
A Longitudinal Study of Programmers’ Backtracking

YoungSeok Yoon

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

youngseok@cs.cmu.edu

Brad A. Myers

Human-Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

bam@cs.cmu.edu

Abstract—Programming often involves reverting source code to

an earlier state, which we call backtracking. We performed a

longitudinal study of programmers’ backtracking, analyzing

1,460 hours of fine-grained code editing logs collected from 21

people. Our analysis method keeps track of the change history of

each abstract syntax tree node and looks for backtracking in-

stances within each node. Using this method, we detected a total

of 15,095 backtracking instances, which gives an average back-

tracking rate of 10.3/hour. The size of backtracking varied con-

siderably, ranging from a single character to thousands of char-

acters. 34% of the backtracking was performed by manually

deleting or typing the desired code, and 9.5% of all backtracking

was selective, meaning that it could not have been performed

using the conventional undo command present in the IDE. The

study results show that programmers need better backtracking

tools, and also provide design implications for such tools.

Keywords—empirical study; backtracking; undo; interactive

development environments (IDE)

I. INTRODUCTION

When working on source code, programmers often revert
some changes made in code and return various code fragments
back to an earlier state, which we refer to as backtracking

1
.

Backtracking happens for many reasons. Previously, we
conducted a preliminary lab study and an online survey to
better understand the programmers’ backtracking practices [1].
In the survey, 75% of the respondents reported that they face
backtracking situations at least “sometimes,” and we found that
they use different strategies depending on the type of
backtracking situation they face. In the lab study, we observed
the coding behavior of the participants and qualitatively ana-
lyzed the data, which identified some problems programmers
face while backtracking, such as failing to locate code
fragments to be reverted, and not being able to use the undo
command when there are other intermediate changes that they
want to maintain.

These two preliminary studies, however, had many
limitations. Because we wanted to maximize the chance of
observing programmers’ backtracking behavior in a short lab
study, we designed the tasks specifically to require the
participants to backtrack. As a consequence, the study does not
really tell us how frequently those problems would occur in
real development situations. In addition, although we asked
how frequently they face various backtracking situations in the
online survey, it is possible that the programmers backtrack

1 Note that this is a different use of the term backtracking from the algorithm
often used in logic programming for solving constraint satisfaction problems.

unconsciously and the survey results may not correctly reflect
what actually happens in real development. Plus, the survey
cannot provide details about how and under what
circumstances programmers backtrack.

In order to investigate programmers’ backtracking further,
we conducted an extensive, longitudinal study as a follow-up to
the previous two studies, which we report here. The goals of
our new study are twofold. First, we wanted to obtain
backtracking statistics in order to quantify the need for
backtracking tools. We specifically focused on collecting
quantitative data from this study, as our previous studies were
mostly qualitative. Second, we wanted to identify backtracking
situations that are not very well supported by existing
programming tools, and to extract design implications for
developing better backtracking tools that might improve
programmer productivity.

We performed the analysis with the following research
questions in mind:

 How frequently do programmers backtrack in a real
programming environment? (Section III.A)

 How large are the backtrackings? (Section III.B)

 How exactly do programmers perform backtracking?
Are they backtracking manually? (Section III.C)

 Is there evidence of “exploratory programming”?
(Section III.D)

 Are there backtrackings happening across multiple
editing sessions? (Section III.E)

 Are there selective backtrackings, which cannot be
performed by the undo command? (Section III.F)

 Do programmers backtrack to the same code
repeatedly? (Section III.G)

In this paper, we first present the analysis method we
devised to answer these questions (Section II). Using the fine-
grained code edit logs we collected from 21 people, totaling
1,460 total hours of programming time, we could track the
entire histories of all abstract syntax tree (AST) nodes in their
source code, and use the per-node history data to detect
backtracking instances.

Next, we present the backtracking related information we
sought, and answers to the research questions listed above
(Section III). The results show that programmers were
backtracking 10.3 times per hour on average, and the
backtracking size varied from a single character to more than a

2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4799-4035-6/14/$31.00 ©2014 IEEE 101

thousand characters, which spans from backtracking out of
simple parameter value changes to significant algorithmic
changes. Programmers were backtracking manually by deleting
or typing code in 34% of all backtracking cases. In 20% of the
backtracking cases, programmers first changed some code, ran
the application, and then backtracked the changes. About 97%
of all backtrackings were done within the same editing session.
9.5% of all backtracking instances were selective, which means
that the conventional undo command could not handle them,
because they were intermingled with other changes that the
programmers did not want to lose. Finally, only 15% of the
backtracked nodes were reverted to the same state again later.

Section IV discusses the limitations of the analysis method
and some possible future work directions. Section V discusses
related work and Section VI concludes the paper.

