
Using Benchmarks to Teach and Evaluate User Interface Tools
Brad A. Myers,

Neal Altman, Khalil Amiri, Matthew Centurion, Fay Chang, Chienhao Chen,
 Herb Derby, John Huebner, Rich Kaylor, Ralph Melton, Robert O’Callahan,

 Matthew Tarpy, Konur Unyelioglu, Zhenyu Wang, and Randon Warner

Human Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~bam

ABSTRACT
As part of the User Interface Software course in the Hu-
man-Computer Interaction Institute at Carnegie Mellon
University, the students and instructor developed a set of 7
benchmark tasks. These benchmarks are designed to be
representative of a wide range of user interface styles, and
have been implemented in about 20 different toolkits on
different platforms in different programming languages..
The students’ written reports suggest that by implementing
the benchmarks, they are learning the strengths and weak-
nesses of the various systems. Implementations of the
benchmarks by a number of more experienced toolkit us-
ers and developers suggest that the benchmarks also do a
good job of identifying the effectiveness of the toolkits for
different kinds of user interfaces, and point out deficien-
cies in the toolkits. Thus, benchmarks seem to be very
useful both for teaching and for evaluating user interface
development environments.

Keywords: Benchmarks, Teaching User Interfaces,
Evaluation, HCI Education, Toolkits, User Interface De-
velopment Environments.

INTRODUCTION
We have developed a set of benchmarks that cover a vari-
ety of user interface styles. Implementing these bench-
marks in different toolkits has proven to be a good way for
students to learn the features, strengths and weaknesses of
different toolkits. The benchmarks are also useful for
toolkit creators to evaluate the coverage of their tools, and
for developers to evaluate different toolkits.

Submitted for Publication.
Please do not reference or distribute

without permission of the first author.

The “normal” way to teach a User Interface Software
course, which has been used in previous semesters, is for
the students to do a big group project, so they learn how to
use one toolkit in depth. However, the students com-
plained that they did not learn enough about different
toolkits, and wanted to see how toolkits differed, and the
strengths and weaknesses of each. Therefore, the graduate
“User Interface Software” course in the Human-Computer
Interaction Institute at Carnegie Mellon University is us-
ing a new approach for the Spring 1997 semester.1 The
students each individually designed a benchmark as one of
their first assignments. These were revised and combined
to result in a set of six benchmarks which test a wide
range of user interface styles and requirements. An older
benchmark from the instructor was added to the set. Each
student then independently implemented a benchmark of
their choice using four different toolkits. Each imple-
mentation was allocated three weeks, and most students
were able to learn a toolkit from scratch and create a full
implementation of the benchmark in about 20 to 30 hours
over the three weeks. The students report that the bench-
marks were of the appropriate difficulty, and that they are
learning a lot about the var ious toolkits.

(Note to reviewers: The course will be over in May, so
by the final paper deadline, we will have at least 14
more numbers for the tables, as well as more com-
ments. We also expect to get a few more implementa-
tions by experts, and a few new toolkits.)

So far, the students have used the following toolkits to
implement the benchmarks: Visual Basic, Director, Hy-
perCard, tcl/tk [10], Java AWT, SubArctic [5], Delphi
from Borland, MetroWorks PowerPlant for Macintosh,

1 A description of the course is available at
http://www.cs.cmu.edu/~bam/uicourse/1997spring/index.html
which includes a link to the assignment for creating the
benchmarks.

Benchmarks for Teaching and Evaluating UI Tools - 2 - ** Submitted for Publication**

Microsoft Foundation Classes (MFC) for Windows, Win32
for Windows, and Sk8 for Macintosh.

In order to investigate whether the students’ observations
about the benchmarks and toolkits were consistent with
the results from experienced users, we asked various
“experts” to implement the benchmarks in their favorite
toolkits. Experienced toolkit users have implemented at
least one of the benchmarks in Garnet [8], CLIM [6], Ap-
ple’s MacApp, GINA++ and GINA/CLM [11], LispView
from Sun, tcl/tk, XPCE/SWI-Prolog [12], MrEd [2], and
Amulet [9]. The results suggest that the benchmarks are
useful for toolkit designers and evaluators, and are helpful
when evaluating and creating toolkits. For example, a few
developers commented that the benchmarks helped high-
light areas where their toolkits were missing important
features for certain styles of applic ations.

THE BENCHMARKS
The goals for the benchmarks were that they should be
implementable in less than 8 hours by an expert, that the
set of benchmarks cover a wide range of user interface
styles, that the description should be specific enough so
that all implementations of a benchmark would be alike in
all essential details, and finally that the benchmarks would
be fun to implement. A variety of user interface textbooks
were used to help identify the various possible styles of
user interfaces, to insure good coverage.

The first assignment in the course was for each student to
independently specify a benchmark that met the goals
listed above. After the initial benchmarks were graded,
we formed groups and combined the benchmarks that ad-
dressed the same styles of interface. The result was six
benchmarks that cover a variety of interface styles: direct
manipulation, forms, animation, text editing, painting
(bitmap editing), and multimedia. A seventh benchmark
was added, which had been created earlier by the first
author to test previous toolkits. Of course, a number of
other benchmarks should be added to cover other kinds of
user interfaces, such as 3D and multi-user applications, as
discussed below.

