
15-750: Graduate Algorithms (Spring 2020) February 6, 2020
Lec #8: Load Balancing and Concentration Bounds Last Updated: February 7, 2020

1 Hashing: Recap

We saw the ideas of universal hash families and k-wise independent hash families in the previous
lecture: let us recap them.

Definition 1 A family H of hash functions mapping U to [M] is called universal if for any two
keys x 6= y ∈ U , we have

Pr
h←H

[
h(x) = h(y)

]
≤ 1

M
.

Make sure you understand the definition. This condition must hold for every pair of distinct keys,
and the randomness is over the choice of the actual hash function h from the set H.

Definition 2 A family H of hash functions mapping U to [M] is called k-wise-independent if for
any k distinct keys x1, x2, . . . , xk ∈ U , and any k values α1, α2, . . . , αk ∈ [M] (not necessarily
distinct), we have

Pr
h←H

[
h(x1) = α1 ∧ h(x2) = α2 ∧ · · · ∧ h(xk) = αk

]
≤ 1

Mk
.

Such a hash family is also called k-wise independent. The case k = 2 is called pairwise independent.

2 Load Balancing

Another central application of hashing is in load balancing. Suppose there are N jobs to be sent
to M machines, and consider the case where M = N . So there exists a way to send each job to
a machine and maintain load 1. But if we hash the jobs to machines, we will get some additional
load due to randomness. How much?

Let’s use the same formalism as last time.

• Jobs are indexed by keys from the universe U , and we have a set S of |S| = N jobs to schedule.
Let us imagine that each job has the same (unit) size.

• There are M machines, indexed by [M] = {0, 1, 2, . . . ,M − 1}.

• We have a family H of hash functions {h1, h2, . . . , hk}, with each hi : U → [M]. We randomly
pick a hash function h← H, and then each job x ∈ U is mapped to machine h(x).

We want to analyze the “load” of this strategy. It is clear that the best way to schedule N jobs on
M machines is to assign N/M jobs to each machine. Can we show that there exist hash families H
such that for every subset set S of jobs, the load on all machines is ≈ N/M with high probability?
Let’s see.

Notation: We will often call jobs as “balls” and machines as “bins”. Think of throwing
balls into bins. You want no bin to get many balls. The “load” of a bin is the number
of balls that map to it.

1

2.1 Load-Balancing Using Hashing

To begin, consider the simplest case of N = M . We would like each machine to have N/M = 1
jobs, the average load. Suppose the hash functions were truly random: each x ∈ U was mapped
independently to a random machine in [M]. What is the maximum load in that case? Surprisingly,
you can show:

Theorem 3 The max-loaded bin has O(logN
log logN) balls with probability at least 1− 1/N .

Proof: The proof is a simple counting argument. The details are not important for this course —
the main point is the idea, which says (a) show that the expected number of bins with more than k
balls is 1/N , so the probability that we have one bin with more than k balls is N times more than
the expectation, which by Markov’s is at most 1/N .

Here are the details, for completeness. The probability that some particular bin i has at least k
balls is at most (

N

k

)(
1

N

)k
≤ Nk

k!
· 1

Nk
≤ 1

k!
≤ 1/kk/2

which is (say) ≤ 1/N2 for k = 8 logN
log logN . To see this, note that

kk/2 ≥ (
√

logN)4 logN/ log logN ≥ 22 logN = N2.

So union bounding over all the bins, the chance of some bin having more than 8 logN
log logN balls is 1/N .

(I’ve been sloppy with constants, you can get better constants using Stirling’s approximation.) �

Moreover, you can show that this is tight. The max-load with M = N is at least Ω(logN
log logN) with

high probability—we are not showing this proof here, but you can check out the proof here if you
want. So even with truly random hash functions, the load is much above the average.

Observe that the calculation showing that the maximum load is O(logN
log logN) only used that every

set of O(logN
log logN) balls behaves independently. This means that we do not need the hash family to

be fully independent: it suffices to use O(logN
log logN)-wise-independent hash family to assign balls to

bins.

Still, storing and computing with O(logN
log logN)-wise-independent hash families is expensive. What

happens if we use universal hash families to map balls to bins? Or k-wise-independent for k �
logN

log logN ? How does the maximum load change? For that it will be useful to look at some concen-
tration bounds.

2.2 Concentration Bounds

What is a concentration bound? Loosely, you want to say that some random variable stays “close
to” its expectation “most of the time”.

