
Agent-Assisted Task Management
that Reduces Email Overload

Andrew Faulring, Brad Myers, Ken Mohnkern, Bradley Schmerl, Aaron Steinfeld,
John Zimmerman, Asim Smailagic, Jeffery Hansen, and Daniel Siewiorek

School of Computer Science, Carnegie Mellon University
{faulring, bam, kem, schmerl, astein, johnz, asim, hansen, dps}@cs.cmu.edu

ABSTRACT
RADAR is a multiagent system with a mixed-initiative user
interface designed to help office workers cope with email
overload. RADAR agents observe experts to learn models
of their strategies and then use the models to assist other
people who are working on similar tasks. The agents’ assis-
tance helps a person to transition from the normal email-
centric workflow to a more efficient task-centric workflow.
The Email Classifier learns to identify tasks contained with-
in emails and then inspects new emails for similar tasks. A
novel task-management user interface displays the found
tasks in a to-do list, which has integrated support for per-
forming the tasks. The Multitask Coordination Assistant
learns a model of the order in which experts perform tasks
and then suggests a schedule to other people who are work-
ing on similar tasks. A novel Progress Bar displays the sug-
gested schedule of incomplete tasks as well as the com-
pleted tasks. A large evaluation demonstrated that novice
users confronted with an email overload test performed
significantly better (a 37% better overall score with a factor
of four fewer errors) when assisted by the RADAR agents.

Author Keywords
Agents, email classification, email overload, intelligent
planning, learning, RADAR, task management.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces---Interaction styles, Graphical user interfaces (GUI);
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence---Intelligent agents, Multiagent systems.

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
Email plays a central role in the work of many people. Un-
fortunately email client software is poorly suited to support
the “collaborative quality of e-mail task and project man-

agement,” which results in people suffering from “email
overload” [2]. When faced with a large number of emails,
people can find it difficult to choose an order in which to
handle them. Possible strategies include handling each
email in the order received, scanning the list of email sub-
jects and senders for ones that appear to match various cri-
teria (important, quick to handle, and so forth), or using
filters to file emails into folders. The order in which emails
are handled can significantly affect the efficiency of the
strategy, since performing similar tasks together reduces the
overhead of switching between different types of tasks.
People find it difficult to create an efficient order when
sorting their inbox using email-centric properties, such as
sender, subject, or date, because sorting by those properties
will usually not group similar tasks together nor will it ac-
count for inter-task dependencies. Email threads can help in
some situations, and other times people can rely on
“crutches” such as asking senders to use a specific subject
line in the email. However in general, a person would need
to inspect each email, manually create task metadata, and
then generate an order for handling the emails. Several re-
search projects have explored adding task-management
features to email clients [2, 12, 23], and some email clients
do provide features that facilitate task management such as
tagging and separate to-do lists. The primary drawback of
this approach is that users resist doing that additional work
[24], and it forces them to read each email at least twice:
once when creating the tasks, then again to actually do the
task. Temporal factors further complicate email processing.
High priority emails might need to be handled independent
of efficiency concerns. Additionally, when time is tight
people must decide which emails to ignore.

We have developed a mixed-initiative email system, which
uses Artificial Intelligence (AI) learning techniques, to help
mitigate these problems and thereby reduce email overload.
We evaluated our system in an experiment in which
RADAR was trained by observing people who were not the
test participants. While this tests a situation where a novice
is filling in for an expert, we are also interested in how well
our techniques will help when a person is processing their
own email. The Email Classifier observes the types of tasks
an expert creates from emails and then learns a model that it
uses to automatically find tasks within new emails. Next,
the Multitask Coordination Assistant (MCA) observes ex-
pert users perform the tasks found by the Email Classifier.
The MCA uses these training observations to learn models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

61

describing how to efficiently perform a set of tasks. The
MCA uses these learned models to assist users working on
a similar set of tasks. Its advice includes a suggested order
for performing tasks and warnings when the user’s behavior
differs significantly from the expert’s behavior. This ap-
proach reduces the number of times a person has to read an
email and allows the tasks to be performed efficiently.

This mixed-initiative email system was a central feature of
the Reflective Agents with Distributed Adaptive Reasoning
(RADAR) project. RADAR was a large interdisciplinary
project to build a suite of intelligent agents that help office
workers complete tasks more efficiently. Over 100 faculty,
staff, and students worked on RADAR components includ-
ing the Email Classifier [25] and Multitask Coordination
Assistant, along with other components including a Natural
Language Processor [17], a Knowledge Base [7], a Sche-
dule Optimizer [9], a Webmaster [27], a Briefing Assistant
[15], and a Task Management Architecture [11]. Freed pro-
vides a more detailed description of the overall RADAR
approach, architecture, and agents [10]. We have previously
described some of the user interfaces in a case study on
usability issues for AI systems [8]. The current paper pro-
vides more details on the interface design and a significant-
ly more detailed analysis of the user study results.

A large-scale user test evaluated several versions of
RADAR over three years [19]. The test measured
RADAR’s performance using quantitative metrics acquired
through data logging, including an evaluation score that
summarizes overall performance along with qualitative
metrics collected with a post-test user survey [20].

The post-test user survey for the RADAR 1.1 system found
that RADAR’s AI had little impact on user perceptions of
the system. Although RADAR 1.1 included the Email Clas-
sifier, tasks were embedded as objects in each email. The
system also exhibited usability and performance problems.
It was hypothesized that the poor user interface was mask-
ing the potential benefit of the AI [20]. For RADAR 2.0, we
designed a mixed-initiative task-centric email client in
which the user’s inbox is augmented with a separate task
list. The post-test survey for the RADAR 2.0 study found
that the AI technologies now positively impacted user per-
ceptions of RADAR. In particular, participants were more
confident that they had done tasks well, had found tasks
easier to complete, and had been more immersed in the test.
These qualitative metrics were supported by a significant
improvement in the test’s evaluation score.

