
Empirical Studies on the Security and Usability
Impact of Immutability

Sam Weber
New York University

6 Metrotech Center

Brooklyn, NY

Email: samweber@nyu.edu

Michael Coblenz, Brad Myers, Jonathan Aldrich, Joshua Sunshine
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA, US

Email: {mcoblenz, bam, aldrich, sunshine}@cs.cmu.edu

Abstract—Although it is well-known that API design has a
large and long-term impact on security, the literature contains
few substantial guidelines for practitioners on how to design APIs
that improve security. Even fewer of those guidelines have been
evaluated empirically.

Security professionals have proposed that software engineers
choose immutable APIs and architectures to enhance security.
Unfortunately, prior empirical research argued that immutablity
decreases API usability.

This paper brings together the results from a number of pre-
vious papers that together aim to show that immutability, when
carefully designed using usability as a first-class requirement,
can have positive effects on both usability and security. We also
make observations on study design in this field.

I. INTRODUCTION

It is well-known that API and language design can have

a large impact on security, and this barrier is difficult, if

not impossible, to overcome by training alone. For example,

buffer overflows were understood and documented as early

as 1972, but are still one of the most common vulnerabilities

[1]. As another example, Wang et. al. [2] showed that usability

problems in Facebook’s and Microsoft’s online authentication

interfaces resulted in security vulnerabilities in most of the

websites that used them. Furthermore, APIs are typically

designed by a small number of experienced developers but

have an extremely long life-span, and therefore the impact of

poor API design can have far reaching consequences.
Usability issues in security-relevant APIs, such as cryp-

tography or authentication libraries, have a clear impact on

security. In this work we focus instead on APIs that are not

specifically security-related because programmers using them

are not actively considering security and therefore are more

likely to be susceptible to the conceptual failings and unstated

assumptions that underlie most vulnerabilities.
Unfortunately, most existing work on API design concen-

trates on relatively low-level features, such as documentation

and method naming. We would like to encourage research on

higher-level API design features. Herein, we’ll discuss in detail

the current state of knowledge regarding one such feature:

immutability.

A. Immutability
Immutability, the prevention of state changes, is widely

recommended in both programming language and security

documents such as Oracle’s Secure Coding Guidelines for Java
SE [3]. Immutability automatically prevents TOCTTOU (Time

of Check To Time of Use) attacks and, in general, is said to

aid programmer understanding of potential system behavior

by eliminating the need to reason about object modifications

[4].

For example, in an early release of Java, the method

Class.getSigners() returned an array containing the

signers of a class. Unfortunately, what was returned was a

reference to the actual internal array containing the signers,

not a copy of it. Since arrays are mutable, malicious code

could alter the system’s knowledge of code signers [5]. Thus

the concern about mutability affecting security is more broad

than just TOCTTOU attacks.

Unfortunately, previous empirical research, described in

detail in Section II, indicated that APIs that create immutable

objects are less usable by programmers.

In this paper we summarize two previously published papers

([6] and [7]) which together further investigated the usability

and security impact of immutability and limitations on state-

changes in general. In particular, these papers aimed to ex-

amine the discrepancy between the community opinion of im-

mutability and experimental findings, determine if security and

usability were, in fact, opposed to each other and, above all,

provide evidence-based advice to practitioners about whether

immutability was a desirable API feature.

This body of work includes:

• An interview study with expert software engineers to

find out how practitioners control state in large, complex

software projects, their perceived needs and how they

feel about existing language features and tools. It was

determined that they strongly desired improvements in

their ability to control state. Design recommendations

were extracted.

• A review of existing literature and programming lan-

guages resulted in a classification system for mutability

restrictions in programming languages.

• A language extension to Java, called Glacier, was de-

signed and implemented. Glacier allows users to express

transitive class immutability, which guarantees that im-

mutable objects cannot reference any mutable state [7].

IEEE Secure Development Conference

978-1-5386-3467-7/17 $31.00 © 2017 IEEE

DOI 10.1109/SecDev.2017.21

50

2017 IEEE Cybersecurity Development

978-1-5386-3467-7/17 $31.00 © 2017 IEEE

DOI 10.1109/SecDev.2017.21

50

Create-Set-Call Style:

var foo = new FooClass();
foo.Bar = barValue;
foo.Use();

Required Constructor Style:

var foo = new FooClass(barValue);
foo.Use();

Fig. 1. Alternate Object Creation Styles [8]

• Evaluations of Glacier, done both by retrofitting existing

applications and by laboratory experiments, demonstrated

that it could be applied to real applications and that pro-

grammers were more effective at specifying immutability

and modifying code in immutable classes using Glacier

than using Java’s final keyword.

