
Human-Centered Methods
for Improving API Usability

Brad A. Myers
Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

1© 2017 – Brad A. Myers

http://www.cs.cmu.edu/%7Ebam
mailto:bam@cs.cmu.edu

APIs

• Application Programming Interfaces
• Includes: libraries, toolkits, frameworks,

software development kits (SDKs), etc.
• Today: web services, “middleware”
• Also: internal APIs for large software systems
• Provides some functionality for reuse by other

developers
© 2017 – Brad A. Myers

2

Stakeholders &
Their Goals
• [Myers, Stylos, CACM , 2016]

© 2017 – Brad A. Myers

3

Why APIs?
• Some design goals for APIs:

• Information Hiding – hide implementation
• Provide device independence
• Enable future changes to low level without requiring changes to application code
• Protection of critical resources
• Consistency for product consumer – toolkit can provide commonality
• More robust code – toolkit implemented correctly
• Run-time efficiency: provide services in an efficient way
• Code reuse: Provide useful services only once
• Programmer Productivity
• …

© 2017 – Brad A. Myers

My Goal: Allow API usability to be
a first-class quality metric
considered by API designers 4

APIs are Important and Valuable

• www.programmableweb.com – 17,508 APIs
• Apigee says 77% of companies rating APIs

“important” to making their systems and data
available
• Total market for API Web

middleware was $5.5 billion in 2014

• Google recently bought
Apigee for $625M

© 2017 – Brad A. Myers

5

http://www.programmableweb.com/

Why Apply Human-Centered
Techniques?

• Programming is a human activity
• Take the human into account

• “DevX” – like UX for User Experience
• APIs are the “interface” between the programmer and the functionality
• Design should be close to user’s plan

• “Programming is the process of transforming a mental plan into one that is compatible with the
computer.”
— Jean-Michel Hoc

• Closeness of mapping — Green and Petre
• If an API cannot be used effectively by developers, it doesn’t work!

• Even if it provides the right functionality

• Using APIs incorrectly has resulted in bugs and security problems
• Usability and quality are key influencers for the decision about which APIs to use

© 2017 – Brad A. Myers

6

“Human Centered Methods” ̶̶
More Than Just Lab User Studies

© 2017 – Brad A. Myers

7

• Contextual Inquiry
• Contextual Analysis
• Paper prototypes
• Think-aloud protocols
• Heuristic Evaluation
• Affinity diagrams
• Personas
• Wizard of Oz
• Task analysis
• A/B testing
• Cognitive Walkthrough
• Cognitive Dimensions
• KLM and GOMS (CogTool)
• Video prototyping

• Body storming
• Expert interviews
• Questionnaires
• Surveys
• Interaction Relabeling
• Log analysis
• Storyboards
• Focus groups
• Card sorting
• Diary studies
• Improvisation
• Use cases
• Scenarios
• “Speed Dating”
• …

Human Centered Approaches Across the Lifecycle

Exploratory Studies
 Contextual Inquiries
 Interviews
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Expert analyses
 Usability Evaluation
 Formal A/B Lab Testing

Design Practices
 “Natural programming”
 Graphic & Interaction

Design
 Prototyping

Field Studies
 Logs & error reports

[Myers, Ko, LaToza, Yoon. IEEE Computer, 2016]

© 2017 – Brad A. Myers

8

HCI Techniques We Have Used for APIs
• “Contextual Inquiry” & Field Studies

• What are the real problems & barriers that developers face?

• “Natural Programming Elicitation”
• Let programmers express how they expect the functionality to be provided
• How should this API be designed?

• Expert analyses
• What are some potential problems with this API?
• Heuristic Analysis – evaluate based on guidelines
• Cognitive walkthrough – how hard will this specific task be to learn?

• Lab studies of programmers using an API
• Does my API work for programmers?
• What problems do the target developers have with my API?
• Is this design better than that one?

© 2017 – Brad A. Myers

9

“Natural Programming” Elicitation
• Technique developed by my group to elicit developer’s

“natural” expressions
• Mental models of tasks, vocabulary, etc.