While participants were more successful at performing in-
dividual tasks, many still struggled to find an efficient order
for performing a group of tasks. We observed a wide va-
riance in performance including a long-tail of poor scores
from participants who struggled. To address this problem,
the RADAR 3.0 system introduced a task strategy compo-
nent called the Multitask Coordination Assistant. The MCA
proposes a schedule for performing tasks, emphasizes high-
ly-important “critical” tasks, recommends tasks to skip if

time is tight, and issues warnings if the user’s behavior de-
viates significantly from expert behavior. The results of
testing RADAR 3.0 showed another significant increase in
performance accompanied by a noticeable drop in variance.

These results suggest that adding AI technologies to inter-
active systems can benefit users, a conclusion that has been
met with skepticism within the HCI community [18]. While
some of the concern focuses specifically on anthropomor-
phic agent interfaces, a major complaint against interactive
AI is that it interferes with a user’s ability to easily predict,
control, and monitor the system’s behavior. When the AI
technologies make mistakes, will the user notice and correct
the errors? When the system does act correctly, will the
user notice what has been done? A related concern is that
people will have difficulty understanding why an intelligent
system made a particular decision or suggestion, which
might lower a user’s trust or confidence in the system.
However, the benefits of predictability and understandabili-
ty need to be weighed against the benefits of automation
[13]. A direct manipulation system can be slower and have
more errors than an intelligent system [21]. Predictability
and understandability are subgoals of the ultimate goal,
usable systems, and must be weighed against other subgoals
such as performance, which also impact usability.

RADAR makes specific contributions to address these is-
sues. The automatically detected tasks are presented in a list
view and in a detail view along with the original email mes-
sage, so that users can easily understand, check and perform
the tasks. The recommended ordering of the tasks is clear
from the sort order in the task view and in a novel Progress
Bar that shows future as well as completed tasks. Addition-
ally, RADAR is generally not allowed to take autonomous
actions when such actions would be visible to other people
or systems. RADAR has considerable flexibility to work on
the user’s behavior without risking costly mistakes that
might embarrass the user or leak private information.

A user study showed that the user interfaces presented the
AI assistance in a helpful manner: users who received AI
assistance performed 37% better compared with users who
did not. Additionally, users were able to recognize when
RADAR made errors, correctly handling 89% of the tasks
that the Email Classifier erroneously suggested. Overall,
these users incorrectly completed 2.6 tasks per user. In con-
trast, the users without AI assistance incorrectly completed
10.3 tasks on average, which accounted for 19% of the
tasks they did. This is a factor of four more errors.

RELATED WORK
Much task-management research has studied adding task-
management features to email client software [2, 12, 23]
and making it easy to move tasks from email client software
to dedicated task managers [21, 23, 27]. This work focuses
on email because users often use email client software as a
task manager since many tasks arrive as emails and the in-
formation necessary to complete a task is commonly con-

62

tained in the email as well. Hence, the inbox becomes an
informal to-do list [6]. Unfortunately, email applications are
not designed to perform the task-management duties that
users demand from them [24]. For example, when an inbox
collects a large number of emails, it can become difficult to
find information. Email software allows users to create
folders and email filters, label emails, perform searches,
and so forth. Unfortunately these features are not always
implemented in a way that makes task management easy
[23]. For example, Gwizdka found that most of the Micro-
soft Outlook users he studied did not use many of Outlook’s
features, such as the to-do list, email flags, reminder flags,
and journal [12]. Dedicated task-management applications
do not provide the answer to this problem since users dis-
like the tedious process of entering task metadata such as
dependencies, due dates, and priorities [1]. TaskMaster [2],
which did not use AI, took a hybrid approach like RADAR,
providing features of both email clients and task managers.

Task managers generally display to-do tasks in a list [1, 3,
16], as does RADAR. One notable exception is TaskView
[12], which displays future tasks within an email client by
arranging emails in a grid where time runs along the hori-
zontal axis and an email property, such as sender or subject,
runs along the vertical axis. However, TaskView requires
that task information be manually entered, whereas
RADAR calculates task priorities and orders tasks automat-
ically in both the Action List and the Progress Bar. Towel
[4], the user interface for the PExA time- and task-
management tool [16], allows the user to delegate tasks to
humans or software agents. RADAR automatically creates
tasks from emails and fills in the forms used to do the tasks.

The SmartMail system automatically identifies sentences in
emails that contain tasks and flags the emails in the inbox
[5]. However, it does not classify the tasks by type nor does
it add the tasks to a to-do list. RADAR implements both of
those features as part of its task-centric user interface.

The Priorities system used email headers, content, and reci-
pient availability to calculate the urgency of an email [14].
RADAR orders emails based upon the associated tasks,
which include information from the email.

TASK-CENTRIC EMAIL PROCESSING

Initial Contextual Inquiries
We began exploring how to address the email overload
problem by performing a set of contextual inquiries with
approximately two dozen office workers to understand the
problems that they encountered when handling their email.
We quickly saw a pair of roles emerge, which we labeled
Initiator, the person who needs assistance, and Human Ser-
vice Assistant (HSA), the person who can provide the help.
HSAs regularly received email requests that are performed
by filling out forms, so their work serves as a good example
for informing the design of the Action List interface. Ob-
servations of HSAs processing requests revealed that they
would regularly save a small set of related tasks and then

perform them together as a group. They claimed that this
saved them time by sharing the overhead costs of connect-
ing to different IT systems among multiple tasks.

Inspired by these observations, we designed the Action List
as a mechanism for transforming the processing of email
requests from the traditional email-centric workflow to a
task-centric workflow. This new perspective offered two
distinct advantages over current email systems for an HSA.
First, by providing a view of all tasks to be processed,
HSAs could focus on completing one type of task at a time.
We hypothesized that this would reduce the amount of con-
text switching taking place, allowing HSAs to work more
efficiently. Second, by interacting with a task-level view of
incoming requests, HSAs could better prioritize their work.

