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Preface to the Special Issue of the 48th
IEEE International Symposium on Multiple

Valued Logic

Robert Wille and Martin Lukac

It is our great pleasure to present you the Selected Papers from the 48th IEEE
International Symposium on Multiple-Valued Logic (ISMVL) held in Linz, Austria
on May 16th-18th, 2018.

Multiple-valued logic still finds significant interest in the scientific community
and, for almost 50 years, ISMVL is the main platform to present and discuss new
trends as well as recent work in this domain. In the past decades, researchers in
this domain as well as bordering areas have always been very active and we are glad
that this did not change in the last year. In fact, with a total of 80 submissions, we
received an impressive amount of papers covering recent findings and developments
within this area.

This special issue is devoted to this symposium and contains the papers that
have been evaluated best by both, the members of the program committee as well
as the participants of the symposium.

The papers presented here reflect the wide range of topics which have been
covered at ISMVL 2014 including such as algebra, security, logic design, hardware
design, quantum computation, and more. This portfolio provides an in-depth view
on the current developments in our domain which surely will have a significant
impact on future development.

We would like to thank the members of the program committee and the external
reviewers for their hard work in evaluating the submissions and providing detailed
feedback and further suggestions to the authors.

Robert Wille
General Chair

Martin Lukac
PC Chair
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Editor’s Note

Martin Lukac

Multiple-Valued Logic (MVL) is a very broad area that encompasses theory,
tools and realization of logic functions and its associated technology. As such MVL
can be seen as starting point or many now existing areas such as higher Radix Logic,
Fuzzy Logic, Quantum Logic or even Reversible Logic. Because of this very large
field of influence, the selected papers in this special issue from the 48th International
Symposium on Multiple-valued Logic also cover a very large and various areas of
application of Multiple-Valued Logic.

The selected papers covers topics such as biologically inspired computing, quan-
tum computing, function representation security and AD conversion. The papers
are ordered in order of increases theoretical content but in general most of the papers
are on the edge of the MVL research area.

The first paper studies the usage of a optical beam splitter with application to
quantum computing. The main point of this paper is that it uses an optical compo-
nent, a beam splitter, that was originally intended for optical communication and
extends its usage to quantum optical computing approach. The components is used
to simulate the quaternary extension of the Chrestenson quantum gate and the pro-
vided analysis shows the applicability of the evaluated component.

The second paper, deals with an biologically inspired hardware approach to
solving the SAT problem as well as autonomous walking of an quadruped. The
paper is interesting in the formulation of the amoeba movement into an constraint-
satisfaction problem solver. Using a set of rules it is used to both solve SAT problem
as well as a dynamically changing the problem of autonomous walking. While this
paper does not use multiple-valued logic, it is a very good example of the adaptation
of biological rules to the digital problem solving.

The third paper deals with hardware security and describe an analytic approach
to determine the best approach in detecting hardware path-delay Trojan horses. The
approach analyzes the least critical path; such path in the circuit that is the least
likely used in the logic circuit. In this paper the analyzed circuits are strictly binary

Vol. 5 No. 9 2018
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Lukac

but the analysis is in the time domain and as such it is considered as not strictly
binary problem solution.

The fourth paper is an application of the artificial neural network paradigms
in the design of efficient AD converters. The AD converters are a very important
part of any device that requires the conversion from analog to digital signal (or vice
versa). This particular work describes an approach to increase the accuracy of AD
conversion by using a Neural Network architecture allowing to increase the effective
number of bits for relatively small circuit overhead.

Finally, the last paper deals with the minimization of the indexing logic func-
tions, but analyzing symmetric indexing functions and providing an efficient design
methodology. The proposed method uses ZDDs (Zero Suppressed Decision Dia-
grams) to represent the space of searched indexing functions which provides a con-
siderable speedup and reduces the complexity of the search.

