
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Linear Programming I

In this lecture, we describe a very general problem called linear programming that can be
used to express a wide variety of different kinds of problems. We can use algorithms for lin-
ear programming to solve the max-flow problem, solve the min-cost max-flow problem, find
minimax-optimal strategies in games, and many other things. We will primarily discuss the set-
ting and how to code up various problems as linear programs (LPs). At the end, we will briefly
describe some of the algorithms for solving LPs.

Objectives of this lecture

In this lecture, we will cover

- The definition of linear programming and simple examples.

- Using linear programming to solve max flow and min-cost max flow.

- Using linear programming to solve for minimax-optimal strategies in games.

- Linear programs in standard form.

1 Introduction
In recent lectures we have looked at the following problems:

- Maximum bipartite matching

- Maximum flow (more general than bipartite matching).

- Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. Linear Programming is important because it is so expressive: many, many prob-
lems can be coded up as linear programs (LPs). This especially includes problems of allocat-
ing resources and business supply-chain applications. In business schools and Operations Re-
search departments there are entire courses devoted to linear programming. There are also
commercial software packages charging tens of thousands of dollars per license for solving lin-
ear programs (okay they also solve more general problems too, but linear programming is the
basis for most of them)! Today we will mostly say what they are and give examples of encoding
problems as LPs. We will only say a tiny bit about algorithms for solving them.
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2 Definition of Linear Programming
Formally, a linear programming problem is specified as follows.

Definition: Linear program

Given:

- n real-valued variables x1, . . . , xn .

- A linear objective function. e.g., 2x1+3x2+ x3.

- m linear inequalities in these variables (equalities are OK too).

e.g., 3x1+4x2 ≤ 6, or 0≤ x1 ≤ 3, etc.

Goal:

- Find values for the xi ’s that satisfy the constraints and maximize or minimize the
objective function.

Remark: No strict inequalities

Linear programs can not contain strict inequalities, e.g., x1 < 3 or x2 > 5. Why? Suppose
we wrote maximize x1 such that x1 < 3, then there does not exist an optimal solution.

Remark: Variables are real-valued

This is super important to remember!! Linear program variables take on real values, i.e.,
the variables can not be guaranteed to take integer values!

An LP may also come without an objective function, in which case we simply wish to find any
value for the xi ’s that satisfy all of the constraints. Such an LP is called a “feasibility problem”.
You can think of this as a special case of a linear program where the objective value is just a
constant (e.g., zero). We can write either minimization problems or maximization problems.

A set of xi ’s that satisfies all of the constraints is called a feasible solution. Not all linear programs
have a solution; it may be impossible to find any xi ’s that satisfy the constraints. Alternatively, it
may be the case that there is no optimal objective value because there exists feasible solutions
of arbitrarily high value. We can classify all LPs this way into three categories.

Definition: Classification of LPs

Every LP falls into one of three categories:

- Infeasible (there is no point that satisfies the constraints)

- Feasible and Bounded (there is a feasible point of maximum objective function value)

- Feasible and Unbounded (there are feasible points of arbitrarily large value)
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An algorithm for LP should classify the input LP into one of these categories, and find the op-
timum feasible point when the LP is feasible and bounded.

3 Modeling problems as Linear Programs

3.1 An Operations Research Problem
Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms
of labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We
have 3300 hours of labor and 4000 units of material available. We are allowed to produce 12000
units of pollution, and we want to maximize the number of cars produced. How can we model
this?

To model a problem like this, it helps to ask the following three questions in order: (1) what
are the variables, (2) what is our objective in terms of these variables, and (3) what are the con-
straints. Let’s go through these questions for this problem.

Variables: x1, x2, x3, x4, where xi denotes the number of cars at plant i .
Objective: maximize x1+ x2+ x3+ x4.
Constraints:

xi ≥ 0 for all i

x3 ≥ 400

2x1+3x2+4x3+5x4 ≤ 3300

3x1+4x2+5x3+6x4 ≤ 4000

15x1+10x2+9x3+7x4 ≤ 12000

Note that we are not guaranteed the solution will be integral. For problems where the numbers
we are solving for are large (like here), it is usually not a very big deal because you can just round
them down to get an almost-optimal solution. However, we will see problems later where it is
a very big deal.

