
Papers CHI 99 15-20 MAY 1999

Getting More Out Of Programming-By-Demonstration

Richard G. McDaniel and Brad A. Myers
HCI Institute, School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
{ richm, barn } @cs.cmu.edu

ABSTRACT
Programming-by-demonstration (PBD) can be used to create
tools and methods that eliminate the need to learn difficult
computer languages. Gamut is a PBD tool that nonprogram-
mers can use to create a broader range of interactive soft-
ware, including games, simulations, and educational
software, than they can with other PBD tools. To do this,
Gamut provides advanced interaction techniques that make it
easier for a developer to express all aspects of an application.
These techniques include a simplified way to demonstrate
new examples, called “nudges,” and a way to highlight
objects to show they are important. Also, Gamut includes
new objects and metaphors like the deck-of-cards metaphor
for demonstrating collections of objects and randomness,
guide objects for demonstrating relationships that the system
would find too difficult to guess, and temporal ghosts which
simplify showing relationships with the recent past. These
techniques were tested in a formal setting with nonprogram-
mers to evaluate their effectiveness.

Keywords
End-User Programming, User Interface Software, Program-
ming-by-Demonstration, Programming-by-Example, Appli-
cation Builders, Inductive Learning, Gamut.

INTRODUCTION
Gamut is an innovative tool for building interactive software
like games, simulations, and educational software. Much of
the effort involved in producing software in this domain is
not in programming the application’s logic but in providing
the engaging background, artwork, and gameplay that keeps
the users interested. Artists and educators who could pro-
duce such material are often unable to program computers.
Thus, tools which eliminate the burden of programming
while providing a wide range of capabilities are desirable.

Traditional development tools for producing interactive soft-
ware require extensive programming knowledge. Program-
ming graphics in common environments like Visual C++ or
Visual Basic can be difficult even for seasoned programmers.
Tools such as interface builders can help developers design
the visual appearance of an application but still require pro-
gramming to make the interface actually work. Application
builders such as Click & Create [3] eliminate programming
but impose severe limits on the kinds of programs that can he

Pem~ission to make digital or hard copieb of all or part of‘ this work l-or
personal or classroom use is granted without fee provided that copies
arc not made or distributed for proiit or commercial advantage and that
copies bear this notice and the full citation 011 the first page. ‘1‘0 CopV
otherwise, to republish, to post on serwrs or to redistribute to lists.
requires prior specific permission and!or a fee.
CHI ‘99 Pittsburgh PA USA
Copyright ACM 1999 0-201-48559-1/99/05...$5.00

442

created. Authoring tools like AuthorWare [l] or Director [S]
are similarly limited and cannot produce complex Ibehaviors
and player interactions without using their built-in scripting
languages.

One method for simplifying the programming process has
been programming-by-demonstration (PBD). Rather than
using a textual notation, the developer builds the program by
providing examples of the intended interactions between the
user and the application. Examples are demonstrated using
the same interface normally used to create and manipulate
the application’s data. The system uses the exampI& to infer
the developer’s intention and creates the code to execute the
program.

Our research is aimed at significantly improving and expand-
ing what can be accomplished using PBD. Gamu.t has the
ability to infer complex relationships through the use of
improved interaction techniques. The interaction techniques
allow the developer to give Gamut all of the required infor-
mation without resorting to a written programming lan-
guage. These interaction techniques provide several benefits:

l A simplified method for producing examples.

l An understandable way to create negative examples.
l The ability to give the system specific and direct hints.
l Objects and metaphors that can describe complex behav-

iors concisely.

DOMAIN
Gamut can create games and simulations similar to board
games. These are two-dimensional games with a board-like
background that uses playing pieces to represent the game’s
state. The domain extends well beyond Chess and Monop-
oly, however. By having objects react autonomously and by
adding player interaction, one can create video game behav-
iors such as moving monsters and shooting aliens. Educa-
tional games like Reader Rabbit [161 and Playroom [6] and
video games like PacMan can all be made using Gamut.

The board game domain provides several challenges for a
PBD system:

l The created games are interactive and require player
input. Some PBD systems only assist in editing static
data such as a text document.

l Board games have a large number of states and modes.
Game behavior can be triggered by a variety d events
and can have complicated relationships.

CHI 99 15-20 MAY 1999 Papers

Figure 1: Gamut’s main window. On the left are the tool palette and
mouse icons. Along the bottom is the behavior dialog area.

l Relationships between objects and actions are often
formed as long chains of other relationships which build
upon each other.