• Blank paper tests
• Must prompt for the tasks in a way that doesn’t bias the

answers
• Examples:

• API Architecture
• Words used
• Which methods are on which classes

© 2017 – Brad A. Myers

10

Context:
Natural Programming Project
• Researching better tools for programming since 1978
• Natural Programming project started in 1995
• Make programming easier and more correct by making it more natural

• Closer to the way that people think about algorithms and solving their tasks

• Methodology – human-centered approach
• Perform studies to inform design

• Provide new knowledge about what people do and think, & barriers
• Guide the designs from the data

• Design of programming languages and environments
• Iteratively evaluate and improve the tools

• Target novice, expert and end-user programmers

© 2017 – Brad A. Myers

11

http://www.cs.cmu.edu/%7ENatProg/index.html
http://www.cs.cmu.edu/%7ENatProg/index.html

End User Programming
• People whose primary job is not programming
• [Scaffidi, Shaw and Myers 2005]

• 90 million computer users at work in US
• 55 million will use spreadsheets or databases at work (and therefore may

potentially program)
• 13 million will describe themselves as programmers
• 3 million professional programmers

• All of these people use APIs!

© 2017 – Brad A. Myers

90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

12

Program Complexity and Sophistication

Goal: Gentle Slope
Systems

Difficulty
of

Use

Goal

Flash

ActionScript

C Programming

Visual Basic

Basic

C or C# Programming
Swing

Java

Low
Threshold

High
Ceiling

13© 2017 – Brad A. Myers

Web Development

CSS & HTML

JavaScript

editor

Server-side

Our Studies of APIs
• Our work started with Jeff Stylos’s PhD, 2005-2009

• Interned in Microsoft’s API Usability group with Steven Clarke, et. al.
• Which programming patterns are most usable?
• Measures: learnability, errors, preferences
• Studied:

• Required parameters in constructors
• Factory pattern
• Object design
• SAP’s APIs

• Tools to help with APIs
• New work: API designers’ needs

© 2017 – Brad A. Myers

14

What can be addressed?

• All API design
decisions

• Tools &
documentation
for APIs

© 2017 – Brad A. Myers

15[Stylos & Myers, VL/HCC ‘2007]

Required Constructors Study
• Compared create-set-call (default constructor)

var foo = new FooClass();
foo.Bar = <get a bar>;
foo.Use();

• vs. required constructors (immutable classes):
var tempBar = <get a bar>;
var foo = new FooClass(tempBar);
foo.Use();

• All participants assumed there would be a default constructor
• Required constructors interfered with learning

• Users wanted to experiment with what kind of object to use first
• Preferred to not use temporary variables
• Tradeoff with the security and reliability of immutable classes

• See [Coblenz, Nelson, Aldrich, Myers, Sunshine: “Glacier: Transitive Class Immutability for Java”], Wed @ 11:00
© 2017 – Brad A. Myers

16

[Stylos & Clarke, ICSE ‘2007]

“Factory” Pattern Study
• Instead of “normal” creation: Widget w = new Widget();
• Objects must be created by another class:

AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

• Used frequently in Java (>61) and .Net (>13) and SAP
• Results:

• When asked to design on “blank paper”, no one designed a factory
• Time to develop using factories took 2.1 to 5.3 times longer compared

to regular constructors (20:05 v. 9:31, 7:10 v. 1:20)
• All subjects had difficulties getting using factories in APIs

© 2017 – Brad A. Myers

17

[Ellis. Stylos & Myers, ICSE ‘2007]

Object Method Placement Study
• Where to put functions when doing object-oriented

design of APIs when multiple classes work together
• mail_Server.send(mail_Message)

vs.
mail_Message.send(mail_Server)

• When desired method is on the class that they start with, users were
between 2.4 and 11.2 times faster (p < 0.05)

• Starting class can be
predicted based on user’s tasks

• More general terms should be
used most commonly
• Mail vs. Mail_server class

• Java File class

© 2017 – Brad A. Myers

18

Time to Find a Method

0

5

10

15

20

Email Task Web Task Thingies Task
Ti

m
e

(m
in

)

Methods on
Expected Objects
Methods on
Helper Objects

[Stylos & Myers, FSE 2008]

Chart2

		Email Task		Email Task

		Web Task		Web Task

		Thingies Task		Thingies Task

Methods on Expected Objects

Methods on Helper Objects

Time (min)

Time to Find a Method

1

11.2

2

15.2

2

6.8

Sheet1

		Average Time in Minutes to Find a Method (FSE paper) (p < 0.05)		Email Task		Web Task		Thingies Task

		Methods on Expected Objects		1		2		2

		Methods on Helper Objects		11.2		15.2		6.8

		Average Time in Minutes to Construct (Factory Pattern) (p < 0.05)		Sockets Task		Thingies Task

		Using a Default Constructor		9.5166666667		1.3333333333

		Using a Factory Pattern		20.0833333333		7.1666666667

Sheet1

		

