
Debugging Interactive Applications

Brad A. Myers Alan Ferrency Rich McDaniel Roger Dannenberg
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{bam, af1x, richm, rbd}@cs.cmu.edu

http://www.cs.cmu.edu/~amulet

ABSTRACT
Although interactive, direct manipulation applications are
known to be difficult to design and implement, the toolkits
with which they are built generally do not contain any par-
ticular support for debugging. The Amulet toolkit contains
a comprehensive collection of monitoring and debugging
tools, including an interactive ‘‘Inspector.’’ These tools
are provided in a machine-independent way in C++ without
using hooks into the compiler, symbol tables or the run-
time stack. Some of these capabilities are based on well-
known techniques, but others are innovations that have
never been provided before. Based on our experience with
writing and debugging interactive applications, we have
provided tools to address the most common and difficult
programming bugs. The capabilities include: viewing
values of objects as they change; breaking into the debug-
ger when values change; viewing the inheritance and
grouping hierarchies of objects; feedback for why objects
are not visible or not interactive; tracing of constraint
dependencies; and various techniques to search for objects.
In addition, programmers can edit the values displayed in
the Inspector, supporting rapid prototyping without requir-
ing a C++ interpreter. These features make debugging in-
teractive applications written using Amulet is substantially
easier than with other toolkits.

KEYWORDS: Debugging, Software Development, Pro-
gramming, Toolkits, Amulet, User Interface Development
Environment, Software Engineering.

INTRODUCTION
The Amulet user interface development environment aims
to make it significantly easier to design and implement
highly-interactive, direct manipulation user interfaces for
Windows or Unix in C++. This is accomplished primarily,
by providing high-level models such as Interactors [2],
command objects [5], constraints [10], and a structured
graphics output model. Although programmers can write
their code using Amulet’s high-level abstractions for these
models, they previously had to monitor and debug their
code using the native, low-level C++ debuggers. Through
long experience with our previous Garnet system and other
toolkits, we learned the most common coding and debug-
ging problems for interactive software. Based on this ex-
perience, we designed Amulet to support a number of high-
level, run-time debugging and monitoring techniques. One
is an interactive Inspector which provides access to a large
number of novel debugging and monitoring techniques.
Another is support for displaying the names of objects at
run time.

The primary innovation in Amulet’s debugging features is
the support for debugging the dynamic behavior of objects.
A number of previous systems have provided static object
inspection techniques, but Amulet expands these to also
show traces of the changes of values through time, the ex-
ecution of Interactors and widgets, and the re-evaluations
of constraints. Furthermore, Amulet provides these fea-
tures, along with others conventionally found only in inter-
preted environments like Lisp and Smalltalk, in a fully-
compiled, portable, efficient, C++ implementation designed
for building large-scale applications. This paper discusses
Amulet’s novel debugging features, and how we were able
to provide these in C++ without using an interpreter,
preprocessor, or access to the compiler’s symbol tables.

It is ironic that today’s end-user applications generally fol-
low good user interface principles, but the environments
and toolkits used to program those applications generally
do not follow those principles. As a result, the toolkits are
difficult to learn and inefficient to use. We applied a num-
ber of user interface principles [1] when designing Amulet:

• Help the user get started with the system: The high-
level abstractions in Amulet mean that simple programs
are short. For example, the program that displays ‘‘hello
world’’ in a window is 8 lines.

• Be consistent: The novel prototype-instance object
model in Amulet, where objects are collections of slots

Debugging Interactive Applications - 2 - **Submitted for publication**

(instance variables), some of which are inherited, means
that all properties of graphical objects, widgets, Inter-
actors, command objects, etc. can be accessed and set the
same way: by setting and reading the slots of objects.
Higher-level abstractions like the command model, the
Interactors and the debugging tools, treat all objects the
same way, whether they are complex composite widgets
or primitives like rectangles.

• Use user-centered words in messages: Unlike other
systems that display pointer variables when debugging,
Amulet strives to always display high-level names for
methods, constraints, and even instances of C++ classes.

• Prevent user errors: Amulet tries to eliminate the need
to deal with pointers and memory allocation, which
plague programmers using other C++ environments.
Amulet performs full compile-time or run-time type-
checking, so errors are caught quickly.