For example, the destination square where a piece is moved
in Monopoly could be described as “the square that is the
dice’s number of squares away from the square where cur-
rent player’s piece currently resides.” This description
depends on the configuration of the board, the number on
the dice, and the player whose turn it is. Each object in the
relation forms a link in the chain. Furthermore, an object
such as the turn indicator is not necessarily graphically or
temporally connected to the other objects. Current PBD sys-
tems cannot infer this form of relationship.

Gamut can be taught the rules of a game, but generally can-
not create computer opponents. The difference here is the
difference between rules and strategy. Playing a complex
game well requires strategy which is often not easily
encoded as a set of rules. Gamut is designed to assemble
games for humans to play, not to play the games, itself. The
developer has to show the system all relationships upon
which a behavior depends.

EXAMPLE
To motivate the design of Gamut’s interaction techniques,
we will show how to build the simple board game applica-
tion shown in Figure 1. This game was also used as a task in
the usability study discussed later. In the game, two pieces
colored red and blue follow the path of squares around the
edge. The first piece to reach the end wins. The pieces alter-
nate turns and move the number of spaces as shown on the
die in the center. As an added complication, whenever one
piece lands on another, the landed-on piece must go back to
the beginning.

As each of the following interaction techniques is presented,
we will show how the developer uses that technique to build
this board game.

INTERACTION TECHNIQUES
The key to Gamut’s interaction techniques is that the devel-
oper can demonstrate not only the surface activity of the
interface, but the semantics behind that activity. The tech-

niques allow the developer to express all the relevant rela-
tionships of an entire application. The techniques can be
divided into three categories: developer generated objects,
such as guide objects, cards, and decks of cards; interaction
methods, which includes nudges and hint highlighting; and
system generated objects, such as temporal ghosts.

Guide Objects
Guide objects are graphical objects and widgets that are vis-
ible while the developer is creating an application but are
hidden when the application runs. Gamut supports two
kinds of guide objects. The first is derived from Maulsby’s
Metamouse [9] and Fisher et al’s Demo II [4] which
allowed certain graphical objects to be made invisible on
demand. Onscreen guide objects show graphical relation-
ships between other objects on the screen, visible or invisi-
ble. Onscreen guide objects can be used to demonstrate
distances, locations, and even speeds.

For instance, in the example game, the path that each piece
follows around the board can be represented with arrow line
guide objects as shown in Figure 2. Guide objects are drawn
in pastel colors so they will be distinct from application
objects. At any time, the developer can make the guide
objects invisible by switching a mode. Without the path, the
system would not know how the squares around the board
were connected, and might not even be able to see that the
squares exist at all. Allowing the developer to draw the
graphical connections saves the system from having to pro-
vide sophisticated machine vision heuristics to achieve the
same effects.

Figure 2: The developer uses arrow lines as guide objects to repre-
sent the path the pieces follow.

Other guide objects are placed offscreen. The player’s view
is shown as a blue window frame in the middle of the devel-
oper’s drawing area as seen in Figure 1. Objects that are
drawn outside of the blue frame cannot be seen by the
player and are offscreen. Offscreen guides objects are used
to represent the application’s data that is not stored directly
on the board. Timers, counters, toggle buttons, and other
widgets are all used as offscreen objects.

In our example game, the developer needs to represent the
player turn order. The developer decides to use a checkbox
and places one outside of the frame window and labels it
“Red’s Turn.” (In the Motif look-and-feel, a “checkbox”
looks like a raised or lowered rectangle next to a text label.)
The widget begins with its checkmark on.

The purpose of guide objects is to enable the developer to
show relationships that are nearly impossible to infer. In AI,
this is called the hidden object problem [IS]. A hidden
object is a dependency or variable upon which a behavior
depends that is not included as part of the application’s visi-

443

Papers CHI 99 15-20 MAY 1999

ble state. Gamut cannot infer hidden objects without the
developer’s help because it has no way to determine what
such objects could be. The number of possible things a hid-
den object could be is virtually infinite. However, it is possi-
ble to recognize when a relationship requires more than the
developer has shown. Gamut’s inferencing algorithm can
detect when relationships have not been fully specified and
asks the developer to tell the system about missing objects.

Deck Widget
Cards and decks are the two major data structures in Gamut.
Many modem board games use decks of cards to simulate a
large variety of behaviors. In games like Monopoly, cards
are a source of random events like the Chance deck as well
as the means for storing game state such as knowing which
player owns each property. In Gamut, decks may be used to
represent lists of numbers, objects, colors, etc., and they
provide a randomization feature (shuffling) which is useful
for constructing random behaviors.

