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Abstract—Developers navigate and reason about call graphs 
throughout investigation and debugging activities. This is often diffi-
cult: developers can spend tens of minutes answering a single ques-
tion, get lost and disoriented, and erroneously make assumptions, 
causing bugs. To address these problems, we designed a new form of 
interactive call graph visualization – REACHER. Instead of leaving 
developers to manually traverse the call graph, REACHER lets devel-
opers search along control flow. The interactive call graph visualiza-
tion encodes a number of properties that help developers answer 
questions about causality, ordering, type membership, repetition, 
choice, and other relationships. And developers remain oriented 
while navigating. To evaluate REACHER’S benefits, we conducted a 
lab study in which 12 participants answered control flow questions. 
Compared to an existing IDE, participants with REACHER were over 5 
times more successful in significantly less time. All enthusiastically 
preferred REACHER, with many positive comments. 

Keywords-code exploration, call graphs, control flow, program 
visualization, program comprehension 

I.  INTRODUCTION  
Control flow is one of the simplest and most expressive 

representations of a program. Control flow is often represented 
as a control flow graph which contains an edge from statement 
a to b when there exists an execution in which b executes 
immediately after a. In imperative programs, control flow 
expresses causality between a call site statement and a 
method 1 . Calling a method causes statements in it (and 
statements in methods it transitively calls) to execute. 
Determining when something happens requires finding the 
control flow by which it may be reached. And control flow 
expresses the order in which statements execute.  

Developers work to understand a program’s control flow 
throughout investigation and debugging activities as they 
mentally model, reason, and navigate [18]. For example, when 
investigating an unfamiliar codebase, developers first mentally 
construct a control flow representation of connections between 
its parts [20].  And their knowledge of a method’s part of the 
call graph increases as they interact with its code [11]. 
Information foraging theory predicts that developers traverse 
control flow and search for “prey” – locations in code – by 
using “scent” – the similarity of the information which labels 
the control flow edges to their knowledge of their prey – to 
rank the potential of edges to traverse [19]. We have named 

                                                             
1 This paper uses the word “method” since our implementation is in an object- 
oriented language, but the techniques described here would apply to other impera-
tive languages, where the words “function” or “procedure” might be used instead. 

questions about what happens along a control flow path as 
reachability questions [18] because they ask whether certain 
code is reachable from other code under certain conditions. 

Ensuring control flow is easily understandable has been an 
important goal of language design. Following Dijkstra’s 
observation that gotos obfuscate control flow, making 
reasoning difficult [9], language designers introduced 
structured programming languages that simplify control flow 
within methods [4]. But in order to promote reuse and 
modularity, modern languages obfuscate interprocedural 
control flow between methods with features such as dynamic 
dispatch and indirection. 

Interprocedural control flow is often visualized using a call 
graph. Modern Integrated Development Environments (IDEs) 
such as Eclipse and Visual Studio let developers see and 
navigate call graphs with commands ranging from go to 
definition (from a callsite) to providing a tree view for 
exploring call paths. Unfortunately, developers report that 
understanding control flow remains difficult [5][18]. As 
developers gain experience or learn a codebase, answering 
control flow questions becomes neither less frequent nor easier 
[18]. Developers often become disoriented and lost when 
exploring code [5].  Due to the difficulties of finding definitive 
answers, developers often guess, creating bugs when these 
guesses are incorrect [18]. Control flow paths which are long, 
widely branching, or contain inadequate or misleading scent 
can cause developers to spend tens of minutes answering a 
single question [18].  

We designed REACHER to help developers more effectively 
answer reachability questions as they strive to understand and 
navigate control flow, find “prey,” and stay oriented. REACHER 
automates searches along call graphs, freeing developers from 
manually traversing calls in search of statements. REACHER 
helps developers to understand control flow by depicting 

 
Figure 1. REACHER’s call graph visualization supports reasoning about 
interprocedural control flow. For example, this visualization illustrates that 
JEditTextArea.delete(..) – on the far left – may call JEditTextArea.tallCaret-
Delete(.., ..) several times in a loop before it may call JEditTextArea.setSelected-
Text(..,..) at two different call sites within a loop. 
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causality, ordering, type membership, repetition, recursion, and 
conditionality (see Figure 1). And REACHER helps developers 
remain oriented through its Eclipse plugin integration, letting 
developers open and read a method while still seeing its context 
in the call graph. To evaluate REACHER, developers used 
REACHER to answer reachability questions in several lab study 
tasks. Compared to Eclipse, developers with REACHER were 
over 5 times more successful in significantly less time.   

