with that knowledge should be able to make 
good decisions about which tasks to work on at any given 
time and which tasks to skip when time is limited. 

The MCA, a new component for RADAR 3.0, was built to 
address this problem by providing guidance about the order 
in which to work on a set of tasks. The MCA was designed 
to supports both near-term deadlines on the order of 1–8 
hours, which would be encountered during a typical HSA’s 
workday, and situations in which the amount of work ex-
ceeds the time allotted. The MCA learns task models upon 
which the advice is based by passively observing experts 
performing similar tasks. The MCA includes a novel visua-
lization called the Progress Bar (see Figure 2), which shows 
a suggested schedule for performing incomplete tasks. The 
MCA’s goal is to provide advice that improves performance 
and reduces overall performance variance, hopefully cutting 
off the long-tail of poor performance. 

User Interfaces for Suggesting a Schedule 
The primary advice provided by the MCA is a suggested 
schedule, which specifies an order in which to perform out-
standing tasks. The MCA suggests which tasks to skip 
when it calculates that not enough time remains to perform 
all incomplete tasks. The MCA learns which tasks are gen-
erated after other tasks are completed, and so it also adds 
such “expected” tasks to the schedule. Including the ex-
pected tasks in the schedule provides the user with a more 
realistic understanding of upcoming work and eliminates 
major changes to the schedule that would otherwise occur 

when an expected task actually becomes necessary. Addi-
tionally, the MCA identifies “critical” tasks, which are par-
ticularly important for the user to complete. The suggested 
schedule is displayed by the Progress Bar (see Figure 2) and 
in the “Order” column of the Action List (see Figure 1).  

The Progress Bar (see Figure 2) appears at the bottom of 
the screen just above the Windows Taskbar and always 
remains on top without obscuring other windows. Time is 
represented on the horizontal axis, which in this case spans 
two hours. An inverted black triangle and a vertical red line 
represent the current time (c), which increases from left to 
right. Each rectangular box represents a task. Task boxes to 
the left of the current time represent completed (a) or de-
leted (b) tasks, providing a record of the user’s progress so 
far. The width of a task box represents the time that the user 
spent working on that task. The suggested schedule is vi-
sualized by the task boxes to the right of the current time. 
The width of each of these task boxes represents the amount 
of time that the MCA expects the task to require. Blue task 
boxes represent noncritical tasks (g). Orange task boxes, 
which are also slightly taller, represent critical tasks (f). 
Gray boxes represent expected tasks (d); expected critical 
tasks appear as taller gray boxes (h). The user can quickly 
inspect any task by moving the mouse over its task box (e), 
which updates the status bar at the bottom to show the 
task’s description, status, actual/planned start time, ac-
tual/planned duration, and priority. That task, along with all 
other tasks of the same type, is drawn with a thicker border 
to allow the user to see where that type of task is distributed 
throughout the schedule. Double-clicking on a task box 
opens the corresponding task. The number of overflow 
tasks, which are the ones the MCA proposes to skip due to 
time constraints, appears at the bottom right. 

MCA advice also appears in other parts of the RADAR user 
interface. First, the Action List’s “Order” column shows the 
position of each future task within the suggested schedule 
(see Figure 1(a)). Only tasks in the “Incomplete Actions” 
table are included in the suggested schedule; the “Order” 
column is blank in the other tables. Sorting the “Incomplete 
Actions” table by the “Order” column shows the schedule 
as an ordered to-do list. Second, tasks that the MCA sug-
gests that the user skip are shown in the “Overflow Ac-
tions” table. Third, after the user completes or deletes a 
task, RADAR redisplays the task’s form in a finished state 
to provide feedback that the command succeeded. This con-
firmation screen also includes a link to the next suggested 
task in the schedule, which allows the user to navigate to 
the next task that the MCA recommends without having to 

 (a) (b) (c) (d) (e) (f) (g) (h) 

  
Figure 2: The Progress Bar shows completed (a) and deleted (b) tasks to the left of the current time (c), and the suggested schedule 

to the right. Noncritical tasks are blue (a, b, and g), critical tasks are orange (f), and expected tasks are gray (d and h). Details 
about the highlighted task (e) are shown in the status bar at the bottom. 
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return to the Action List. Finally, the MCA displays popup 
warning dialogs when the user significantly deviates from 
the suggested schedule. The warnings are issued if the user 
works on a critical task much earlier than experts did (Early 
Critical), if the user has not yet started working on a critical 
task by the time most experts had (Late Critical), or if the 
user starts working on a critical task that is not the next 
critical task on the suggested schedule (Wrong Critical). 