Note that although the first author of this paper is a toolkit
creator, all but one of the benchmarks were created by the
class members before they were familiar with the toolkits,
and therefore the benchmarks are less likely to be biased
in favor of any toolkit.

The next sections describe the seven benchmarks we have
so far. A complete description of all the benchmarks is
available at http://www.cs.cmu.edu/~bam/
uicourse/1997spring/bench/index.html.

Direct Manipulation Benchmark
The direct manipulation benchmark is a simple interface
for playing card games. It is representative of tasks for
which the user must position and operate on objects that

are close analogies to real-world objects. In these tasks,
the spatial relationships of objects are significant, and the
objects can be manipulated with the mouse. Often some
objects have fixed positions in the workspace, and the act
of placing other objects into them or onto them triggers
some behavior (for example, dragging an object to the
trash can). There should be feedback about what will
happen, which is often called “semantic feedback.” An-
other important issue is the Z-order so that overlapping
objects are handled appropr iately.

Aspects of this style occur commonly in direct-
manipulation interfaces. For example, in the Macintosh
Finder, moving files into folders triggers an actual file-
system operation. In the Windows Solitaire card game,
only certain moves are legal, and the rules of the game
require a distinction between cards that are on top of other
cards and cards that are underneath.

In summary, this benchmark tests:

• Dragging objects with the mouse.

• Invoking different actions depending on where the ob-
jects are dropped (“drag and drop”).

• Providing feedback about the operation that will happen
if the objects are dropped (semantic feedback).

• Maintaining and changing the Z-order of objects.

• Loading and viewing GIF color pixmap images.

Figure 1: Example screen from the benchmark for direct
manipulation implemented in Visual Basic.

This application will present a window containing 52 ob-
jects representing playing cards. The user can move them
around the window, “flip” them to show either the front or
the back, and move a group of cards into a “shuffle box”
object that rearranges them (showing semantic feedback
when the objects are dragged over the shuffle area before
the mouse button is released). Cards can also be brought
to the front of the Z-order. They are implicitly grouped
for movement and flipping based on the way they overlap:
if the user clicks on an object and drags it, all the objects
that are on top should move as well. Figure 1 shows one
possible implementation. So that the programmer doesn’t

Benchmarks for Teaching and Evaluating UI Tools - 3 - ** Submitted for Publication**

have to waste time with drawing, 53 GIF format files are
provided with all the card faces and the back of the cards. 2

Forms Benchmark
This benchmark is a set of forms, mimicking the user in-
terface for an installer program. Many database front
ends, data entry, and monitoring systems use such forms to
structure the interaction with the user.

This benchmark tests several aspects of a user interface
toolkit:

• The ability of a toolkit to create a structured set of
forms with various widgets.

• How hard it is to specify complex dependencies be-
tween the elements of the forms.

• The ability to handle constraints on the values that are
allowed for various fields.

• The ability to have dependencies among the widgets,
such as the default value or enabling of one widget de-
pending on the value of other widgets.

• The ease with which form structures can be reused in
multiple parts of the interface.

• The ease with which toolkits can provide a user with
control over time-consuming processes without locking
up the interface.

• Support for accelerators such as a default button in the
dialog boxes, and hitting the TAB key to move from
field to field.

• Support for specific kinds of widgets and containers,
such as “option buttons” that pop up a set of choices,
and putting check boxes into a scrolling group inside a
dialog box.

This benchmark pretends to install five files, called Editor,
Spell Checker, English Dictionary, French Dictionary, and
Help. It obeys the constraints that the Editor must be in-
stalled, and the Spell Checker may only be installed if one
of the Dictionaries is installed.

There are two primary paths through the installer, the Easy
Install path and the Custom Install path. In the Easy In-
stall path, the user is given no choice about what files can
be installed; the files that are installed are the Editor, the
Spell Checker, and the English Dictionary. In the Custom
Install path, the user gets a choice of what files to install,
and after installing them, the user may return to install
more files. A scroll bar shows the progress of the
(pretend) install, during which time the user is allowed to
abort by hitting the cancel button.

2 We felt GIF was the most portable format, but it would
be easy to supply alternative formats, if necessary. The
files are available with the benchmark descriptions.

Figure 2: Example of three screens from the benchmark
for forms implemented using Java AWT.

Figure 3: Example screen of the benchmark for animation
implemented using tcl/tk on a PC.

Some general features are that hitting the tab key should
move from field to field in a reasonable order, so it is easy
to enter the values. The default action in each form
(usually OK or Install) should be denoted (usually by a
thicker border) and hitting the RETURN (or Enter) key
should activate it. Figure 2 shows some sample screens
from one possible implementation.

Animation Benchmark
This benchmark uses a war game setting, which is repre-
sentative of many games. It is designed to test:

• How well the toolkit handles animations and other time-
based behaviors.