2.2.1 Markov’s Inequality: Using the Expectation

The most basic bound is Markov’s inequality, which says that any non-negative random variable
is “not much higher” than its expectation with “reasonable” probability. If X is a non-negative
random variable, then

Pr[X ≥ kE[X]] ≤ 1

k
.

2

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859m-s11/www/lectures/lect0202.pdf

This bound seems trivial, but all the following bounds come from taking Markov’s inequality and
applying it to some function of X.

2.2.2 Chebyshev’s Inequality: Using the Variance

Using the second moment (this is E[X2]) of the random variable, we can say something stronger.
Define Var(X) = σ2 = (E[X2]− E[X]2), the variance of the random variable.

Pr[|X − E[X]| ≥ kσ] ≤ 1

k2
.

Now we don’t need X to be non-negative. This is Chebyshev’s inequality. The proof, interestingly,
just applies Markov’s to the r.v. Y = (X − E[X])2.

Example: Let’s get some practice with using Chebyshev’s inequality:

Lemma 4 Suppose you map N balls into M = N bins using a 2-wise-independent hash family H,
maximum load over all bins is O(

√
N) with probability at least 1/2.

Proof: Let Li be the load of bin i. Let Xij be the indicator random variable for whether ball j fell
into bin i. Note that E[Xij] = 1/M , and hence E[Li] =

∑N
j=1E[Xij] = N/M . Moreover, since the

variables are pairwise-independent, we have Var(Li) =
∑N
j=1 Var(Xij). (Verify this for yourself!) And

Var(Xij) = E[X2
ij]− E[Xij]

2 = E[Xij]− E[Xij]
2 = (1/M − 1/M2). So Var(Li) = N(1

M
− 1

M

2
).

Now Chebyshev says the probability of deviation |Li−N/M | being more than
√

2M ·
√

Var(Li) ≤
√

2N
is at most 1

2M
. And taking a union bound over all M bins means that with probability at least half, all

bins have at most N/M +
√

2N balls. �

Hmm. If we use 2-wise-independent hash families to throw N balls into N bins, we are guaranteed
a maximum load O(

√
N) when N = M . (For this proof we used that any two balls behaved

uniformly and independently of each other.) But using fully random hash functions — or even
O(logN

log logN)-wise-independent hash functions — gives us max-load Θ(logN
log logN).

How does the max-load change when we increase the independence from 2 to fully random? For
this, let us give better concentration bounds, which use information about the higher moments of
the random variables.

2.2.3 Higher-Moment Chebyshev

A higher-moment Chebyshev shows that for any random variable X and even powers p ≥ 2,

Pr[|X − E[X]| ≥ D] ≤ E[(X − E[X])p]

Dp
.

You can use this to show better bounds for hashing using p-wise-independent hash families.

2.2.4 Chernoff/Hoeffding Concentration Bounds

Perhaps the most useful concentration bound is when X is the sum of bounded independent random
variables. Here we will see Hoeffding’s bound that is very useful and easy-to-use, though it’s not
the most powerful.

3

Before we give this, let us give some context. Recall the Central Limit Theorem (CLT): it says
that if we take a large number of copies X1, X2, . . . , Xn of some independent random variable with
mean µ and variance σ2, then their average behaves like a standard Normal r.v. (a.k.a. Gaussian
random variable) in the limit; i.e.,

lim
n→∞

(
∑

iXi)/n− µ
σ2

∼ N(0, 1).

And the standard Normal is very concentrated: recall that its density function is

1√
2πσ

e−‖x−µ‖
2/2σ2

,

and the density falls off very rapidly as we get away from the mean. In fact the probability of being
outside µ ± kσ, i.e., being k standard deviations away from the mean, drops exponentially in k.
You should think of the Hoeffding bound below as one quantitative version of the CLT.

Theorem 5 (Hoeffding’s Bound) Suppose X = X1 + X2 + . . . + Xn, where the Xis are in-
dependent random variables taking on values in the interval [0, 1]. Let µ = E[X] =

∑
iE[Xi].

Then

Pr[X > µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
(1)

Pr[X < µ− λ] ≤ exp

(
−λ

2

3µ

)
(2)

A comment on Hoeffding’s bound.1 Suppose λ = cµ. Then we see that the probability of deviating
by cµ drops exponentially in c. Compare this to Markov’s or Chebyshev’s, which only give an
inverse polynomial dependence (1/c and 1/c2 respectively).