II. ANALYSIS METHOD

A. Log Data

We analyzed programmers’ fine-grained code editing logs
to see how they actually backtrack while coding. The log data
was collected using FLUORITE [2], a logging plug-in for the
Eclipse interactive development environment (IDE) that we
developed to capture all of the character-level code changes
and the editing commands such as Copy, Paste, and Undo. A
total of 21 participants were recruited for the study (Table I).
Among the participants, about 8 out of 13 in G1 were Masters
students who were working on their Studio projects with real
clients, and the people in G2 are professional programmers
whose primary job is programming. After signing the consent
form, the participants were asked to install FLUORITE on their
machines and perform their own programming tasks as usual.
They were periodically asked to archive and send their logs to
us, and were paid up to $50 for their participation. The first
author of this paper also collected his own logs, which were
analyzed together with the data collected from the participants.
The data has been collected since April 2012, and contains
1,460 hours of coding activities (excluding all the idle time
exceeding 5 minutes) as of the writing of this paper. All of the
participants were programming in Java using Eclipse (v3.6 or
higher) across a variety of Windows and Macintosh machines.

Whenever a source file is opened in the Eclipse editor for
the first time, FLUORITE writes the initial snapshot of the file
into the log. From then on, it keeps track of all the edit
operations (insert, delete, or replace) of the source file, so that
the snapshots at any point in time for that file can be
reconstructed. A logged edit operation contains the timestamp

of the edit, the offset indicating where in the file the edit was
made, and the actual text deleted and/or inserted by the edit.

B. AST-Node Base Change History Tracking

We define backtracking as “programmers going back at
least partially to an earlier state of code either by removing
inserted code or by restoring removed code” [1]. By this
definition, a trivial backtracking detector would detect any
pairs of edit operations <op1, op2> where the later performed
operation op2 reverts what op1 did earlier, at least partially. For
example, if an earlier edit operation inserts “foo” in the code
(op1) and that “foo” is deleted anytime later by another
operation (op2), this pair of operations could be considered as a
backtracking instance. We first started out using this formalism.
However, this naïve approach had several major limitations:

 Too many false positives were found, caused by auto-
formatting, organizing import statements, auto-
generated comments, etc.

 It could not detect multi-step backtracking, where a
code fragment is reverted to an earlier state by multiple
edit operations.

 It could not tell syntactically equivalent code fragments
very well, as it was purely text-based. For example, if a
method call foo(); is deleted and then later put back
as foo␣(); with an additional space before the
parentheses, it could not know the two statements are
actually identical and failed to detect such backtracking.

 It treated comments and source code the same way.

 It was difficult to tell the high-level intent of the
detected backtracking automatically, and required
substantial manual inspection to get useful information
about the detected backtracking instances.

In order to address these issues, we devised an analysis
approach based on the abstract syntax tree (AST) of the source
code. The basic idea of this approach is to keep the evolution
history of individual AST nodes of interest throughout the
lifetime of the nodes.

Our new analyzer processes the logged edit events
sequentially off-line (separate from Eclipse). When a new file
open event is seen, the analyzer keeps the snapshot of that
source file and parses the snapshot (using ASTParser from
the Eclipse JDT) to store all the AST nodes of interest, for
example all the statement nodes in the source file. For each
AST node, the analyzer remembers the start position and length
of the node within the file, and the initial snapshot of that node.
When keeping the snapshot, the analyzer normalizes all the
formatting such as whitespaces and indentations.

Whenever an edit operation is seen, the analyzer applies
that operation on the last known snapshot of the file in order to
get an updated snapshot, and parses the updated version. Then
the analyzer determines all the AST node(s) that were affected
by this change and updates the start position and length of the
node. In addition, the analyzer adds the new version to the
evolution history of that specific node, but only when the
normalized snapshot differs from the last known snapshot.

Because the log data contains character-level edit
operations rather than AST-level differences, a source file can

TABLE I. PARTICIPANT GROUPS

Group # Description Coding Time (hours)
(min / avg / max / totala)

G0 1 The first author of this paper 294 / 294 / 294 / 294

G1 13 Graduate students @ CMU 3 / 40 / 216 / 520

G2 5 Research programmers / system
scientists @ CMU

 6 / 118 / 446 / 588

G3 2 Graduate students @ the
University of Pittsburgh

 6 / 29 / 51 / 57

a. min / avg / max: per-user values

total: the sum of all the users’ coding times in each group

102

be in an incomplete state (i.e., containing parse errors) after
applying an edit operation. In such cases, the analyzer tries to
update only the start position and length values of all the
known nodes according to the edit offset and length. When the
file returns to a parseable state after some subsequent edits, the
analyzer again tries to match all the previously known nodes
and the current nodes to find all the affected nodes. By doing
this, the analyzer can keep track of the per-node evolution
history over time.

