
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Dynamic Programming II

In the previous lecture, we reviewed Dynamic Programming and saw how it can be applied
to problems about sequences and trees. Today, we will extend our understanding of DP by
applying it to other classes of problems, like graphs, and explore how to speed up dynamic
programming implementations with clever tricks like data structures and matrices!

Objectives of this lecture

In this lecture, we will:

- Learn about subset DP via the traveling salesperson problem

- Learn about optimizing DPs by eliminating redundancies via the all-pairs shortest
path problem

- Learn about optimizing DPs with data structures via the longest increasing subse-
quence problem

- Learn about optimizing DPs with matrices via counting paths in a graph

1 Traveling Salesperson Problem (TSP)
The NP-hard Traveling Salesperson Problem (TSP) asks to find the shortest route that visits all
vertices in a graph exactly once and returns to the start.1 We assume that the graph is complete
(there is a directed edge between every pair of vertices in both directions) and that the weight
of the edge (u , v) is denoted by w (u , v). This is convenient since it means a solution is really
just a permutation.

Since the problem is NP-hard, we don’t expect to get a polynomial-time algorithm, but perhaps
dynamic programming can still help get something better than brute force. Specifically, the
naive algorithm for the TSP is just to run brute-force over all n ! permutations of the n vertices
and to compute the cost of each, choosing the shortest. We’re going to use Dynamic Program-
ming to reduce this to O (n 22n). This is still exponential time, but it’s not as brutish as the naive
algorithm. As usual, let’s first just worry about computing the cost of the optimal solution, and
then we’ll later be able to recover the path.

1Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesperson
Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.

1

Step 1: Find some optimal substructure This one harder than the previous examples, so we
might have to try a couple of times to get it right. Suppose we want to make a tour of some
subset of nodes S . Can we relate the cost of an optimal tour to a smaller version of the problem?
Its not clear that we can. In particular, suppose we call out a particular vertex t , and then ask
whether it is possible to relate the cost of the optimal tour of S −{t } and S . It doesn’t seem so,
because its not clear how we would splice t into the tour formed by S −{t }without additional
information.

So, lets be more specific and add some additional information. Adding a vertex into a cycle
seems difficult to do, but adding a vertex onto a path seems like something we could work
with. So lets fix an arbitrary starting vertex x , and now consider the cheapest path that starts
at x , visits all of the vertices in S and ends at a specific vertex t . Can we find any substructure
in this much more specific object? Well, yes, we know that the optimal path from x to t must
have some second-last vertex t ′, and the path from x to t ′must be an optimal such path using
the vertices S −{t }. Lets use this for our subproblems.

Step 2: Define our subproblems Based on the above, lets make our subproblems

C (S , t) = The minimum-cost path starting at x and ending at t going through all vertices in S

What is the solution to our original problem? Is it one of the subproblems? Actually the answer
is no this time. But we can figure it out by combining a handful of the subproblems. Specifically,
we want to form a tour (a cycle) using a path that starts at x . So we can just try every other vertex
in the graph t , and make a path from x to t then back to x again to complete the cycle. So the
answer, once we solve the DP will be

answer= min
t ∈(V −{x })

(C (V , t) +w (t , x))

Step 3: Deriving a recurrence Using the substructure we described above, the idea that will
power the recurrence is that to get a path that goes from x to t , we want a path that goes from
x to t ′ plus an edge from t ′ to t . Which t ′ will be the best? We can’t know for sure, so we should
just try all of them and take the best one. We also need a base case. We can’t use an empty
path as our base case since we assume a starting vertex x and an ending vertex t for every
subproblem, so lets use a path of two vertices as our base case. This gives us the recurrence

2

Algorithm: Dynamic programming recurrence for TSP

C (S , t) =







w (x , t) if S = {x , t },
min
t ′∈S

t ′ ̸∈{x ,t }

C (S −{t }, t ′) +w (t ′, t) otherwise.

Step 4: Analysis The parameter space for C (S , t) is 2n−1 (the number of subsets S considered)
times n (the number of choices for t). For each recursive call we do O (n) work inside the call
to try all previous vertices t ′, for a total of O (n 22n) time. This is assuming we can lookup a set
(e.g, S −{t }) in constant time.