• Offer informative feedback: Unlike other C++ environ-
ments where programmers are confronted with uninfor-
mative messages like ‘‘Segmentation violation,’’ ‘‘Bus
error,’’ and ‘‘Illegal instruction,’’ Amulet provides help-
ful error messages that speak about the problem at the
user’s level, and often recommend how to fix the
problem. This is unique among toolkits. Furthermore,
we have added a number of checks and warning mes-
sages for common programmer errors that do not cause
crashes.

• No hidden state, and use direct manipulation: The in-
teractive Inspector makes the complete state of the ob-
jects visible. Many other views are provided so the
programmer can more easily visualize the relationships
of the objects and their dynamic behavior. There are
views showing the current and old values of slots, the
properties of slots, the constraints and their dependen-
cies, methods, and the inheritance and aggregate hierar-
chies. There are also commands to ask where objects are
or why they are not visible, what will happen when the
mouse is pressed, and why objects are not interactive.
The programmer can turn on various kinds of tracing and
breakpoints for slot setting, constraint solving, method
invocation, and Interactor execution. The Inspector al-
lows values to be edited directly, which supports rapid
prototyping, without requiring a C++ interpreter. This
means that the Inspector could also be used by interactive
builders, like an Interface Builder, to support the creation
of objects.

Since Amulet is designed to be a portable toolkit (and cur-
rently runs on two platforms using at least 5 different com-
pilers), we were careful to ensure that the techniques do not
require compiler-specific hooks or access to symbol tables
or the run-time stack. Although some of the techniques are
specific to Amulet’s models, most would be useful for
programmers using any other user interface toolkit, such as
Motif or Microsoft Windows.

RELATED WORK
Debugging tools in general have a very long history. The
three basic forms of debugging, trace, dump, and break
date back to the EDSAC computer of the 1940’s [9]. More

elaborate facilities have appeared with some systems, but
today’s popular C++ environments, including Visual C++,
gdb, and ObjectCenter, still mainly provide only these tech-
niques for accessing the dynamic state of the system.

An interactive Inspector was part of the early InterLisp-D
environment [11], and could display and edit the values of
Lisp structures, and Smalltalk has similar tools for its ob-
jects. Visual Basic and SUIT [7] provide property sheets
for objects. However, Inspectors are rarely available for
compiled languages like C++, since the required infor-
mation is normally not available at run time. Furthermore,
none of these tools support inspecting the dynamic be-
havior of objects.

Debugging tools for constraints have appeared in a few
research systems, such as CNV [8], but these are mostly
graphs of the dependencies and have not been applied to
toolkits in widespread use or to debugging interactive ap-
plications.

Since most of the toolkits which provide high-level models
are research systems which are never distributed for real
use, it is perhaps not surprising that there are few cor-
responding high-level debugging tools. None of today’s
main-stream toolkits (e.g., Motif, MS Windows, Macintosh
Toolbox), provide specialized debugging facilities. Our
Garnet system [3], a predecessor of Amulet written in Lisp,
explored some of the facilities presented here, but they
were never reported, and Amulet provides many additional
techniques, as well as exploring how to provide these in a
compiled environment.

AMULET’S OBJECTS AND VALUES
Amulet uses a prototype-instance object system im-
plemented in C++, unlike the class-instance system used by
Smalltalk and C++. Instance variables of objects, called
slots, can be dynamically added and removed from any
object. Any slots that are not overridden by an instance are
inherited from the prototype. Methods in Amulet are
treated the same as data values in slots, and individual in-
stances can have different methods. Amulet allows any
slot of an object to contain a constraint which calculates
the value. Methods and constraints can be composed of
arbitrary C++ code [6].

In Amulet, the type of value in a slot can change at run-
time. For example, the LINE_STYLE slot might contain a
color object at one time, and later an integer, or a list. To
support this, Amulet keeps a run-time type-field with each
slot, which is checked by appropriate operations.

Often, programmers can use Amulet objects for all of their
operations. If it is necessary to store C++ objects into
Amulet slots, this can be accomplished with complete type-
safety through the use of a ‘‘wrapper’’ mechanism. The
default methods of wrappers provide a run-time type iden-
tifier, automatic memory allocation, and naming, and hide
uses of pointers. For example, the Am_Object type is
actually a C++ wrapper class that contains only a pointer to
the internal Amulet object data structure. By wrapping the
pointer in a C++ class, we can use the C++ constructors,

Debugging Interactive Applications - 3 - **Submitted for publication**

destructors and operator overloading to provide memory
management and checking. Creating and referencing an
Amulet object looks like:
Am_Object my_obj = Am_Rectangle.Create();
my_obj.Set(LEFT, 20);
Am_Object my_window = Am_Window.Create();
my_window.Add_Part(my_obj);