When an AST node gets removed from the AST tree (i.e.,
the corresponding code fragment is deleted from the source
code), the node cannot have more evolution history in the
future. At that point, the analyzer checks whether the evolution
history of that node contains any backtracking instances. Let
the evolution history , where is the -th
snapshot of the node. A backtracking instance is then defined
as a sublist of where:

 ()

In summary, a backtracking instance is a sub-history of a
node where the first and the last snapshots are the same, and all
the intermediate snapshots are different from the first snapshot.
This indicates that this node digressed from the first version
and then backtracked to the first version. Fig. 1 shows an
example node history, which contains three backtracking
instances. Note that does not count as backtracking,
because there is an intermediate version which is the same
as and . Throughout the paper, we will formally refer to
 as the first version, as the last version, and any (
) as an intermediate version of a backtracking instance.
When there is no need to distinguish the first and last version,
we will use the term original version to refer to either version.

Fig. 2 shows an example history of a statement node that
contains a backtracking instance. On the left side are the IDs of
the edit operations unique within a single programmer’s entire
log. Each line shows the snapshot of the node at a given time,
and it shows the evolution history of this specific node from
top to bottom. The green shaded code indicates newly inserted
code, and the pink shaded strikethrough code indicates deleted
code compared to the previous version. In this example, there
was one backtracking instance [4263, 4629], which means that
the normalized snapshot of this node at ID 4263 – the first
version – was identical to the one at 4629 – the last version.

The analysis was performed on three different levels of
granularity of AST nodes: statement level, block level, and type

definition level. A type definition is any of a whole class, an
interface, or an enum, which is usually a whole Java file with
the exceptions of nested type definitions. We analyzed the logs
at these levels for two reasons. First, we wanted to know the
granularity of backtracking instances. Second, this is needed to
detect certain types of backtrackings. For instance, when a
statement (s1) is deleted from the code and then the identical
statement (s2) is put back at the same position in the future, the
statement level analyzer would consider s1 and s2 as separate
nodes, and thus not detect this as backtracking. On the other
hand, if we run the analysis at the block level, both the deletion
of s1 and insertion of s2 would be in the evolution history of
the surrounding block, thus the block-level detector would
successfully detect this as a backtracking instance. In addition,
block level analysis can detect the changes spanning across
multiple statements. Similarly, when a code block or an entire
method is removed and restored later, or when multiple code
blocks are changed together and backtracked, the type-level
detector would catch that instance.

Comments in the source code were excluded from the
analysis, as we were mainly interested in actual code changes
and exploratory programming. However, when the programmer
comments out some code and uncomments it (or vice versa),
the analyzer still detects this as a backtracking, because it is
seen by the analyzer as if the commented out code disappeared
and was put back in.

C. Data Preparation & Removing Duplicated Results

Before performing the analysis, we cleaned up the data in
order to get more meaningful results. First, we removed all of
the minor typo correction instances from the logs using our
typo correction detector [2]. Even though typo corrections are
backtracking instances by our definition, these are not very
interesting in that it is hard to imagine a useful programming
tool that helps fixing typos any better than current mechanisms.
There were 40,229 edits removed as part of typo corrections,
out of a total of 343,685 edits (11.7%).

The second clean-up process that we applied was removing
the noise related to the “Rename Refactoring” command of
Eclipse. When the rename refactoring is invoked, all the
occurrences of the element being renamed (e.g., a variable
name) are highlighted directly in the code editor, and they all
change together as the user types. When the user confirms the
renaming by hitting the enter key, however, Eclipse
automatically reverts all the character-level changes made
during the renaming process, and turns them into word-level
changes so that users can undo the renaming with a single
command. Since all the intermediate character-level changes
are also logged in the FLUORITE logs, they resulted in many
false positives in our backtracking analysis results. Thus, we
cleaned these up before analyzing the logs.

v1

v2

v3

v4

v5

Backtracking instance: [4263, 4629]

[4263]return new Point(getWidth(),getHeight());

[4555]return new Point(getWidth() - MARKER_SIZE,getHeight());

[4567]return new Point(getWidth() - MARKER_SIZE,getHeight() - MARKER_SIZE);

[4623]return new Point(getWidth() - MARKER_SIZE,getHeight() - MARKER_SIZE);

[4629]return new Point(getWidth(),getHeight() - MARKER_SIZE);

Fig. 2. An example output of our analyzer, showing the history of a statement

node. Each row maps to each version (v1,v2, …, v5). This node contains a
single backtracking instance, which is v1…v5. The edit operation IDs were

originally 6-digits long (e.g., 184263), but were shortened for brevity.