3.2 Modeling Maximum Flow
We can model the max flow problem as a linear program too. In fact, when we wrote down
the definitions of the max flow problem, like the capacity and conservation constraints, and
defined the net s -t flow, we pretty much did write down a linear program already!
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Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: maximize
∑

u∈V

fs u −
∑

u∈V

fu s . (the net s -t flow)

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ̸∈ {s , t },
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation)

For instance, consider this example:

In this case, our LP is: maximize fs a + fs b subject to the constraints:

Capacity Conservation
0≤ fs a ≤ 4 fs a = fa c

0≤ fa c ≤ 3 fs b + fc b = fb c + fb d

0≤ fc t ≤ 2 fa c + fb c = fc b + fc t

0≤ fs b ≤ 2 fb d = fd t

0≤ fb d ≤ 3
0≤ fc b ≤ 1
0≤ fb c ≤ 2
0≤ fd t ≤ 4

3.3 Modeling Minimum-cost Max Flow
Recall that in min-cost max flow, each edge (u , v ) has both a capacity c (u , v ) and a cost $(u , v ).
The goal is to find out of all possible maximum s -t flows the one of least cost, where the cost
of a flow f is defined as

∑

(u ,v )∈E

$(u , v ) fu v .

Approach #1: Maximize flow first One way to do this is to first solve for the maximum flow f ,
ignoring costs. Then, set up a new linear program and add the constraint that flow must equal
f , i.e.

∑

u∈V

fs u −
∑

u∈V

fu s = f
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(plus the original capacity and flow conservation constraints), then set the objective to mini-
mize the cost

minimize
∑

(u ,v )∈E

$(u , v ) fu v

Note that we have used a minimization objective function rather than a maximization this time.
This is allowed. If you want to stick strictly to maximization problems, then you can maximize
the negative of the cost instead, as this will give you the same solution.

Approach #2: Reduce to “Minimum-cost circulation” The reason that min-cost max-flow
is annoying to write as an LP is that it kind of has two objectives, to maximize flow then to
minimize cost, and we can’t directly encode two objectives into an LP, hence why we needed
to do something like the above. An alternative is to formulate a slightly different version of the
problem that does not have two objectives, and reduce min-cost max-flow to that.

To do so, lets forget about “producing” flow at s and “consuming” it at t and imagine that in-
stead we take all of the flow into t and “circulate” it back to s , forming a big cycle of flow instead.

A circulation is the same thing as a flow, except that we now require that s and t also satisfy
the conservation constraint. In this problem, there is no such concept as “net-flow” anymore,
because the net flow should always be zero, so we can’t directly ask about maximum flow. How-
ever, if we have costs on the edges, then we can write an LP for a minimum-cost circulation,
which finds a circulation of minimum possible cost.

Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: minimize
∑

(u ,v )∈E

$(u , v ) fu v

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ,
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation, includes s and t!)

To reduce minimum-cost max flow to a minimum-cost circulation problem, we draw the graph
as above where we connect an infinite-capacity edge from t to s , and then give that edge a very
negative cost. By giving (t , s ) a very negative cost, the solution is encouraged to send as much

5



flow as possible along (t , s ), which we can observe is equivalent to maximizing the s -t flow!
There are other variants of the minimum-cost circulation problem but we won’t cover those.

3.4 2-Player Zero-Sum Games
Suppose we are given a 2-player zero-sum game with n rows and n columns, and we want to
compute a minimax optimal strategy. For instance, perhaps a game like this (say payoffs are
for the row player):

column player

row
player

20 -10 5

5 10 -10

-5 0 10

Let’s see how we can use linear programming to solve this game. Informally, we want the vari-
ables to be the things we want to figure out, which in this case are the probabilities to put on
our different choices p1, . . . , pn . These have to form a legal probability distribution, and we can
describe this using linear inequalities: namely, p1+ . . .+pn = 1 and pi ≥ 0 for all i .

Our goal is to maximize the worst case (minimum), over all columns our opponent can play,
of our expected gain. This is a little confusing because we are maximizing a minimum. How-
ever, we can use a trick: we will add one new variable v (representing the minimum), put in
constraints that our expected gain has to be at least v for every column, and then define our
objective to be to maximize v . Assume our input is given as an array m where mi j represents
the payoff to the row player when the row player plays i and the column player plays j . Putting
this all together we have:

Variables: p1, . . . , pn and v .
Objective: Maximize v .
Constraints:

- pi ≥ 0 for all 1≤ i ≤ n ,

-
n
∑

i=1

pi = 1. (the pi form a probability distribution)

-
n
∑

i=1

pi mi j ≥ v for all columns 1≤ j ≤m

4 Linear Programming Terminology and Notation
It’s going to be useful as we discuss algorithms for LP in future lectures, as well as for the concept
of duality, to introduce some terminology and notation for linear programs.
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Definition: Standard Form

A linear program (LP) over n variables x1, . . . , xn , with m constraints written in the fol-
lowing form is said to be in Standard Form:

maximize c1 x1+ . . .+ cn xn ,

subject to a11 x1+ . . .+a1n xn ≤ b1,

a11 x1+ . . .+a1n xn ≤ b2,

...

am1 x1+ . . .+amn xn ≤ bm ,

xi ≥ 0 for all i .