VIEWING OBJECTS
The main interface to debugging in Amulet is the Inspector
window, shown in Figure 1, which is viewing all the slots
of a rectangle called colorrect. The top few lines show
that colorrect is an instance of <Am_Rectangle>,
which is the top-level rectangle prototype in the Amulet
library. colorrect is also a part of the window named
<window>. The LEFT slot of colorrect contains 300,
and the LINE_STYLE slot contains Am_Line_1. In-
herited slots are shown in blue, so the programmer can
easily see that colorrect is inheriting the value of
VISIBLE from its prototype (or recursively, from its
prototype’s prototype, and so on. The slot properties pop-
up window described below can be used to see where the
slot is getting its value from).

Figure 1:
The main Inspector window viewing the object colorrect.

Meaningful names are used for the display of most of the
types and values. The FILL_STYLE slot contains a con-
straint called color_from_panel which currently has
calculated the value Am_Blue. The *DRAW METHOD*
slot contains the method rectangle_draw which is in-
herited. Amulet uses the convention that ‘‘internal’’ slots
of objects, that are not generally supposed to be set by
programmers, use a "*" in their print names.

INSPECTING OBJECTS
The easiest way to inspect an object is to put the mouse
cursor over the object and hit the F1 key.1 If the user

1The particular keyboard key used can be easily changed.

selects an object’s name in the Inspector window, then that
object can be inspected, either in the same window or in a
new Inspector window. Another menu command allows
the programmer to type the name of the object to be in-
spected.

A very common bug in interactive software is that a graphi-
cal object does not appear on the screen as expected.
Amulet’s Inspector provides a unique command that
flashes an object or tries to determine why the object might
be invisible. If the object is contained in some window,
that window is brought to the front and a blinking rectangle
is placed over the object. If the object is covered by
another object, the flashing will show where it is hiding.
However, if the object is outside of the window, the flash
command will instead print a message explaining the
problem. Other common reasons the object might not be
seen are that the object was never added to any window, or
that the object’s VISIBLE slot, or the VISIBLE slot of its
container, is set to false. In all, the flash command
checks and reports on about 15 different reasons the object
might not be visible.

A common debugging problem is finding the desired object
if it is not on the screen. One way to find objects is using a
hierarchy browser. All objects in Amulet participate in two
hierarchies: the prototype-instance inheritance hierarchy,
which corresponds to ‘‘is-a,’’ and a group-owner hierarchy,
which corresponds to ‘‘contains.’’ Different views in the
Inspector will display the complete inheritance and contain-
ment hierarchies, starting from a specified root object. For
example, this can be used to see the hierarchy of all objects
contained in a particular window, or all the instances of a
particular prototype.

Since there may be thousands of objects, the it may be
difficult to find objects by browsing. Therefore, a sophis-
ticated search dialog box will allow the programmer to
search for all objects that have particular values in their
slots. The search can either start with all objects inside a
particular window (or the screen) and thereby go through
the containment (aggregate) hierarchy, or start with objects
which are instances of a particular prototype. For example,
the programmer could ask to see all objects in a window
with a LEFT of 10, or all instances of Am_Rectangle
which have a FILL_STYLE of Am_Blue.

NAMES
A problem with most toolkits and other high-level pack-
ages is that the debugging information is reported in terms
of C++ low-level pointers. In Amulet we wanted instead to
use high-level names that would be meaningful to the
programmer. Therefore, we provide a number of
mechanisms that associate the names with objects and
values and make them available at run-time.

Slots
Amulet knows how to print the primitive types (ints, floats,
strings, etc.) and most higher-level types use the wrapper
mechanism, which saves meaningful names. In Figure 1,
Am_Line_1 and Am_Blue are wrapper values. The slot
PREV_STATE is being used in a non-type safe manner,

Debugging Interactive Applications - 4 - **Submitted for publication**

and contains a void* pointer, which the lower levels of
Amulet cast into a pointer of a specific type. Unlike other
systems, Amulet’s programming interface does not expose
any of these kinds of pointers (and they are rarely used
internally either). Instead, data is stored using wrappers so
high-level names are available for inspection and opera-
tions are type-checked for robustness. An Inspector com-
mand will hide all of the internal slots so the programmer
does not see these at debug time either.