Example: Suppose each Xi is either 0 with probability 1/2, or 1 with probability 1/2. (Such an Xi is
called a Bernoulli r.v.) Let X =

∑n
i=1Xi. If you think of 1 has “heads” and 0 as “tails” then X is the

number of heads in a sequence of n coin flips. If n is large, by the Central Limit Theorem we expect
this number to be very close to the average. Let’s see how we get this.

Each E[Xi] = 1/2, hence µ := E[X] = n/2. The bound (1) above says that

Pr[X > n/2 + λ] ≤ exp

(
− λ2

2(n/2) + λ

)
Clearly λ > n/2 is not interesting (for such large λ, the probability is zero), so focus on λ ≤ n/2. In

this case 2(n/2) + λ ≤ 3(n/2), so the RHS above is at most e−λ
2/(3n/2).

E.g., for λ = 30
√
n, the probability of X ≥ n/2 + 30

√
n is at most e−(900n)/(3n/2) = e−600. (Smaller

than current estimates of the number of particles in the universe.) A similar calculation using (2) shows

that Pr[X < n/2 − λ] ≤ e−λ
2/(3n/2). Since the standard-deviation σ =

√
n in this case, these results

are qualitatively similar to what the CLT would give in the limit.

1Plus a jargon alert: such “exponential” concentration bounds for sums of independent random variables go by
the name “Chernoff Bounds” in the computer science literature. It stems from the use of one such bound originally
proved by Herman Chernoff. But we will be well-behaved and call these “concentration bounds”.

4

Example: Back to balls-and-bins: let’s see how to use Hoeffding’s bound to get an estimate of the load
of the max-loaded bin.

So, in the N = M case, let Li be the load on bin i, as above. It is the sum of N i.i.d. random variables
Xij , each one taking values in {0, 1}. We can apply Hoeffding’s bound. Here, µ = E[X] = N/M = 1.
Set λ = 6 logN . Then we get

Pr[Li > µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
≤ exp

(
− (6 logN)2

2 + 6 logN

)
≤ e−2 logN =

1

N2
.

Now we can take a union bound over all the N bins to claim that with probability at least 1− 1/N , the
maximum load is at most O(logN). This is weaker than what we showed in Theorem 3, but it still is
almost right.2

2.2.5 Beware: Need Independence and Boundedness

The price we pay for such a strong concentration are the two requirements that (a) the r.v.s be
independent and (b) bounded in [0, 1]. We can relax these conditions slightly, but some constraints
are needed for sure. E.g., if Xi’s are not independent, then you could take the Xi’s to be all equal,
with value 0 w.p. 1/2 and 1 w.p. 1/2. Then

∑n
i=1Xi would be either 0 or n each with probability

1/2, and you cannot get the kind of concentration around n/2 that we get in the example above.

Similarly, we do need some “boundedness” assumption on the random variables we are summing
up. Else imagine that each Xi is independent, but now 0 w.p. 1 − 1/2n and 2n w.p. 1/2n. The
expectation E[Xi] = 1 and hence µ =

∑
iE[Xi] = n. But again you cannot hope to get the kind

of concentration given by the Hoeffding bound, since there will be a 1 − (1 − 1/2n)n ≈ 1 − e−1/2
(which is a constant) probability of the sum being at least 2n.

3 Load Balancing using Two-Choice Hashing

Just like in cuckoo hashing, here’s a more nuanced way to use hashing for load balancing — use
two hash functions instead of one! The setting now is: N balls, M = N bins. However, when you
consider a ball, you pick two bins (or in general, d bins) independently and uniformly at random,
and put the ball in the less loaded of the two bins. The main theorem is:

Theorem 6 (Azar, Broder, Karlin, Upfal [ABKU99]) For any d ≥ 2, the d-choice process
gives a maximum load of

ln lnN

ln d
±O(1)

with probability at least 1−O(1
N).

It’s pretty amazing: just by looking at two bins instead of one, and choosing the better bin, gives
us an exponential improvement on the maximum load: from ≈ logN to log logN . Moreover, this
analysis is tight. (Finally, looking at d > 2 bins does not help much further.)

Why is this result important? It is clearly useful for load balancing; if we want to distribute jobs
among machines, two hash functions are qualitatively superior to one. We can even use it to give
a simple data structure with good worst-case performance: if we hash N keys into a table with
M = N bins, but we store up to O(log logN) keys in each bin and use two hash functions instead
of just one, we can do inserts, deletes and queries in time O(log logN).