Fig. 1. An example of a node evolution history, which contains three

backtracking instances. The node first appeared in the code as “getHeight();”

(v1), changed a few times (v2 through v5), and finally ended up back at the
original code (v6). The different contents are symbolized as capital letters A,

B, and C. There are three backtracking instances in this node history indicated

as black backward arrows.

103

We also took extra care to remove duplicate instances
appearing in the analysis results. When running the analysis on
different levels of granularities (statement < block < type
definition), the same backtracking can appear in multiple
granularities. For instance, when a statement is changed and
immediately backtracked, this instance will appear in all three
levels. When counting the backtracking instances at a coarse
level of granularity, we excluded all the instances that were
also detected at a finer grained level. There can also be
duplications within the same level of granularity, because a
code block can contain another block, and a type definition can
contain a nested type definition inside. We only counted the
backtracking instances at the innermost code element.

Finally, because the programming language used was Java,
there can also be duplications when a statement contains one or
more type definitions or code blocks. In Java, anonymous class
instances can be defined and assigned to a variable or passed as
a parameter of a method inline. We made sure to exclude these
types of duplications as well by not counting such statements.

III. RESULTS

This section presents the analysis results, which are
summarized in Table II. The backtracking instances were
investigated with several specific questions in mind, each of
which is explained in the following subsections.

A. Frequency of Backtracking

Overall, the analyzer detected a total of 15,095
backtracking instances within the 1,460 hours of coding
activities, which gives an average rate of 10.3 instances per
hour. That is, programmers were backtracking every six
minutes on average, which is quite frequently considering that
this number excludes all the trivial typo correction types of
backtrackings. The rate varied across participants (min=3.8/h,
max=28.4/h), but all participants were backtracking frequently.

B. Size of Backtracking

We measured the size of each backtracking, in terms of
how far the intermediate versions digressed from the original
version. Minor backtrackings might not need much tool support,
but it would probably be very helpful to have better tools for
relatively larger backtrackings. To measure this size, we used
the Levenshtein distance [3], commonly referred to as the edit
distance, between two strings. In a backtracking instance, we
calculated the edit distances between the original version and
each of the intermediate versions, and took the maximum value
as the size of the backtracking. For instance, if an instance had
a version history of A→B→C→A, then the size of the instance
would be the maximum value of the distance between (A, B)
and (A, C). For example, in the earlier example presented in
Fig. 2, the backtracking size is 28, which is the edit distance
between and .

Fig. 3 shows the distribution of backtracking sizes. The
horizontal axis (which is non-linear) represents the groups of
backtracking sizes in ascending order, and the vertical axis
shows the total number of backtracking instances in each group.
We can see that 1,304 backtrackings were a single character,
which were 8.6% of all backtrackings. The most common
backtrackings were between 10 and 49 characters. There were
also 220 backtrackings that were larger than or equal to 1,000
characters.

Of all the single character backtrackings, we could
automatically determine that 36% were performed on variable
or method names, 26% on number literals, and 13% on string
literals. We randomly sampled 50 instances from each of the
larger size categories and manually inspected them to get a
better sense of what kinds of backtrackings are represented at
the different sizes. The 2-9 and 10-49 groups seem to be
dominated by simple parameter/expression changes as in Fig. 2,
followed by simple name changes on methods or variables. The
majority of 50-99 group seem to be single statement changes,
and some instances were about surrounding existing code with
control blocks (e.g., if, try-catch) and reverting it. The 100-
499 group instances seem to be mostly adding/removing/modi-
fying multiple statements. The instances with sizes larger than
500 seemed to be significant algorithmic changes, adding or
removing multiple methods, and so on.

Fig. 3. Distribution of all the detected backtracking sizes

TABLE II. SUMMARY OF ANALYSIS RESULTS

PID Group Time (h) BIa BI/hb CRRc SRd

P0 G0 294.1 2278 7.7 37.5% 10.1%
P1 G1 68.1 961 14.1 6.0% 11.8%
P2 G1 216.2 2450 11.3 26.3% 13.7%
P3 G1 2.6 73 28.4 0.0% 6.8%
P4 G1 64.2 1616 25.2 45.4% 8.1%
P5 G1 13.7 110 8.0 29.1% 17.3%
P6 G1 16.4 164 10.0 8.5% 6.1%
P7 G1 25.3 486 19.2 11.7% 8.4%
P8 G1 29.5 296 10.0 45.6% 10.8%
P9 G1 22.5 380 16.9 36.3% 11.6%
P10 G1 19.5 193 9.9 3.1% 14.5%
P11 G1 22.7 87 3.8 13.8% 10.3%
P12 G1 5.5 65 11.8 13.8% 1.5%
P13 G1 14.0 126 9.0 4.0% 1.6%
P14 G2 5.7 47 8.3 42.6% 6.4%
P15 G2 87.3 622 7.1 19.0% 11.4%
P16 G2 446.0 4179 9.4 4.3% 5.8%
P17 G2 28.0 116 4.1 44.0% 8.6%
P18 G2 21.2 186 8.8 4.8% 4.3%
P19 G3 51.2 605 11.8 2.0% 14.9%
P20 G3 6.2 55 8.9 0.0% 7.3%