Training the MCA 
The MCA learned a model of expert behavior by passively 
observing experts performing tasks using the same user 
interfaces that test participants will later use. To train the 
system, experts did the two-hour study using a version of 
the system for which the MCA learning components were 
watching rather than recommending. Other AI components 
operated normally. For example, the Email Classifier had 
analyzed the emails to identify tasks. The training used 
three different email sets (none of which was the test email 
set), which provided variability to prevent overtraining. 

Since there were no actual experts for the test tasks, we 
trained RADAR team members who had not worked on the 
MCA to be experts. People with detailed knowledge of how 
the MCA worked might behave in a way that aids the learn-
ing algorithm and hence would not be representative of real 
experts. We taught the experts how to use the RADAR 
components with the same instruction that novice test par-
ticipants received. Additionally, the experts had significant 
exposure to the problem domain, detailed knowledge of 
some of the fixed stimuli (for example, available buildings), 
and were given more time to practice, all of which are con-
sistent with the idea that they have more experience per-
forming the test tasks. We also gave them some high-level 
strategy advice that a real expert would know based on 
knowledge of the scenario and evaluation methodology. 

The primary goal of the MCA training process was to pro-
vide the MCA with an opportunity to infer the high-level 
strategy from passive observations of experts using that 
strategy to perform the two-hour study. The MCA learns 
the following information. First, the average duration to 
complete a task, along with the variance, is recorded per 
task type. Second, the MCA identifies critical tasks, which 
are tasks with a small number of instances and for which 
the mix of tasks changes after the critical task is completed, 
and computes an expected completion time for each critical 
task. Third, it learns task phases, which are the mix of tasks 
between critical tasks. Fourth, the MCA infers prerequisites 
among task types by looking for transitions between task 
types that are observed to occur with high probability. Each 
high probability transition is encoded as a directed edge 
within a partial ordering of the task types. Fifth, the MCA 
learns a contextual task ordering, which predicts the order-
ing among individual tasks. Sixth, the MCA computes gen-
erate dependencies among task types, which are the ex-
pected number of tasks of each type created after the com-
pletion of a task, with self-looping edges being allowed. 

Collectively, this information, which is computed using a 
variety of statistical machine learning algorithms, forms the 
MCA’s learned model of expert behavior. 

Generating the Suggested Schedule 
Given the learned model and the current collection of tasks 
(both completed and incomplete) the MCA computes a 
suggested schedule for performing the tasks within the re-
maining time. Its goal is to produce a schedule representa-
tive of how an expert would perform the same collection of 
tasks. The process works as follows. First, the generate 
dependencies are used to create expected tasks. Second, the 
prerequisites (task-type ordering constraints) and output of 
the contextual task ordering predictor (individual-task or-
dering constraints) are passed into an Advice Integrator. 
Each constraint includes a weight that the Advice Integrator 
uses to compare against other constraints to produce a con-
sensus schedule. The consensus schedule is a total ordering 
of the incomplete tasks, including expected tasks. Third, the 
Task Shedder [22] uses the learned task durations and task 
importance, along with the observed user’s speed relative to 
the experts’ speed, to decide which tasks to shed from the 
consensus schedule. The Task Shedder’s algorithm general-
ly sheds noncritical and expected tasks while shortening the 
planned duration of compressible tasks, but it never reord-
ers individual tasks. The Task Shedder outputs the sug-
gested schedule, which is presented to the user in the 
Progress Bar and Action List user interfaces. 