We employed an iterative design process, building multiple
working versions of the system. This approach helped us to
assess both what kinds of errors the agents would make and
to learn how well our users could recognize and repair these
errors. One important discovery from the usability testing
was that the term “action” works better than “task,” so we
used the former term in the user interface. However, we
will continue to use the term “task” throughout this paper,
except when referring to specific user interface elements.

The Action List
The Action List design supports a mixed-initiative interac-
tion style for creating and completing tasks contained with-
in emails. The Email Classifier examines the content of
each email for evidence that it contains any requests of the
eight known task types [25]. The Email Classifier dumps all
available tokens and knowledge features of the email into
one bag-of-words model and uses a regularized logistic
regression algorithm, which scales to thousands of labels
[26]. When it finds sufficient evidence for a given task type,
it applies the label for that task type to the email. The clas-
sifier considers the evidence that supports each task type
independently, and so it applies zero, one, or more different
labels to each email. However, it cannot determine if an
email contains multiple tasks of the same type. To improve
classification performance, Scone [7], which is RADAR’s
knowledge base, provides additional ontological informa-
tion that is not contained in the email’s content. Examples
include basic facts, such as “the Connan room is in the Uni-
versity Center,” and higher-level concepts, such as “a pea-
nut is kind of food that people might be allergic to.”

The RADAR evaluation uses novice users, who may have
difficulty effectively judging whether the email classifier’s
labels are correct. We were concerned that too many false
positives might confuse them, so we tuned the classifier to
favor precision over recall. An examination of the classifi-
er’s behavior showed that it did perform as desired. The
latest evaluation had 123 emails, which contained 102 task
labels. The classifier correctly found 47 task labels and in-
correctly suggested 6 other task labels (false positives):
precision = 0.887 (47/53) and recall = 0.461 (47/102).

63

For each task label applied to an email, RADAR creates a
task object, which is managed by the Task Manager [11].
Information stored includes the web form for that kind of
task, if applicable. As we observed for real-life HSAs, in
RADAR, many tasks require filling out web-based forms.
RADAR’s Natural Language Processor [17] attempts to
specify task-specific parameters in the form, including the
database record that the form should modify, if applicable.
If RADAR can identify the record, then it will also try to
fill in the other fields in the form. This novel integration of
a to-do list with the forms for completing the tasks removes
unnecessary steps from the process of performing a task.

The resulting tasks are displayed by the Action List, which
provides a task-centric view of the user’s email inbox (see
Figure 1). The Action List allows a user to inspect the tasks
that RADAR created, add ones that were missed, delete
ones that should not have been created, and launch web
pages to perform some of the tasks. The Action List con-
tains seven tables divided into two groups: the first for
tasks, and the second for emails (see Figure 1). The task
group contains four tables that list “Incomplete” (a), “Over-
flow” (b), “Completed” (c), and “Deleted” (d) tasks. Tasks
that the user has yet to perform are split between the In-
complete and Overflow table, with the latter table contain-
ing tasks that the MCA (to be described later) recommends
that the user should skip due to time constraints. An email
message will appear multiple times in the Action List if it is

associated with multiple tasks of the same type (a.ii and
a.iii), multiple tasks of different types (a.i and a.iv), or both.
Tasks completed by the user appear in the Completed table,
which provides the user with a record of their progress and
allows them to go back and revisit previous tasks.

The tabular task display allows the user to sort their tasks
with respect to task-centric properties such as “Description”
or “Order” (by clicking on the column title), in addition to
standard email-centric properties such as sender, subject,
and date. The “Description” column sorts tasks alphabeti-
cally by type and within each type by the date of the asso-
ciated email. When an email contains multiple tasks of dif-
ferent types, each of those tasks will be grouped with the
other tasks of the same type when the table is sorted by the
Description column. The other columns use a standard sort
order based upon their data type.

The second set of tables (e, f, and g) display emails that are
not associated with any non-deleted tasks. These tables are
designed like a traditional inbox, with columns for the sub-
ject, sender, and date. The row for each email includes an
excerpt from the beginning of the email body to help the
user determine whether an email contains a task without
opening the email. The user opens an email by clicking on
either the subject or the “Add an Action” link. The email
display includes the header and body sections along with
the list of tasks that the user can add to the email.

(a)

(a.i)

(a.ii)
(a.iii)

(a.iv)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: The RADAR Action List provides a task-centric view of an email inbox. The “Incomplete Actions” (a), “Overflow
Actions” (b), and “Completed Actions” (c) tables list the tasks contained within email messages, allowing the user to sort by

task-centric properties. The three email tables contain emails for which no tasks have been created (e, f, and g).

64

The emails are divided among the three tables. The “Possi-
bly Conference-Related Emails” table contains emails that
RADAR thinks may contain tasks but for which it could not
confidently identify the exact task type (e). This partial
classification focuses the user’s attention on emails likely to
contain tasks without risking errors that might result if
RADAR incorrectly classified the task as being of a par-
ticular type. The second table contains other emails that
RADAR did not identify as task-related (f). The third table
contains emails that the user deleted (g).

PROVIDING TASK ORDERING ADVICE
The evaluation of the RADAR 2.0 system showed that the
task-centric workflow enabled by the AI technologies helps
users. However, user performance varied significantly.
Based upon analyses of the data logs, we hypothesized that
some users had had difficulty finding a high-level strategy
for completing the work. The novice users likely lacked
meta-knowledge about tasks such as task importance, ex-
pected task duration, and task ordering dependencies. An
expert user with that knowledge should be able to make
good decisions about which tasks to work on at any given
time and which tasks to skip when time is limited.