• How easy it is to create new objects dynamically at run
time and to select objects showing custom feedback.

• Having multiple objects constrained to move t ogether.

To focus the benchmark on interaction with animation, we
have simplified the game and simulation aspects. Also,
the icons are quite simple so no time is needed to draw
fancy pictures.

Benchmarks for Teaching and Evaluating UI Tools - 4 - ** Submitted for Publication**

In the simulation for the benchmark, troops have the prop-
erties of position, velocity, velocity maximum, food, food
maximum, name, type, and a list of orders. The battlefield
has width, height, a main food storage, and a list of troops.
On each turn, the simulation updates all the dynamic
properties of the objects in the simulation according to
wall clock time. The user can create new troops, and
specify their strength, velocity and type. Users can select
a troop while it is in motion and update its speed and di-
rection. Troops die when they run out of food. Figure 3
shows an example screen.

Text editing Benchmark
This is a simple text editor with which users may open one
document to edit. It supports multiple fonts and styles,
and mouse-based text editing. The interface styles include
menus, dialog boxes, and shortcuts (function keys and
tool-bars). This benchmark is representative of the inter-
faces found in such programs as Notepad and Wordpad
(Windows 95 and NT 4.0). In addition to this, we feel that
this benchmark is indicative of most routine text editing
tasks.

The main feature that makes this benchmark be more than
just the editor that is supplied by the toolkit is the re-
quirement that selected text can be dragged to the toolbar
to change the formatting. The intention is to see if cus-
tomized editing manipulations can be easily added to the
built-in facilities.

In general, the editor should have the look and feel of the
underlying system and toolkit in which it was created. It
should have a standard menu with File, Edit and Format
menus, which contain the usual Open, Save, Exit, Cut,
Copy, and Paste operations, and Bold, Italic and Under-
line. There should also be a toolbar containing icons for at
least Bold, Italic and Underline. Figure 4 shows an exam-
ple.

Figure 4: Example implementation of the benchmark for
text editing using CodeWarrior’s PowerPlant on a Mac.

In summary, this benchmark tests:

• Support in the toolkit for multi-font, multi-line mouse-
based text editing.

• Support for cut, copy and paste of text to the system’s
clipboard or “cut buffer.”

• The customizability of the text editing facilities to sup-
port application-specific requirements.

Painting Benchmark
Although most toolkits have built-in support for drawing,
some do not support painting. The distinction is that
painting requires the ability to set, edit and clear individ-
ual pixels in a bitmap (sometimes called a “pixmap” if in
color). The picture must be saved in an offscreen buffer in
case the drawing on the screen is covered and uncovered
by a different window. This benchmark is representative
of interfaces used for creating and editing images stored as
bitmaps. It will allow the user to draw lines, paint lines
with a square brush, and erase portions of the bitmap in a
single drawing window. The user will be able to select
from at least four colors and three line thicknesses from
pallets. The user may also select rectangular regions of
this window to cut, copy, or paste. It is similar in style to
Microsoft Paint, KidPix, MacPaint, PaintShopPro, Adobe
Photoshop and Fractal Painter. Figure 5 shows an exam-
ple.

Some things in most painting tools that are not included
are drawing curves, spray painting, entering text, filling
regions, polygons, etc.

In summary, this benchmark tests:

• Support for editing individual pixels of the screen.

• Support for copying and drawing to off-screen buffers.

• Support for drawing with various colors and sizes of
objects (different “brushes”).

• Support for cut, copy and paste of images to the sys-
tem’s clipboard or “cut buffer.”

Figure 5: Example of the benchmark for painting impl e-
mented with Java AWT on a PC.

Benchmarks for Teaching and Evaluating UI Tools - 5 - ** Submitted for Publication**

Multimedia Benchmark
The multimedia benchmark is designed to test whether the
toolkit can handle video and audio. The interface that this
benchmark more closely resembles is that of a publicly
accessible kiosk such as found in museums, corporate of-
fices, and malls. The style is representative of almost any
multimedia-based content program such as encyclopedias
and dictionaries (“Encarta,” “Bookshelf”), and some
games. Specifically, the benchmark is a kiosk for a com-
mercial establishment that provides navigation and store
information to the public.

The main part of the display is a map of an imaginary
mall. When a store is clicked on, its video can be played
in the center. The benchmark also has a database compo-
nent, which allows each user to log in with a unique name,
and then allows the user to type a note associated with
each store. These notes are then displayed the next time
the same user logs in and clicks on the store.

This benchmark tests:

• Support for loading and playing video.

• Support for playing audio synchronized with the video
and with user interactions.

• Support for creating a simple database of user annota-
tions which are saved to disk between different execu-
tions of the benchmark.

Figure 6 shows an example of the benchmark. To elimi-
nate the time spent on creating the media, sample video
and audio are provided in various fo rmats.