EVALUATION 
We evaluated RADAR using a conference planning test to 
determine how effective it is at assisting novice users based 
upon learned models of expert performance. This section 
describes the study design and then reports results from the 
evaluation of the RADAR 3.0 system. 

The Conference Planning Test 
A key challenge was designing an evaluation that measured 
how well RADAR reduced email overload. Since the 
project was planned to run for several years, we wanted to 
conduct carefully controlled, repeatable user studies that 
would allow us to measure progress over time. We initially 
considered designing an evaluation that used people’s ac-
tual email, but decided against it. Such an evaluation would 
make comparisons difficult because of the vast differences 
among people’s workloads. Additionally, any study would 
have to carefully protect the privacy of both the participants 
and those with whom they communicated via email. 

Project members, in cooperation with external evaluators, 
developed a system-wide user test to evaluate how well 
RADAR’s user interface and AI technologies assist a no-
vice user. This section provides an overview of the test; a 
complete description can be found elsewhere [19]. The 
evaluation was designed to present participants with a chal-
lenging email overload workload that satisfied the follow-
ing criteria. First, the tasks should be heterogeneous, just 
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like in real-life. Second, some tasks could be handled 
quickly, while others would require significant effort. 
Third, dependencies should exist between some tasks, and 
doing those tasks out of order should result in wasted work 
or incorrect results. Fourth, email-centric properties such as 
subject lines should not be very helpful for grouping similar 
tasks or discerning efficient task orders. Fifth, users should 
not be expected to finish the test within the allotted time, so 
as to prevent ceiling effects in performance results. 

The test presents participants with a simulated conference-
planning scenario. Participants assume the role of the con-
ference planner, filling in for the regular planner, Blake, 
who is indisposed. The simulated four-day, multitrack con-
ference has keynotes, plenary talks, banquets, paper ses-
sions, poster sessions, workshops, and so forth. Participants 
in our study must handle the outstanding conference plan-
ning tasks which have arrived in email, including many 
requests from the conference attendees. Blake’s inbox con-
tains these emails, which can be categorized as follows: 

• Scheduling: Participants must update the database of 
event constraints (A/V requirements, meal preferences, 
attendee availabilities, and so forth) and conference room 
properties using an appropriate web form. 

• Website: Attendees request changes to their contact in-
formation on the conference website. The participants 
must also update the website with the latest schedule. 

• Informational: Attendees request information about the 
conference, generally concerning how the schedule has 
changed. The participants must author a reply email. 

• Vendors: Attendees specify meal preferences and A/V 
requirements for events which then have to be forwarded 
to vendors using the vendor’s web forms. 

• Briefing: The conference chair requests a briefing sum-
marizing the participant’s progress at the end of the test. 
The inbox contains just one such request. 

Participants also must deal with a conference crisis, which 
involves the loss of use of a significant number of rooms in 
which conference events had already been scheduled. Par-
ticipants now need to find new rooms for the conference 
and adjust the schedule such that each event is placed in a 
room that satisfies the event’s constraints, such as capacity, 
available equipment, seating arrangement, and so forth. 

The tasks satisfy the criteria described earlier. Some tasks, 
such as informational requests, can be handled in around a 
minute, whereas other tasks, such as updating the confe-
rence schedule on the website, can take 15 minutes. Some 
emails contained over 20 tasks. An example of an intra-task 
dependency is that participants should handle the schedul-
ing emails before updating the schedule on the website. 
Additionally, updating vendor orders requires submitting 
requests and waiting for email responses. 

The test emails included anonymized real emails and fabri-
cated ones, the latter necessary in part to make the emails 
consistent with the simulated world [19]. A team of under-

graduate English majors was employed to create a detailed 
backstory email corpus, independent messages detailing 
one or more tasks, and noise messages, which were unre-
lated to the conference. The students were given a series of 
story arcs, guidelines, and a handful of characters with 
some specific assigned personalities (for example, formal, 
annoying, and so forth). Each study used the same backsto-
ry email corpus. However, to increase the validity of the 
tests, each study used a different email set of task and noise 
emails. An outside consultant customized those emails for 
each study. The consultant designed the emails to have 
comparable difficulty and task distribution. Between studies 
the stacks differed in the exact nature of the crisis—the 
specific rooms and times lost—and the details of the other 
email requests. These emails were kept secret until the test, 
so AI components could not train on them. 