A deck may also be used to produce video game behaviors.
For example, a deck can provide alternating images for an
animated character. To make a character move randomly, its
position can be tied to a deck containing an arrow for each
direction that gets shuffled each time the character moves.

Gamut’s deck of cards is not the same card metaphor found
in HyperCard [7]. In HyperCard, cards are the whole appli-
cation. In general, a HyperCard “stack” is a set of screen
displays with links between them to denote the method and
order in which displays are presented. A Gamut deck is a
widget within the application. To use a deck in Gamut, one
drags objects into it. The deck will store and maintain the
order of all objects it contains.

Figure 3: The card and deck editor. This shows the contents of the
deck in Figure 1. Each face of a die is presented as a card. The cur-
rent face is shown in the main drawing area.

Card Widget
Gamut’s card widget acts as a large drawing surface, inde-
pendent from the main window. Naturally, cards may be
placed in decks, but they can also be used on their own. The
developer uses Gamut’s card editor (see Figure 3) to draw
on a card. The raised frame in the card’s drawing area shows
what is visible within the card’s widget. Objects drawn out-
side the visible region act as offscreen guide objects similar
to offscreen objects in the main window.

In the example game, the developer uses a deck I:O represent
the die in the center of the board (see Figure 1). The deck
editor shows each item in the assembled deck which in this
example is a set of cards each representing a face of the die
(see Figure 3). The developer can demonstrate “rolling” the
die by shuffling the deck. In the drawing portion of the deck
editor, the developer draws the pips for each face in the
card’s visible region. Below the visible region, the devel-
oper adds a number box and types the numeric value of the
die face. By including the number box, the system will not
have to count the dots in order to infer the value of the card.

Demonstrating Behavior
Gamut introduces a new way to demonstrate behavior
which we call nudges. The idea is that when the system
makes a mistake or needs to learn new material, the devel-
oper gives the system a “nudge” telling the system immedi-
ately where it went wrong. In other words, when the
application is supposed to do something but does nothing,
or does something when it is not supposed to, the developer
nudges the system and corrects the behavior.

Gamut defines two kinds of nudges. The first is called “Do
Something.” The developer uses Do Something to demon-
strate new behaviors. When the developer sees the system
miss a cue, the developer pushes the Do Something button.
The system then becomes ready to accept the developer’s
new example permitting the developer to modify the appli-
cation’s state appropriately.

The second nudge is called “Stop That” which tells the sys-
tem that one or more objects did something wrong. The
developer, when noticing a deviant action, s.elects the
affected object and presses the Stop That button. The system
immediately undoes all actions just performed. on that
object. If the object was supposed to do nothing, the devel-
oper is finished at this point. If the object was supposed to
perform a different action, the author may modify objects to
show the system the correct behavior.

In our example, the developer wants to demonstrate that
when the player pushes the application’s “Move” ‘button, the
game will respond by moving the current player’s piece.
The developer first pushes the Move button (it is to the left
of the die in Figure 1). Though the developer pushes the but-
ton, the application will do nothing because no behavior has
yet been demonstrated. So the developer pushes Do Some-
thing at which point the system prepares to accept a new
example. The system displays temporal ghosts to show how
objects have changed from the previous state, activates hint
highlighting so the developer may give hints, and presents a
dialog asking the developer to complete the example and
press the Done button when complete.

The application is supposed to roll the die and move the
piece the corresponding number of places. It also must
update the player turn. The developer pushes the “Shuffle”
button on the die’s deck, moves the red piece the corre-
sponding number of squares, and toggles the turn. indicator
to be unchecked. The view would now look like IFigure 4a.
At this point, before pressing “Done” to finish the (example,
the developer should give the system hints.

444

CHI 99 15-20 MAY 1999 Papers

Figure 4a: The developer has just moved the red piece which used
to be in the middle of the top row. The red piece’s ghost shows
where it was.

Figure 4b: The developer has highlighted the arrow lines, die, and
ghost of the toggle switch as hints.

Hint Highlighting
A “hint highlight” is a special form of selection where the
author points out key elements that are important to a dem-
onstration thereby focusing the system’s attention on those
objects. Maulsby implemented a similar feature in Cima
[lo] by having the user select a word or phrase and use a
menu command to make it a hint. Hints are used to reduce
the size of the inferencing algorithm’s search space. The
number of features upon which a single relationship may
depend can be immeasurably large. Finding the correct fea-
tures can require an exponential amount of search time
without hints. Providing hints can reduce the search to near
constant time.