To retain names for run-time, most object and wrapper
creation functions take an optional parameter which is the
name of the object. The wrapper or object stores the name
in a global hash table for use when displaying the object.
For editing, the user can also type the name, so, for ex-
ample, colorrect can be changed to green by typing
Am_Green into the FILL_STYLE slot.2

Wrappers can have custom print methods, which are used
when no name is associated with them. For example, the
Am_Value_List wrapper prints the elements of the list.
Colors which do not have names will print their red, green
and blue values. User-defined wrappers can also provide
custom print methods.

Constraints
Providing names for methods and constraints is more
tricky, especially since we wanted to provide a nice inter-
face for the programmer without requiring a pre-processor.
Since we do not want to use the compiler’s symbol tables,
we provide special macros that save the string names used
for formulas and methods. Eventually, we plan to provide
a sophisticated pre-processor, but for now, some C++ mac-
ros suffice.

To encapsulate a function as a formula or method, a macro
is used which expands into a special header. For formulas,
this looks like:
Am_Define_Style_Formula(color_from_panel)
{
Am_Style new_color;
//regular C++ code goes here to compute new_color
return new_color;

}

The Am_Define_Style_Formula macro expands to
code which defines an Am_Constraint global variable
called color_from_panel. The constraint object is
stored in this variable, and will contain the string
"color_from_panel" used for debugging, along with
a pointer to the function color_from_panel_proc
containing the code. All formula functions must have the
same standard parameters, and the return type depends on
the type of the value to be calculated; here it is a Style
(color). There are equivalent Am_Define_xxx_For-
mula macros for the other return types.

2Typing a new value into the Inspector will override the value computed
by the constraint.

The color_from_panel constraint object can be stored
into a slot using the standard Set method, just like other
values:
colorrect.Set(LEFT, 300);
colorrect.Set(FILL_STYLE, color_from_panel);

Methods
Unlike formulas, which have a fixed signature for
parameters and returns, methods in Amulet objects can
have arbitrary parameters and return types. However, we
still want to provide complete type-safety and flexibility,
and avoid the ‘‘Segmentation Faults’’ common in other
toolkits where the programmer coerces (void*) pointers
into pointers to functions and then calls them, or where all
methods have the same signature and the extra data is
passed as a (void*) pointer. Instead, Amulet requires
that all method types be pre-declared. Then, actual
methods are defined using that type. Each type of method
can have a different set of parameters and return values.
Amulet checks at run-time to ensure that the correct type of
method is being called. For example, the (internal) draw
method type is defined to return nothing (void) and take
an object to be drawn (self), an internal drawonable,
and two integers:
Am_Define_Method_Type(Am_Draw_Method,
void, (Am_Object self,

Am_Drawonable* drawonable,
int x_offset, int y_offset));

Due to the limitations of the C++ macro facility, the return
value of the method has to be passed as a parameter to the
macro, and the parameters to the method function have to
be in an extra set of parentheses.

The specific draw methods are then defined as:
//Define rectangle_draw as an Am_Draw_Method type method
Am_Define_Method(Am_Draw_Method, void,
rectangle_draw, (Am_Object self,

Am_Drawonable* drawonable,
int x_offset, int y_offset))

{
//regular C++ code goes here to draw a rectangle

}

Similarly to the constraint define macro, the
Am_Define_Method macro allocates a global method
object called rectangle_draw and fills it with the ap-
propriate type information, the string
"rectangle_draw", and a pointer to the code. This
method object can then be set into a slot in the standard
way:
colorrect.Set(DRAW_METHOD, rectangle_draw);

We require the parameters and return value to be repeated
in the Am_Define_Method call for a number of reasons.
First, the method type declaration is usually far away (often
in a .h header file), and the code is more readable when
the names of the parameters are next to the code. Second,
this is consistent with C++ function declarations in header
files and definitions in code files. Third, C++ allows the
actual names of the parameters to differ in the type decla-
ration and the actual definition, so sometimes more mean-
ingful parameter names can be used in the specific method
definition. Finally, some C++ compilers give a warning if
a parameter is not used, and the only way for the program-

Debugging Interactive Applications - 5 - **Submitted for publication**

mer to declare that a parameter is being ignored on purpose
is to omit the name and leave the type, which requires
repeating the parameters.

To call a method, the programmer uses the type defined
with the Am_Define_Method_Type macro. Call is a
C++ method defined by the type definition macro.3

Am_Draw_Method my_method =
colorrect.Get(DRAW_METHOD);

my_method.Call(colorrect, draw1, 20, 30);

Amulet provides complete type safety on this call, by
checking at run time that the DRAW_METHOD slot contains
a method of type Am_Draw_Method. This is im-
plemented using the type conversion mechanisms of C++.