In this paper, we describe the iterative design and user 
testing of REACHER’S visualizations and interactions. Other 
papers present the extensive field studies that motivated this 
work [18] and the efficient static analysis used behind-the-
scenes to implement REACHER [17].   In the remainder of the 
paper, we first illustrate the use of REACHER with an example. 
We then describe the design of REACHER, a lab study 
evaluating REACHER, related work, and conclude. 

II. AN EXAMPLE 
To see REACHER in action, consider a challenging 

debugging task we observed: a developer debugging a null 
pointer exception tried to understand how XMLRetriever.
getStartContext() could ever be called without XMLRetriever.
retrieveRelationships() being called first. Working in a code-
base she had written herself, she spent 40 minutes answering 
this question, using the debugger to inspect values and 
statically browsing. The task was hard because 96 paths 
connected these methods, some as long as 13 calls. Manually 
navigating and making sense of these paths was challenging. 
REACHER makes this task easier by automating the search and 
visualizing the relevant portion of the call graph. We illustrate 
this with a scenario of how the developer might have instead 
worked using REACHER (see Figure 2). After opening XMLRe-
triever.getStartContext() in a Eclipse editor, she selects the 
method declaration and opens a context menu. She searches 
along paths to the selected method by selecting search 
upstream. Moving her cursor to the textbox in the REACHER 
Search view (upper right), she searches for connections to the 

other method – XMLRetriever.retrieveRelationships() – by 
typing “retri”. As she types each character, REACHER lists 
matching statements below. Seeing retrieveRelationship() in 
the list, she clicks it, adding it to the call graph visualization 
below.  

The call graph now contains 3 methods – XMLRetriever.
getStartContext() (the origin method), XMLRetriever.retrieve-
Relationships() (the method she searched for), and Abstract-
CrystalAnalysis.runAnalysis() (Figure 2a). As this was an 
upstream search, REACHER looked for a common method 
calling both retrieveRelationships() and getStartContext() and 
found runAnalysis(), adding it to the call graph. Two edges 
emerge from runAnalysis() – one to retrieveRelationships() and 
a second to getStartContext(). The edge to retrieve-
Relationships() leaves runAnalysis() above the edge to get-
StartContext(), indicating it executes first. Inspecting the call 
graph, the developer learns that, in fact, all paths to 
retrieveRelationships() are preceded by a path to getStartCon-
text(). But perhaps there is a conditional guarding the path to 
getStartContext() that might cause it not to be called? The 
dashed edge from runAnalysis() to retrieveRelationships() 
indicates that some of the path is hidden, so she double clicks 
to expand the path, revealing the previously hidden method 
beforeAllMethods() which connects runAnalysis() to retrieve-
Relationships() (Figure 2b). Hovering over the edge between 
beforeAllMethods() and retrieveRelationships(), she sees a 
popup describing the call. Clicking the edge navigates the 
Eclipse editor to the callsite. She then sees the cause of the bug 
– eight lines above the callsite is a conditional guarding the 
call. While correct for the rest of the body, it should not guard 
this call. Moving the call to getStartContext() outside the 
conditional block fixes the bug. 

III. USER INTERFACE DESIGN 
REACHER helps developers explore code by supporting 

searching, navigating, reasoning, and making sense of com-
plex interprocedural control flow. REACHER’s design resulted 

 a) b)
 

Figure 2. Can XMLRetriever.getStartContext() ever be called without XMLRetriever.retrieveRelationships() being called first? To answer this question in 
REACHER, a developer first opens XMLRetriever.getStartContext() in Eclipse. She right clicks the method declaration and invokes an upstream search. In 
REACHER’S search view (upper right), she types “retri”. As she types, REACHER lists matching statements below. Clicking the third result adds it to REACHER’S  call 
graph visualization (a). Looking at the visualization, she sees that all calls to getStartContext() are preceded by a call to retrieveRelationships(). But maybe there is 
a conditional somewhere on the path to retrieveRelationships()? Double clicking the path expands it (b), showing the method beforeAllMethods() which was previ-
ously hidden. Hovering over the call from beforeAllMethods() to retrieveRelationships() shows a popup describing the call (this edge is missing a ? due to a bug in 
REACHER). Clicking it opens the file in an Eclipse editor. Reading the code, she sees that the call is guarded by a conditional. 
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from a user-centered, iterative design process. We first con-
ducted extensive field studies of developers exploring code to 
understand the questions developers ask and the challenges 
they face [18]. Based on these studies, we designed a visuali-
zation which encodes the information we found to be most rel-
evant to answering these questions. Recognizing that reading 
the underlying code is ultimately an important part of making 
sense of paths, our visualization design focused on quickly 
finding the relevant code, answering high-level questions 
about paths, and providing context, leaving details about the 
code itself to be inspected using the code editor. We built an 
initial mockup of our design and used a paper prototype study 
to further refine the details. We then implemented the visuali-
zation in the Prefuse visualization toolkit [12]. In the next sec-
tions, we describe REACHER’s final user interface design, de-
scribing the rationale for several important decisions with ref-
erences to previous alternatives we considered. 