Remark: Efficiently representing the set

Since this algorithm is too slow for large values of n , we usually assume that n is small,
and so a highly efficient way to store the set S is as a single integer, where you use the
individual bits of the integer to indicate which vertices are in or not in the set. This makes
it easy to store and lookup the subproblem solutions because an integer is a much better
key for an array or hashtable than a set!

This technique is sometimes called “Subset DP”. These ideas apply in many cases to reduce a
factorial running to time to a regular exponential running time.

2 All-pairs Shortest Paths
Say we want to compute the length of the shortest path between every pair of vertices in a
weighted graph. This is called the all-pairs shortest path problem. If we use the Bellman-Ford
algorithm (recall 15-210), which takes O (nm) time, for all n possible destinations t , this would
take time O (mn 2). We will now see a Dynamic-Programming algorithm that runs in time O (n 3).

Step 1: Find some optimal substructure In the first lecture, we used shortest paths as an
example of substructure. A shortest path is always made of combining two smaller shortest
paths.

Step 2: Define our subproblems Although we can see the substructure, its not clear how to
actually break up the paths, because there are lots of options. One way would be to do so by
length, i.e., consider paths of length k in terms of paths of length k − 1 plus another edge, but
this would turn out to be quite inefficient. Instead, a more efficient idea is to consider which
vertices we are allowed to use. The idea is that instead of increasing the number of edges in the
path, we’ll increase the set of vertices we allow as intermediate nodes in the path. So, lets try
the subproblems

D [u][v][k] = the length of the shortest path from u to v using intermediate vertices {1, 2, . . . , k}

3

Step 3: Deriving a recurrence We need to consider two cases. For the pair u , v , either the
shortest path using the intermediate vertices {1, 2, . . . , k} goes through k or it does not. If it
does not, then the answer is the same as it was before k became an option. If k now gets used,
we can break the path at k and use the optimal substructure to glue together the two shortest
paths divided at k to get a new shortest path. Writing the recurrence using this idea looks like
this.

D [u][v][k] =min{D [u][v][k −1], D [u][k][k −1] +D [k][v][k −1]} .

Our base case will just be

D [u][v][0] =











0 if u = v,

w (u , v) if (u , v) ∈ E ,

∞ otherwise.

Step 4: Analysis We have O (n 3) subproblems and each of them takes O (1) time to evaluate,
so this takes O (n 3) time.

2.1 Optimizing the space: eliminating redundancies
One downside of the algorithm is that it uses a lot of space, O (n 3), which is a factor n larger than
the input graph. This is bad if the graph is large. Can we reduce this? There is one straightfor-
ward way to reduce it, and then a more subtle way to reduce it even further. First, notice that
the subproblems for parameter k only depend on the subproblems with parameter k−1. So, we
don’t actually need to store all O (n 3) subproblems, we can just keep the last set of subproblems
and compute bottom-up in increasing order of k .

Here’s an even simpler but more subtle way to optimize the algorithm. I claim that we can just
write:

// After each iteration of the outside loop, D[u][v] = length of the
// shortest u−>v path that’s allowed to use vertices in the set 1..k
for k = 1 to n do
for u = 1 to n do
for v = 1 to n do
D[u][v] = min(D[u][v], D[u][k] + D[k][v]);

So what happened here, it looks like we just forgot the k parameter of the DP, right? It turns
out that this algorithm is still correct, but now it only uses O (n 2) space because it just keeps a
single 2D array of distance estimates. Why does this work? Well, compared to the by-the-book
implementation, all this does is allow the possibility that D [u][k] or D [k][v] accounts for vertex
k already, but a shortest path won’t use vertex k twice, so this doesn’t affect the answer!

Key Idea: Optimize DP by eliminating redundant subproblems

Sometimes our subproblems might not all be necessary to the solve the problem, so if
we can eliminate many of them, we will either speed up the algorithm or reduce the
amount of space it requires.