Through the use of macros and clever C++ type conversion
tricks, Amulet allows arbitrary C++ code in methods and
formulas, along with arbitrary signatures for methods,
while still providing names for debugging at run-time, full
type-checking, and a reasonable syntax for the program-
mer. The same macros are used internally and in the
programmer’s code, so that meaningful names and error
checking are available at every level. Furthermore, C++’s
‘‘Illegal instruction’’ and ‘‘Bus Error’’ messages are
replaced with informative messages like ‘‘Tried to assign a
Am_Draw_Method with a method wrapper of type
Am_Where_Method,’’ or ‘‘Invalid Method (with proce-
dure ptr = 0) called.’’

Many of these features would not be needed in a language
like Smalltalk or Lisp. Amulet demonstrates how better
type checking and meaningful error messages can be ob-
tained regardless of the implementation language. Further-
more, most of the checking and data storage can be
eliminated in Amulet using compile-time switches when
greater efficiency is required, whereas in other systems data
such as the names of atoms must always be retained at run
time.

SLOT DISPLAY IN THE INSPECTOR
By default, the Inspector displays the slots in an order
determined by when the slots were first set in the prototype,
which usually puts the interesting slots at the top. Some
objects have many slots, however, and it can be difficult at
times to find a desired slot. Therefore, we provide various
techniques to prune and sort the list of slots to be displayed.
Commands will eliminate the display of the inherited slots
and the internal slots, and sort the slots alphabetically. A
novel feature is that a command will start a history of slot
setting and subsequently display slots with the most
recently set slots at the top. Finally, a command prompts
for a particular slot name and displays that slot at the top.

In addition to their values, slots also have a number of
properties which can be displayed in a pop-up window (see
Figure 2). This window can be moved from slot to slot by
clicking on the slot names. Among the information
presented is the type of the current value in the slot,

3Note that this code is just for illustration; actual Amulet programs
never call the draw method--it is only used internally.

whether the slot value is currently inherited and if so,
which prototype object holds the current slot value. Other
lines show what types are declared to be legal for a slot
(some slots may accept various types, like an integer or a
float), and what the declared inheritance of the slot is (the
programmer can control the inheritance of each slot by
declaring that its value can be inherited dynamically, is
copied to instances at object creation time, or must be
declared locally). Single Constraint Mode deter-
mines whether the slot is allowed to contain multiple con-
straints at the same time, and the Demon bits show if
any ‘‘demon procedures’’ will be executed when the slot is
changed.

Figure 2:
A pop-up window that displays the properties of a slot.

EDITING
In addition to displaying the values of slots, the Amulet
Inspector allows the values to be edited. The user can click
on a value and edit it in place. The usual cut, copy, paste
and undo will work for the editing of the values. This is
extremely useful for rapid prototyping and testing of inter-
active software. For example, if an object is not quite in
the right place, the programmer can simply edit the values
in the LEFT and TOP slots in the Inspector, and the object
will move. When the final desired values are achieved, the
programmer can cut and paste them into the code. Named
values can also be typed into the Inspector, including
method names, constraint names, and wrapper names like
Am_Blue and my_bold_font. (Because we are not
using an interpreter, the names must have already been
defined in C++ code.) The properties of slots can also be
changed by editing in the slot properties window (Figure
2). New slots can easily be added to objects by typing the
new slot name and value. Slots with local values can be
deleted, but this may just cause the slot to change from
local to inherited if a prototype has a value for the same
slot.

TRACING AND BREAKPOINTS
One common debugging task is determining why a slot is
set with the incorrect value. Therefore, we have provided
high-level mechanisms to address this problem. The user
can select a slot name in the Inspector window, and then
choose a menu item to initiate tracing or breaking into the
debugger when the slot’s value is set. Breaks and traces
can be set on multiple slots at the same time. There are
various levels at which information can be provided. The
simplest is that a history of all the values of a slot can be
shown in the Inspector window, as in Figure 3. More com-
plete information can be provided by another option which

Debugging Interactive Applications - 6 - **Submitted for publication**

prints the old and new values and the reason the value
changed. The reasons include creation or deletion of the
slot, direct setting of the slot, formula re-evaluation, or be-
cause the value changed in the prototype and this object is
inheriting the value. If this is not sufficient information, a
final option causes a break into the debugger whenever the
slot’s value changes. In the debugger, the programmer can
then inspect the stack trace to see what procedure is caus-
ing the slot to be set.