A. Searching along control flow 
One of REACHER’S most important features is the ability to 

search along control flow. REACHER supports both upstream 
and downstream searches. An upstream search begins at a 
destination method and traces paths upstream by which it may 
be reached. Downstream searches begin at an origin method 
and trace paths downstream to its callees (and methods they 
transitively call). Downstream and upstream searches are 
asymmetric (see Figure 3). A downstream search captures what 
an origin does – all of the causality relationships linking the 
origin to other methods, directly or indirectly. Searching 
upstream finds what happens before a destination, including 
both direct and indirect callers and methods called before by 
direct or indirect callers. These types of searches correspond to 
the two most frequent types we observed in our studies [18]. 

root

root

root

destinationorigin

a) b)   
Figure 3. a) A downstream search finds methods (shaded ovals) on paths from 
an origin method, but does not find methods on paths returning from the origin 
(unshaded). b) Upstream searches find method paths terminating at a 
destination, including other methods that are called.  

 REACHER searches along a static, conservative 
approximation of paths that may execute (see [17] for full 
details of the analysis algorithm). An alternative approach 
would be a dynamic approach in which the user runs the 
program and enters input to demonstrate the situation of 
interest, and the tool records an execution trace (c.f., [16]). A 
key advantage of a dynamic trace is that it is fully precise, 
containing no false positives – only statements that actually 
executed are included. But a static approach such as 
REACHER’S enjoys several advantages. A static approach 
permits reasoning about everything that could possibly happen, 
which may not be evident from a single trace or even from 
many traces. Generating a dynamic trace is annoying for 
situations that are difficult to reproduce, time-consuming for 
long running operations, difficult when special hardware or 

configuration is required, and impossible when the input 
necessary to cause the desired path to execute is unknown. For 
example, when debugging field-reported failures with only 
stack dumps to indicate the problem, developers may not know 
how to generate such a stack. In our field observations of 
professional developers [18], dynamic tracing would not have 
worked in two-thirds of the longest tasks involving reachability 
questions.  Thus, developers with current tools explore code 
with a combination of dynamic and static approaches. 

One drawback of a static approach is false positives—
infeasible paths that never execute due to correlations between 
conditionals. In codebases with extensive use of message 
passing or dynamic dispatch, this can be particularly 
problematic, connecting portions of the codebase that are not in 
fact connected. In order to mitigate this problem, REACHER 
uses fast feasible path analysis (FFPA)[17] to eliminate some 
of the most common forms of infeasible paths. FFPA 
constructs summaries describing possible paths through a 
method. When the user initiates a search, an interprocedural 
dataflow analysis uses these summaries to propagate constants, 
partially-path sensitively, and determine which branches 
through conditionals are feasible. In most common cases, 
FFPA is able to generate paths in one to two seconds of 
analysis time.  

 
Figure 4. REACHER lists matching statements as users enter each character of a 
search. Double clicking a result pins it, assigning the corresponding search a 
unique color and persistently adding the selected item to the call graph 
visualization. 

REACHER provides a search view for describing searches 
along control flow (Figure 4). REACHER indicates if the search 
is downstream or upstream and the origin or destination 
method. Users can select both what kind of item to search for 
(method, library, or constructor calls; field read, writes, or 
accesses; or any of these) and which parts of the name to match 
(package name, type name, or type and method name). Our 
field observations of reachability questions contained several 
examples of searches scoped to a specific type of method or 
statement [18]. Search text may match any portion of the 
identifier, not just the first portion. The matching portion of the 
result is highlighted in red. These features make it easy to find 
a target by knowing just a fragment of a name or relevant 
concept while also minimizing typing. Selecting a result adds it 
to the call graph. Selections are ephemeral, supporting quick 
scrubbing to visualize each result in turn. Double clicking a 
result pins the item, persisting it in the visualization. 