Martin Lukac
Guest Editor

October 31, 2018

Received 31 October 20181780



Higher-Radix Chrestenson Gates for
Photonic Quantum Computation

Kaitlin N. Smith, Tim P. LaFave Jr., Duncan L. MacFarlane, and
Mitchell A. Thornton

Quantum Informatics Research Group
Southern Methodist University

Dallas, TX, USA
{knsmith, tlafave, dmacfarlane, mitch}@smu.edu

Abstract

A recently developed four-port coupler used in optical signal processing ap-
plications is shown to be equivalent to a Chrestenson operator, or gate, in
radix-4 quantum information processing (QIP) applications. The radix-4 qudit
is implemented as a location-encoded photon incident on one of the four ports of
the coupler. The quantum informatics transfer matrix is derived for the device
based upon the conservation of energy equations when the coupler is employed
in a classical sense in an optical communications environment. The resulting
transfer matrix is the radix-4 Chrestenson transform, and this operator is capa-
ble of placing a radix-4 qudit in a state of maximal superposition. This result
indicates that a new practical device is available for use in the implementa-
tion of radix-4 QIP applications or in the construction of a radix-4 quantum
computer.

1 Introduction
In the field of quantum computing, theory has been well developed over the last
half-century. There is still room for the discovery of new operators and algorithms,
but current work is enough to show the potential that quantum methods have for
solving some of the most difficult scientific problems. Unfortunately, the physical
implementations for QIP have not advanced as rapidly as the theory. Since a stan-
dard platform has not been chosen for the quantum computer (QC), efforts have
been divided among many competing technologies with quantum optics being one
of the more promising physical realizations. This work hopes to contribute a new,
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Smith, LaFave, MacFarlane, and Thornton

higher-radix component to the already well-established photonic quantum comput-
ing library.

The four-port coupler is an optical component shown theoretically to act as a
quantum gate that can place a radix-4 photon-encoded qudit into a state of equal
superposition. The gate realized optically is known as the radix-4 Chrestenson gate,
and its transfer function is derived from the generalized radix-r Chrestenson trans-
formation. Many QIP techniques require quantum superposition, so this operator is
significant to the field of quantum computing due to the need to evolve information
into a state of superposition for quantum algorithm execution. A description of the
four-port coupler as well as a demonstration of its capabilities as a quantum optics
operator will be shown mathematically in this work.

This paper proceeds as follows. A brief summary of important QIP concepts,
details of the Chrestenson gate, with emphasis on the radix-4 implementation, and
information about quantum optics are provided in Section 2. The four-port coupler,
the component of interest, is described in Section 3. The physical realization of
the four-port coupler with optical elements, including its fabrication and character-
ization, is included in Section 4. The demonstration of the four-port coupler as a
radix-4 Chrestenson gate is presented in Section 5. Finally, a summary with conclu-
sions can be found in Section 6. This paper is an extension of the work originally
published in reference [1].

2 Quantum theory background

2.1 The qubit vs. qudit

The quantum bit, or qubit, is the standard unit of information for radix-2, or base-2,
quantum computing. The qubit models information as a linear combination of two
orthonormal basis states such as the states |0〉 and |1〉. |0〉 and |1〉 are Dirac notation
representations where |0〉 =

[
1 0

]T
and |1〉 =

[
0 1

]T
, respectively. The qubit

differs from the classical bit by its ability to be in a state of superposition, or a state
of linear combination, of all basis states. Superposition allows QIP algorithms to
be very powerful since it allows for parallelism during computation so that multiple
combinations of information can be evaluated at once. In other words, a single
QC taking advantage of superposition can complete some tasks in a time frame
that would require multiple classical computers working simultaneously. There are
theoretically an infinite number of states for a qubit while in a state of superposition

|Ψ〉 = x |0〉+ y |1〉 =
[
x y

]T
(1)