Figure 3:
The LEFT and TOP slots display the old values.

Sometimes code breaks because slots are set to a specific
illegal value, such as NULL (0). To make this easier to
debug, an option allows the break or trace to only happen if
the slot is set to a specific value. Another option, which is
useful for performance monitoring, will simply count the
number of times that each slot is set and each formula is
reevaluated, to check for unnecessary work.

CONSTRAINTS
As mentioned above, constraints in Amulet can be arbitrary
C++ code, so the normal C++ debugging tools can often be
used to help debug the constraint expressions. For ex-
ample, a common technique is to put a breakpoint in the
constraint formula. However, constraints present a number
of new debugging challenges to the programmer, so special
features have been added to the Inspector.

The slot tracing and breaking mechanism described above
can be used to trace or break every time a constraint is
re-evaluated. A history of the old values (Figure 3) can be
displayed for slots which contain constraints in the same
way as for all other slots. Whenever the constraint is
evaluated, the display will be updated.

Constraints in Amulet can contain indirect references [10],
which means that the object to which the constraint refers
can be calculated by the constraint. Typically, the referent
objects are retrieved from slots of other objects, but they
may also be members of a list. For example, the constraint
which computes the width of all of the components of a
group looks like:

//define a formula named Am_Width_Of_Parts that returns an int.
Am_Define_Formula(int, Am_Width_Of_Parts) {
int max_x = 0, comp_right;
Am_Value_List components; //the list of components
Am_Object comp;
//Get the components out of my slot GRAPHICAL_PARTS.
//This also sets up a dependency on the slot.
components = self.GV(GRAPHICAL_PARTS);
//Loop through all components.
for(components.Start(); !components.Last();

components.Next()) {
//Get the component out of the list.
comp = components.Get ();
// Compute how much of the component extends right of the
// origin. This establishes dependencies on the left and
// width slots of the component.
comp_right = comp.GV(LEFT)+comp.GV(WIDTH);
max_x = MAX (max_x, comp_right);
}
return max_x;
}

This formula sets up dependencies on the
GRAPHICAL_PARTS slot containing the list, and depen-
dencies on the LEFT and WIDTH slots of every object in
the list. Thus, this formula is re-evaluated whenever any of
the objects move, or when the list of objects changes.
Sometimes, bugs in constraint code arise from calculating
the dependent objects incorrectly, rather than from the
computation done with those objects. Therefore, the In-
spector provides a facility to display the current depen-
dencies of the constraint. Whereas CNV [8] used a node
and arc graph to display the dependencies, our experience
is that this kind of display breaks down for realistic ap-
plications because there are too many constraints and the
names on the nodes are too long. Instead, we use a hierar-
chy display with elision, as shown in Figure 4. Clicking on
the ellipsis will show more levels. Any of the objects can
be selected for inspecting, flashing or any of the other In-
spector operations. To get more explicit notification when
the dependencies of a constraint change, the programmer
can turn on tracing or breaking into the debugger whenever
the dependencies of a constraint change.

Figure 4:
A pop-up window that displays the dependencies of the selected
constraint.

Another command in the menus will tell which constraints
use the value of a particular slot. The user selects a slot
and can find out what constraints are currently using that
value in their computation. This is helpful for ensuring that
the value is used in appropriate places.

Debugging Interactive Applications - 7 - **Submitted for publication**

INTERACTORS AND COMMANDS
Amulet supports a novel, high-level model for handling
input, based on Interactor objects [2]. Each type of Inter-
actor implements a particular kind of behavior which is
independent of the graphics to which the behavior is at-
tached. For example, the Choice_Interactor can be
used any time the user can choose among a set of objects
using the mouse. An instance of the
Choice_Interactor is used inside menu and button
widgets, as well as to allow selection of graphical objects in
a drawing editor. Programming with Interactors is quite
different than input handling in conventional toolkits [4].
The programmer attaches Interactor objects to graphical
objects and then the Interactors later manipulate the
graphics in response to user input.

Our experience is that a typical bug with Interactors is that
they do not operate when expected: the programmer sets up
the Interactors and clicks the mouse and nothing happens.
To make this kind of problem easy to debug, the Inspector
provides a number of tracing mechanisms for Interactors.
The programmer can specify certain Interactors to watch
and then give the input that is expected to start the Inter-
actors, such as clicking on a graphical object. The Inspec-
tor will then report why the Interactors are not running. If
one or more of the Interactors do run, the Inspector will
report exactly what graphical objects are modified.