Total 1459.9 15095 10.3 20.4% 9.5%

a. BI: Number of backtracking instances
b. BI/h: Backtracking instances per hour
c. CRR: Cross-run backtracking instances rate
d. SR: Selective backtracking instances rate

104

C. Backtracking Tactics

Our ultimate goal is to provide useful backtracking tools for
programmers. Therefore, it is important to understand how
programmers are backtracking now, and to determine whether
there is room for improvement. Although we have studied this
in our previous survey [1], this time we were able to identify
the editor features used for backtracking with actual data. The
logs contained not only the code changes but also the editing
commands (e.g., copy, undo, etc.), which made it possible to
detect what types of commands were used to accomplish the
backtracking. We are going to use the term tactics to refer to
the low-level editor features used for each backtracking, in
accordance with prior research [4, 5].

We looked for the editing command that caused all the
backward changes of the instance, which are the changes
following the intermediate version with the greatest edit
distance with the original version (Fig. 4). When all the
commands were of same type, we determined that command to
be the backtracking tactic. Otherwise, we marked the tactic as
multiple. We automated this process, but the analyzer could not
determine the backtracking tactics for 9.43% of the instances.
This happened when the logs did not have enough information,
for example when the source code changed outside of Eclipse.

Fig. 5 shows the identified backtracking tactics. The most
frequently used backtracking tactic was using the undo and
redo commands, constituting 36.63% and 2.57% of all the
backtracking instances, respectively. This implies that these
instances were already supported by existing editor features.
We also noticed that many of the undo commands were
invoked repeatedly in sequence. In other words, the participants
often used the undo command multiple times in order to revert
the source file to an earlier state.

The next most frequently used tactic was deleting some text
from the code, constituting 21.47% of all instances. This
includes using backspace key (16.33%), delete key (3.74%),
delete line command of Eclipse (0.91%), and some
combinations of these (0.49%). For these cases, once the code
is located, backtracking itself is trivial; the programmer can
easily select the code and delete it. Therefore, backtracking
tools should help programmers locate the right piece of code to
be removed, because that is the biggest challenge in this case.

The third most popular tactic was manually typing the
desired code, which was used in 12.61% of all instances. We
considered the cases with typing and deleting intermixed as
typing, since these deletions can be seen as minor corrections
happened while typing. This is particularly interesting, because
it shows the lack of tool support for restoring deleted code.
Manually restoring the deleted code or reverting modified code
to the original version relies entirely on the programmers’
memory, and thus can be error-prone. Even if the programmer
knows exactly what she has to do, manual typing would be less
efficient compared to just undoing – even selectively – that
piece of code to the desired version.

Cutting (4.25%) and pasting (6.47%) were the next most
popular tactics. Of all the backtracking performed by pasting,
41% were just undoing the preceding cut commands, which
can be considered as an alternative way of copying the code.

3.53% of the instances were marked as multiple, which
means that more than one type of editing commands were used
to accomplish the backtracking. The rest of the identified
tactics were using content assist features such as code
completions and quick fixes (1.74%), and using the toggle
comment feature (1.29%).

D. Cross-Run Backtracking Instances

In situations such as designing a system or learning an
unfamiliar API, programmers must explore and try out multiple
alternatives, which has been called exploratory programming
[6]. We were interested in how many of the detected
backtracking instances were performed as part of exploratory
programming. When programmers experiment with code, they
make some changes, run the application, and revert the code
back to the way it was before if the code does not behave as
desired. We checked whether there was an application run
command between the first change and the last change of a
backtracking instance, which we call cross-run instances. The
FLUORITE logs contain run commands, such as launching the
application under development and running unit tests within
Eclipse, which made it possible to count such instances.

The cross-run instance rates are shown in Table II, in the
column named “CRR” (cross-run rate). Overall, 20.4% of all
instances were cross-run instances. This rate varied among
participants, and two of them (P3 and P20) had no cross-run
instances at all. Interestingly, the logs from these two
participants were relatively short (2.6h and 6.2h, respectively)
compared to the other logs, and did not contain any run
commands at all. This could mean that these two people ran the
application outside Eclipse for some reason, or did not run the
application at all. All the other participants had some number
of cross-run instances.

Fig. 5. The identified backtracking tactics

Fig. 4. A backtracking instance illustrated. The analyzer determines the

farthest version within each instance, and considers all the changes following
the farthest version as backward changes.