1782



Higher-Radix Chrestenson Gates for Photonic Quantum Computation

where x and y are complex values, c ∈ C, such that c = a + ib where i is an
imaginary number, i2 = −1. For the qubit |Ψ〉, the probability that |Ψ〉 = |0〉 is
equal to x∗x = |x|2 and the probability that |Ψ〉 = |1〉 is equal to y∗y = |y|2 where
the symbol ∗ indicates a complex conjugate. The total probability of occupying
either one basis state or the other must total to 100%, so the inner product, or dot
product, of |Ψ〉 with itself must equal 1. In other words, x∗x + y∗y = 1. Once a
qubit is measured, it collapses into a basis state as defined by the eigenvectors of
the measurement operator [2]. The measurement operation causes a qubit’s state of
superposition to be lost.

Qubits are the current standard for encoding data in QIP, but it is possible to
have a quantum system of higher order. Increasing the radix during computation
allows for higher density data to be transmitted because more information is stored
in each fundamental unit of information, or digit, of the system [3]. A quantum unit
of dimension, or radix, r > 2 is referred to as a qudit. In this paper, the radix-4
qudit using four orthonormal basis states is of interest. The set of basis states used
for the radix-4 qudit includes the vectors |0〉 =

[
1 0 0 0

]T
, |1〉 =

[
0 1 0 0

]T
,

|2〉 =
[
0 0 1 0

]T
, and |3〉 =

[
0 0 0 1

]T
. Just like the radix-2 qubit, the radix-

4 qudit is not limited to having the value of only one of its four possible basis states.
The qudit is capable of existing in a linear combination, or a state of superposition,
of all four basis states, as demonstrated by

|Φ〉 = v |0〉+ x |1〉+ y |2〉+ z |3〉 =
[
v x y z

]T
(2)

where v, x, y, and z are complex values. These coefficients can be multiplied by
their respective complex conjugates in order to derive the probability that the radix-
4 qudit is in a particular basis state. The basis state probabilities of |Φ〉 must sum
to 100%, so v∗v + x∗x+ y∗y + z∗z = 1.

For a radix-4 quantum system to be physically realized, a methodology must
exist for encoding four distinct qudit basis states. In reference [4], Rabi oscillations
are utilized to create radix-r quantum systems. Orbital angular momentum (OAM)
states of light could also be used to encode the qudit [5]. In this paper, a radix-4
quantum state will be created using the location of light as the information carrier.
This technique builds on the concept of the quantum photonic dual-rail represen-
tation of the qubit in order to physically realize the radix-4 qudit with a quad-rail
implementation.
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2.2 Quantum operations
According to the most popular quantum computing paradigm proposed in reference
[6], a quantum state must be prepared by a QC in a known basis. Afterwards, mean-
ingful information is generated by evolving to the quantum state through quantum
operations. After all computations are complete, the quantum state must be able to
be measured to produce an output. If a quantum algorithm is modeled as a circuit,
quantum operations can be viewed as quantum logic gates. Each of these gates is
represented by a unique, unitary transfer function matrix, U, that is characterized
by the following properties:

• U†U = UU† = Ir

• U−1 = U†

• Rank(U) = r

• |U| = 1

When considering radix-r quantum operations, or gates, the transfer function
matrices will always be square matrices each of a dimension that is a power of r.
Therefore, radix-4 qudit operations will have a dimension that is a power of four,
4k, where the power, k, indicates the amount of qudits transformed by the quantum
operation.

2.3 The Chrestenson gate
The power of QIP lies in the ability for a quantum state to be in superposition, and
achieving states of maximal superposition is of especially high importance because
it is typically one of the first steps required in quantum algorithms. When the prob-
ability amplitudes are all nonzero and the square of their magnitudes are equivalent,
the qubit or qudit is said to be maximally superimposed, or is in maximal superpo-
sition, with respect to some basis set. Practically, this means that the qubit or qudit
is equally likely to be measured at the value of any of the possible basis vectors.