The test is designed to be hard—and it is. Over the past 
three years, approximately 400 people participated in the 
four major evaluations of different versions of RADAR; an 
additional 300 more people participated in interim evalua-
tions. None of these people, including RADAR researchers, 
have been able to complete all of the tasks within the allot-
ted time. We therefore think this evaluation approximates 
what a real person experiences, where it is often impossible 
to handle in one sitting all the emails that are pending. 

The email set for the RADAR 3.0 study had 123 emails, of 
which 83 contained 153 tasks. The number of tasks is 
greater than the 102 task labels mentioned earlier, since 
some emails contained multiple tasks of the same type. The 
other 40 “noise” emails were unrelated to the conference. 

Method 

Conditions 
The test used a between-subjects design with a single inde-
pendent variable, Assistance, which had three levels: With-
out Learning, Without MCA, and With MCA. 

In the Without Learning condition, most of RADAR’s intel-
ligent components were disabled. Specifically, the Action 
List initially had no email-based tasks since the Email Clas-
sifier was disabled, all the MCA advice was disabled, and 
the Progress Bar only showed the completed or deleted 
tasks. The main differences from the Action List in Figure 1 
were that the “Order” column, the “Overflow Actions” ta-
ble, and “Possibly Conference-Related Emails” table were 
not displayed, and the action tables were initially empty. 

In the Without MCA condition, all of RADAR’s AI compo-
nents were enabled except for the MCA. The Action List 
contained the tasks that the Email Classifier found, and the 
“Possibly Conference-Related Actions” table contained 
emails. Again, the Progress Bar only showed the completed 
or deleted tasks. This condition was similar to RADAR 2.0. 
The main differences from the Action List in Figure 1 were 
that the “Order” column and the “Overflow Actions” table 
were not displayed. 
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In the With MCA condition, all MCA functionality was 
enabled, as described in the previous sections. 

Sessions 
Each test session included up to 15 participants, who 
worked independently, and lasted up to 4.25 hours. In the 
first phase, which lasted 1.5 hours, participants learned 
about the test and received hands-on training with the soft-
ware. After a break, participants started the two-hour testing 
session, which included another break after one hour. Then 
participants completed a survey and received payment, in-
cluding extra payments for achieving specified milestones. 

Participants 
Participants were recruited from local universities and the 
general population using a human participant recruitment 
website. Participants were required to be between the ages 
of 18 and 65, be fluent in English, and not be affiliated with 
or working on RADAR. The study included 23 participants 
in the Without Learning condition, 28 participants in the 
Without MCA condition, and 28 participants in the With 
MCA condition. The number of participants varied among 
conditions since not all sessions yielded 15 usable data sets 
due to no-shows, participants who dropped out, participants 
who failed to make a good-faith effort, and software crashes 
or configuration issues that invalidated the data. 

Results 

Evaluation Score 
An evaluation score, designed by external program evalua-
tors, summarized overall performance into a single objec-
tive score ranging from 0.000 to 1.000, with higher scores 
reflecting better performance (for full details, see [10, 19]). 
It was important that this score be tied to objective confe-
rence planning performance rather than a technology-

specific algorithm (for example, F1 for classification). This 
technology-agnostic approach allowed us to compare per-
formance across conditions given any technology. The 
score was calculated from points earned as a result of satis-
fying certain conditions, coupled with costs and penalties. 
These included the quality of the conference schedule (for 
example, constraints met, special requests handled), ade-
quate briefing to the conference chair, accurate adjustment 
of the web site (for example, contact information changes, 
updating the schedule on the website), costs for the rooms, 
food, and equipment for the conference, and penalties for 
requesting that others give up existing room reservations. 
The score coefficients were two-thirds for the schedule, 
one-sixth for website updating, and one-sixth for briefing 
quality. On this measure, With MCA participants clearly 
outperformed Without MCA participants, who in turn out-
performed Without Learning participants (ANOVA, 
F(2,76) = 83.7, p < 0.0001) (also see Figure 3). 