Graph Editing Benchmark
As an attempt to evaluate the Garnet user interface devel-
opment environment, the first author created a benchmark
in 1990 and had it implemented using 6 toolkits in 1991
and 1992 [8]. The benchmark description was reformated
for the world-wide-web, and included in the list to see if
toolkits have changed in the last 7 years.

This benchmark is a simple graph editor, with nodes con-
nected by arrow-lines. The user should be able to select
nodes and lines, and delete them and change their line
thicknesses. The nodes can be resized and moved, and the
lines must stay attached appropriately. Figure 7 shows an
example implementation. What this benchmark tests be-
yond what is in the Cards direct manipulation benchmark
is:

• The standard graphical editing mechanisms (selection
handles, moving and growing objects).

• Creating new objects dynamically.

• Constraints for keeping the lines attached to objects and
the text at the top of the objects when the objects are
moved or changed size.

• Support for rounded rectangles, non-editable text fields,
and multiple line styles for lines and rounded rectangles.

Figure 6: Example of the benchmark for multimedia i m-
plemented on a Macintosh with MetroWerks’ PowerPlant.

Figure 7: Example of the graph editing benchmark i m-
plemented using Garnet on Unix.

THE TOOLS
As part of the class, the students have so far used 11 dif-
ferent tools, and they will be using 2 or 3 more before the
end of the term. Figure 8 summarizes all the tools and
benchmarks used by the class. For their first assignment,
they had to choose a prototyping tool, like Visual Basic,
HyperCard or Director (most used Visual Basic). For the
next two assignments, they could pick any two tools they
wanted. For the last assignment, everyone will be using
Amulet, which was chosen because it is a modern, re-
search toolkit that incorporates many features, including
constraints, support for Undo, and high-level input and
animation models, not found in typical commercial
toolkits.3

In addition, we have posted requests on various newgroups
and mailing lists to try these benchmarks. As a result,
“experts” have used 10 tools to implement at least one of

3 Amulet is being developed as a research project by the
course instructor, who is the first author of this paper.

Benchmarks for Teaching and Evaluating UI Tools - 6 - ** Submitted for Publication**

the benchmarks.4 Figure 9 summarizes their results. The
comments generated as a result of these implementations
do a good job of highlighting the strengths and weaknesses
of the various tools.

It is interesting to note that some vendors declined to try
the benchmarks because they said it would take too long
since their tools were designed for more complex applica-
tions. This seems to be inappropriate — just because a
tool can handle complex applications does not mean that it
should be hard to learn, or hard to use for small applica-
tions!

The following are some observations about the tools that
were used to implement the benchmarks:

Visual Basic — Many of the students used Visual Basic
Version 4.0 for Windows 95 and NT to prototype the
benchmarks. Most students found it to be very easy to
learn and appropriate for most of the benchmarks. It is
best for forms-based applications with fixed-format
screens of widgets, but there is also support for animation
and dynamic graphics, and the resulting performance was
fine except for the painting benchmark. There is a rich set
of predefined objects and the interactive editor was easy to
use to lay out the interface. Problems include the difficult
and inconsistent syntax of the Visual Basic programming
language, lack of object-orientation, lack of data structures
and linked-lists, lack of flexibility in the drawing primi-
tives, and no support for selection handles and resizing
objects. There are many Visual Basic books, and the stu-
dents used a variety of them. None seemed particularly
excellent or comprehensive, and many important topics
were not covered by each book.

Director — The students found MacroMedia Director
version 5.0 to be too hard to learn for use as a prototyping
tool. Most of the students gave up after just a few hours of
trying because it looked so hopeless, and the user inter-
face, documentation, and design of the “Lingo” language
were reported to be “terrible” and “pathetic”, just “a
hodge-podge of ideas.” Limitations of the tool, such as
only 48 “sprites” (moving objects) and no apparent
method for performing required actions (such as changing
the picture of a sprite) seemed insurmountable. The only
things that resulted were a few movies. An expert in using
Director told the class that it could, in fact, do all the pro-
totyping required, but that it might require a long time to
learn how.

Hypercard — One student tried Apple’s Hypercard ver-
sion 2.0 for the Macintosh. The interactive editor for
placing widgets and graphics was easy to use, but Hyper-

4 We would very much like to get more implementations,
so please try out one or more benchmarks and send the
results to bam@cs.cmu.edu.

card seems quite limited by today’s standards, and does
not have a complete set of widgets. The syntax of the
built-in HyperTalk language was hard to use and the error
messages were poor.

Java AWT — Many of the students tried out Java and its
toolkit called AWT. Java is a new object-oriented pro-
gramming language and AWT is its cross-platform widget
and drawing library. The students used various versions of
AWT (v1.02 on Unix, and v1.02 and v1.1 on a PC), and
found it still quite fragile and unstable. Due to the limited
set of provided widgets (e.g., no ability to have pictures in
buttons, an inadequate text-editing widget), and difficult-
to-learn layout managers, AWT currently seems most ap-
propriate for small, simple applications. The performance
of the applications was somewhat slow, and compilations
took a very long time on some platforms. One student
used Semantec Visual Café v1.0 and found it to be an ef-
fective development environment with a nice interactive
layout editor, but it was buggy and not yet adequately
documented. The other students just used a Java compiler.
In learning AWT, the main problem was the poor docu-
mentation. The advantages are the nice language (Java)
and that the resulting programs will run on any platform as
well as on the World-Wide-Web.