REACHER lists search results – methods and fields – with 
their fully qualified name and type. We experimented with 
instead showing a portion of all matching statements. For 
example, searching for foo() might display multiple callsites 
such as a.foo() and b.foo(). Searching for fields included every 
access and assignment statement. This provided more context 
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and made it possible to select individual callsites and access 
statements. But this context made the text for each result much 
longer, making the result list wider and occupying more space. 
Additionally, result lists were far longer – methods called 
frequently could be included tens or hundreds of times rather 
than once. And forcing users to choose a specific callsite or 
field access statement was more distracting than helpful. So 
REACHER lists each method or field only once. After selecting a 
result, users see the context in the call graph visualization. 

B. Methods and expressions 

 
Figure 5. REACHER’s depiction of the method SearchTests.m2(boolean) and the 
field write flagField = false. 

REACHER visualizes call graphs as graphs of method nodes 
and call edges. Following the UML’s conventions [23], public, 
protected, and private methods are prefixed by +, #, and -, 
respectively. The identifiers of static methods are italicized. To 
help distinguish overloaded methods, each parameter is 
indicated with a “..”, and parameters are separated by commas. 
Including the parameter names and types would be 
unambiguous, but, even for common cases, names become 
several times longer, with a corresponding reduction in the 
number of methods shown in a fixed space. When a selected 
search result is a field access or a library call, REACHER 
displays the field access expression or callsite statement below 
the method in which it is located (see Figure 5). The method 
the user searched from is highlighted with a yellow box, 
corresponding to the yellow box in the search window (Figure 
2, upper right). 

Previous research shows that developers often get 
disoriented when trying to explore the control flow to and from 
a method [15][5]. REACHER helps with this problem by 
working as a navigation aid – clicking a method in the 
callgraph opens the code in an Eclipse editor.  

C. Causality 

(a)  

(b)  
Figure 6. (a) Indirect calls (dashed lines) expand into (b) one or more paths of 
direct calls (solid lines). 

Causality is a central part of reachability questions – what 
does this do and when does it happen? REACHER’S call graph is 
designed to help developers reason about causality. When a 
method node is created in the call graph, REACHER finds all of 
the control flow paths connecting it to existing nodes in the call 
graph, showing all of the ways it might be triggered. Knowing 
there is a causal relationship is often sufficient, so REACHER 
displays these control flow paths as a single indirect call edge 
(Figure 6a). These paths are often long, complex, and 
uninteresting; hiding them significantly reduces irrelevant 
clutter. When the path is interesting, developers can double 
click it, expanding it to show the previously hidden methods in 

the path (Figure 6b). Clicking a call edge navigates the editor to 
the corresponding call site. 

While searching helps to locate distant methods, developers 
sometimes explore a method’s immediate callers and callees. 
For downstream searches, REACHER depicts a circled plus icon 

 when a method has hidden callees. Clicking the icon 
expands all of the callees, changing the icon into a circled 
minus icon. Clicking the minus icon hides the callees. Similar-
ly, for upstream searches, REACHER provides a plus icon to the 
left of the method indicating that there are hidden callers.  

D. Ordering  

 
Figure 7. Outgoing calls execute from top to bottom. 

In most of the exploration tasks we observed, developers 
used information about the order of calls. Therefore, unlike 
existing call graph visualizations, REACHER visually encodes 
the call order, sorting outgoing edges in execution order from 
top to bottom (see Figure 7). This unambiguously orders paths 
through the call graph. To distinguish incoming from outgoing 
edges, edges exit a method from the right and enter from the 
left. When there are multiple incoming edges, all but the first 
enter from the bottom to help disambiguate multiple incoming 
edges.  

Upstream searches cause additional complexity when a user 
adds a method m that executes before any visible methods. As 
REACHER’S edges denote indirect or direct calls and no 
currently visible method calls m, no edges connect it, and its 
order is not visible. To solve this problem, REACHER computes 
the least upper bound method between m and currently visible 
methods. A least upper bound must exist for m to be upstream. 
The least upper bound is then added to the call graph. For 
example, after adding getStartContext() and retrieveRelation-
ships(), REACHER adds the least upper bound runAnalysis() 
(see Figure 2), showing that getStartContext() executes before 
retrieveRelationships(). 