Various modes of tracing are available. The programmer
can trace just the setting of slots of objects by any Inter-
actors, which is useful to see what the Interactors are doing
without searching through long descriptions of other ac-
tivities. Another option will just print a single line sum-
marizing the operation of each Interactor that runs, which is
useful for getting an overview of what is happening.
Finally, full tracing can be turned on, which prints a lot of
information about each Interactor.

For example, if the programmer is wondering what slots of
which objects the Interactor named grow_inter_in_
handle_185 is setting, tracing on that Interactor can be
started, and the following information will be displayed.
The setting routines are highlighted with a ++:
<><><><><> LEFT_DOWN x=180 y=289 time=3114329169

Enter GO for <grow_inter_in_handle_185>,
state=0...

Checking start event against wanted = LEFT_DOWN
* SUCCESS

Checking start where..
~~SUCCESS=<Am_Rectangle_650>

Move_Grow starting over <Am_Rectangle_650>
translated coordinates 169,268

Calculated attach point for non-line is
Am_ATTACH_S

++Object <grow_inter_in_handle_185> setting
Am_VISIBLE of <Sel_Rect_Feedback_197> to true

++Object <grow_inter_in_handle_185> setting
obj=<Sel_Rect_Feedback_197> setting
obj=<Sel_Rect_Feedback_197> LEFT=90 TOP=142
WIDTH=182 HEIGHT=148

GENERAL DEBUGGING FEATURES
In addition to the specific features mentioned above,

Amulet tries to help programmers in many smaller ways.
For example, all of the error messages contain detailed ex-
planations of the problem and often the probable cause. In
some cases, we have been able to identify common mis-
takes that do not cause crashes, and there are specific
checks and warnings in the system.

For example, the move-grow and create interactors allow
the programmer to specify a feedback object which rubber-
bands as the mouse is dragged. Our experience shows that
a common error is forgetting to add this object to a window
so it does not show up on the display. Therefore, there is a
special check in the code for this case which prints out a
warning.

It was mentioned above that references to procedures and
methods do not use pointers in Amulet. In fact, the typical
Amulet programmer uses no pointers, which is quite unique
for C or C++ code. The result is better error messages for
uninitialized, null, or illegal pointers, dangling pointer er-
rors are entirely eliminated (where a pointer refers to
memory that was deallocated), and most memory allocation
is handled automatically by reference counting. An early
design for Amulet (that was never released) did not use this
technique, and objects were referenced by pointers. We
found that the code was difficult to debug, full of pointer
errors and memory leaks, and when it crashed, it was dif-
ficult to tell why. The current design has significantly im-
proved the robustness, readability and learnability of the
system.

Another way pointers are eliminated is by ubiquitously
using a general list mechanism instead of arrays or requir-
ing the programmer to write their own lists. The
Am_Value_List can hold an arbitrary number of
dynamically typed objects. Iterating through a list uses a
standard set of messages illustrated above in the constraint
section. Note that again no pointers are exposed to the
programmers (although they are obviously used internally).
We find that most lists contain objects of various types, so
arrays or even the C++ template mechanism are not ade-
quate. For example, the list of labels for the items of a
menu will contain strings and bitmaps.

STATUS AND FUTURE WORK
The Garnet toolkit incorporates an early version of the In-
spector, and is available for general use.4 A more sophis-
ticated version of the Inspector is included in the version
1.0 release of Amulet [6].5 The features described in this
paper will be released with the next version of Amulet,
which is expected in the late fall.

We are always looking for ways to make Amulet applica-
tions easier to debug. Eventually, we hope to incorporate
an interpreter into the Inspector, so expressions can be

4Garnet is a Lisp toolkit available for free by anonymous FTP. See
http://www.cs.cmu.edu/~garnet for more information.

5Amulet is available for free by anonymous FTP. See
http://www.cs.cmu.edu/~amulet for more information.

Debugging Interactive Applications - 8 - **Submitted for publication**

typed for the values. This would also allow new con-
straints and methods to be entered at run-time. The next
step is to use the Inspector as the property sheet display for
interactive builder programs. For example, an Interface
Builder would allow the user to place widgets and graphi-
cal objects into windows, and then to set other properties,
and possibly enter the constraint and method code, using
the Inspector windows. The author of the Interface Builder
will not have to write the slot properties subsystem, but the
users will have complete control over the many options for
objects. Interface Builders will need a facility to save the
designed objects to the disk, and this might be used
separately by the Inspector so that the programmer will not
have to cut and paste edited values to the code.