Assistance N Mean Std Dev 
Without Learning 23 0.550 0.072 
Without MCA 28 0.706 0.063 
With MCA 28 0.754 0.035 

A subsequent Tukey post-hoc test found that the three con-
ditions were significantly different from each other. All but 
3 of the 28 With MCA participants earned higher scores 
than the average score of the Without MCA participants. 
Additionally, the standard deviation of the evaluation score 
dropped 44% from the Without MCA to With MCA condi-
tion and the long-tail of poor performance in the Without 
MCA condition disappeared, as we had hoped. 

Email Classification and the Task-Centric Action List 
We examined how well the task-centric user interfaces 
helped participants evaluate the suggestions of the Email 
Classifier. The following table lists the average number of 
tasks for each outcome. 

 Without MCA With MCA 
True Positives (TP) 47.0  47.0  
  Viewed 43.6 100.0% 38.4 100.0% 
    Completed 38.4 88.0% 34.1 89.0% 
    Deleted 2.0 4.5% 1.9 4.8% 
    Ignored 3.3 7.5% 2.4 6.1% 
  Not Viewed 3.4  8.6  
False Positives (FP) 6.0  6.0  
  Viewed 5.8 100.0% 5.3 100.0% 
    Completed 0.7 12.3% 0.8 14.3% 
    Deleted 2.7 46.9% 2.5 48.3% 
    Ignored 2.5 42.6% 2.0 37.4% 
  Not Viewed 0.6  0.7  
False Negatives (FN)     
  Completed 4.5  2.0  
True Negatives (TN)     
  Completed 4.3  1.8  
FP & TN Completed 5.0  2.6  

 
Figure 3: The evaluation scores show that the MCA 
advice in the With MCA condition significantly im-

proved performance, reduced performance variation, 
and eliminated the long-tail of poor performance. 
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Of the 47 correctly classified tasks (TP) that participants 
inspected (Viewed), participants completed the majority of 
them, and rarely erroneously deleted any. Additionally, of 
the six incorrectly classified tasks (FP) that the participants 
inspected (Viewed), participants deleted or ignored the vast 
majority of them, only occasionally erroneously completing 
one. However, participants did not complete many tasks 
that the classifier missed (FN). They also created and com-
pleted some tasks when they should not have (TN: emails 
that actually did not contain any tasks). The Without MCA 
participants completed over twice as many TN compared 
with the With MCA participants (4.3 vs. 1.8; t(54) = 2.5152, 
p < 0.02). Overall, combining both commission errors (FP 
Completed + TN Completed), the Without MCA partici-
pants incorrectly completed on average 5.0 tasks, and the 
With MCA participants incorrectly completed 2.6 tasks. 

In the Without Learning condition the Email Classifier was 
disabled, so participants had to inspect emails to find tasks. 
These participants correctly completed on average 43.7 
tasks but incorrectly completed 10.3 tasks (equivalent to 
TN); the errors accounted for 19% of the completed tasks. 
While the With MCA participants made errors based upon 
incorrect AI suggestions, the participants without the assis-
tance made up to four times more mistakes (10.3 vs. 2.6). 

Effects of the MCA’s Task Strategy Recommendations  
Since participants earned significantly better evaluation 
scores in the With MCA condition than in the Without MCA 
condition, we examined the completed tasks to see how 
MCA advice may have impacted their scores. 