REACHER use a single node for methods along all paths by 
which they are reached, connecting each path after the first 
with backward edges. For example, in Figure 8, tallCaret-
Delete() and Range.setText() both call remove(), with a 
backward edge to remove() denoting setText()’s call. 
Backward edges increase visual complexity, introducing non-
tree edges that overlap and cross. We considered instead 
creating a tree structure by replicating repeatedly called 
methods, except for recusive calls. However, replicating not 
only replicates the method itself but also its entire subtree of 
direct and indirect callees. Replicating subtrees greatly 
increases the call graph’s dimensions. For example, expanding 
with replication the path in Figure 2 between runAnalysis() and 
getStartContext() increases the number of rows from 8 to 97. 
Furthermore, replication makes understanding subtrees more 
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challenging by forcing developers to manually compare nodes 
between similar subtrees to identify differences.  

However, using a single node for each method increases 
visual complexity, creating overlapping and crossing edges that 
can be challenging to untangle. To help solve this problem, 
REACHER lets developers mouse over an element to see its 
connections  (see Figure 8). Entering a node highlights incom-
ing and outgoing edges; entering an edge highlights incoming 
and outgoing nodes. One study participant commented, “It 
kinda reminds me of a magician, that if they want to see if there 
are any wires around they move their hand.” 

 
Figure 8. Mousing over a method highlights incoming and outgoing calls. 

E. Type membership 
Types (e.g., classes) express a developer’s intention that the 

methods and fields they contain are related. REACHER visually 
encodes type membership with shadows grouping adjacent 
methods with a common type (see Figures 1, 6, and 9). 

F. Layout 
REACHER uses an automatic layout to assign each method a 

position. REACHER’S layout technique begins at root methods – 
methods with no visible callers. Call graphs produced by 
upstream searches may have multiple roots. From each root, 
REACHER computes a spanning tree. For methods with multiple 
incoming edges, the spanning tree includes the edge which 
executes first. REACHER then walks the spanning trees in-order 
to compute positions for each method, assigning positions from 
top to bottom and left to right. For methods with a single callee, 
both are assigned to the same row, with the caller to the left of 
its callee. For methods with multiple callees, each callee is 
given its own row from top to bottom. This process 
hierarchically computes a row and column assignment for each 
method. Row height and column width are then assigned using 
the maximum vertical and horizontal dimensions, respectively, 
of their cells. Finally, REACHER stacks each spanning tree 
vertically, with backward edges linking trees. 

G. Repetition and choice 
Realizing that a call is guarded by a conditional or may 

execute repeatedly can be important for answering reachability 
questions. REACHER alerts developers to the presence of these 
constructs by visualizing repetition and conditionals with call 
edge icons. Question marks indicate a conditional guarding a 
call’s execution; loop icons indicate callsites in a loop. When a 
call could be to one of several overriding methods because of 
dynamic dispatch, edges to these callees begin with a single 
shared line and branch into separate lines at a diamond icon. 
REACHER condenses repeated edges to the same method into a 
single edge, indicating the edge count with a number icon. But 
when an edge to a different method is interleaved between the 

repetition, the repeated edges are shown separately before and 
after the interleaved edge, showing ordering. For example, in 
Figure 7, the repeated calls to send() are shown before and after 
the interleaved call to setBuffer(). Hovering over an icon 
displays a descriptive popup (see Figure 9). 

 
Figure 9. Hovering over an icon or edge displays a descriptive popup. 

H. Supporting rapid exploration 
REACHER provides a variety of additional interactive 

features for rapidly expanding details and then hiding them 
again if the user decides they are not relevant. “Back” and 
“forward” commands traverse a web-browser style navigation 
stack of visualization states. Pan and zoom commands lets 
users focus on specific areas or get an overview. To help users 
track the location of methods as new methods are added and 
layout positions change, REACHER smoothly animates 
transitions. Showing the callers or callees of a method anchors 
the method’s position, moving other nodes relative to it.  

IV. EVALUATION 
REACHER’S design is premised on the assumptions that  

searching along control flow is faster than traversing paths 
using conventional navigation techniques, and that visualizing 
paths can help developers more effectively understand and 
navigate code. We conducted a lab study to test these 
assumptions, and evaluate the potential productivity benefits of 
REACHER and the usability of REACHER’s features. 