In radix-2 quantum computation, the Hadamard gate

H = 1√
2




1 1

1 −1


 (3)

is an important operator used to put a qubit in a maximally superimposed state.
When a qubit originally in a basis state passes through the Hadamard gate, the
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transformed quantum information has equal probability of being observed, or mea-
sured, as either |0〉 or |1〉. Quantum operators exist for many different computation
bases, such as radix-3 and above, that achieve equal, and therefore maximal, super-
position among the corresponding basis states. These operators are derived using
the discrete Fourier transform on Abelian groups. General theory of Fourier trans-
forms on Abelian groups is outlined in the literature [7, 8]. The multiple-valued
generalization of the radix-2 quantum Hadamard gate and its transfer matrix is
composed of discretized versions of the orthogonal Chrestenson basis function set
[8]. This QIP gate is generally referred to as the Chrestenson gate [9]. Examples of
useful applications of the Chrestenson transform in QIP can be found in reference
[10].

The Chrestenson operator, as the generalized version of the Hadamard opera-
tor, has a shape that depends on the radix of computation. The resulting radix-r
Chrestenson transformation matrix for a single qudit has a size of r × r, and the
basis vectors that span the matrix are composed of r different values. Since the
Chrestenson transformation matrix is normalized with a scalar factor, 1√

r
, and the

matrix is orthogonal, both the column and row vectors of the operator form an
orthonormal set. Each of the components within a Chrestenson transform matrix
is one of the rth roots of unity raised to an integral power [8, 9]. The rth roots of
unity can be visualized as r points that are evenly-spaced on the unit circle in the
complex plane. The roots of unity are indicated as wk where k = 0, 1, ..., (r − 1),
and the point (1,0), denoted as w0, is always included in this set. Each root satisfies
(wk)r as roots of one. The closed-form representation of the rth roots of unity for a
radix-r Chrestenson transformation is

wk = ei 2π
r
×k. (4)

Fig. 1 contains the plots for the rth roots of unity for r = 2, 3, 4, and 5.
The structure of the Chrestenson transform matrix is in the form of a Vander-

monde matrix where each row vector consists of a rth root of unity, wk, raised to an
integral power j. Each element of the matrix is some form of wj

k where j is the col-
umn index and k is the row index. In this indexing scheme, j = 0 is assigned to the
leftmost column vector and j = (r − 1) is assigned to the rightmost column vector.
Similarly, k = 0 is assigned to the topmost row vector and k = (r− 1) is assigned to
the bottommost row vector. It can be observed that the Hadamard matrix results
from the Chrestenson transform matrix with r = 2, confirming that the Chresten-
son transform is a generalization of the Hadamard transform for higher-dimensional
quantum systems. The generalized radix-r Chrestenson transform matrix, Cr, is
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Figure 1: Roots of unity in the complex plane for r = 2, 3, 4, and 5.

represented with a matrix in the form of

Cr = 1√
r




w0
0 w1

0 . . . w
(r−1)
0

w0
1 w1

1 . . . w
(r−1)
1

...
... . . . ...

w0
(r−1) w1

(r−1) . . . w
(r−1)
(r−1)




. (5)

Using the fourth roots of unity, w0 = exp[(i2π/4)∗0] = 1, w1 = exp[(i2π/4)∗1] = i,
w2 = exp[(i2π/4) ∗ 2] = −1, and w3 = exp[(i2π/4) ∗ 3] = −i, in Eq. 5, the radix-4
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Chrestenson gate transfer matrix becomes

C4 = 1√
4




1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i



. (6)

The radix-4 Chrestenson gate (C4), allows a radix-4 qudit originally in a basis
to evolve into a quantum state of equal superposition. The following example shows
how the radix-4 qudit |a〉 = |0〉 evolves to |b〉 = 1

2 |0〉+ 1
2 |1〉+ 1

2 |2〉+ 1
2 |3〉, taking the

value of the first column of the radix-4 Chrestenson matrix, after passing through
the C4 transform

C4 |a〉 = |b〉 ,

C4 |0〉 = 1√
4




1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i







1

0

0

0




= 1
2




1

1

1

1



,

C4 |0〉 = 1
2[|0〉+ |1〉+ |2〉+ |3〉].