Methods on Expected Objects

Methods on Helper Objects

Time (min)

Time to Find a Method

Sheet2

		

Using a Default Constructor

Using a Factory Pattern

Time (min)

Time to Construct Objects

Sheet3

		

		

Study of APIs for SAP

• Study APIs for Enterprise Service-Oriented
Architectures (“Web Services”)

• Naming problems:
• Too long
• Not understandable
• Differences in middle are frequently missed

© 2017 – Brad A. Myers

19

[Jeong, Xie, Beaton, Myers, Stylos, Ehret, Karstens, Efeoglu, Busse, IS-EUD'2009]

eSOA Documentation Results

• Multiple paths: unclear which one to use
• Some paths were dead ends
• Inconsistent look and feel

caused immediate abandonment
of paths

• Hard to find required information
• Business background helped
• Many other studies have reported

documentation problems

© 2017 – Brad A. Myers

20

(IS-EUD'2009)

Usability study of an API from SAP
• Jeff Stylos as summer intern at SAP
• SAP “Business Rules Framework Plus” API (BRFplus)
• Interviews with users

• Identified a mismatch of abstraction level
• API was very flexible, but users had simple use cases

• Natural programming techniques to identify expected
designs

• User studies of redesigned APIs
• Showed were successful

• Three months total work
© 2017 – Brad A. Myers

21

[Stylos, Busse, Graf, Ziegler, Ehret, Karstens, VL/HCC’2008]

Evaluation based on Guidelines

• Nielsen’s Heuristics, Cognitive Dimensions
• Also Cognitive Walkthroughs
• Example: consistency violation:

© 2017 – Brad A. Myers

22
javax.xml.stream.XML.StreamWriter – [Rama, Kak, 2013]

SAP’s NetWeaver® Gateway
Developer Tools

• Plug-in to Visual Studio 2010 for developing
using certain SAP APIs

• We used the HCI methods of heuristic
evaluation and cognitive walkthroughs to
evaluate early prototypes

• Our recommendations were quickly
incorporated due to agile software
development process

© 2017 – Brad A. Myers

23

Automated Tools (by Others)
• Apply nine metrics to APIs

[Rama, G.M. and Kak, A. Some structural measures of API usability. Software:
Practice and Experience 45, 1 (Jan. 2013), 75–110]

• E.g., consistency; avoid lists of strings; factory pattern;
generic exceptions; …

• API Concepts Framework takes uses of APIs
into account
[Scheller, T. and Kuhn, E. Automated measurement of API usability: The API
concepts framework. Information and Software Technology 61 (May 2015), 145–162]

• Interface Complexity; Implementation Complexity;
Setup Complexity

© 2017 – Brad A. Myers

24

Our Tools to Help with APIs
• If cannot change API, then fix the documentation and tools

© 2017 – Brad A. Myers

25

• Mica

• Jadeite

• Calcite

• Dacite

• Euklas

• Graphite

• Apatite

http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

Mica Tool to Help Find Examples

• MICA: Makes Interfaces Clear
and Accessible

• Use Google to find relevant pages
• Match pages with Java keywords
• Also notes which pages contain

example code or definitions

© 2017 – Brad A. Myers

26

[Stylos, Myers VL/HCC’2006]

Jadeite: Improved JavaDoc
• JADEITE: Java API Documentation with Extra

Information Tacked-on for Emphasis
• http://www.cs.cmu.edu/~jadeite

• Mine the web for usage of Java APIs
• Fix JavaDoc to help address problems

• Focus attention on most popular packages
and classes using font size

• “Placeholders” for methods that users
want to exist

• Automatically extracted code examples
for how to create
classes

• Related classes
© 2017 – Brad A. Myers

27

[Stylos, Faulring, Yang, Myers, VL/HCC’2009]

http://www.cs.cmu.edu/%7Ejadeite
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

Calcite: Eclipse Plugin for Java
• CALCITE: Construction And Language Completion

Integrated Throughout Eclipse
• http://www.cs.cmu.edu/~calcite

• UI = Code completion in Eclipse since familiar and usable
• Code completion in Eclipse augmented with Jadeite’s

information
• How to create

objects of specific
classes?
SSLSocket s = ???