In Gamut, the developer highlights objects as hints by press-
ing the right mouse button over them. Gamut marks hinted
objects with green rectangles. Highlight marks around lines
are seen as a thin rectangle that follows the line’s direction
as seen in Figure 4b. Highlighting is different from normal
selection which is caused by the left mouse button and pre-
sented as a conventional set of square handles. (The circle
on the right of Figure 4a and b is selected.) Selection is used
to move, resize, and recolor objects. Since it is common for
the developer to want to hint highlight an object and still
perform other operations, highlighting is made an indepen-
dent operation from selection.

In the example, the developer knows that the path of the
piece is important as well as number shown on the die; so,
the developer highlights the lines in the path and the die
object. The developer will also need to highlight something
that shows what value to set the current player checkbox.
The checkbox only toggles back and forth between true and
false so its only dependency is its own value. Thus, the new
value of the checkbox depends on its original value. To
highlight the original value, the developer highlights the
checkbox’s temporal ghost which is shown on the right in
Figure 4b.

Temporal Ghosts
A common problem for hint highlighting arises when the
objects that need to be highlighted do not exist anymore.
Interactive games are dynamic: objects are created, moved,
and destroyed constantly. Temporal ghosts are a technique
for keeping objects that change onscreen so that they may
be highlighted. Ghosts also make the recent past visible so
that the author can understand what changes have occurred.
Though the concept of ghost objects is not new, Gamut is
the first to use it for PBD.

Gamut displays temporal ghosts as dimmed, translucent
images of objects seen in their past state. If an object is
moved, a ghost will appear in the object’s original position.
If the object changes color, the ghost will appear directly
below the object but offset so the developer can still see it.

When the developer toggles the turn indicator in the exam-
ple, a ghost appears below it, offset to show that it used to
be checked (see the right portion of Figure 4a). The devel-
oper highlights this ghost to show that its value is important.
Gamut will be able to see that the new value is different
from the old value and use that to describe how the toggle
changes. Finally, the developer pushes “Done” because the
example is finished.

For the second example, the developer pushes the “Move”
button again. The system is able to incorporate enough
information to know how far to move the pieces but it does
not know that it is supposed to move the blue piece and so it
moves the red piece. The developer notices that this behav-
ior is wrong, selects the red piece and presses “Stop That.”
Gamut immediately undoes the move action performed on
the red piece. Stop That places the system into the same
mode as Do Something so temporal ghosts are dispIayed
once again and hint highlighting is made active. The devel-
oper moves the blue piece the correct number of spaces and
also changes the player turn indicator if the system did not
already do so. When finished, the developer presses “Done.”
This time, the developer did not highlight any objects. As a
result, when the system finds ambiguities, it will ask the
developer questions in order to resolve them.

Question Dialogs
Questions occur when the system finds a contradiction or
suspects that there is a relationship where an object was not
highlighted. The system will generate one question at a time
in the behavior dialog region of the window. The questions
ask about the objects or values that are immediately affected
by the behavior. Developers have three choices for response.
First, they may highlight the object upon which relationship
depends and press the “Learn” button. The system then tries
to incorporate this new information to generate a descrip-
tion. Second, they may choose the “Replace” button in order
to directly replace the old value with the new. Replace is
used to correct mistakes or to modify a behavior from its
original form. Finally, the third button is called “Wrong”
and is used in cases where Gamut asks a question that
makes no sense. Gamut generates its questions using heuris-
tics which can sometimes fail. The Wrong button tells the
computer that it has generated a bad question and that it
should try a different line of reasoning.

445

Papers CHI 99 15-20 MAY 1999

In the developer’s second example in the example applica-
tion, the system sees the blue piece move instead of the red
piece but it does not know why. The system asks the devel-
oper to highlight the object that best describes why the blue
piece has moved and not the red. The developer highlights
the ghost of the turn indicator and presses Learn. Highlight-
ing the turn indicator tells the system that the blue piece
moves when the checkbox is unchecked. To finish this por-
tion of the example, the developer would need to test the
Move button one more time and correct the system (without
needing further highlighting) to complete the behavior.

Mouse Input Icons
The example application does not directly use mouse input
in the window since the button widget handles the mouse
automatically. However, it is worth mentioning how demon-
strating mouse events is accomplished in Gamut. Gamut has
a palette of mouse events below the main tool palette (see
Figure 1). To create a mouse event, the developer selects an
event and drops it onto the window as though it were a
graphical object. This allows the developer to demonstrate
mouse events without entering a special mode. The system
will respond as though the player had just produced the
selected event. Keyboard and other sorts of events, though
not implemented, could be included in a similar way.