SubArctic — SubArctic [5] is a new research toolkit for
Java that hides much of the complexities of AWT. Ad-
vantages include lots of built-in capabilities, including
animation and constraints. SubArctic is a very powerful
and flexible toolkit. Problems include bugs in various
implementations of Java and AWT, unacceptably slow
performance of the resulting application, and difficulties
in figuring out which of the many possible ways of im-
plementing something would actually work.

Delphi — Borland’s Delphi runs on Windows NT or 95
and is an interactive environment, like Visual Basic, but
the language is Object Pascal and it is fully compiled.
The students used Delphi Developers Version 2.0. The
students found Delphi easy to learn, even for those that did
not know Pascal. Delphi seems most appropriate for
Forms-style applications. The graph benchmark was diffi-
cult because there is no line component, it is hard to man-
age dynamically created objects, and there is no support
for selection handles or resizing objects. However, the
implementation seemed to be more robust than the Visual
Basic implementation of the same benchmark. Code also
seems to run faster than with Vi sual Basic.

PowerPlant — MetroWerks’s PowerPlant version 1.3 is a
framework that works with its CodeWarrior environment
for C++ (version 11) on the Macintosh. PowerPlant in-
cludes an interactive interface builder for laying out wid-
gets. The students reported that PowerPlant is “great pro-
vided you know Object-Oriented programming very well”
and it was much easier than using the Macintosh Toolbox
directly. However, PowerPlant is quite hard to learn since

Benchmarks for Teaching and Evaluating UI Tools - 7 - ** Submitted for Publication**

the documentation is inadequate, and requires that the
programmer use the basic “Inside Macintosh” QuickDraw
documentation for graphics.

Microsoft Foundation Classes (MFC) — Microsoft’s
Foundation Classes (MFC) is a C++ framework for devel-
oping Windows applications. The students used MFC 4.0
with Visual C++ 4.0 (the compiler environment) on a PC.
There is a visual dialog box interface builder, which
makes forms style applications quite easy, and good sup-
port for text editing, but there is little built-in support that
helps with any of the other styles or benchmarks. The
AppWizard and ClassWizard in MFC were somewhat use-
ful for generating an outline of some of the code, but using
the AppWizard properly seems to require understanding
the complete MFC class hierarchy. The students com-
plained that “the VC on-line documentation system is just
pathetic,” which hindered learning. Although the students
were able to create some of the benchmarks, they found
MFC to be very difficult to learn, and Microsoft reports
that it takes 4 to 6 months to learn to use MFC effectively.
More fundamentally, MFC suffers from too many incon-
sistent ways to perform similar actions, probably because
it has to be backwards compat ible.

Win32 — Win32 is the lower-level interface to the Micro-
soft Windows toolkit used by MFC. One student imple-
mented the Cards benchmark directly in Win32 in C,
without using MFC. Programming at this level seemed
more difficult than MFC, and shares many of the disad-
vantages of MFC mentioned above.

tcl/tk — Tcl/tk [10] uses its own scripting language (tcl)
which is interpreted, and applications created with it will
work on PC, Unix or Mac. The students used various ver-
sions (7.3/3.6 on Unix, 7.5/4.1 on Windows and Unix, and
7.6.0b2/4.2 for Linux). They reported that tcl/tk was ap-
propriate for small tasks like the benchmarks, and was
fairly easy to learn. There are sufficient built-in widgets
to cover what was needed. Problems include difficulty in
debugging, the requirement of using lots of global vari-
ables, total lack of support for modularity, figuring out the
right quoting and balancing braces due to the macro-like
language, and poor error messages and debugging facili-
ties. A tcl/tk expert also implemented one benchmark (the
Cards) using version 8.0a2 and reported that tcl/tk is good
for small to medium-size applications where performance
is not a critical issue (the performance of the Card bench-
mark shuffling was reported to be “a bit slow”). The best
and worst feature is that the code is unstructured, so it is
easy to glue together components and to create a front end
to an existing tool, but it is a poor language for large sys-
tems.

Sk8 — This tool, pronounced “skate,” is an object ori-
ented toolkit that lets users create programs for the Mac-
intosh. It was developed as a research project by Apple
(www.research.apple.com) and never officially released.

One student used version 1.2 to implement the multi-
media benchmark. Although implemented in Common-
Lisp, Sk8 provides the programmer with a “English-like”
language like AppleScript or HyperTalk which supports a
prototype-instance model. There is an interactive GUI
builder and good support for different kinds of media in-
cluding sounds, pictures, and Quicktime movies. Sk8 en-
abled full implementation of the Multimedia benchmark in
fewer lines of code than any of the other tools. On the
down side, many parts of the documentation are incom-
plete or unavailable, and some of its GUI tools are still
buggy.