The MCA, a new component for RADAR 3.0, was built to
address this problem by providing guidance about the order
in which to work on a set of tasks. The MCA was designed
to supports both near-term deadlines on the order of 1–8
hours, which would be encountered during a typical HSA’s
workday, and situations in which the amount of work ex-
ceeds the time allotted. The MCA learns task models upon
which the advice is based by passively observing experts
performing similar tasks. The MCA includes a novel visua-
lization called the Progress Bar (see Figure 2), which shows
a suggested schedule for performing incomplete tasks. The
MCA’s goal is to provide advice that improves performance
and reduces overall performance variance, hopefully cutting
off the long-tail of poor performance.

User Interfaces for Suggesting a Schedule
The primary advice provided by the MCA is a suggested
schedule, which specifies an order in which to perform out-
standing tasks. The MCA suggests which tasks to skip
when it calculates that not enough time remains to perform
all incomplete tasks. The MCA learns which tasks are gen-
erated after other tasks are completed, and so it also adds
such “expected” tasks to the schedule. Including the ex-
pected tasks in the schedule provides the user with a more
realistic understanding of upcoming work and eliminates
major changes to the schedule that would otherwise occur

when an expected task actually becomes necessary. Addi-
tionally, the MCA identifies “critical” tasks, which are par-
ticularly important for the user to complete. The suggested
schedule is displayed by the Progress Bar (see Figure 2) and
in the “Order” column of the Action List (see Figure 1).

The Progress Bar (see Figure 2) appears at the bottom of
the screen just above the Windows Taskbar and always
remains on top without obscuring other windows. Time is
represented on the horizontal axis, which in this case spans
two hours. An inverted black triangle and a vertical red line
represent the current time (c), which increases from left to
right. Each rectangular box represents a task. Task boxes to
the left of the current time represent completed (a) or de-
leted (b) tasks, providing a record of the user’s progress so
far. The width of a task box represents the time that the user
spent working on that task. The suggested schedule is vi-
sualized by the task boxes to the right of the current time.
The width of each of these task boxes represents the amount
of time that the MCA expects the task to require. Blue task
boxes represent noncritical tasks (g). Orange task boxes,
which are also slightly taller, represent critical tasks (f).
Gray boxes represent expected tasks (d); expected critical
tasks appear as taller gray boxes (h). The user can quickly
inspect any task by moving the mouse over its task box (e),
which updates the status bar at the bottom to show the
task’s description, status, actual/planned start time, ac-
tual/planned duration, and priority. That task, along with all
other tasks of the same type, is drawn with a thicker border
to allow the user to see where that type of task is distributed
throughout the schedule. Double-clicking on a task box
opens the corresponding task. The number of overflow
tasks, which are the ones the MCA proposes to skip due to
time constraints, appears at the bottom right.

MCA advice also appears in other parts of the RADAR user
interface. First, the Action List’s “Order” column shows the
position of each future task within the suggested schedule
(see Figure 1(a)). Only tasks in the “Incomplete Actions”
table are included in the suggested schedule; the “Order”
column is blank in the other tables. Sorting the “Incomplete
Actions” table by the “Order” column shows the schedule
as an ordered to-do list. Second, tasks that the MCA sug-
gests that the user skip are shown in the “Overflow Ac-
tions” table. Third, after the user completes or deletes a
task, RADAR redisplays the task’s form in a finished state
to provide feedback that the command succeeded. This con-
firmation screen also includes a link to the next suggested
task in the schedule, which allows the user to navigate to
the next task that the MCA recommends without having to

 (a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: The Progress Bar shows completed (a) and deleted (b) tasks to the left of the current time (c), and the suggested schedule

to the right. Noncritical tasks are blue (a, b, and g), critical tasks are orange (f), and expected tasks are gray (d and h). Details
about the highlighted task (e) are shown in the status bar at the bottom.

65

return to the Action List. Finally, the MCA displays popup
warning dialogs when the user significantly deviates from
the suggested schedule. The warnings are issued if the user
works on a critical task much earlier than experts did (Early
Critical), if the user has not yet started working on a critical
task by the time most experts had (Late Critical), or if the
user starts working on a critical task that is not the next
critical task on the suggested schedule (Wrong Critical).

Training the MCA
The MCA learned a model of expert behavior by passively
observing experts performing tasks using the same user
interfaces that test participants will later use. To train the
system, experts did the two-hour study using a version of
the system for which the MCA learning components were
watching rather than recommending. Other AI components
operated normally. For example, the Email Classifier had
analyzed the emails to identify tasks. The training used
three different email sets (none of which was the test email
set), which provided variability to prevent overtraining.

Since there were no actual experts for the test tasks, we
trained RADAR team members who had not worked on the
MCA to be experts. People with detailed knowledge of how
the MCA worked might behave in a way that aids the learn-
ing algorithm and hence would not be representative of real
experts. We taught the experts how to use the RADAR
components with the same instruction that novice test par-
ticipants received. Additionally, the experts had significant
exposure to the problem domain, detailed knowledge of
some of the fixed stimuli (for example, available buildings),
and were given more time to practice, all of which are con-
sistent with the idea that they have more experience per-
forming the test tasks. We also gave them some high-level
strategy advice that a real expert would know based on
knowledge of the scenario and evaluation methodology.

The primary goal of the MCA training process was to pro-
vide the MCA with an opportunity to infer the high-level
strategy from passive observations of experts using that
strategy to perform the two-hour study. The MCA learns
the following information. First, the average duration to
complete a task, along with the variance, is recorded per
task type. Second, the MCA identifies critical tasks, which
are tasks with a small number of instances and for which
the mix of tasks changes after the critical task is completed,
and computes an expected completion time for each critical
task. Third, it learns task phases, which are the mix of tasks
between critical tasks. Fourth, the MCA infers prerequisites
among task types by looking for transitions between task
types that are observed to occur with high probability. Each
high probability transition is encoded as a directed edge
within a partial ordering of the task types. Fifth, the MCA
learns a contextual task ordering, which predicts the order-
ing among individual tasks. Sixth, the MCA computes gen-
erate dependencies among task types, which are the ex-
pected number of tasks of each type created after the com-
pletion of a task, with self-looping edges being allowed.