Gamut uses the same icons to represent mouse events as we
used in our Marquise system [14]. Clicking events are
shown with an arrow pointing up as well as down whereas
button down events only point down. Double clicks are
shown as two arrowheads pointing down and movingldrag-
ging uses a wavy line. The icons are shown in Figure 5.

Figure 5: Icons that are used to represent mouse events.

Contrasting Nudges With Other Systems’ Techniques
In an abstract sense, Do Something and Stop That represent
positive and negative examples. New demonstrations are
positive examples and are performed using Do Something.
Stop That signifies a negative example since it asks that no
action be performed in that given instance. Evidence from
Frank [5] suggested that developers found negative exam-
ples difficult to understand, but we suspect that those users
had difficulty with the demonstration techniques in that par-
ticular system. Frank’s system and others require the devel-
oper to demonstrate negative examples using special modes.
This requires the developer to understand a priori when a
negative example is required and it draws attention to the
example instead of to the behavior that it represents.

With nudges, the developer stays focused on the behavior of
the application. Each nudge provides an incremental
improvement to the behavior that the developer is testing.
The developer does not have to know whether a particular
example is positive or negative, and must only tell the sys-
tem when objects are not behaving correctly.

Negative examples permit the learning of disjunctive logic
statements which in turn permits program structures such as

if-then statements to be learned without the author having to
create conditions by manually changing the inferred code.

Another advantage of nudges is that they reduce the number
of system modes. Some PBD systems require a separate
recording mode to enter stimulus events. This is part of the
Stimulus/Response mode distinction used in various system
including Pavlov [19]. A Stimulus/Response style: interface
is normally implemented as an extended macro recorder.
With a macro recorder, pressing “record” causes the system
to record all subsequent actions. “Playing” the macro later
will execute those actions in a new context. An extended
macro recorder adds an extra stimulus phase where the
developer demonstrates the event of the behavior.

Revising behaviors can be more tedious using the extended
macro recorder technique than Gamut’s nudges approach.
Since the macro recorder requires the developer to perform
the event during the stimulus recording phase, the developer
must know beforehand what he or she intends tlo demon-
strate. If the developer were to find a problem while testing
the application, the stimulus event that occurred during the
test would have to be recreated for the macro recorder. Fur-
thermore, the initial state for all the objects involved would
have to be reset. With the nudges approach, the (developer
can create new examples as the need occurs. Whe:n a prob-
lem appears during testing, the developer can imlmediately
nudge the system and use the current application Istate in the
example.

INFERENCING
To manage the various interaction techniques, Ga.rnut needs
an inferencing algorithm that can understand them. The
algorithms must handle multiple examples inc:rementally
while incorporating hint highlighting of various objects,
guide objects, and temporal ghosts. Furthermore, the algo-
rithms must be able to generate the behaviors characteristic
of board games like chains of relationships with c:onditional
components. For a more complete description of Gamut’s
inferencing algorithm see our previous paper [111.

Gamut’s action language is based on the commcznd object
structure found in Amulet [13], the development environ-
ment used to implement Gamut. A command ob.ject repre-
sents an atomic action such as Move, Create, Cut, Copy, and
Paste. In Amulet, user actions are queued onto an undo his-
tory which Gamut uses as the input to the first stage of infer-
encing (see Figure 6).

Task

Data

Stage 1

Convert to
actions

Stage 2 Stage 3

Match original and Assemble
example actions behavior

9

B+fiL

Example
Original

And/Or tree
actions

actions
of changes

I

Final
behavior

Figure 6: Stages in Gamut’s inferencing algorithm.

In the first stage, the commands from the undo history are
reduced to a canonical form which removes repetition and

446

CHI 99 15-20 MAY 1999 Papers

order dependencies. The events found in the undo list are
often complicated. A group command, for instance, not only
creates a group object but also moves and reparents the
objects being grouped. This stage converts the events into a
small set of basic actions. This reduced set of commands is
passed on to the matching stage.

The matching stage uses a plan recognition algorithm as its
basis [181. If the application already has behavior defined
for the event being demonstrated, the old behavior is used as
a template for recognizing features in the new example. (If
there is no previous behavior, the algorithm moves to stage
three.) The algorithm can follow chains of descriptions in
the original behavior and determine which of the parameters
should be changed in order to make the old behavior per-
form the actions in the new example. Output from this phase
is the set of differences from the existing behavior and the
new example. The set of changes is captured in an And/Or
tree which represents the various ways the changes might be
applied. And-nodes represent changes that must occur
together while Or-nodes are used to store alternatives.