105

P14 had a 100% cross-run backtracking rate from the
statement level analysis. By manually inspecting these six
cross-run instances, it was found that all of them were
parameter tuning instances, for example adjusting some
threshold value from 0.3 to 0.4 and then back to 0.3.

E. Cross-Session Backtracking Instances

In most code editors, the undo feature works only within
the same editing session, and users cannot undo the changes
made in the past sessions (where a session is from starting
Eclipse to exiting). To determine whether it would be useful to
make backtracking tools work across sessions, we counted the
number of cross-session backtracking instances, where the
editing sessions of the first change and the last change were not
the same.

The analysis showed that 96.7% of backtrackings were
done within the same session, and only 3.3% of all instances
were cross-session backtracking. We also measured how many
sessions did each instance go back, which is depicted in Fig. 6.
It shows that 99.0% of all backtracking was done within 3
editing sessions. In other words, a backtracking tool would
work for the most (97.0%) cases with only the history within
the same editing session, and providing the history of the last 3
sessions would cover 99.0% of the cases.

F. Selective Backtracking Instances

We also investigated whether each backtracking instance
was selective in nature. A backtracking instance is selective
when there are edits in the middle of the backtracking that
change other parts of the same file, that are not backtracked
together. We were interested in this, because the restricted
linear undo command [7], the conventional undo command
used in most editors, cannot handle selective backtracking.

When determining selectiveness, we tried to be as
conservative as possible, even when there are intermixed
changes to other parts of the code. First, we excluded all the
backtracking done by undo/redo commands. In addition, there
were other subtle cases that we wanted to exclude. For example,
Fig. 7 shows two possible backtracking scenarios in a source
file. The source file has three statement nodes, s1, s2, and s3. In
both scenarios, the three nodes are modified in turn and they
are reverted back to the original version in various orders. We
did not want to mark these instances as selective, because the
undo command could be used multiple times to handle these
cases. The first scenario shows such a case. However, the
second scenario is also possible when the user performs
backtracking by hand. To exclude these cases, we also looked
ahead and checked the changes immediately following the last
change of a backtracking instance, to see if those changes are
reverting the intermixed changes to the other parts.

The results showed that 9.5% of all instances were selective,
as indicated in Table II in the “SR” (selective rate) column. We
also investigated the tactics of all the selective backtrackings,
as discussed above in Section III.C. 63% of selective
backtrackings were performed by manually deleting or typing
the desired code, suggesting the need for backtracking tools.
We did not find any significant difference between selective
and non-selective backtrackings in terms of their sizes (that is,
the selective backtracking had small and large sizes in a similar
proportion as shown in Fig. 3).

G. Repeat-Count

When a certain node comes back to the same version more
than once, we kept track of the repeat count of each
backtracking instance. For example in Fig. 1, and are of
repeat count 1, but the repeat count of is 2, because the node
content backtracked to for the second time.

Fig. 8 shows the repeat counts of all backtracking instances.
The blue bars indicate the number of instances in each repeat
count group. When a backtracking happens more than once, the
first time is counted in the first bar, the second time is counted
in the second bar, etc. In other words, each bar is included in
the previous bar. Each point on the red line is the next bar value
divided by the current bar value, indicating the percentage of
the instances that come back to the same state again. For
example, 12,430 instances have the repeat count value of 1, and
only 15.0% (1,868 out of 12,430) of them come back to the
same state after some exploration in the future. While the
number of instances dramatically falls as the repeat count
increases, the revisiting fraction goes up. This implies that
when a node comes back to the same state a few times, it is
likely that the node will digress and return again.

Fig. 6. Cumulative percentage of all backtracking instances with different

editing session distances. 96.7% of all backtrackings were performed within

the same editing session. 99.0% of all instances have less than or equal to a 3
session distance.

Fig. 7. Two possible backtracking scenarios, whose backtracking instances

are not selective. The source file has three different statement nodes being
affected (s1-s3). Each backtracking scenario has three backtracking instances

in each node. Except for the backtracking instance in s3 in scenario #1, all the

backtracking instances have some changes to other parts of the same file
within their timespan. Nevertheless, these are not selective because the undo

command can handle both cases.

106

One participant (P2) backtracked a statement to the same
state 24 times, which was the maximum value of all repeat
counts. This was another parameter tuning instance, where she
was experimenting with different width value for a line drawn
on a canvas. The next biggest repeat count was 9, where a
statement that translated a graphical object on the screen was
removed and put back again multiple times.

IV. LIMITATIONS AND FUTURE WORK

There are a few limitations of our analysis method. First,
our analyzer can only detect exact backtracking instances,
which has several implications. For instance, when a
programmer changes two parts within a statement and reverts
only one of them, the analyzer would not be able to catch this
backtracking instance because the smallest level of granularity
we used was the statement level.