Collectively, this information, which is computed using a
variety of statistical machine learning algorithms, forms the
MCA’s learned model of expert behavior.

Generating the Suggested Schedule
Given the learned model and the current collection of tasks
(both completed and incomplete) the MCA computes a
suggested schedule for performing the tasks within the re-
maining time. Its goal is to produce a schedule representa-
tive of how an expert would perform the same collection of
tasks. The process works as follows. First, the generate
dependencies are used to create expected tasks. Second, the
prerequisites (task-type ordering constraints) and output of
the contextual task ordering predictor (individual-task or-
dering constraints) are passed into an Advice Integrator.
Each constraint includes a weight that the Advice Integrator
uses to compare against other constraints to produce a con-
sensus schedule. The consensus schedule is a total ordering
of the incomplete tasks, including expected tasks. Third, the
Task Shedder [22] uses the learned task durations and task
importance, along with the observed user’s speed relative to
the experts’ speed, to decide which tasks to shed from the
consensus schedule. The Task Shedder’s algorithm general-
ly sheds noncritical and expected tasks while shortening the
planned duration of compressible tasks, but it never reord-
ers individual tasks. The Task Shedder outputs the sug-
gested schedule, which is presented to the user in the
Progress Bar and Action List user interfaces.

EVALUATION
We evaluated RADAR using a conference planning test to
determine how effective it is at assisting novice users based
upon learned models of expert performance. This section
describes the study design and then reports results from the
evaluation of the RADAR 3.0 system.

The Conference Planning Test
A key challenge was designing an evaluation that measured
how well RADAR reduced email overload. Since the
project was planned to run for several years, we wanted to
conduct carefully controlled, repeatable user studies that
would allow us to measure progress over time. We initially
considered designing an evaluation that used people’s ac-
tual email, but decided against it. Such an evaluation would
make comparisons difficult because of the vast differences
among people’s workloads. Additionally, any study would
have to carefully protect the privacy of both the participants
and those with whom they communicated via email.

Project members, in cooperation with external evaluators,
developed a system-wide user test to evaluate how well
RADAR’s user interface and AI technologies assist a no-
vice user. This section provides an overview of the test; a
complete description can be found elsewhere [19]. The
evaluation was designed to present participants with a chal-
lenging email overload workload that satisfied the follow-
ing criteria. First, the tasks should be heterogeneous, just

66

like in real-life. Second, some tasks could be handled
quickly, while others would require significant effort.
Third, dependencies should exist between some tasks, and
doing those tasks out of order should result in wasted work
or incorrect results. Fourth, email-centric properties such as
subject lines should not be very helpful for grouping similar
tasks or discerning efficient task orders. Fifth, users should
not be expected to finish the test within the allotted time, so
as to prevent ceiling effects in performance results.

The test presents participants with a simulated conference-
planning scenario. Participants assume the role of the con-
ference planner, filling in for the regular planner, Blake,
who is indisposed. The simulated four-day, multitrack con-
ference has keynotes, plenary talks, banquets, paper ses-
sions, poster sessions, workshops, and so forth. Participants
in our study must handle the outstanding conference plan-
ning tasks which have arrived in email, including many
requests from the conference attendees. Blake’s inbox con-
tains these emails, which can be categorized as follows:

• Scheduling: Participants must update the database of
event constraints (A/V requirements, meal preferences,
attendee availabilities, and so forth) and conference room
properties using an appropriate web form.

• Website: Attendees request changes to their contact in-
formation on the conference website. The participants
must also update the website with the latest schedule.

• Informational: Attendees request information about the
conference, generally concerning how the schedule has
changed. The participants must author a reply email.

• Vendors: Attendees specify meal preferences and A/V
requirements for events which then have to be forwarded
to vendors using the vendor’s web forms.

• Briefing: The conference chair requests a briefing sum-
marizing the participant’s progress at the end of the test.
The inbox contains just one such request.

Participants also must deal with a conference crisis, which
involves the loss of use of a significant number of rooms in
which conference events had already been scheduled. Par-
ticipants now need to find new rooms for the conference
and adjust the schedule such that each event is placed in a
room that satisfies the event’s constraints, such as capacity,
available equipment, seating arrangement, and so forth.

The tasks satisfy the criteria described earlier. Some tasks,
such as informational requests, can be handled in around a
minute, whereas other tasks, such as updating the confe-
rence schedule on the website, can take 15 minutes. Some
emails contained over 20 tasks. An example of an intra-task
dependency is that participants should handle the schedul-
ing emails before updating the schedule on the website.
Additionally, updating vendor orders requires submitting
requests and waiting for email responses.

The test emails included anonymized real emails and fabri-
cated ones, the latter necessary in part to make the emails
consistent with the simulated world [19]. A team of under-

graduate English majors was employed to create a detailed
backstory email corpus, independent messages detailing
one or more tasks, and noise messages, which were unre-
lated to the conference. The students were given a series of
story arcs, guidelines, and a handful of characters with
some specific assigned personalities (for example, formal,
annoying, and so forth). Each study used the same backsto-
ry email corpus. However, to increase the validity of the
tests, each study used a different email set of task and noise
emails. An outside consultant customized those emails for
each study. The consultant designed the emails to have
comparable difficulty and task distribution. Between studies
the stacks differed in the exact nature of the crisis—the
specific rooms and times lost—and the details of the other
email requests. These emails were kept secret until the test,
so AI components could not train on them.

The test is designed to be hard—and it is. Over the past
three years, approximately 400 people participated in the
four major evaluations of different versions of RADAR; an
additional 300 more people participated in interim evalua-
tions. None of these people, including RADAR researchers,
have been able to complete all of the tasks within the allot-
ted time. We therefore think this evaluation approximates
what a real person experiences, where it is often impossible
to handle in one sitting all the emails that are pending.