4

3 Longest Increasing Subsequence
Our next problem is the “longest increasing subsequence” (LIS) problem, which has an O (n 2)
solution, but can then be improved with some clever optimizations!

Problem: Longest Increasing Subsequence

Given a sequence of comparable elements a1, a2, . . . , an , an increasing subsequence is a
subsequence ai1

, ai2
, ..., aik−1

, aik
(i1 < i2 < . . . ik) such that

ai1
< ai2

< . . .< aik−1
< aik

.

A longest increasing subsequence is an increasing subsequence such that no other in-
creasing subsequence is longer.

Step 1: Find some optimal substructure Given a sequence a1, . . . , an and its LIS ai1
, . . . , aik−1

, aik
,

what can we say about ai1
, . . . , aik−1? Since ai1

, . . . , aik
is an LIS, it must be the case that ai1

, . . . , aik−1

is an LIS of a1, . . . aik
such that aik−1

< aik
. Alternatively, it is also an LIS that ends at (and con-

tains) aik−1
. This suggests a set of subproblems.

Step 2: Define our subproblems Lets define our subproblems to be

LIS[i] = the length of a longest increasing subsequence of a1, . . . ai that contains ai

Note that the answer to the original problem is not necessarily LIS[n] since the answer might
not contain an , so the actual answer is

answer= max
1≤i≤n

LIS[i]

Step 3: Deriving a recurrence Since LIS[i] ends a subsequence with element i , the previous
element must be anything a j before i such that a j < ai , so we can try all possibilities and take
the best one

LIS[i] =







0 if i = 0,

1+max
0≤ j<i
a j<ai

L I S [j] otherwise.

Step 4: Analysis We have O (n) subproblems and each one takes O (n) time to evaluate, so we
can evaluate this DP in O (n 2) time. Is this a good solution or can we do better?

3.1 Optimizing the runtime: better data structures
The by-the-book implementation of the recurrence for LIS gives an O (n 2) algorithm, but some-
times we can speed up DP algorithms by solving the recurrence more cleverly. Specifically in
this case, the recurrence is computing a minimum over a range, which sounds like something
we know how to do faster than O (n)...

5

How about we try to apply a range query data structure (a SegTree) to this problem! Initially, its
not clear why this would work, because although we are doing a range query over 1≤ j < i , we
have to account for the the constraint that a j < ai , so we can not simply do a range query over
the values of LIS[1 . . . (i − 1)] or this might include larger elements. Here’s an idea. Let’s store
the values of LIS in a different order! Rather than storing LIS[1], LIS[2], . . . , as usual, we can
store them in order of the values of ai , so that we can actually do a range query over all values
less thanai . To do this, we first sort (ai)i which takes O (n log n)with any fast sorting algorithm,
then use the rank of ai as the position of LIS[i]. In pseudocode, the optimized version might
therefore look something like:

LIS(a : list〈int〉) −> int {
n := size(a)
b := sorted(a)
LIS : SegTree = (array〈int〉(n+1, 0)) // SegTree is endowed with the RangeMax operation
for i in 0 to n − 1 do {
rank = binary_search(b, a[i]) // the rank is a[i]’s position in the sorted list
LIS.Assign(rank, 1 + LIS.RangeMax(0, rank)) // Note: assumes ranks are 1−based

}
return LIS.RangeMax(0, n+1)

}

This optimized algorithm performs one binary search and two SegTree operations per iteration,
and it has to sort the input, so in total it takes O (n log n) time.

Key Idea: Speed up DP with data structures

If your DP recurrence involves computing a minimum, or a sum, or searching for some-
thing specific, you can sometimes speed it up by storing the results in a data structure
other than a plain array.

6

4 Counting Paths in a Graph
Optional content — Not required knowledge for the exams

For this next problem lets consider a directed unweighted graph on n vertices. Our goal is to
compute, for every pair of vertices u , v , the number of directed walks2 of length k that start at
u and end at v . A walk is a path between u and v that might repeat vertices or edges.

Step 1: Find some optimal substructure A walk of length k between u and v is just a walk of
length k −1 from u to some neighbor of v with one additional edge.