Additionally, this paper also provides observations about ex-

perimental methodology in this field.

II. RELATED WORK ON IMMUTABILITY AND API

USABILITY

Stylos and Clarke, in Usability Implications of Requiring
Parameters in Objects’ Constructors [8], investigated the

usability of two alternate styles of object creation, illustrated

in Figure 1. If an object, in order to be valid, needs a “Bar”

value, the first style, “Create-Set-Call” has the programmer

instantiate an empty object and then explicitly sets a “Bar”

field with the appropriate value. The second style, “Required

Constructor”, has the programmer supply the “Bar” value in

the constructor.

Although not explicitly stated in this paper, the relationship

to immutability is obvious: an immutable object cannot be

created using the Create-Set-Call style.

Stylos and Clarke recruited thirty different professional

programmers, none of whom were students. Each participant

executed six tasks. In the first task they designed an API for

accessing files. The following tasks involved using classes

of each style to: access files, use provided classes, debug

code, initialize the inventory of an online-store application, and

read code on paper. Finally, semi-structured interviews were

conducted to ascertain in more detail the reasoning behind the

participants’ actions and their opinions on API design.

To their surprise, programmers strongly preferred and were

more effective in using create-set-call style APIs. Commonly

create-set-call was seen as more flexible. Even programmers

who highly valued correctness did not feel that required

constructors offered any assurances about the validity of an

object.

These results motivated the authors of [6] to do further work

investigating whether there was a tradeoff between security

and usability of immutable APIs, summarized in the next

section.

Of course, there has been much other research on im-

mutability and API Usability. Immutability has long been a

feature of functional languages: purely functional languages

support no directly mutable data structures, and other func-

tional languages encourage designs that minimize the use of

mutable state. In addition, functional approaches can eliminate

large classes of security bugs in applications, as in Ur/Web [9],

which prevents all injection attacks (and other classes of secu-

rity flaws). Other recent languages such as Rust, Clojure, Scala

and Swift have incorporated functional concepts. Designers

of the PLT family of languages suggest that immutability is

helpful for web development: a stateless programming style

avoids various session-related bugs [10]. However, we know

of no empirical data on the effect of functional approaches

on security. Significant differences in many language design

decisions, as well as differences in application spaces and

user populations, have so far made it difficult to separate the

immutable aspects of functional languages from other aspects

when considering potential security impact.

In the area of API Usability, a recent survey [11] shows an

increasing amount of research and commercial interest in this

area, and some studies have explicitly linked lower usability of

APIs to less secure applications. For example, a study by Fahl

et al. [12] of 13,500 popular free Android apps found 8.0% had

misused the APIs for the Secure Sockets Layer (SSL) or its

successor, the Transport Layer Security (TLS), and were thus

vulnerable to man-in-the-middle and other attacks; a follow-on

study of Apple iOS apps found 9.7% to be vulnerable. Causes

include significant difficulties using security APIs correctly,

and Fahl et al. [12] recommended numerous changes that

would increase the usability and security of the APIs.

Similarly, Acar et al [13] investigated the usability of

crytographic APIs, determining empirically how the design of

such an API affects the security of the systems that use them.

One difference between this work and the work described here

is that crytographic APIs directly involve security, whereas

immutability indirectly affects security.

III. INTERVIEW STUDY

In order to determine how practicing software engineers

think about system state and what issues they face, Coblenz

et. al. obtained IRB approval and conducted semi-structured

interviews with a sample (N = 8) of software engineers at

several US- and Europe-based organizations. They focused on

software engineers who worked on large software projects,

and had at least seven years of professional experience, with

a mean of fifteen years. Typically participants had worked on

projects with millions of lines of code and hundreds of people.

Space limitations prevent a complete description of this study,

but more details can be found in [6].

Participants almost universally reported that incorrect state

changes were a significant source of bugs. One participant

ranted:

. . . my favorite is where you have data that is sup-

posed to be immutable and is only settable once in

theory but that’s not well enforced and so it ends up

5151

getting re-set later either because it gets re-initialized

or because someone is doing something clever and

re-using objects or you have aliasing where two

objects reference the same other object by pointer

and you make changes. . .

Another participant reported that immutability was a key part

of his system’s architecture: “By design, we’ve made the key

data structures immutable. We never update or delete any data

objects. This ensures that an error or problem can never put

the system into an undesirable state.”

Immutable classes were reported to be very frequently

used, but that the languages that participants used provided

very poor support for them. For example, C++’s const
was described as being inflexible and did not provide the

desired functionality. Programmers complained that declaring

a method const requires transitively annotating all methods

that the first method calls, and that this was a serious burden.