A. Method 
12 participants were recruited from students and staff at 

Carnegie Mellon University. All participants reported being 
comfortable programming in Java (median = 4.5 years 
experience), had professional software development experience 
(median = 1.1 years), and knew an average of 4 programming 
languages. None had previously used REACHER.  

Participants performed 6 tasks and were given 15 minutes 
to complete each task. Each task posed a reachability question 
and involved finding and understanding control flow between 
events. Table 1 lists each of the tasks’ questions. To test if 
participants were able to understand the visualization notation, 
each task was designed to require understanding a particular 
aspect of the notation. Tasks 1 and 2 dealt with ordering, tasks 
3 and 4 dealt with conditions, and tasks 5 and 6 dealt with 
repetition. All participants performed all 6 tasks and did half of 
the tasks with Eclipse alone and half with Eclipse and 
REACHER. Participants were randomly assigned to conditions. 
The order of the tasks, whether they received the 3 Eclipse only 
tasks or the 3 REACHER tasks first, and which tasks were used 
in each condition were all counterbalanced.  

121



All tasks were performed in the jEdit codebase, a 55 KLOC 
open source text editor used in several previous studies of code 
exploration [22][6][18]. Several of the tasks dealt with jEdit’s 
EditBus which provides a publish / subscribe mechanism for 
sending and receiving messages. Participants were asked 
questions such as what events were sent on the bus or to trace 
messages through the bus.  

To ensure all participants were familiar with Eclipse’s 
many code navigation features, all participants were first given 
a tutorial on Eclipse (adapted from [22]). Before performing 
tasks with REACHER, participants completed a second tutorial 
that explained the notation and interactions and in which they 
used REACHER to answer a sample reachability question. 
Participants were given task instructions on paper and allowed 
to take notes. Participants used Eclipse 3.6.1 and were allowed 
to use any feature they wished. Participants worked on a 2.8 
Ghz computer with 8 GB of memory, a large 30” monitor, and 
an additional laptop screen. To understand why developers 
used the approaches they did, participants were asked to think 
aloud, and we recorded audio and the screen with Camtasia. 

B. Results 
Participants completed tasks 5.6 times more successfully 

with REACHER (78%) than with Eclipse alone (14%). Averaged 
across all tasks, participants’ mean task time was 11.1 minutes 
with Eclipse alone and 7.2 minutes with REACHER. This is a 
conservative estimate of the time difference, because we used a 
time of 15 minutes (the maximum) for tasks on which partici-
pants ran out of time, whereas they would likely have taken 
much longer. Figure 10 shows success and task time per task. 
Participants were significantly faster with REACHER in tasks 1, 
2, 4, and 6 (p < .05), but not tasks 3 (p = .6) or 5 (p = .25). 
Participants succeeded too infrequently with only Eclipse to 
compare times between just those who succeeded. 

Participants with only Eclipse used a number of static 
exploration strategies. When reading a method, participants 
relied heavily on the “scent” of method names at call sites to 
decide which methods to open and read. For example, to find 
paths to EditBus messages, participants reasoned about which 
methods might be likely to do something requiring an EditBus 
message to be sent. Some participants tried to methodically 
traverse many paths, while others guessed which would be 
most likely to lead to the target. Many participants explicitly 
debated whether it was better to guess or methodically explore. 

Most participants also navigated to the target statement to get a 
sense for what it did and when it might be likely to happen. 

Most participants with only Eclipse used the call hierarchy 
to traverse paths of calls. But, due to the huge fanout of 
methods, most realized the hopelessness of finding their target 
method in this view. Several participants did bidirectional 
search, navigating call hierarchy paths both forwards and 
backwards and trying to pick methods to traverse based on 
similarity to calls from the other direction. A significant barrier 
to static traversal were event listeners, implemented using the 
Observer Pattern. To determine which methods were actually 
called, participants would have to determine which classes 
implemented the interface and then begin new traversals from 
these methods. This forced them to perform new call hierarchy 
searches, losing their place. Participants sometimes said that 
trying to discover a listener was disheartening, as it signified 
there was much more to understand.  