XPCE/SWI-Prolog — XPCE [12] is a toolkit for Prolog,
and version 4.9.2/2.8.0 was used by the designer of the
toolkit running on the Linux version of Unix on a PC. The
developer reported that the toolkit is most appropriate for
graphical editors (like the Cards and Graph benchmarks).
The developer said that trying the Paint benchmark with
the tool was very useful since it “pointed to a weakness in
the image change-forwarding code that was easily fixed,
making a wider range of applications feas ible.”

MrEd — MrEd [2] is a cross-platform toolkit, and version
49/14 was used by the designer of the toolkit on Linux on
a PC to implement the Cards and Text Editing bench-
marks. The designer reports that MrEd is best for medium
to large GUI applications (although the numbers shown in
Figures 8 and 9 show MrEd is competitive, so it seems OK
for small applications as well). The styles supported make
it best for direct manipulation and text editing applica-
tions. MrEd uses Scheme as its programming language
which requires a lot of memory at run time.

Amulet — Amulet [9] V3.0 for C++ runs on Unix, Win-
dows NT or 95, or the Mac, and the designer of the toolkit
(the first author of this paper) used it to implement one
benchmark. Amulet incorporates novel object, input, out-
put, constraint, animation, and undo models, which make
it appropriate for direct manipulation and animation tasks.
(Adding full multi-level Undo to the graph benchmark
only increased the size to 241 lines of code, which is still
smaller than other implementations that do not provide
any undo.) Amulet is also designed to be easy to learn for
students, and it includes an interactive builder. Amulet
V3.0 does not support text editing, multi-media or paint-
ing, so it is not appropriate for those benchmarks.

Garnet — Garnet [8] is a toolkit for Lisp and runs on
Unix or Macintosh. Garnet was created by the first author.
It is the predecessor to Amulet and is most appropriate for
creating direct manipulation, forms and text editing appli-
cations. It has built-in constraints and a high-level input
model. The graph benchmark was implemented in Garnet
in 1990.

CLIM — CLIM [6] is a Lisp toolkit developed by Sym-
bolics which uses the CLOS Common Lisp Object Sys-

Benchmarks for Teaching and Evaluating UI Tools - 8 - ** Submitted for Publication**

tem. In 1992, the graph benchmark was implemented by a
CLIM designer using version 1.1 which has high-level
support for direct manipulation editors.

MacApp — MacApp is a framework for creating Macin-
tosh applications. In 1990, the graph benchmark was
written using MacApp v2.0 which used Object Pascal.
MacApp provides high-level support for commands and
Undo, but not for graphics or interaction.

GINA++ —GINA++ [11] is a research toolkit in C++
from the German National Research Center for Computer
Science. In 1992, the graph benchmark was implemented
using version 1.2. GINA++ provides a high-level output
model, including support for selection handles around a
rectangular object, and a sophisticated Undo model.

CLM/GINA — CLM/GINA [11] is a Lisp implementa-
tion of the GINA toolkit from the same group as GINA++.
It has similar properties to GINA++.

LispView — LispView is a CLOS interface to the XView
toolkit from Sun. In 1990, the graph benchmark was im-
plemented using version 1.0.1. LispView mainly provides
an interface to the widgets and underlying graphics primi-
tives, and does not have high-level support for object re-
drawing, rubber-band lines or interaction.

THE EVALUATIONS
After implementing the benchmark, the implementers
filled out a fairly long questionnaire, which asks about the
implementation, the toolkit and the benchmark.

The answers from the students show that they got a very
good understanding of the various toolkits from the quick
implementation of the benchmarks. They were able to
identify the strengths and weaknesses of the tools, and
were able to evaluate what kinds of interfaces would be
most appropriate to implement using that tool.

Figure 8 shows a summary of the numerical results for the
number of lines of code, and the time the students spent on
the implementation. This shows that the students were
mostly able to create complete implementations of the
benchmarks in about 16 hours of work (ranging from 7 to
about 30 hours), and it took about 500 lines of code to
completely implement the benchmarks, ranging from 90
lines to about 1200. Figure 9 summarizes the numbers
reported by the experts on implementations of the bench-
marks with various toolkits.

Given the quite small sample, it is probably not appropri-
ate to use these numbers as a way to compare toolkits,
since the individual differences among the programmers
may dominate the differences between toolkits. Also, it is
important to note that all of these are self-reported times,
so there is some chance of underreporting, especially for
the longer times which people might feel embarrassed to
report. Still, some trends are interesting:

• The Paint benchmark seems to be harder to implement
in most toolkits. It was especially difficult to imple-
ment the cut and paste feature. The text editor bench-
mark seems easy, but only if the toolkit has an adequate
and customizable text widget.

• Most students found Visual Basic to be easy to use and
learn, and to be sufficient to implement benchmarks like
these. The other “prototyping” tools (Director and Hy-
perCard) were much less successful.

• The interactive and interpreted environments, like Vis-
ual Basic, tcl/tk and Delphi seem to result in less work
and fewer lines of code than the compiled environments
like Java, PowerPlant or MFC.