In other words, the objective is maximization, the constraints are all f (x )≤ b for a con-
stant b and the variables are required to be non-negative.

Another way to write this in a much more compact form is to package the c and b values
into vectors and the a values into a matrix so we can write:

maximize c T x

subject to Ax ≤ b

x ≥ 0

Here there are n non-negative variables x1, x1, . . . , xn , and m linear constraints encapsulated
in the m × n matrix A and the m × 1 matrix (vector) b . Note that in standard form, the non-
negativity constraints xi ≥ 0 are not counted towards the number of constraints m . The objec-
tive function to be maximized is represented by the n ×1 matrix (vector) c .

F it

Standard form turns out to be convenient and useful, especially when we will discuss duality
later. For it to be useful, we should convince ourselves that we can actually always use it!

Claim: Any LP can be written in standard form

Given an LP not in standard form, we can write an equivalent LP in standard form.
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- Converting min to max Suppose we have a minimization LP. Then we can negate the objec-
tive function and make it a maximization problem instead.

- Handling equality constraints Suppose we have linear equalities in our LP.

– We can replace LHS = RHS with two inequalities: LHS ≤ RHS and LHS ≥ RHS

– Then we negate the second inequality to get -LSH≤ -RHS. Now we have only≤ inequal-
ities

- Handling unbounded variables If we have a variable xi which can take on any real value, we
can replace it by two variables, x+i and x−i , and substitute xi with x+i − x−i everywhere. The
LP is equivalent, but we can constrain x+i ≥ 0 and x−i ≥ 0.

4.1 Polytopes, Convexity, and Vertices
It’s sometimes helpful to visualize linear programs geometrically. The set of points that satisfy a
linear inequality is all the points on, or on one-side of a “plane” inRd . This set of points is called
a half-space. The points satisfying all the inequalities of an LP is therefore the intersection of
a finite number of half-spaces. Such a set of points is called a convex polytope. (Figures from
Wiktionary, and Geometry Junkyard.)

Given two points a and b in Rd , we can define the convex combination of a and b as follows:

Conv(a , b ) = {αa + (1−α)b | 0≤α≤ 1}

Conv(a , b ) is simply the all the points on the straight line in Rd between points a and b .

A set of points S in Rd is convex iff for all a , b ∈ S we have that Conv(a , b ) ⊆ S . Note that the
intersection of two convex sets is convex, because if a and b are in both of the convex sets,
then the convex combination is also in both of the sets. It follows that the polytope of an LP is
a convex set.

Polytopes have many other interesting properties. They can be decomposed as a collection of
interrelated facets of dimensions varying from 0 to d . (In three dimensions these are vertices,
edges, faces, and volumes.) We’re not going to discuss that rich theory here except to talk about
the vertices of a polytope, that is, the facets of dimension 0.

A point q is a vertex of a polytope P if the following hold:

- q ∈ P
- For any v ∈Rd with v ̸= 0 then at least one of q + v or q − v is not in P .
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Put another way, if you’re at a point for which there exist two opposite directions such that you
can move in these directions and still stay inside the polytope, then you’re not at a vertex.

Vertices are important because any LP has an optimum solution that is on a vertex. The intu-
ition for this is that if you’re at a non-vertex and you can move in directions v and −v , then
moving in at least one of these directions will not cause the objective function to decrease. So
you move in that direction as far as you can go. When you stop you must be entering a facet of
a lower dimension. This process is then repeated until you reach a vertex.

5 Algorithms for Linear Programming
How can we solve linear programs? The standard algorithm for solving LPs is the Simplex Al-
gorithm, developed in the 1940s. It’s not guaranteed to run in polynomial time, and you can
come up with bad examples for it, but in general the algorithm runs pretty fast. Only much
later in 1980 was it shown that linear programming could be done in polynomial time by some-
thing called the Ellipsoid Algorithm (but it tends to be fairly slow in practice). Later on, a faster
polynomial-time algorithm called Karmarkar’s Algorithm was developed, which is competitive
with Simplex. There are many commercial LP packages, for instance LINDO, CPLEX, Solver (in
Excel) and others.