Step 2: Define our subproblems Lets define our subproblems to be

W [u][v][k] = the number of walks of length k between u and v

Step 3: Deriving a recurrence To find the number of walks of length k between u and v , we
have to look at walks of length k −1 and then add another edge. This means we are interested
in vertices that are one away from u or v . To avoid overcounting, we should just pick one of
them, so lets consider vertices adjacent to v . Our goal is then to sum over all such vertices.

W [u][v][k] =







1u=v if k = 0,
∑

v∈adj[x]

W [u][x][k −1] otherwise

Here, I have used the notation 1u=v as an indicator function, i.e. it is equal to 1 if u = v , other-
wise it is equal to zero, and adj[x] to mean the set of vertices adjacent to x .

Step 4: Analysis Computing this recurrence as written, we have O (n 2k) subproblems and
each takes O (n) time to evaluate, so the total runtime is O (n 3k). Can we do better?

4.1 Optimizing the runtime: matrices
Although it might not look it from the way it is written, the recurrence above is actually of a
useful form. Lets rewrite it a bit to make it clearer. I’m going to move the k ’s to subscripts, and
rewrite the sum using an indicator function. The reason will hopefully become clear soon.

Wk [u][v] =
∑

x∈V

Wk−1[u][x]A[x][v], W0 = I

Here, A is the adjacency matrix of the graph (it contains 1 at [u][v] if there is an edge from u to
v , otherwise it contains zero), and I is the identity matrix (n×n in this case). Does this formula
look familiar? Its actually matrix multiplication!! Specifically, it says that

Wk =Wk−1A,

2If k is large, then the number of such paths could end up being quite a big number, which could mess with the
analysis. Lets just assume that we can still do arithmetic in constant time. One way to achieve this is to compute
everything mod p

7

where A is the adjacency matrix of the graph, and W0 = I . Which means by extension that

Wk = Ak .

So we can compute Wk by computing a power of a matrix. Using exponentiation by squaring,
we can therefore compute Wk in O (n 3 log k) time, since matrix multiplication takes O (n 3) time,
and we have to square O (log k) times.

Key Idea: Speeding up DP with matrices

If your dynamic programming recurrence is a low-order linear recurrence relation, you
can sometimes speed it up by writing it as a matrix equation and using matrix exponen-
tiation!

4.2 Making thematrix method even faster
There are a couple of ways to make the matrix method even faster.

Option 1: faster multiplication Above, we saw how to compute the number of walks in a
graph in O (n 3 log k) time using matrix multiplication. This was assuming that matrix multi-
plication takes O (n 3) time, but there are actually faster algorithms out there (asymptotically
at least). Currently, matrix multiplication takes O (nω) where ω = 2.37.... It is not yet known
whether there exists an O (n 2+o (1))-time algorithm! So, just plugging in a “faster” matrix multi-
plication, we get a runtime of

O (nω log k).

Option 2: diagonalization Another way to do better, if we remember our linear algebra class,
is by diagonalizing the matrix into the form A = P D P −1, where D is a diagonal matrix. Then
our equation becomes

Wk = P D k P −1,

which means we only have to compute powers of the diagonal elements of the matrix, rather
than powers of an entire n ×n matrix, which is much cheaper! Since it just takes log k time to
compute each power, and there are n elements on the diagonal of D , this takes O (n log k) time
plus the time required to compute the diagonalization, which is O (n 3), for a runtime of

O (n 3+n log k).

8

Exercises: Dynamic Programming II

Problem 1. Given the results of C (S , t) for a TSP problem, explain how to find the actual se-
quence of vertices that make up the tour.

Problem 2. Can you find a greedy algorithm that matches the O (n log n) performance of the
LIS algorithm above?

9

	Traveling Salesperson Problem (TSP)
	All-pairs Shortest Paths
	Optimizing the space: eliminating redundancies

	Longest Increasing Subsequence
	Optimizing the runtime: better data structures

	Counting Paths in a Graph
	Optimizing the runtime: matrices
	Making the matrix method even faster

	Exercises: Dynamic Programming II