The final stage of inferencing resolves the differences found
in stage two and describes new parameters. This stage uses
the objects highlighted by the developer to search for
descriptions which resolve differences stored in the And/Or
tree. The algorithm employed by this phase is heuristic and
is based on the algorithm in Marquise [14]. When Gamut
does not find a suitable description, it asks the developer a
question in the behavior dialog. The text of the question is
based on the current unresolved difference and refers to the
value in the original behavior, the new value in the example,
and some context information stating what the value affects.
The developer is asked to highlight the appropriate objects
to answer the question.

If Gamut still fails to find a suitable description, it will use a
decision tree to choose between the old and new values. The
precise way that Gamut applies decision trees is beyond the
scope of this article. The basic idea is that Gamut generates
attributes for the decision tree algorithm using the objects
the developer highlights. The algorithm (specifically ID3
[15]) will, in turn, decide which attributes to apply and in
what order. This allows Gamut to generate conditional
expressions with objects that are not directly affected by the
behaviors they control.

USER TESTING
We tested Gamut under formal conditions to see how well
the techniques would be understood by nonprogrammers. In
a short three-hour session, the test participants had to learn
the system and build two tasks using Gamut. One partici-
pant was also invited back to attempt a third task which was
longer and required mouse input. Overall, Gamut performed
fairly well. Three of the four participants were able to com-
plete the tasks and the one person who attempted the third
task completed it as well.

Participants
The study’s participants were contacted through electronic
bulletin boards and email at Carnegie Mellon University.
The subjects were required to be nonprogrammers. Specifi-
cally, the subjects were allowed to have taken a low-level

class in programming, but were not allowed to program
computers for a living or as a hobby. Participants were
required to be familiar with typical computer interface met-
aphors as well as drawing editors.

Tasks
In the three hour sessions, the participants had to complete
an hour-long tutorial and two tasks. We asked the partici-
pants to use a “think-aloud” protocol [171 to articulate their
thoughts. The sessions were videotaped and an experi-
menter was present to answer the participant’s questions.

The first task was based on a matching test similar to some
educational games like Reader Rabbit and is shown in Fig-
ure 7. It was called Safari and it consists of two decks of
cards. One contained a list of animals like “Zebra,” and the
other contained a list of questions about animals like “Does
it have stripes?” The goal of the task was to put guide
objects into the deck that would tell Gamut the correct
answers and to demonstrate the behavior of a pair of buttons
labelled “Yes” and “No.”

The second task was the board game task that we used in
this paper as an example and can be seen in Figure 1. The
participants did not have to draw the board or create the die,
but did have to create guide objects to represent the path the
pieces followed, create something to represent the turn indi-
cator, and demonstrate all the behaviors.

The third task which only one participant attempted was
based on the video game Q*bert and is also shown in Figure
7. It had a character which jumps from cube to cube in a
pyramid and collects objects. There is also an enemy ball
which falls down from the top of the pyramid in random
directions. The third task required a longer time to complete
than the others so it had its own session. The participant was
given a shortened tutorial which described the new interac-
tion techniques required in the third task.

Observations
The purpose of the study was to see whether nonprogram-
mers could use Gamut to demonstrate behavior. Few PBD
systems in the past have ever been tested with actual users
so we were mostly interested in proving that PBD could
actually work.

As shown in Table 1, each participant used a different set of
Gamut’s techniques in order to complete the tasks. For
instance, some participants preferred to use Do Something
exclusively, others preferred to use Stop That. Only one par-
ticipant was unable to learn enough of Gamut’s techniques
to build the applications.

One of the problems the participants had concerned high-
lighting ghost objects. Most participants showed a peculiar
reluctance to highlight a ghost object. Several preferred to
highlight the original object and not its ghost even though
the original was modified and displayed a different state
from what the participant wanted the system to learn. The
“Highlight Ghosts” line on the table shows that only one
participant was truly comfortable highlighting ghosts while
the others would choose not to most of the time.

447

P a p e r s CHI 99 15-20 MAY 1999

The most significant problem we discovered in Gamut con-
cerns guide objects. Developers were always reluctant to
create guide objects to use in their demonstrations. The pilot
study showed we had to include specific instructions to tell
the participant to draw guide objects. However, once told,
participants were usually able to create objects that were
suitable for the task they needed to demonstrate. The only
successful participant who had difficulty creating guide
objects after being told to do so was P4. It turns out P4 even-
tually did create all the needed guide objects, but only after
asking the experimenter so many questions that it was not
clear whether P4 had designed the objects herself or
whether the experimenter had given away the answers.