The MCA identified five critical task types: “Optimize the 
Schedule” (run the Schedule Optimizer), “Publish the 
Schedule” (run script that updates the schedule on the con-
ference website), “Bulk Website Update” (change the same 
type of information for many people on the website), “Re-
schedule Vendor Orders” (fix the vendors associated with 
events that moved in the schedule), and “Send a Briefing” 
(write a briefing for the conference chairperson). The fol-
lowing table shows the number of participants in each con-
dition who completed each of the critical tasks at least once. 

Task Type Without 
MCA 

With 
MCA 

Optimize the Schedule 27 28 
Publish the Schedule 27 28 
Bulk Website Update 13 25 
Reschedule Vendor Orders 3 6 
Send a Briefing 25 28 

The “Reschedule Vendor Orders” task takes about 30 mi-
nutes to complete so few participants in either condition 
finished it. However, the percentage of correctly scheduled 
vendor orders (a measure of partial progress on this task) 
was significantly higher in the With MCA condition than in 
the Without MCA condition (51% vs. 29%; t(54) = 2.3400, 
p < 0.05). Additionally, the percentage of money wasted on 
incorrectly scheduled vendor orders (another measure of 

partial progress) significantly dropped in the With MCA 
condition (30% vs. 66%; t(54) = 3.3061, p < 0.01).  

Participants in the Without MCA condition completed more 
total tasks (65.5 vs. 55.3; t(54) = 2.4770, p < 0.02) and 
more noncritical tasks (54.0 vs. 44.9; t(54) = 2.671, p < 
0.02) than the With MCA participants did. Yet, the With 
MCA participants earned higher scores, because they did 
the more important tasks rather than just doing more tasks. 

The following table shows that participants generally com-
plied with the critical task warnings that the MCA issued. 

Task Type Issued Complied % 
Late Critical 93 83 89% 
Wrong Critical 25 14 56% 
Early Critical 1 0 0% 
Total 112 97 83% 

Compliance with the “Late Critical” warnings was high. 
However, participants did not allows follow the “Wrong 
Critical” alerts. Five of these participants seemed to be 
averse to quitting what they were currently working on. 
This could be exacerbated by the fact that participants are 
instructed that critical tasks are special, and therefore they 
might believe that finishing the current one is more impor-
tant than following the warning’s advice. 

In the With MCA condition, the average position of a task in 
the suggested schedule at the time that it was finished (ei-
ther completed or deleted) was 5.0. Finished tasks were in 
the top position 21% of the time and within the top five 
62% of the time. Since the Without MCA condition does not 
provide a suggested schedule, we computed the position of 
the task in the Action List when it was finished. In the 
Without MCA condition, the average position of tasks when 
it was finished was 11.6. Finished tasks were in the top po-
sition 18% of the time and within the top five 37% of the 
time. Finally, we found no significant difference for the 
number of times that participants followed the “next sug-
gested task” link (19.2 in With MCA vs. 17.8 in Without 
MCA; t(54) = 0.3246, n.s.). 

Discussion 
The participants clearly found the AI systems helpful in 
performing their tasks. They were able to understand the AI 
component’s suggestions and override them when in error. 
We looked for reasons why participants did not seem to be 
following the MCA’s recommendation for the specific next 
task to do. It appears that users often were skipping the top 
one or two tasks over and over, suggesting that they did not 
want to do those specific tasks for some reason. Thus, par-
ticipants were relying on the MCA to give them strategic 
advice of an overall order, but felt comfortable looking 
within the top few recommendations. This lends support to 
our mixed-initiative user interface rather than one that just 
presented the next task. Our pop-up alerts for critical tasks 
also were successful in focusing the user’s attention on crit-
ical tasks they were ignoring in the other views. 
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CONCLUSION AND FUTURE WORK 
Now that the RADAR techniques have proven so successful 
in our lab study that simulated a HSA’s workload, we are 
eager to transition these techniques to a real email system 
with online learning. The main hurdle will be making the 
AI components robust enough for use with real-world tasks 
and emails, and integrating the AI technologies and the user 
interface with the real forms that are used to perform the 
tasks. Additionally, the HSA workload represents a subset 
of the work performed by office workers, and we are inter-
ested to see how our techniques apply to other workloads. 
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