One participant tried to use dynamic, rather than static, in-
vestigation, and faced different challenges. To use the debugger 
to investigate a method, he first had to find a user command 
which invoked it, and he statically traversed upstream using the 
call hierarchy. After finding a command, he ran the program 
and invoked it, but found that conditionals prevented the path 
he wanted to see from executing. Returning to static 
investigation, he tried to find when they were true.  But even 
after figuring out how to invoke the functionality, he faced a 
further challenge. To find paths from an origin to the target, he 
breakpointed the target, repeatedly hit the breakpoint, and 
investigated the paths. But as the target was widely called by 
methods other than the desired origin, many of the times that 
the breakpoint was hit were not paths from the origin. While he 
tried to only investigate those paths from the origin, he 
occasionally forgot to check and investigated the wrong paths. 

All participants began using REACHER by opening the 
origin method described in the task, invoking a downstream 
search, and expanding the resulting paths. While participants 
often had a correct answer early in the task, they then spent 
most of their time better understanding the code to be sure of 
their answer, using REACHER to navigate to callsites along the 
path and discover what the calls were doing. Several attempted 
to more precisely determine in which situations different paths 
may execute by inspecting conditionals and trying to 

Task 1. When a new view is created in jEdit.newView(View), what  
messages, in what order, may be sent on the EditBus (using EditBus.send())? 
Task 2. When text is deleted (JEditTextArea.delete()), what is the first  
message that may be sent on the EditBus (using EditBus.send())? 
Task 3. Does setting the buffer in EditPane.setBuffer() cause the caret status 
on the status bar to be updated at least once (StatusBar.updateCaretStatus())? 
Task 4.  Other than the check that the firstLine has changed from the  
oldFirstLine in setFirstLine(), are there other conditionals that might cause  
JEditTextArea.setFirstLine() not to update the scroll bar  
(JEditTextArea.updateScrollBar())? 
Task 5. How many messages may jEdit.commitTemporary() send to the 
EditBus? (i.e., how many times might it invoke EditBus.send()?) 
Task 6. How many messages may jEdit.reloadModes() send to the EditBus? 
(i.e., how many times might it invoke EditBus.send()?) 
Table 1. Participants were asked to answer a series of six reachability questions. 
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Figure 10. Success and average task time. Task time includes partici-
pants that failed. Participants who ran out of time received 15 minutes. 
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understand when they might be true by tracing the data that 
flowed into them. 

As participants read methods in the editor, REACHER’S call 
graph provided context and helped them to stay oriented: 

I like it a lot. It seems like an easy way to navigate the code. And 
the view maps to more of how I think of the call hierarchy. 

It seems pretty cool if you can navigate your way around a 
complex graph. 

Without REACHER, participants were often disoriented: 
Where am I? I’m so lost. 

I think I lost where I am in this silly tree. 

There was a call to it… somewhere, but I don’t remember the path. 

All participants reported that tasks with REACHER were 
easier; most had strongly positive impressions: 

REACHER was my hero. … It’s a lot more fun to use and look at. 

It’s very cool actually. You don’t have to ... go through many, 
many files. 

Oh, this is really great, how do you find this stuff [methods along 
paths]? 

It seems really useful. 

You don’t have to think as much. 

Many felt that tasks without REACHER were very difficult: 
Ah, this is going to get miserable isn’t it. 

This is pretty ugly. 

Failing tasks while using REACHER was infrequent (22%) 
but not absent. 6 of the 8 failures were in tasks 1 and 3. Some 
of these failures were caused by failing to find all of the paths 
due to overlapping edges or paths that zigzagged through the 
graph. Others were caused by participants focusing on part of a 
path and missing an icon on the rest of the path. For example, 
one participant failed task 3 because they missed a ? icon at the 
end of a long path. Even for participants that succeeded, 
following paths was hard. One participant suggested 
highlighting the path from the current node to a root. 

Our study revealed a number of other usability problems. 
Edges that passed through methods or overlapped were initially 
confusing until users discovered the highlighting feature. Some 
participants found it difficult to visually locate targets in the 
call graph. While these methods are already rendered using a 
distinctive black fill and white text, participants suggested 
making them even more easily recognizable. Participants failed 
to notice that incoming and outgoing edges intersect nodes at 
different positions but instead relied on popups to disambiguate 
the direction of backward edges. One participant suggested 
indicating edge direction with arrows. A few participants 
wished to disentagle cluttered visualizations by dragging 
methods and manually overriding their layout positions.  