A problem that all participants shared (though to different
degrees) was highlighting inappropriate objects as hints
when Gamut asked a question. Gamut requires that the
developer provide a hint when it asks a question, but there
seemed to be situations where certain objects were consid-
ered too obvious to highlight. Ghost objects seemed to be
one instance. Visual paths and lines connected to objects
seemed to be another.

When the system needed to have an object highlighted that
was too obvious for the participant’s taste, the participant
would often choose to highlight an object which had a less
obvious connection to the behavior. Gamut is designed to be
resilient to badly highlighted objects so the participant usu-
ally had multiple opportunities to answer the same question,
though the system’s performance becomes considerably
worse each time the participant gives a bad hint. Eventually,
most participants would highlight the appropriate object and
the system could proceed.

I t e c h n i q u e s IPl IP2IP3IP41

Do Something

Stop That

X X

X

Player Mouse Icons* X
I I

Table 1: Different participants learned and used different sets of
Gamut’s techniques. All participants except the first were. able to
successful complete the tasks.

* Only participant two was given a task that required the Mouse
Icons to complete.

The Cards and Decks and Player Mouse Icons lines of the
table show that two participants used decks in their tasks
and one used the mouse icons. The first two tasks came with
decks of cards already prepared. All participants had little
difficulty using the decks. However, P2 and P3 created and
used an original deck of cards as their own widget. The
Player Mouse Icons were only needed for task 3 and were
only used by P2 who had little trouble.

It is not entirely clear why P1 was unable to use the system.
According to the participant’s own comments, he was “too
tired” to learn how the system worked. The poor result may
have simply been due to fatigue from a long day at work.
The sorts of errors P1 would make were mostly caused by
forgetting how to demonstrate using nudges. For instance,
sometimes he might not demonstrate the event for the exam-
ple and sometimes he would not push Do Something or
Stop That.

RELATED WORK
A number of tools exist for building games. Most construct
a specific class of games such as Bill Budge’s Pinball Con-
struction Set [2] which makes pinball simulations. A recent
product is Click & Create [3] in which the developer first
draws the game objects and classifies each as background,
characters, or other objects. Then the author assigns behav-
ior to the characters by picking from a list of stock behav-
iors. These behaviors can be customized by changing some
parameters, but the author is limited to the built-in methods.

Gamut most resembles our previous system, Marquise [141.
Like Gamut, Marquise’s goal was to create whole applica-
tions. Marquise had the ability to recognize palettes of
objects and could quickly infer operations such as selecting
and dragging. Marquise’s major deficiency was an inability
to correct guesses by demonstration. It also had a limited set
of expressions for describing objects and locations which
caused it to make poor inferences. The only means for cor-
recting the system was editing the inferred code using a set
of unwieldy dialog boxes.

PBD systems such as Wolber’s Pavlov [19] and Frank’s
Grizzly Bear [5] have shown that simple heuristics can be
used to infer many forms of graphical constraints and sim-
ple behaviors. Both of these systems infer linear relation-

CHI99 15-20 MAY 1999 Papers

ships between objects with numeric parameters (like an
object’s screen position). Unfortunately, linear constraints
cannot be used to infer conditional expressions based on
modes and many other kinds of behavior needed to build
whole applications. Pavlov requires users to annotate their
demonstrated behaviors with conditional guard statements
in order to overcome these problems.

Gamut’s inferencing ability is similar to Maulsby’s Cima
system [lo]. Cima also has the ability to learn from hints
and can learn concepts incrementally. Cima’s description
language is not as powerful as Gamut?. Cima’s statements
are restricted to logic statements in disjunctive normal form
(DNF) which it uses to recognize passages in a body of text.
Also, Cima currently cannot do work on behalf of the user:
it just recognizes strings of text.

STATUS AND FUTURE WORK
Gamut is implemented using Amulet [12] and will run on
Unix, Windows, or the Macintosh. Gamut is a prototype
system implemented as the first author’s thesis project. It is
not a commercial software product and it is not available for
release except for research purposes. Though Gamut is
functional, more work would be needed to make it usable
for typical developers.

We have used Gamut to demonstrate behaviors that other
systems cannot produce. For instance, we have created a
Turing machine emulation, complete Tic-Tat-Toe and
Hangman games, various video game behaviors such as a
PacMan-like monster. Behaviors from educational games
such as matching words as in Reader Rabbit have also been
created. Thus, Gamut has been used to demonstrate a broad
range of behaviors without resorting to a written program-
ming language at any point.