• The range of the number of lines of code seems fairly
consistent between the students and the experts (Figures
8 and 9), which suggests that the students’ implementa-
tions are reasonable.

• Comparing the 1990 implementations of the graph
benchmark with the newer toolkits shows that not much
has changed — Amulet, like its predecessor Garnet, is
good for this style of program, and it still takes a fair
amount of time and lines of code with other toolkits.
Visual Basic appears to be about as good as the earlier
Lisp toolkits.

LIMITATIONS AND FUTURE WORK
An important limitation is that the benchmarks do not
cover all types of interfaces. In particular, interfaces for
distributed and multiple-user applications are not covered,
and neither are 3D interfaces. A vendor claimed that none
of the benchmarks were appropriate to his toolkit designed
for process-control software. It would be great to have
additional benchmarks for these other types of applica-
tions, which would then be added to the set for use in
evaluating other toolkits.

Another important limitation is that benchmarks mainly
measure the learnability and suitability of the tools for
small applications. This leaves out issues of structure,
design, analysis, and performance that become more im-
portant for large applications. However, we feel that all
tools should still be easy to learn, so at least the bench-
marks will be an appropriate test of some aspects. Also,
the analyses by the students suggest that even with pro-
grams the size of the benchmarks, they were able to see
where the problems of scale would arise with toolkits like
Visual Basic and tcl/tk.

In using the benchmarks for teaching the course, some
students now complain that they were not learning any
tool in depth, as they would if there was a single large
project using one tool. Clearly, there is a trade-off, and
possibly a course could be designed with two implemen-
tations of the benchmarks (3 weeks each) and then a big-
ger project (for 6 weeks).

Benchmarks for Teaching and Evaluating UI Tools - 9 - ** Submitted for Publication**

key: bold=full implementation, normal=about 90% implemented; italic=very partial implementation

Lines of Code Visual Basic Director
Hyper
Card tcl/tk Java AWT

Sub-
Arctic Delphi

Power
Plant MFC Win32 Sk8

Animation 450 / 565 / 360 398 / 629 1003 / 585 350
Card Game (DM) 300 10 300 428 600 530
Connected Graph 313 568
Forms 329 / 354 200 483 / 399 765 316 141*
MultiMedia 86 800 97
Paint 454 12 1220 1128 808 / 940*
Text Edit 90 74 90 100 100

Implementation
Time (in hours) Visual Basic Director

Hyper
Card tcl/tk Java AWT

Sub-
Arctic Delphi

Power
Plant MFC Win32 Sk8

Animation 4.0 / 8.0 / 3.0 21.75 / 12.0 10.25 / 18.9 7.0
Card Game (DM) 7.0 5.0 11.0 13.5 6.0 15
Connected Graph 5.25 11.0
Forms 5.5 / 14.0 7.0 13.0 / 14.0 17.0 18.73 30.0
MultiMedia 11.0 32.0 10.2
Paint 21.0 10.5 20.0 27.71 27.6 / 31.0
Text Edit 2.0 7.0 30.0 7.0 6.0

Figure 8: Results for the number of lines of code, and time (in hours), for the implementations by the students of the benc h-
marks. Some benchmarks were implemented by more than one student, and their numbers are separated by slashes (/). Lines
of code marked with an asterix (*) do not include code automatically generated by Wizards and interactive tools.

Lines of Code Garnet CLIM MacApp GINA++ LispView
CLM,
GINA tcl/tk

XPCE/
SWI-Prolog MrEd Amulet

Animation
Card Game (DM) 206 287
Connected Graph 183 331 1026 550 500 273 212
Forms
MultiMedia
Paint 480
Text Edit 177

Implementation
Time (in hours) Garnet CLIM MacApp GINA++ LispView

CLM,
GINA tcl/tk

XPCE/
SWI-Prolog MrEd Amulet

Animation
Card Game (DM) 4 2
Connected Graph 2.5 4.5 9 16 16 20 1.42
Forms
MultiMedia
Paint 4.3
Text Edit 1.3

Figure 9: Results for the number of lines of code and time (in hours) for the implementations by experts using various
toolkits. The first six implementations were performed in 1991 and were previously published [8], and the others are new.

Benchmarks for Teaching and Evaluating UI Tools - 10 - ** Submitted for Publication**

RELATED WORK
There is very little prior discussion about ways to teach a
user interface software course, outside of the SIGCHI Cur-
ricula for HCI [3]. Benchmarks are widely used for
evaluating the performance of hardware and compilers
(such as the SPECMark [13]), but we do not know of any
previous attempts at using benchmarks for evaluating the
effectiveness of tools or libraries. Programs that print
“Hello World” using the terminal output functions (like
printf) have been implemented using 188 different lan-
guages http://www.latech.edu/~acm/HelloWorld.shtml),
and programs that print the lyrics to “99 Bottles of Beer”
have been implemented in 180 languages
(http://www.ionet.net/~timtroyr/funhouse/beer.html) but
these do not test any UI toolkits. There have been many
studies of programmers (e.g., [1]), which consistently
show an order of magnitude difference in capabilities,
which is why the numbers in the tables might not be reli-
able. A comprehensive survey for evaluating toolkits [4]
was developed, but it seems much more fun and educa-
tional to implement a benchmark than to fill out a long
survey. Surveys will also highlight different aspects. Sur-
veys might identify the features which are present or
missing, but are less likely to show which toolkits are
easier to learn or are more effective for which types of
applications. There are many previous surveys of user
interface tools (e.g., [7]), which include discussions and
comparisons, but none of these are based on implementa-
tions of benchmarks.