IV. MUTABILITY RESTRICTIONS

One problem with attempting to address programmers’

desires for immutability and the control of state changes in

general is that there are many different concepts and dimen-

sions to the control of state that are not clearly differentiated.

In [6], a classification for mutability restrictions in pro-

gramming languages is presented, which has eight distinct

dimensions. For example, assignability restrictions disallow

assignment. In Java, if a class A has a field f declared final,

then this is an assignability restriction: in all objects of class

A, f can never refer to a different object than the one with

which it was initialized. In contrast, the C declaration const
int *x provides what is called a read-only restriction: x is a

pointer to an int and might later refer to a different address,

but the reference x cannot be used to change the value at any

memory location to which x points.

The dimensions scope and transitivity are particularly note-

worthy. Scope refers to whether a restriction refers to particular

objects or to all of a class’s instances. Transitivity refers

to whether restrictions apply only to the direct object being

considered or to all objects that are referred to by that object.

As described above, Java’s final as applied to fields is non-

transitive: a particular field in a particular instance can only

refer to a single object, but the state of that object might

change. A transitive immutability restriction would not only

prevent that field’s reference from changing, but the state of

that object and all objects referred to by it directly or indirectly

would likewise be prevented.

The participants interviewed in the previously-descripted

study seemed to desire transitive immutability restrictions that

applied to all instances of a class.

V. GLACIER

As described in detail in [7], one of the authors (Coblenz)

implemented a Java extension, called Glacier, that provided

transitive class immutability features to Java. Glacier supports

the type annotation @Immutable to indicate that instances

of that type are transitively immutable.

Glacier is a static typechecker that takes advantage of

Java’s annotation support so that it can be parsed by standard

Java parsers. Standard Java development tools can be passed

arguments that will cause the Glacier processor to be invoked

appropriately.

In Glacier, a class that is declared to be immutable must

have all of its fields immutable and fields cannot be assigned

to outside the class’s contructors. If a reference to an object

is not immutable, then there are no immutability guarantees:

at runtime the object may or may not be immutable.

Design decisions to take into account such issues as sub-

classes, primitives and arrays had to be made — see the

referenced paper for details.

VI. USABILITY OF GLACIER

In order to evaluate the usability of Glacier, Coblenz et al.

conducted several usability studies (see [7] for full details).

ZK Spreadsheet is a commercial Java spreadsheet which

supports importing Excel documents. The authors of this

application stated that they did not use any immutable data

structures because they were concerned about the cost of copy-

ing that may result from immutability. However, cell styles can

be shared between cells, and there is no tracking of which

cells use the same style. As a result, when ZK Spreadsheet

modifies a cell’s style it has to make a new style object

instead of modifying the existing style. Coblenz refactored

the spreadsheet’s code to use Glacier in approximately twenty

hours. In the process two previously unknown bugs were found

in the application. One of these bugs was in a copy method,

which was no longer necessary in the immutable version; the

other was in a code that improperly used a cache. These

were reported back to the authors of ZK Spreadsheet, who

acknowledged the issues and fixed one of them (finding that

the other occurred in code that was never invoked).

Additionally, Coblenz et al. recruited twenty experienced

Java programmers for a laboratory user study in which par-

ticipants either used Glacier or Java’s final functionality to

implement immutability. Users of Glacier were given training

on it while users of final were given training on how to

implement immutability using it. Four tasks were given to

participants, and each task was time-limited. One of those

tasks was explicitly designed to mimic the conditions that

resulted in the getSigners() bug that was described in

Section I-A. The study results demonstrated that fewer im-

plementation errors occurred when using Glacier compared

to when using standard Java features. In particular, on the

task designed to replicate the getSigners() bug, all of the

Glacier users who finished performed the task correctly while

half of the final users who completed the task recreated

the security bug. This provided evidence that Glacier is more

effective at preventing security problems than final.

VII. DISCUSSION

Based upon our interview and Glacier usability studies,

we maintain that APIs that support immutability can be both

more usable and secure, given reasonable language support.

5252

However, we do have to consider why the Stylos and Clarke

study [8] came to the opposite conclusion.

One possibility is when the studies were done. Stylos and

Clarke conducted their work in 2005, whereas our work

was done between 2014 and 2016. One hypothesis is that

the rise of web development led the developer community

to consider ways to control the problems arising from the

web’s massive concurrency. The same time period also saw a

more widespread use of functional concepts in programming

languages. As a result, the concept of immutability may have

become much more prominent over time, and the decade

between our studies and theirs might be significant.

Another consideration is that the Stylos and Clarke did

not explicitly call-out immutability and primarily considered

utility classes – classes that were not part of an application’s

core. The one exception to this, their shopping cart task, was

a small codebase and done over a very short time period.