Though Gamut’s input techniques work well, the interface
still needs to provide better feedback. Currently, the system
has only the behavior dialog to tell the developer about the
behavior being demonstrated. More work is needed to
inform the developer about what the system knows and what
it can infer. The system needs to note graphical constraints
and to have a dialog mechanism for displaying the inferred
code in an understandable format.

CONCLUSION
Gamut has the ability to infer complex behaviors which can
be used to build complete interactive applications. This new
capability derives from an innovative collection of interac-
tion techniques coupled with inductive learning algorithms
that can take advantage of the techniques. The nudges inter-
action simplifies example recording and provides a simple
manner to create negative examples. Hint highlighting is a
means for improving the system’s guessing by allowing the
software author to point out important objects in a behavior.
The deck-of-cards metaphor allows complicated behaviors
to be specified that can involve sets of data and randomness.
Guide objects permit demonstration of objects and relation-
ships which the system could not guess by itself. Finally,
temporal ghosts allow the author to directly form relation-
ships with the recent past. These techniques were tested in a

usability study where we found that nonprogrammers were
able to use them to build realistic application behaviors
effectively. Thus, Gamut’s techniques are an effective
method for demonstrating a broader range of applications
with a minimum of programming expertise and would be
appropriate for use in a wide range of future PBD systems.

ACKNOWLEDGEMENTS
This research was partially sponsored by NCCOSC under Contract
No. N66001-94-C-6037, Arpa Order No. B326, and partially by
NSF under grant number IRI-9319969. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

REFERENCES

5.

6.

7.
8.

9.

Authorware. Authorware Inc. 8400 Normandale Lake Blvd.,
Suite 430, Minneapolis MN 55437, 612-912-8555, 1991.
B. Budge. Pinball Construction Set. Exidy Software.
Core1 Click & Create. Core1 Corporation and Europress Soft-
ware Ltd. 1996.
G. L. Fisher, D. E. Busse, D. A. Wolber. “‘Adding Rule-Based
Reasoning to a Demonstrational Interface Builder.” Proceed-
ings of UIST’92, pp 89-97.
M. Frank. Model-Based User Interface Design by Demonstra-
tion and by Interview. Ph.D. thesis. Graphics, Visualization &
Usability Center, Georgia Institute of Technology, Atlanta,
Georgia.
L. Grimm, D. Caswell, and L. Kirkpatrick. Playroom. Broder-
bund Software, 500 Redwood Blvd., Novato, CA 94948-6121,
1992.
HyperCard. Apple Computer Inc., Cupertino, CA, 1993.
Macromedia, Director, 600 Townsend Street, San Francisco,
CA 94103, macropr@macromedia.com, http://www.macrome-
dia.com/, 1996.
D. Maulsby, I. Witten. “Inducing Procedures in a Direct-
Manipulation Environment.” Proceedings SIGCHI’89, April,
1989. pp. 57-62.

10. D. Maulsby. Instructible Agents. Ph.D. thesis. Department of
Computer Science, Univ. of Calgary, Calgary, Alberta, June
1994.

11. R.G. McDaniel, B.A. Myers. “Building Applications Using
Only Demonstration.” Proceedings of IUI’98. pp 109-l 16.

12. B. A. Myers et al. “The Amulet Environment: New Models for
Effective User Interface Software Development.” IEEE Trans-
actions on Software Engineering, Vol. 23, no. 6. June 1997. pp.
347-365.

13. B. A. Myers, D. S. Kosbie. “Reusable Hierarchical Command
Objects.” Human Factors in Computing Systems, Proceedings
SIGCHI’96, Denver, CO, April, 1996, pp 260-267.

14. B. A. Myers, R. G. McDaniel, and D. S. Kosbie. “Marcluise:
Creating Complete User Interfaces by Demonstration.” Pro-
ceedings of INTERCHI’93: Human Factors in Computing Sys-
tems, 1993, pp 293-300.

15. J. R. Quinlan. “Induction of Decision Trees.” Machine Learn-
ing, Kluwer Academic Publishers, Boston, Vol. 1, 1986, pp 81-
106.

16. Reader Rabbit. The Learning Company, 1987.
17. M. Rettig. “Prototyping for tiny fingers.” Communications of

the ACM 37,4 (April 1994). pp. 21-27.
18. K. VanLehn. “Learning One Subprocedure per Lesson.” A@-

cial Intelligence, Vol. 31, 1987, pp l-40.
19. D. Wolber. “Pavlov: Programming By Stimulus-Response

Demonstration.” Human Factors in Computing Systems, Pro-
ceedings SIGCHI’96, Denver, CO, April, 1996, pp 252-259

449