© 2017 – Brad A. Myers

28

[Mooty, Faulring, Stylos, Myers, VL/HCC’2010]

|

http://www.cs.cmu.edu/%7Ecalcite

Dacite: API Designer Annotates
• DACITE: Design Annotations for Complementing Interfaces Targeting Effectiveness
• Visiting Professor André L. Santos from University Institute of Lisbon, Portugal
• Use Java annotations to declare properties of APIs

• Instead of needing to search the web for them
• More accurate & works for APIs with small user bases

• Processed by Eclipse plugin to help with API discoverability
• Unifies what Calcite did through crawling the web:

• Supports static factories, factory methods, object builders, helper methods
• Also adds additional patterns: decorators and composite classes
• API designers know better what

should be annotated

• Lab user study showed effective
• Twice as many tasks finished
© 2017 – Brad A. Myers

29

[Santos, Myers, Journal of Systems & Software, April, 2017]

Euklas: Eclipse Plugin for JavaScript

• EUKLAS: Eclipse Users’ Keystrokes Lessened by Attaching
from Samples
• http://www.cs.cmu.edu/~euklas

• Postdoc Christian Dörner
• Brings Java-like analysis to

JavaScript
• People often copy from examples

in documentation
• Auto-correct uses copy source

context for errors due to copy &
paste

© 2017 – Brad A. Myers

[Dörner, Faulring, Myers, PLATEAU'2014]

30

http://www.cs.cmu.edu/%7Eeuklas

Graphite: Eclipse Plugin for Literals

• GRAPHITE: GRAphical Palettes Help Instantiate
Types in the Editor.

• Pop up a custom palette for
specialized constants (literals)
in Eclipse
• Regular

expressions
• Color palettes

• Customizable
© 2017 – Brad A. Myers

31

[Omar, Yoon, LaToza, Myers, ICSE'2012]

Apatite Documentation Tool

• APATITE: Associative Perusing of
APIs That Identifies Targets Easily
• http://www.cs.cmu.edu/~apatite

• Start with verbs (actions) and
properties and find what
classes implement them

• Find associated items
• E.g., classes that are often used together
• Classes that implement or are used by

a method
© 2013 – Brad A. Myers

32

[Eisenberg, Stylos, Faulring, Myers, VL/HCC'10]

http://www.cs.cmu.edu/%7Eapatite

New Project
• Funded by a grant from Google
• Interview and survey API designers

• Processes used
• Barriers to high usability
• Information needs about API users
• Appropriate signals of API usability

• Preliminary discussions with Google, IBM, Amazon,
Bloomberg, Microsoft
• Appear to have quite different processes
• Different levels of sensitivity to API Usability

• Starting next week!
© 2017 – Brad A. Myers

33

Open Challenges

• What other design patterns in APIs are
problematic or beneficial for usability?

• How to make coordinating multiple APIs easier?
• What other design or evaluation methods are

needed?

© 2017 – Brad A. Myers

34

Open Challenges
• Identify best practices in API Design

• How to insure that usability is a key quality metric that API designers
always consider?

• What process results in the most usable APIs?
• What kinds of testing should be done on APIs for usability?
• How should the API design team be organized?

• What guidelines should be followed?
• Does having guidelines even work?
• Level of specificity of guidelines?

• E.g., Smith and Mosier’s 1986, 486 pages of guidelines, vs.
Nielsen’s 10

© 2017 – Brad A. Myers

35

A Few Resources
• Brad A. Myers and Jeffrey Stylos, "Improving API

Usability", Communications of the ACM, vol 59, No. 6, June,
2016, pp. 62-69, Official ACM DL entry; html or local pdf.

• www.apiusability.org
• http://www.cs.cmu.edu/~NatProg/apiusability.html

• https://www.programmableweb.com/

© 2017 – Brad A. Myers

36

http://dl.acm.org/authorize?N03391
http://cacm.acm.org/magazines/2016/6/202645-improving-api-usability/fulltext
http://www.cs.cmu.edu/%7Enatprog/papers/p62-myers-CACM-API_Usability.pdf
http://www.apiusability.org/
http://www.cs.cmu.edu/%7ENatProg/apiusability.html
https://www.programmableweb.com/

Euklas:
Eclipse
Users’
Keystrokes
Lessened by
Attaching from
Samples

Acronyms are fun!
And there are lots of Gemstones!! C32

CMU's
Clever and
Compelling
Contribution to
Computer Science in
CommonLisp which is
Customizable and
Characterized by a
Complete
Coverage of
Code and
Contains a
Cornucopia of
Creative
Constructs, because it
Can
Create
Complex,
Correct
Constraints that are
Constructed
Clearly and
Concretely, and
Communicated using
Columns of
Cells, that are
Constantly
Calculated so they
Change
Continuously, and
Cancel
Confusion