CONCLUSION
Using benchmarks seems to be a useful technique for stu-
dents, toolkit developers, and toolkit users. Creating
benchmarks and then implementing them four times
proved to be an excellent way to give the students a feel-
ing for the comparative strengths and weaknesses in a va-
riety of toolkits. Despite skepticism of the tool vendors,
the students were moderately successful at learning and
using even “professional” toolkits like MFC and Power-
Plant in a three-week period. The benchmarks also have
proven to be useful to toolkit developers since they high-
light missing features and difficult parts. Finally, the
benchmarks seem to be useful for evaluating toolkits. If
we can get enough implementations, then comparisons of
the code size and times might be more meaningful. Even
if not, a person considering various toolkits should be able
to find a benchmark similar to the planned interface, and
then try implementing the benchmark in the various
toolkits. The results reported here suggest that these im-
plementations should not take longer than a few days per
toolkit, and the information learned during the implemen-
tations will be quite helpful and meaningful.

ACKNOWLEDGMENTS
We would like to thank the many people outside the class who
implemented the benchmarks in various toolkits: Matthew Flatt,

Ray Johnson, Jan Wielemaker, Hans Muller, Scott McKay,
Christian Beilken, Markus Sohlenkamp, and John Pane.

This research was sponsored by NCCOSC under Contract No.
N66001-94-C-6037, Arpa Order No. B326, and partially by NSF
under grant number IRI-9319969. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

REFERENCES

1. Curtis, B., “Fifteen Years of Psychology in Software Engi-
neering: Individual Differences and Cognitive Science,” in Pro-
ceedings of the 7th International Conference on Software Engi-
neering, 1984, IEEE Computer Society Press. pp. 97-106.

2. Flatt, M., “MrEd,” 1997. Department of Computer Science -
MS 132, Rice University, 6100 Main Street, Houston, TX 77005-
1892, (713)527-8101. mflatt@cs.rice.edu,
http://www.cs.rice.edu/~mflatt/mred.html.

3. Hewett, T.T., et al., eds. ACM SIGCHI Curricula for Human-
Computer Interaction. 1992, ACM Press: New York, NY. ACM
Order Number: 608920.

4. Hix, D. “A Procedure for Evaluating Human-Computer Inter-
face Development Tools,” in Proceedings UIST’89: ACM
SIGGRAPH Symposium on User Interface Software and Tech-
nology. 1989. Williamsburg, VA: pp. 53-61.

5. Hudson, S.E. and Smith, I. “Ultra-Lightweight Constraints,” in
Proceedings UIST’96: ACM SIGGRAPH Symposium on User
Interface Software and Technology. 1996. Seattle, WA: pp. 147-
155. http://www.cc.gatech.edu/gvu/ui/sub_arctic/.

6. McKay, S., “CLIM: The Common Lisp Interface Manager.”
CACM, 1991. 34(9): pp. 58-59.

7. Myers, B.A., “User Interface Software Tools.” ACM Transac-
tions on Computer Human Interaction, 1995. 2(1): pp. 64-103.

8. Myers, B.A., Giuse, D., and Vander Zanden, B., “Declarative
Programming in a Prototype-Instance System: Object-Oriented
Programming Without Writing Methods.” Sigplan Notices, 1992.
27(10): pp. 184-200. ACM Conference on Object-Oriented Pro-
gramming; Systems Languages and Applications; OOPSLA'92.

9. Myers, B.A., et al. “Easily Adding Animations to Interfaces
Using Constraints,” in Proceedings UIST’96: ACM SIGGRAPH
Symposium on User Interface Software and Technology. 1996.
Seattle, WA: pp. 119-128. http://www.cs.cmu.edu/~amulet.

10. Ousterhout, J.K. “An X11 Toolkit Based on the Tcl Lan-
guage,” in Winter. 1991. USENIX: pp. 105-115.

11. Spenke, M., “Gina++ and GINA for Lisp,” 1992. P.O. Box
1316, D-W-5205, St. Augustin 1, Germany, +49 2241 14-2642,
spenke@gmd.de.

12. SWI, “XPCE,” 1997. University of Amsterdam, Roetersstraat
15, 1018 WB Amsterdam, The Netherlands, +31 20 5256121,
xpce-request@swi.psy.uva.nl,
http://www.swi.psy.uva.nl/projects/xpce/home.html.

13. System Performance Evaluation Cooperative, “SPEC
Benchmark Suite Release 1.0,” 1989.