The email set for the RADAR 3.0 study had 123 emails, of
which 83 contained 153 tasks. The number of tasks is
greater than the 102 task labels mentioned earlier, since
some emails contained multiple tasks of the same type. The
other 40 “noise” emails were unrelated to the conference.

Method

Conditions
The test used a between-subjects design with a single inde-
pendent variable, Assistance, which had three levels: With-
out Learning, Without MCA, and With MCA.

In the Without Learning condition, most of RADAR’s intel-
ligent components were disabled. Specifically, the Action
List initially had no email-based tasks since the Email Clas-
sifier was disabled, all the MCA advice was disabled, and
the Progress Bar only showed the completed or deleted
tasks. The main differences from the Action List in Figure 1
were that the “Order” column, the “Overflow Actions” ta-
ble, and “Possibly Conference-Related Emails” table were
not displayed, and the action tables were initially empty.

In the Without MCA condition, all of RADAR’s AI compo-
nents were enabled except for the MCA. The Action List
contained the tasks that the Email Classifier found, and the
“Possibly Conference-Related Actions” table contained
emails. Again, the Progress Bar only showed the completed
or deleted tasks. This condition was similar to RADAR 2.0.
The main differences from the Action List in Figure 1 were
that the “Order” column and the “Overflow Actions” table
were not displayed.

67

In the With MCA condition, all MCA functionality was
enabled, as described in the previous sections.

Sessions
Each test session included up to 15 participants, who
worked independently, and lasted up to 4.25 hours. In the
first phase, which lasted 1.5 hours, participants learned
about the test and received hands-on training with the soft-
ware. After a break, participants started the two-hour testing
session, which included another break after one hour. Then
participants completed a survey and received payment, in-
cluding extra payments for achieving specified milestones.

Participants
Participants were recruited from local universities and the
general population using a human participant recruitment
website. Participants were required to be between the ages
of 18 and 65, be fluent in English, and not be affiliated with
or working on RADAR. The study included 23 participants
in the Without Learning condition, 28 participants in the
Without MCA condition, and 28 participants in the With
MCA condition. The number of participants varied among
conditions since not all sessions yielded 15 usable data sets
due to no-shows, participants who dropped out, participants
who failed to make a good-faith effort, and software crashes
or configuration issues that invalidated the data.

Results

Evaluation Score
An evaluation score, designed by external program evalua-
tors, summarized overall performance into a single objec-
tive score ranging from 0.000 to 1.000, with higher scores
reflecting better performance (for full details, see [10, 19]).
It was important that this score be tied to objective confe-
rence planning performance rather than a technology-

specific algorithm (for example, F1 for classification). This
technology-agnostic approach allowed us to compare per-
formance across conditions given any technology. The
score was calculated from points earned as a result of satis-
fying certain conditions, coupled with costs and penalties.
These included the quality of the conference schedule (for
example, constraints met, special requests handled), ade-
quate briefing to the conference chair, accurate adjustment
of the web site (for example, contact information changes,
updating the schedule on the website), costs for the rooms,
food, and equipment for the conference, and penalties for
requesting that others give up existing room reservations.
The score coefficients were two-thirds for the schedule,
one-sixth for website updating, and one-sixth for briefing
quality. On this measure, With MCA participants clearly
outperformed Without MCA participants, who in turn out-
performed Without Learning participants (ANOVA,
F(2,76) = 83.7, p < 0.0001) (also see Figure 3).

Assistance N Mean Std Dev
Without Learning 23 0.550 0.072
Without MCA 28 0.706 0.063
With MCA 28 0.754 0.035

A subsequent Tukey post-hoc test found that the three con-
ditions were significantly different from each other. All but
3 of the 28 With MCA participants earned higher scores
than the average score of the Without MCA participants.
Additionally, the standard deviation of the evaluation score
dropped 44% from the Without MCA to With MCA condi-
tion and the long-tail of poor performance in the Without
MCA condition disappeared, as we had hoped.

Email Classification and the Task-Centric Action List
We examined how well the task-centric user interfaces
helped participants evaluate the suggestions of the Email
Classifier. The following table lists the average number of
tasks for each outcome.

 Without MCA With MCA
True Positives (TP) 47.0 47.0
 Viewed 43.6 100.0% 38.4 100.0%
 Completed 38.4 88.0% 34.1 89.0%
 Deleted 2.0 4.5% 1.9 4.8%
 Ignored 3.3 7.5% 2.4 6.1%
 Not Viewed 3.4 8.6
False Positives (FP) 6.0 6.0
 Viewed 5.8 100.0% 5.3 100.0%
 Completed 0.7 12.3% 0.8 14.3%
 Deleted 2.7 46.9% 2.5 48.3%
 Ignored 2.5 42.6% 2.0 37.4%
 Not Viewed 0.6 0.7
False Negatives (FN)
 Completed 4.5 2.0
True Negatives (TN)
 Completed 4.3 1.8
FP & TN Completed 5.0 2.6

Figure 3: The evaluation scores show that the MCA
advice in the With MCA condition significantly im-

proved performance, reduced performance variation,
and eliminated the long-tail of poor performance.

68

Of the 47 correctly classified tasks (TP) that participants
inspected (Viewed), participants completed the majority of
them, and rarely erroneously deleted any. Additionally, of
the six incorrectly classified tasks (FP) that the participants
inspected (Viewed), participants deleted or ignored the vast
majority of them, only occasionally erroneously completing
one. However, participants did not complete many tasks
that the classifier missed (FN). They also created and com-
pleted some tasks when they should not have (TN: emails
that actually did not contain any tasks). The Without MCA
participants completed over twice as many TN compared
with the With MCA participants (4.3 vs. 1.8; t(54) = 2.5152,
p < 0.02). Overall, combining both commission errors (FP
Completed + TN Completed), the Without MCA partici-
pants incorrectly completed on average 5.0 tasks, and the
With MCA participants incorrectly completed 2.6 tasks.