2We stated Hoeffding’s bound in its most easy-to-use format. The actual bound is tighter and shows load
O(logN

log logN
). See the last bound on page 2 of these notes if you are interested.

5

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859m-s11/www/lectures/lect0124.pdf

3.1 Some Intuition

The intuition behind the proof is the following picture: Imagine putting the balls in one by one. A
bin has height h if it has h balls in it. Say a ball has height h if it is placed in a bin that has h− 1
balls before this ball was added into it. (We would like to show that no ball has height more than
ln lnN
ln 2 +O(1).) A bin has height ≥ h if it contains a ball of height h.

1/2 bins have ≥ 2 balls

so we expect 1/4 of the balls with height ≥ 3

and 1/16 of the balls with height ≥ 4

and 1/256 of the balls with height ≥ 5

How many bins can have height (at the end) at least 2? Clearly, at most N/2, at most half the
bins. (This is just by Markov’s inequality.) Now what is the chance that a ball has height at least
3? When it arrives, it must choose two bins, both having height at least 2. That happens with
probability at most 1

2 × 1
2 = 1

4 . Hence we expect about N
4 balls to have height at least 3 — and

hence the expected number of bins of height at least 3 is also at most N/4 = N/(22).

Now suppose the actual number of bins of height at least 3 is a the same as its expectation N/4.
3 Then using the same argument, we expect at most N · (1/4)2 = N/16 = N/(22

2
) bins to have

height at least 4. And N · (1/16)2 = N/256 = N22
3

bins of height at least 5, and N/22
h−2

bins to
have height at least h. For h = log logN + 2, we expect only one ball to have height h.

Of course this is only in expectation, but one can make this intuition formal using concentration
bounds, showing that the process does behave (more or less) like we expect. See these notes for a
proof.

3.2 Generalizations

It’s very interesting to see how the process behaves when we change things a little. Suppose we
divide the N bins into d groups of size N/d each. (Imagine there is some arbitrary but fixed
ordering on these groups.) Each ball picks one random bin from each group, and goes into the least
loaded bin as before. But if there are ties then it chooses the bin in the “earliest” group (according
to this ordering on the groups). This subtle change (due to Vöcking [Vöc03]) now gives us load:

2
log log n

d
+O(1).

Instead of log d in the denominator, you now get a d. The intuition is again fairly clean. [Draw on
the board.]

3This is the only part we’re being hand-wavy about: formally, we would show using a concentration bound like
Chernoff-Hoeffding that the actual number is very close to its expectation with high probability, and proceed using
that.

6

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859m-s11/www/lectures/lect0202.pdf

What about the case when M 6= N? For the one-choice setting, we saw that the maximum load

was N
M +O(

√
N logm
M) with high probability. It turns out that the d-choice setting gives us load at

most
N

M
+

log logM

log d
+O(1)

with high probability [BCSV06]. So the deviation of the max-load from the average is now inde-
pendent of the number of balls, which is very desirable!

Finally, supposed you really wanted to get a constant load. One thing to try is: when the ith ball
comes in, pick a random bin for it. If this bin has load at most di/Me, put ball i into it. Else pick
a random bin again. Clearly, this process will result in a maximum load of dN/Me + 1. But how
many random bin choices will it do? [BKSS13] shows that at most O(N) random bins will have
to be selected. (The problem is that some steps might require a lot of choices. And since we are
not using simple hashing schemes, once a ball is placed somewhere it is not clear how to locate it.)
This leads is to the next section, where you want to just use two hash functions, but maintain only
low load — in fact only one ball per bin!

References

[ABKU99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 1999. 5

[BCSV06] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations:
The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006. 7

[BKSS13] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
into-bins with nearly optimal load distribution. In SPAA, pages 326–335, 2013. 7

[Vöc03] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589, 2003. 6

7

	Hashing: Recap
	Load Balancing
	Load-Balancing Using Hashing
	Concentration Bounds
	Markov's Inequality: Using the Expectation
	Chebyshev's Inequality: Using the Variance
	Higher-Moment Chebyshev
	Chernoff/Hoeffding Concentration Bounds
	Beware: Need Independence and Boundedness

	Load Balancing using Two-Choice Hashing
	Some Intuition
	Generalizations