If |a〉 = |3〉, the radix-4 qudit would evolve to |b〉 = 1
2 |0〉 − 1

2 i |1〉 − 1
2 |2〉 + 1

2 i |3〉,
taking the value of the last column of the C4 transformation matrix.

C4 |3〉 = 1√
4




1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i







0

0

0

1




= 1
2




1

−i
−1

i



,

C4 |3〉 = 1
2[|0〉 − i |1〉 − |2〉+ i |3〉].

The schematic symbol of the C4 gate is pictured in Fig. 2. This symbol can be used
in radix-4 quantum circuit diagrams.
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Figure 2: Symbol of the radix-4 Chrestenson gate, C4.

2.4 Quantum optics

Optical quantum implementations are among the more successful physical realiza-
tions of quantum states. In these systems, orthogonal basis states can be encoded
into photon OAM states, polarization, or location, and the state can easily evolve by
passing through linear optical elements. The photon resists coupling to other objects
in its environment, allowing it to maintain its quantum state and not decohere for
long periods of time [11]. Additionally, the ability to maintain coherence enables the
photon to travel great distances at room temperature, making it a good candidate
for long-haul quantum information transmission.

Although photons offer the benefit of state stability in QIP applications, their
failure to interact with their surroundings prevents them from coupling with each
other. Photon-to-photon interaction is difficult, limiting the development of reliable
controlled multi-qubit, or multi-qudit in higher radix systems, gate implementa-
tions. Without operations such as the radix-2 controlled-NOT (CNOT) gate or the
controlled-phase gate, a functional QC cannot exist.

It was once thought that photonic quantum computation was unachievable with-
out nonlinear optical elements, but the presentation of the KLM protocol in refer-
ence [12] improved the outlook for quantum optics. In that work, a methodology for
implementing photonic multi-qubit operations using linear optics was introduced.
These multi-qubit photonic gates, however, are unfortunately limited by probabilis-
tic operation. Currently, the two-qubit CNOT operation can only work 1/4 of the
time when implemented with linear optical elements in the best case scenario [13].

The subject of this paper is a photonic radix-4 Chrestenson gate. Since this
quantum operator is formed from linear optical elements and transforms a single
qudit at a time, the gate is theoretically deterministic in nature.
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Figure 3: Signal flow for four-port coupler with input at W.

3 The four-port coupler

The four-port coupler is an optical component introduced and described in reference
[14]. This device is composed of four inputs and four outputs where the input and
output are referred to by their orientation on the component of either W, N, E, or
S. When a single beam is sent into one of the coupler inputs, the component routes
a fraction of the original signal to each of the four outputs. This beam division is
caused by the transmission and reflection of signals within the coupler. Each fraction
of the input beam seen at an output corresponds to one of the following components
of the original signal: a reflected component ρ, a transmitted component τ , a right-
directed component α, and a left-directed component β. An illustration of signal
flow of the four-port coupler can be seen in Fig. 3. This image is recreated from a
figure included in reference [14].

Fig. 3 demonstrates in blue a signal entering the four-port coupler from the W
port and exiting the component from the W, N, E, and S ports. The output signals
are generated by ρW , βW , τW , and αW , respectively. Whenever a single input enters
the component, all four coupling coefficients are generated to produce four outputs.
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The coupling coefficients produced with a particular port input can be derived with
the coupling coefficient matrix,




ρW αN τE βS

βW ρN αE τS

τW βN ρE αS

αW τN βE ρS



. (7)

To produce the outputs, an input vector taking the form of [WNES]T is multiplied
by the matrix in Eq. 7 to create a column vector of coupling coefficients. The
produced output column vector also takes the form of [WNES]T. The composition
of the output vector in terms of coupling coefficients indicates what portion of the
input signal contributes to an output from a port.