In contrast, our professional interviews explicitly asked our

participants to consider their major projects and their core

data structures. It is entirely reasonable for programmers to

have different priorities for their core data structures than their

utility classes. Finally, Stylos and Clarkes study focused on

learnability and initial usability, rather than long-term concerns

such as robustness and security.

This points out a general issue with lab usability studies.

Although the results are nicely quantitative, the costs involved

require that participants can only spend a relatively short

time doing tasks and that they are unlikely to be invested

in the quality of the code that they produce. This might not

be an issue when considering utility code or tools, but we

urge caution in applying the results to critical code or tasks.

Interview studies can be used to verify the applicability of

results obtained from laboratory studies.

VIII. CONCLUSION

In this paper we have summarized the research results

investigating the security and usability impacts of immutability

in APIs. In general, although the Software Engineering com-

munity has started to investigate the impact of API design

decisions on usability, we feel that the security community

likewise needs to play a role. This work on immutability is

a prime example, as the recent work described herein was

motivated by the observation of the security impacts of the

earlier Stylos and Clarke paper.

IEEE’s Center for Secure Design has made a number of

design recommendations for creating more secure code [14].

We maintain that empirical investigation of many of these

recommendations, such as the avoidance of reflection, would

be beneficial to practitioners. For example, reflection exists

because it is useful, and finding techniques that satisfy pro-

grammers’ use-cases without leading to security vulnerabilities

would be valuable.

We also wish to champion the use of qualitative studies

in this field. Laboratory studies are often prized because

they provide quantitative results. However, they do have the

problem that the tasks involved have to be limited in both time

and number of participants. Studies have shown that security

bugs have different characteristics than other kinds of bugs

(see [15] and [16]), and these differences seem to manifest

themselves more in larger, more complex systems. Qualitative

studies can be used to ensure that issues that arise in these

systems are not overlooked.

ACKNOWLEDGMENT

We are grateful for the assistance of Forrest Shull and Whit-

ney Nelson on the prior work. This research is supported in

part by NSA lablet contract #H98230-14-C-0140 and by NSF

grant CNS-1423054. Any opinions, findings and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect those of any of the

sponsors.

REFERENCES

[1] Y. Younan, “25 years of vulnerabilities: 1988-2012,” RSA Conference,
2013.

[2] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering Assumptions Underlying Secure Au-
thentication and Authorization,” in USENIX Security, 2013, pp. 399–
414.

[3] Oracle Corp. (2015) Secure coding guidelines for the java se,
version 4.0. [Online]. Available: http://www.oracle.com/technetwork/
java/seccodeguide-139067.html

[4] H. Abelson and G. Sussman, Structure and Interpretation of Computer
Programs. MIT Press, 1996.

[5] G. McGraw and E. W. Felten, Securing Java. Wiley, 1999.
[6] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull,

“Exploring language support for immutability,” Proceedings of the
38th International Conference on Software Engineering - ICSE ’16,
pp. 736–747, 2016. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2884781.2884798

[7] M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sunshine, “Glacier
: Transitive Class Immutability for Java,” 39th International Conference
on Software Engineering (ICSE’17), pp. 496–506, 2017.

[8] J. Stylos and S. Clarke, “Usability Implications of Requiring
Parameters in Objects’ Constructors,” 29th International Conference
on Software Engineering (ICSE’07), pp. 529–539, may 2007.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4222614

[9] A. Chlipala, “Ur/Web: A simple model for programming the web,” in
ACM SIGPLAN Notices, vol. 50, no. 1. ACM, 2015, pp. 153–165.

[10] S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen, “Implementation and use of the plt scheme
web server,” Higher-Order and Symbolic Computation, vol. 20, no. 4,
pp. 431–460, 2007.

[11] B. A. Myers and J. Stylos, “Improving API usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62–69, 2016.

[12] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL development in an appified world,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security.
ACM, 2013, pp. 49–60.

[13] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” IEEE
Symposium on Security And Privacy, 2017.

[14] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon,
C. Kern, T. Kohno, C. Landwehr, G. McGraw, B. Schoenfield,
M. Selzer, D. Spinellis, I. Tarandach, and J. West. (2014) Avoiding
the top 10 software security design flaws. [Online]. Available:
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

[15] F. Camilo, A. Meneely, and M. Nagappan, “Do Bugs Foreshadow
Vulnerabilities? A Study of the Chromium Project,” The 12th Working
Conference on Mining Software Repositories, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820551

[16] S. Zaman, B. Adams, and A. Hassan, “Security versus performance bugs:
A case study on firefox,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, 2011.

5353