C. Limitations 
Our study had several limitations. By phrasing the task 

instructions as reachability questions, we did not include the 
surrounding debugging or investigation task context which 

normally motivates users to ask these questions. While 
participants felt that searching along control flow was 
representative of their actual work, several felt that questions 
about path attributes (e.g., how many times…) were contrived. 
We  included these questions to make sure that our 
visualization was clear and usable. Unlike most developers in 
the field, our participants had no experience in the codebase. 
Developers with more knowledge might more successfully 
predict where they should navigate. However, while these 
limitations may bias the magnitude of differences in our results, 
it should be remembered that studies have found that answering 
reachability questions is frequent and time-consuming in the 
field [18]. 

V. RELATED WORK 
A number of previous systems have been designed to 

visualize call graphs. For example, Rigi provides an extensible 
framework for visualizing graph structures during reverse 
engineering tasks [21]. It provides interactive tools, such as 
fisheye views, for exploring graphs. However, Rigi provides no 
support for searching, does not hide paths inside indirect calls, 
and does not depict ordering, choice, repetition, loops, or 
statements.  

Many previous systems have been designed to help 
developers more effectively explore code. Some systems build 
a graph of elements connected through relationships and let 
developers traverse paths through these relationships. 
Relationships which these systems have explored include static 
slices (e.g., CodeSurfer [1]) and dynamic slices recorded from 
execution traces (e.g., WhyLine [16]). JQuery [14] traverses 
structural relationships amongst types and methods (e.g., 
method membership, subtyping, containment, references, 
constructors), providing a unified tree view including both 
methods and types. However, many of these tools have never 
been evaluated in a lab study. One of the few such studies 
evaluated JQuery and two other code exploration tools with 
code exploration tasks in jEdit (as in our study) and found no 
significant benefits from any of the tools [6].  

While most of these systems do not support searching along 
paths, a few do. In Dora [13], developers select an origin 
method and enter a search string, and then may inspect a graph 
depicting call graph paths to methods textually similar to the 
search string. However, using Dora to answer reachability 
questions would be challenging. It does not support searching 
for field reads, field writes, or library calls or searching for 
methods in specific types or packages, making it impossible to 
directly express most of the reachability questions we observed 
in our field research [18]. And Dora provides only a 
rudimentary call graph view. Dora’s focus is instead on 
exploring the use of information-retrieval techniques in 
searches and is therefore complimentary to REACHER. 

Diver provides limited support for searching along dynamic 
traces [2]. Diver lets developers search along an execution trace 
for method calls and visualizes traces as UML sequence 
diagrams. But, in Diver, searches are used only to locate 
methods, not to scope the visualization to search results. In 
situations where dynamic analysis is possible and helpful, 
dynamic traces could complement REACHER‘s static traces by 
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providing certainty of a path’s feasibility and supporting 
inspection of concrete values. 

Several systems have explored approaches for reducing 
disorientation during code exploration. Relo [25], Code Canvas 
[8] and Code Bubbles [3] help developers to stay oriented by 
providing a map of code. Replacing a conventional editor in 
which developers edit in a full size window, methods are 
instead shown in many small bubbles, providing context during 
reading and making it easier to rapidly switch between related 
methods. Like these tools, REACHER‘s visualization is intended 
to help minimize disorientation by letting developers select task 
relevant methods and visualize relationships among these 
methods. One important difference is that REACHER shows only 
method names and task relevant statements rather than the 
entire method’s implementation. This makes REACHER’S 
visualization substantially more compact, allowing developers 
to simultaneously view many more methods. REACHER’S 
design may more effectively support situations in which 
developers investigate relationships between small snippets 
scattered across many methods. Moreover, both visualization 
styles could be incorporated in the same system by letting 
developers zoom in to see method’s implementation and zoom 
out to see additional context. 

VI. CONCLUSIONS 
Our results demonstrate that REACHER helps developers 

explore code more easily and effectively, transforming a 
tedious, frustrating, disorienting, guess-work-filled task into 
one which most participants finished successfully. Our tasks 
effectively replicated the challenges exploring code that studies 
have repeatedly found developers face – finding methods, 
staying oriented, and understanding paths – and demonstrated 
that a combination of search, task specific visualization, and 
IDE integration makes code exploration significantly easier. 
REACHER’S most significant benefit is search, which helped 
developers more quickly locate far-away methods and 
statements connected by long and confusing paths. But 
REACHER also helps support the subsequent work of 
understanding and reasoning about the path. Participants traced 
call graph paths to identify properties of paths. Participants 
ultimately wanted to see the code behind these paths, and used 
REACHER to quickly jump between methods on the paths.   
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