The four-port coupler does not consume nor dissipate any of the energy that is
input into the component. Therefore, to conserve energy, all of the energy entering
the element must be equal to the energy leaving the element. This concept leads
to the creation of equations that act as conditions that must hold true for energy
conservation. The 10 energy conservation equations of Eqs. 8-17, first derived in
reference [14], use the coupling coefficients found in the matrix of Eq. 7. These
equations are:

ρ∗WρW + β∗WβW + τ∗W τW + α∗WαW = 1, (8)

ρ∗NρN + β∗NβN + τ∗NτN + α∗NαN = 1, (9)

ρ∗EρE + β∗EβE + τ∗EτE + α∗EαE = 1, (10)

ρ∗SρS + β∗SβS + τ∗SτS + α∗SαS = 1, (11)

ρ∗W τE + β∗WαE + τ∗WρE + α∗WβE = 0, (12)

α∗NβS + ρ∗NτS + β∗NαS + τ∗NρS = 0, (13)

ρ∗WαN + β∗WρN + τ∗WβN + α∗W τN = 0, (14)
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α∗NτE + ρ∗NαE + β∗NρE + τ∗NβE = 0, (15)

τ∗EβS + α∗EτS + ρ∗EαS + β∗EρS = 0, (16)

and

ρ∗WβS + β∗W τS + τ∗WαS + α∗WρS = 0. (17)

The first four conditions seen in Eqs. 8-11 exist since the inner product of each
produced field vector from a single input, W, N, E, and S, with itself must sum to 1
for energy conservation. The last six conditions seen in Eqs. 12-17 exist due to energy
conservation that occurs whenever two inputs are present in the component. Since
the coefficient vectors are orthogonal, the inner product between the two produced
coupling coefficient vectors corresponding to inputs at two different ports must equal
zero. There are only 6 constraints produced from sending two inputs to the four-
port coupler because the input combinations are commutative (i.e. AB = BA).
The cases of three inputs and four inputs into the four-port coupler do not create
additional constraints, so they are omitted [14].

4 Physical realizations of the four-port coupler
A macroscopic realization of a four-port coupler is shown in Fig. 4. Whereas a
popular implementation of a radix-2 Hadamard gate is an optical beam splitter,
polarizing or not, the macroscopic four-port coupler is a unitary extension of a two-
prism beam splitting cube. Here, the macroscopic four-port coupler is comprised
of four right angle prisms, coated with an appropriate thin film, cemented together
with care given to the precise mating of the four prism corners. This component
has been used to demonstrate novel, four leg Michelson interferometers designed in
reference [15].

Integrated photonic four-port couplers were previously demonstrated for appli-
cations in optical signal processing as part of a two-dimensional array of waveguides
in a multi-quantum well (MQW) GaInAsP indium phosphide (InP) architecture
[16, 17]. Fig. 5 shows an electron micrograph of a coupler fabricated at the intersec-
tion of two ridge waveguides.

The optical behavior of the four-port coupler depends on frustrated total internal
reflection [18]. The evanescent field of light incident on the coupler is transfered
across the width of the coupler that may be an air gap or a thin slice of dielectric.
Provided the barrier width is small enough, a part of the exponentially decaying
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Figure 4: Macroscopic realization of a four-port coupler.

optical power of the incident light is transmitted across while the remaining optical
power is reflected. Thus, a fraction of light incident on a four-port coupler may be
transmitted to the ongoing waveguide, reflected to both perpendicular waveguides,
or reflected back into the originating waveguide. The fractions of light in outbound
waveguides are determined by the refractive indices of the waveguide and coupler
materials in addition to the width of the coupler.