Moreover, all the detected instances are successful, and the
analyzer cannot detect cases where the programmer intended to
backtrack but failed, which we had seen happen in our lab
study [1]. If programmers fail to backtrack correctly, it would
imply the need for better backtracking tools even more. Our
analysis will also miss near-exact backtracking instances. For

instance, suppose a variable name fontSize changes to

rectangleSize, then to regionArea, and finally to

fontArea in that order (changed parts are underlined).
Conceptually, this is backtracking because the front part of the
variable name has changed from font and then back. We
were interested in this, because even a selective undo tool
cannot easily handle this because selectively undoing the first
change (fontSize → rectangleSize) has what we call a
“region conflict” with the following change which deleted a
portion of rectangle. Our analysis would not count this case.

All the participants were programming in Java. There may
be some backtracking patterns that occur more often when
coding in Java, and the statistics presented in this paper may
not be generalizable to other programming languages. In
addition, if a similar analysis were to be performed for a
different programming language, the analyzer might need some
language-specific tweaks. For example, we needed to take
Java’s anonymous class definition into account, in order to
filter out duplicated results.

In addition, all the logs were collected within Eclipse,
which might have affected the results. The backtracking

patterns may vary if programmers are using different code
editors or IDEs that provide different code editing features.
Nevertheless, considering that most available IDEs provide a
similar set of editor commands and all programmers need to do
tasks like understanding APIs and determining the right
parameters for methods, we believe that the patterns would not
be drastically different from what we reported.

All participants, including the professional programmers,
were working in academic settings. We do not know whether
there would be any significant differences in industrial settings.
None of the participants were novices learning to program, and
studying novice backtracking behaviors would be an interesting
area for future work. We included the first author’s own logs
(P0 in Table II), which might have biased the results. However,
we confirmed that excluding the first author’s log does not
change the results much. For example, the backtracking rate
becomes 11.0/hour when P0 is excluded, compared to
10.3/hour as we reported in Section III.A, and the selective
backtracking rate remains the same at about 9%.

There were a few types of information we sought but could
not obtain. First, because the log data did not record the version
control system (VCS) features used by the programmers such
as commit and revert, we could not tell the fraction of
backtracking done by the VCS. If the source code is
backtracked using the revert feature of a VCS, our analyzer
would still detect the backtracking but mark the tactic as
unidentified (see Fig. 5). If we knew which ones were due to
the use of a VCS, we would have been able to distinguish the
types of backtracking which would be better handled by a VCS
and those most suited for in-editor features. This would help us
design backtracking tools to work better with existing VCSs.

In addition, we wanted to know whether there were
semantic relationships among the backtracking instances. For
example, suppose a programmer first renames a method and all
the callsites, and then reverts these changes later on. Our
analyzer would detect the individual backtracking which
occurred in the method definition and the callsites separately. It
would be clear that these instances are all related to each other
by manually inspecting these instances, but the analyzer could
not automatically determine such relationships.

We also wanted to learn how programmers navigate to the
backtracking location before they actually perform backtrack-
ing changes. However, we could not determine this information
partly because there is some missing information we needed in
the logs, and also because it requires too much manual
investigation. There are diverse ways of navigating in Eclipse,
including keyboard keys, mouse clicks and scrolling, and other
Eclipse commands such as various searches. The logger did not
catch mouse scroll events, and when the users are performing
searches, only the initial search command is logged but the
following events for clicking on one of the search results to
actually jump to the relevant code are not logged, which makes
it difficult to analyze the exact navigation command used by
the programmers. Improving the analysis method and looking
for this missing information remains as future work.

Another direction is to develop actual backtracking tools
according to the design implications extracted from this study.
We are already working on a backtracking tool called AZURITE

Fig. 8. Repeat counts of all backtracking instances, along with the percentage

fraction of revisiting the same state in the future.

107

[8], which supports selectively undoing the desired previous
edits without undoing the other intermediate changes that the
user wants to keep. According to our study results presented
here, at least 9.5% of the backtracking was selective, all of
which can be handled with AZURITE.

V. RELATED WORK

This study can be seen as a software evolution study
performed at a fine-grained level. While mining software re-
positories [9], a popular software evolution research metho-
dology, works at the commit level, our analysis is performed at
the individual code edit level. For our backtracking study, it
was necessary to use the fine-grained history, because pro-
grammers would often backtrack while experimenting, and the
intermediate versions are very unlikely to be captured in ver-
sion control system histories.