One goal of the Amulet project is to produce an easy-to-
learn toolkit for use in college classes, in the style of SUIT
[7]. For this version, easy debugging and error prevention
will be critical. We plan to perform significant testing and
iterative design of Amulet to ensure that the Inspector and
the other features do, in fact, make it easy to learn how to
create correct code.

Another area for future work is to investigate the speed and
space tradeoffs for all the debugging and type checking
information maintained at run time. A compile-time switch
is already available to eliminate some of the run-time
checking and all of the run-time storage of the names for
slots, methods, constraints, etc. This can be used when the
application is ready to be shipped. We have not yet inves-
tigated other optimizations because Amulet currently runs
acceptably on our target platforms, such as a 486 or Sun
SPARC 2. Even with the full debugging and checking
facilities left on, Amulet runs significantly faster than Gar-
net, which is in Lisp, even though they use similar al-
gorithms.

CONCLUSIONS
The Inspector was added quite late to the Garnet system,
but it was so popular that we put it into the first version of
Amulet. In fact, the Inspector was specifically cited by
some of the early users of Amulet as a key unique feature.
Kasem Abotel of the Univ. of Michigan said ‘‘I loved the
Inspector’s power; it is very easy to change the slots of any
object.’’ The new capabilities described here for monitor-
ing the dynamic behavior of objects will make the debug-
ging tools even more useful and thereby contribute to our
goal of significantly improving programmer productivity
when creating user interface software using Amulet.

ACKNOWLEDGEMENTS
Andy Mickish and Alex Klimovitski helped us with the
design and implementation of Amulet.

This research is sponsored by NCCOSC under Contract
No. N66001-94-C-6037, Arpa Order No. B326. The views

and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S.
Government.

REFERENCES

1. Deborah Hix and H. Rex Hartson. Developing User
Interfaces; Ensuring Usability Through Product &
Process. John Wiley & Sons, Inc., New York, 1993.

2. Brad A. Myers. "A New Model for Handling Input".
ACM Transactions on Information Systems 8, 3 (July
1990), 289-320.

3. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. "Garnet: Com-
prehensive Support for Graphical, Highly-Interactive User
Interfaces". IEEE Computer 23, 11 (Nov. 1990), 71-85.

4. Brad A. Myers, Dario Giuse, and Brad Vander Zanden.
"Declarative Programming in a Prototype-Instance System:
Object-Oriented Programming Without Writing Methods".
Sigplan Notices 27, 10 (Oct. 1992), 184-200. ACM Con-
ference on Object-Oriented Programming; Systems Lan-
guages and Applications; OOPSLA’92.

5. Brad A. Myers and David Kosbie. Reusable Hierar-
chical Command Objects. Submitted for Publication.

6. Brad A. Myers, Rich McDaniel, Alan Ferrency, Andy
Mickish, Alex Klimovitski, and Amy McGovern. The
Amulet Reference Manuals. Tech. Rept. CMU-CS-95-166,
Carnegie Mellon University Computer Science Depart-
ment, June, 1995. also Human Computer Interaction In-
stitute CMU-HCII-95-102. WWW =
http://www.cs.cmu.edu/~amulet.

7. Randy Pausch, Matthew Conway, and Robert DeLine.
"Lesson Learned from SUIT, the Simple User Interface
Toolkit". ACM Transactions on Information Systems 10, 4
(Oct. 1992), 320-344.

8. Michael Sannella. Constraint Satisfaction and Debug-
ging for Interactive User Interfaces. Ph.D. Th., Dept. of
Computer Science and Engineering, University of
Washington, Seattle, WA, Sept. 1994. TR 94-09-10.

9. Edwin H. Satterthwaite. Source Language Debugging
Tools. Ph.D. Th., Stanford University Computer Science
Department, May 1975. Stan-CS-74-494.

10. Brad Vander Zanden, Brad A. Myers, Dario Giuse and
Pedro Szekely. "Integrating Pointer Variables into One-
Way Constraint Models". ACM Transactions on Computer
Human Interaction 1 (June 1994), 161-213.

11. Interlisp Reference Manual. Xerox Corporation,
1983. Pasadena, CA.