We won’t have time to describe any of these algorithms in detail. Instead, we will just give
some intuition and the high-level idea of how they work by viewing linear programming as a
geometrical problem.

Think of an n-dimensional space with one coordinate per variable. A solution is a point in this
space. An inequality, like x1 + x2 ≤ 6 is saying that we need the solution to be on a specified
side of a certain hyperplane. The feasible region is the convex region in space defined by these
constraints. Then we want to find the feasible point that is farthest in the “objective” direction.

We can use this geometric view to motivate the algorithms.

5.1 The Simplex Algorithm
The earliest and most common algorithm in use is called the Simplex method. The idea is
to start at some “corner” of the feasible region (to make this easier, we can add in so-called
“slack variables” that will drop out when we do our optimization). Then we repeatedly do the
following step: look at all neighboring corners of our current position and go to the best one
(the one for which the objective function is greatest) if it is better than our current position.
Stop when we get to a corner where no neighbor has a higher objective value than we currently
have. The key fact here is that (a) since the objective is linear, the optimal solution will be at a
corner (or maybe multiple corners). Furthermore, (b) there are no local maxima: if you’re not
optimal, then some neighbor of you must have a strictly larger objective value than you have.
That’s because the feasible region is convex. So, the Simplex method is guaranteed to halt at
the best solution. The problem is that it is possible for there to be an exponential number of
corners and it is possible for Simplex to take an exponential number of steps to converge. But,
in practice this usually works well.
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5.2 The Ellipsoid Algorithm
The Ellipsoid Algorithm was invented by Khachiyan in 1980 in Russia. This algorithms solves
just the “feasibility problem,” i.e., whether or not there exists a feasible solution to the LP, but
such an algorithm can always be used to find the optimal objective (see exercises).

The idea is to start with a big ellipse (called an ellipsoid in higher dimensions) that we can
be sure contains the feasible region. Then, try the center of the ellipse to see if it violates any
constraints. If not, you’re done. If it does, then look at some constraint violated. So we know
the solution (if any) is contained in the remaining at-most-half-ellipse. Now, find a new smaller
ellipse that contains that half of our initial ellipse. We then repeat with the new smaller ellipse.
One can show that in each step, you can always create a new smaller ellipse whose volume is
smaller, by at least a (1−1/n ) factor, than the original ellipse. So, every n steps, the volume has
dropped by about a factor of 1/e . One can then show that if you ever get too small a volume,
as a function of the number of bits used in the coefficients of the constraints, then that means
there is no solution after all.

One nice thing about the Ellipsoid Algorithm is you just need to tell if the current solution vio-
lates any constraints or not, and if so, to produce one. You don’t need to explicitly write them
all down. There are some problems that you can write as a linear program with an exponential
number of constraints if you had to write them down explicitly, but where there is an fast al-
gorithm to determine if a proposed solution violates any constraints and if so to produce one.
For these kinds of problems, the Ellipsoid Algorithm is a good one.

5.3 Karmarkar’s Algorithm
Karmarkar’s Algorithms sort of has aspects of both. It works with feasible points but doesn’t go
from corner to corner. Instead it moves inside the interior of the feasible region. It was one of
first of a whole class of so-called “interior-point” methods.

The development of better and better algorithms is a big ongoing area of research. In practice,
for all of these algorithms, you get a lot of mileage by using good data structures to speed up
the time needed for making each decision.
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Exercises: Linear Programming Fundamentals

Problem 1. The simplex algorithm starts at a vertex and then iteratively moves to neighboring
vertices with better objective value until it arrives at the maximum. How does it actually find
the starting point, though? This requires finding a feasible point of the LP, but that is just as
hard of a problem!

Let’s try a bootstrapping approach: We can write a second LP such that:

1. It has a trivial feasible solution that can be used as a starting point

2. The solution to this LP must be some feasible point of the original LP (it doesn’t have to
be the maximum, just any feasible point!)

Describe an LP that has these properties. We can solve this LP using simplex and then use the
result it finds as the starting point for our actual LP!

Hint: Introduce a new variable s and add it to each constraint. How does this make finding a
feasible point easier? What should the objective function for the new LP be?

Problem 2. Suppose you have an algorithm that can tell you whether an LP is feasible, but
does not give you the optimal objective value (e.g., Ellipsoid). Describe a simple method for
determining the optimal objective value using the feasibility algorithm as a black box.
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