There are several other research tools that capture fine-
grained code changes as our FLUORITE does. Operation-
Recorder [10] and CODINGTRACKER [11] both take the raw text
changes as inputs and turns them into AST-level change opera-
tions. Our analysis method could be used to analyze the data
collected by these other tools, because they also work at the
AST level. The data can be used in various ways, and there are
other researchers who have analyzed their own fine-grained
code change data to extract different information. For example,
CODINGTRACKER logs were analyzed by adapting existing data
mining techniques [11], which is different from our per-node
history keeping approach. The goal of their analysis was also
different: they identified 10 previously unknown program
transformation patterns. This shows that analyzing fine-grained
code change history can be useful in many different ways.

More generally, detailed tool usage data can be used to
identify usability problems of specific tools. Akers et al. de-
vised a study method called backtracking analysis, which is
designed to capture usability problems of graphical creation-
oriented programs such as Google SketchUp [12]. To capture
richer contextual information, their system automatically
captured both the screens of participants and the backtracking
events such as undo or erase. Although we are also detecting
backtracking events in an IDE, the goal of our work is very
different. In their backtracking analysis, backtracking events
such as undo or erase are assumed to be indicators of usability
problems of the creation-oriented programs. On the other hand,
we believe that backtracking events in code editing are natural
in exploratory programming, and our goal is to support
programmers to backtrack more easily and effectively.

Vakilian et al. collected detailed usage data of Eclipse
refactoring tools using their CODINGSPECTATOR tool, and
analyzed the data to discover usability problems of the
refactoring tools [13]. In their analysis, they detected the
situations where the users used the refactoring tools in a way
that is not ideal, indicated, for example, by cancellations or
undoing of the refactoring commands. Unlike their study, our
focus was on backtracking.

VI. CONCLUSION

Backtracking is inevitable in programming, including when
programmers are exploring a design space, experimenting with

different options, or just make a mistake. Using the abstract
syntax tree node history tracking analysis, we analyzed the
fine-grained code change logs to detect interesting
backtracking-related information. We confirmed that
programmers are in fact backtracking a lot, and there are
backtracking situations not very well supported by existing
programming tools. We believe that providing better tools will
help programmers to perform their daily backtracking tasks
more effectively, and thus improving their productivity.

We also believe that our analysis technique may have
applications beyond detecting backtracking, and other
researchers could benefit from analyzing fine-grained code
change patterns to better understand programmers’ coding
practices and to provide useful tools for programmers.

ACKNOWLEDGMENT

We thank all the developers who participated in our study.
We also thank Jonathan Aldrich, Christian Kästner, Emerson
Murphy-Hill, the exploratory programming group (exploratory-
programming.org), and the anonymous reviewers for helping
us improving the early drafts of this paper. Funding for this
research comes in part from the Korea Foundation for
Advanced Studies (KFAS) and in part from NSF grant IIS-
1314356. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of KFAS or the
National Science Foundation.

REFERENCES

[1] Y. Yoon and B. A. Myers, "An Exploratory Study of Backtracking
Strategies Used by Developers," Proc. CHASE 2012, pp. 138-144.

[2] Y. Yoon and B. A. Myers, "Capturing and Analyzing Low-Level Events
from the Code Editor," Proc. PLATEAU 2011, pp. 25-30.

[3] V. I. Levenshtein, "Binary codes capable of correcting deletions,
insertions and reversals," Soviet physics doklady, vol. 10, 1966, p. 707.

[4] M. J. Bates, "Where should the person stop and the information search
interface start?," Info. Processing & Mgmnt, vol. 26, 1990, pp. 575-591.

[5] V. I. Grigoreanu, M. M. Burnett, and G. G. Robertson, "A Strategy-
Centric Approach to the Design of End-User Debugging Tools," Proc.
CHI 2010, pp. 713-722.

[6] D. W. Sandberg, "Smalltalk and Exploratory Programming," SIGPLAN
Notices, vol. 23, 1988, pp. 85-92.

[7] T. Berlage, "A Selective Undo Mechanism for Graphical User Interfaces
Based on Command Objects," TOCHI, vol. 1, 1994, pp. 269-294.

[8] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-Grained Code
Change History," Proc. VL/HCC 2013, pp. 119-126.

[9] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution," Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, 2007, pp. 77-131.

[10] T. Omori and K. Maruyama, "A change-aware development
environment by recording editing operations of source code," Proc. MSR
2008, pp. 31-34.

[11] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, "Mining Fine-
Grained Code Changes to Detect Unknown Change Patterns," Proc.
ICSE 2014, in press.

[12] D. Akers, R. Jeffries, M. Simpson, and T. Winograd, "Backtracking
Events as Indicators of Usability Problems in Creation-Oriented
Applications," TOCHI, vol. 19, 2012, pp. 1-40.

[13] M. Vakilian and R. E. Johnson, "Alternate Refactoring Paths Reveal
Usability Problems," Proc. ICSE 2014, in press.

108

http://www.exploratoryprogramming.org/
http://www.exploratoryprogramming.org/