In the Without Learning condition the Email Classifier was
disabled, so participants had to inspect emails to find tasks.
These participants correctly completed on average 43.7
tasks but incorrectly completed 10.3 tasks (equivalent to
TN); the errors accounted for 19% of the completed tasks.
While the With MCA participants made errors based upon
incorrect AI suggestions, the participants without the assis-
tance made up to four times more mistakes (10.3 vs. 2.6).

Effects of the MCA’s Task Strategy Recommendations
Since participants earned significantly better evaluation
scores in the With MCA condition than in the Without MCA
condition, we examined the completed tasks to see how
MCA advice may have impacted their scores.

The MCA identified five critical task types: “Optimize the
Schedule” (run the Schedule Optimizer), “Publish the
Schedule” (run script that updates the schedule on the con-
ference website), “Bulk Website Update” (change the same
type of information for many people on the website), “Re-
schedule Vendor Orders” (fix the vendors associated with
events that moved in the schedule), and “Send a Briefing”
(write a briefing for the conference chairperson). The fol-
lowing table shows the number of participants in each con-
dition who completed each of the critical tasks at least once.

Task Type Without
MCA

With
MCA

Optimize the Schedule 27 28
Publish the Schedule 27 28
Bulk Website Update 13 25
Reschedule Vendor Orders 3 6
Send a Briefing 25 28

The “Reschedule Vendor Orders” task takes about 30 mi-
nutes to complete so few participants in either condition
finished it. However, the percentage of correctly scheduled
vendor orders (a measure of partial progress on this task)
was significantly higher in the With MCA condition than in
the Without MCA condition (51% vs. 29%; t(54) = 2.3400,
p < 0.05). Additionally, the percentage of money wasted on
incorrectly scheduled vendor orders (another measure of

partial progress) significantly dropped in the With MCA
condition (30% vs. 66%; t(54) = 3.3061, p < 0.01).

Participants in the Without MCA condition completed more
total tasks (65.5 vs. 55.3; t(54) = 2.4770, p < 0.02) and
more noncritical tasks (54.0 vs. 44.9; t(54) = 2.671, p <
0.02) than the With MCA participants did. Yet, the With
MCA participants earned higher scores, because they did
the more important tasks rather than just doing more tasks.

The following table shows that participants generally com-
plied with the critical task warnings that the MCA issued.

Task Type Issued Complied %
Late Critical 93 83 89%
Wrong Critical 25 14 56%
Early Critical 1 0 0%
Total 112 97 83%

Compliance with the “Late Critical” warnings was high.
However, participants did not allows follow the “Wrong
Critical” alerts. Five of these participants seemed to be
averse to quitting what they were currently working on.
This could be exacerbated by the fact that participants are
instructed that critical tasks are special, and therefore they
might believe that finishing the current one is more impor-
tant than following the warning’s advice.

In the With MCA condition, the average position of a task in
the suggested schedule at the time that it was finished (ei-
ther completed or deleted) was 5.0. Finished tasks were in
the top position 21% of the time and within the top five
62% of the time. Since the Without MCA condition does not
provide a suggested schedule, we computed the position of
the task in the Action List when it was finished. In the
Without MCA condition, the average position of tasks when
it was finished was 11.6. Finished tasks were in the top po-
sition 18% of the time and within the top five 37% of the
time. Finally, we found no significant difference for the
number of times that participants followed the “next sug-
gested task” link (19.2 in With MCA vs. 17.8 in Without
MCA; t(54) = 0.3246, n.s.).

Discussion
The participants clearly found the AI systems helpful in
performing their tasks. They were able to understand the AI
component’s suggestions and override them when in error.
We looked for reasons why participants did not seem to be
following the MCA’s recommendation for the specific next
task to do. It appears that users often were skipping the top
one or two tasks over and over, suggesting that they did not
want to do those specific tasks for some reason. Thus, par-
ticipants were relying on the MCA to give them strategic
advice of an overall order, but felt comfortable looking
within the top few recommendations. This lends support to
our mixed-initiative user interface rather than one that just
presented the next task. Our pop-up alerts for critical tasks
also were successful in focusing the user’s attention on crit-
ical tasks they were ignoring in the other views.

69

CONCLUSION AND FUTURE WORK
Now that the RADAR techniques have proven so successful
in our lab study that simulated a HSA’s workload, we are
eager to transition these techniques to a real email system
with online learning. The main hurdle will be making the
AI components robust enough for use with real-world tasks
and emails, and integrating the AI technologies and the user
interface with the real forms that are used to perform the
tasks. Additionally, the HSA workload represents a subset
of the work performed by office workers, and we are inter-
ested to see how our techniques apply to other workloads.

ACKNOWLEDGMENTS
The authors thank Michael Freed, Geoff Gordan, Jordan
Hayes, Javier Hernandez, Matt Lahut, Pablo-Alejandro
Quinones, Nicholas Sherman, Stephen Smith, Fernando de
la Torre, Pradeep Varakantham, Jigar Vora, Yiming Yang,
Shinjae Yoo, and Gabriel Zenarosa. This material is based
upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No.
NBCHD030010.

REFERENCES
1. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G. and

Ducheneaut, N. What a To-Do: Studies of Task Management
Towards the Design of a Personal Task List Manager. Proc.
CHI, ACM Press (2004), 735–742.

2. Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. and Grin-
ter, R.E. Quality Versus Quantity: E-Mail-Centric Task Man-
agement and Its Relation With Overload. Human-Computer
Interaction 20, 1/2 (2005), 89–138.