Pebbles
PDAs for
Entry of
Both
Bytes and
Locations from
External
Sources

GARNET
Generating an
Amalgam of
Real-time,
Novel
Editors and
Toolkits

For more, see: www.cs.cmu.edu/~bam/acronyms.html

Azurite:
Adding
Zest to
Undoing and
Restoring Improves
Textual Exploration

Fluorite:
Full of
Low-level
User
Operations
Recorded In
The
Editor

Apatite:
Associative
Perusing of
APIs
That
Identifies
Targets
Easily

Graphite:
GRAphical Palettes
Help
Instantiate
Types in the Editor

Calcite:
Construction
And
Language
Completion
Integrated
Throughout

Jadeite:
Java
API
Documentation with
Extra
Information
Tacked-on for
Emphasis

Mica:
Makes
Interfaces
Clear and
Accessible

Jasper:
Java
Aid with
Sets of
Pertinent
Elements for
Recall

Crystal:
Clarifications
Regarding
Your
Software using a
Toolkit,
Architecture and
Language

Euclase:
End
User
Centered
Language,
APIs
System and
Environment

Aquamarine:
Allowing
Quick
Undoing of
Any
Marks
And
Repair
Improving
Novel
Editing

Gneiss:
Gathering
Novel
End-user
Internet
Services using
Spreadsheets

Glacier
Great
Languages
Allow
Class
Immutability
Enforced
Readily

Variolite:
Variations
Augment
Real
Iterative
Outcomes
Letting
Information
Transcend
Exploration

Sugilite
Smartphone
Users
Generating
Intelligent
Likeable
Interfaces
Through
Examples

© 2017 – Brad A. Myers

37

http://www.pebbles.hcii.cmu.edu/index.php
http://www.pebbles.hcii.cmu.edu/index.php
http://www.cs.cmu.edu/%7Ebam/acronyms.html
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

Thanks to:

© 2017 – Brad A. Myers

38

• Funding:
• NSF under IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-IT),

ITR CCR-0324770 as part of the EUSES Consortium
• SAP
• Adobe
• IBM
• Microsoft Research
• Yahoo! InMind
• Google

• >38 students & visitors:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz

 Christian Dörner
 Dan Eisenberg
 Brian Ellis
 Andrew Faulring
 Aristiwidya B. (Ika)

Hardjanto
 Erik Harpstead
 Amber Horvath
 Sae Young (Sophie)

Jeong
 Mary Beth Kery

 Andy Ko
 Thomas LaToza
 Joonhwan Lee
 Toby Li
 Leah Miller
 Steven Moore
 Mathew Mooty
 Gregory Mueller
 Yoko Nakano
 Stephen Oney
 John Pane

 Sunyoung Park
 Michael Puskas
 Chotirat (Ann)

Ratanamahatana
 André L. Santos
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon

http://www.nsf.gov/
http://www.nsf.gov/

Human-Centered Methods
for Improving API Usability

Brad A. Myers
Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

39© 2017 – Brad A. Myers

http://www.cs.cmu.edu/%7Ebam
mailto:bam@cs.cmu.edu

	Human-Centered Methods for Improving API Usability
	APIs
	Stakeholders &�Their Goals
	Why APIs?
	APIs are Important and Valuable
	Why Apply Human-Centered Techniques?
	“Human Centered Methods” ̶̶ � More Than Just Lab User Studies
	Human Centered Approaches Across the Lifecycle
	HCI Techniques We Have Used for APIs
	“Natural Programming” Elicitation
	Context:�Natural Programming Project
	End User Programming
	Goal: Gentle Slope Systems
	Our Studies of APIs
	What can be addressed?
	Required Constructors Study
	“Factory” Pattern Study
	Object Method Placement Study
	Study of APIs for SAP
	eSOA Documentation Results
	Usability study of an API from SAP
	Evaluation based on Guidelines
	SAP’s NetWeaver® Gateway Developer Tools
	Automated Tools (by Others)
	Our Tools to Help with APIs
	Mica Tool to Help Find Examples
	Jadeite: Improved JavaDoc
	Calcite: Eclipse Plugin for Java
	Dacite: API Designer Annotates
	Euklas: Eclipse Plugin for JavaScript
	Graphite: Eclipse Plugin for Literals
	Apatite Documentation Tool
	New Project
	Open Challenges
	Open Challenges
	A Few Resources
	Acronyms are fun!
	Thanks to:
	Human-Centered Methods for Improving API Usability