3. Bellotti, V. and Thornton, J.D. Managing Activities with TV-
ACTA: TaskVista and Activity-Centered Task Assistant. Proc.
SIGIR Workshop on PIM, (2006), 8–11.

4. Conley, K. and Carpenter, J. Towel: Towards an Intelligent
To-Do List. Proc. AAAI Spring Symposium on Interaction
Challenges for Artificial Assistants, AAAI Press (2007), 26–
32.

5. Corston-Oliver, S., Ringger, E., Gamon, M. and Campbell, R.
Task-focused Summarization of Email. Proc. ACL Workshop
on “Text Summarization Branches Out”, Association for
Computational Linguistics (2004), 43–50.

6. Ducheneaut, N. and Bellotti, V. E-mail as Habitat: An Explo-
ration of Embedded Personal Information Management. inte-
ractions 8, 5 (2001), 30–38.

7. Fahlman, S.E. Marker-Passing Inference in the Scone Know-
ledge-Base System. Proc. KSEM, Springer (2006), 114–126.

8. Faulring, A., Mohnkern, K., Steinfeld, A. and Myers, B.A. The
Design and Evaluation of User Interfaces for the RADAR
Learning Personal Assistant. AI Magazine 30, 4 (2009), 74–84.

9. Fink, E., Bardak, U., Rothrock, B. and Carbonell, J.G. Sche-
duling with Uncertain Resources: Collaboration with the User.
Proc. IEEE SMC, IEEE Press (2006), 11–17.

10. Freed, M., Carbonell, J., Gordon, G., Hayes, J., Myers, B.,
Siewiorek, D., Smith, S., Steinfeld, A. and Tomasic, A.

RADAR: A Personal Assistant that Learns to Reduce Email
Overload. Proc. AAAI-08, AAAI Press (2008), 1287–1293.

11. Garlan, D. and Schmerl, B. The RADAR Architecture for
Personal Cognitive Assistance. IJSEKE 17, 2 (2007), 171–190.

12. Gwizdka, J. TaskView: Design and Evaluation of a Task-
based Email Interface. Proc. CASCON, IBM Press (2002), 4.

13. Horvitz, E. Principles of Mixed-Initiative User Interfaces.
Proc. CHI, ACM Press (1999), 159–166.

14. Horvitz, E., Jacobs, A. and Hovel, D. Attention-Sensitive
Alerting. Proc. UAI 1999, Morgan Kaufman (1999), 305–313.

15. Kumar, M., Das, D. and Rudnicky, A.I. Summarizing Non-
textual Events with a ‘Briefing’ Focus. Proc. RIAO, Centre De
Hautes Etudes Internationales D'Informatique Documentaire
(2007).

16. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M.,
McGuinness, D., Morley, D., Pfeffer, A., Pollack, M. and
Tambe, M. An Intelligent Personal Assistant for Task and
Time Management. AI Magazine 28, 2 (2007), 47–61.

17. Nyberg, E., Riebling, E., Wang, R.C. and Frederking, R. Inte-
grating a Natural Language Message Pre-Processor with
UIMA. Proc. LREC Workshop on “Towards Enhanced Inte-
roperability for Large HLT Systems: UIMA for NLP”, (2008),
28–31.

18. Shneiderman, B. and Maes, P. Direct Manipulation vs. Inter-
face Agents. interactions 4, 6 (1997), 42–61.

19. Steinfeld, A., Bennett, S.R., Cunningham, K., Lahut, M., Qui-
nones, P.-A., Wexler, D., Siewiorek, D., Hayes, J., Cohen, P.,
Fitzgerald, J., Hansson, O., Pool, M. and Drummond, M.
Evaluation of an Integrated Multi-Task Machine Learning Sys-
tem with Humans in the Loop. Proc. PerMIS, NIST (2007).

20. Steinfeld, A., Quinones, P.-A., Zimmerman, J., Bennett, S.R.
and Siewiorek, D. Survey Measures for Evaluation of Cogni-
tive Assistants. Proc. PerMIS, NIST (2007).

21. Stylos, J., Myers, B.A. and Faulring, A. Citrine: Providing
Intelligent Copy and Paste. Proc. UIST, ACM Press (2004),
185–188.

22. Varakantham, P. and Smith, S. Linear Relaxation Techniques
for Task Management in Uncertain Settings. Proc. ICAPS,
AAAI Press (2008), 363–371.

23. Whittaker, S., Bellotti, V. and Gwizdka, J. Email in Personal
Information Management. CACM 49, 1 (2006), 68–73.

24. Whittaker, S. and Sidner, C. Email Overload: Exploring Per-
sonal Information Management of Email Proc. CHI, ACM
Press (1996), 276–283.

25. Yang, Y., Yoo, S., Zhang, J. and Kisiel, B. Robustness of
Adaptive Filtering Methods in a Cross-Benchmark Evaluation.
Proc. SIGIR, ACM Press (2005), 98–105.

26. Yang, Y., Zhang, J. and Kisiel, B. A Scalability Analysis of
Classifiers in Text Categorization. Proc. SIGIR, ACM Press
(2003), 96–103.

27. Zimmerman, J., Tomasic, A., Simmons, I., Hargraves, I.,
Mohnkern, K., Cornwell, J. and McGuire, R.M. VIO: A
Mixed-initiative Approach to Learning and Automating Pro-
cedural Update Tasks. Proc. CHI, ACM Press (2007), 1445–
1454.

70

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	RELATED WORK
	TASK-CENTRIC EMAIL PROCESSING
	Initial Contextual Inquiries
	The Action List

	PROVIDING TASK ORDERING ADVICE
	User Interfaces for Suggesting a Schedule
	Training the MCA
	Generating the Suggested Schedule

	EVALUATION
	The Conference Planning Test
	Method
	Conditions
	Sessions
	Participants

	Results
	Evaluation Score
	Email Classification and the Task-Centric Action List
	Effects of the MCA’s Task Strategy Recommendations

	Discussion

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