4.1 Fabrication

Fabrication of the coupler was performed in several steps using nanoelectronic pro-
cessing techniques. First, coupler regions of 180 nm widths and 7 µm lengths were
defined by patterning a thin metallic chromium mask layer atop the waveguides by
focused ion beam (FIB) lithography. Precision alignment and orientation of the cou-
pler to the waveguides during FIB processing was achieved with alignment markers
fabricated beforehand with the waveguides using conventional microelectronic pro-
cessing steps. High aspect ratio trenches were then etched using a hydrogen bromine
(HBr) based [15] inductively coupled plasma (ICP) to a depth of 3.9 µm. This depth
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Figure 5: Cross sectional scanning electron microscope image of a four-port coupler
in MQW-InP.

allows the coupler to fully cover optical modes confined to the quantum well region
of the waveguides.

The optimal air gap width for 25% power on all output waveguides of about
90 nm was slightly smaller than the processing capability of the ICP dry etch tool
for the required high-aspect ratio etch. Consequently, to meet this requirement for
a wavelength of 1550 nm, alumina (Al2O3), with a refractive index of n = 1.71,
was back-filled into the trench using atomic layer deposition (ALD). The resulting
alumina-filled trench is shown in the composite cross-sectional transmission electron
micrographs in Fig. 6.

4.2 Characterization

A 1550 nm laser was coupled into the waveguides using a tapered lens fiber at
one input port. The near-field modes of light were coupled out of the device and
into another tapered lens fiber for optical power measurement to characterize the
coupling efficiency of the four-port coupler. The measured average power coefficients
were α = 0.156, β = 0.140, ρ = 0.302, and τ = 0.220 for a measured total average
coupling efficiency of 82% for the four-port coupler [16].
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Figure 6: Cross sectional transmission electron micrograph of a four-port coupler
backfilled with alumina using atomic layer deposition.

5 Implementing qudit quantum operations with the
coupler

It is known that the Hadamard gate meant for use with a quantum qubit can be con-
structed from a beam splitter [11]. The radix-4 Chrestenson operation, an operation
that acts on a quantum encoding using four basis states, transforms a radix-4 qudit,
and the four-port coupler is a physical realization of this gate. In the realization of
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the radix-4 Chrestenson gate, the ports of the four-port coupler must be encoded in
order to represent the four qudit basis states. In this paper, the following encoding
has been chosen for the location-based scheme: port W is the |0〉 rail, port N is the
|1〉 rail, port E is the |2〉 rail, and port S is the |3〉 rail.

The four-port coupler follows 10 energy conservation equations, Eqs. 8-17, that
are algebraically nonlinear. If the radix-4 Chrestenson matrix values are substituted
for the values of the coupling coefficients in Eq. 7, the energy conservation constraints
are satisfied and the following matrix is generated:




ρW = 1
2 αN = 1

2 τE = 1
2 βS = 1

2

βW = 1
2 ρN = 1

2 i αE = −1
2 τS = −1

2 i

τW = 1
2 βN = −1

2 ρE = 1
2 αS = −1

2

αW = 1
2 τN = −1

2 i βE = −1
2 ρS = 1

2 i




.

When a single photon, representing a qudit, is applied to one of the inputs the
four-port coupler, either W, N, E, or S, energy is conserved and the radix-4 Chresten-
son transform is achieved. The photon leaves the gate with equal superposition of
all basis states. In other words, the photon has a 1/4 probability of being located
in any of the output ports W, N, E, or S representing the basis states |0〉, |1〉, |2〉,
or |3〉, respectively:

ρ∗WρW + β∗WβW + τ∗W τW + α∗WαW = 1,
(1

2

)(1
2

)
+
(1

2

)(1
2

)
+
(1

2

)(1
2

)
+
(1

2

)(1
2

)
= 1,

ρ∗NρN + β∗NβN + τ∗NτN + α∗NαN = 1,
(
−1

2 i
)(1

2 i
)

+
(
−1

2

)(
−1

2

)
+
(1

2 i
)(
−1

2 i
)

+
(1

2

)(1
2

)
= 1,

ρ∗EρE + β∗EβE + τ∗EτE + α∗EαE = 1,
(1

2

)(1
2

)
+
(
−1

2

)(
−1

2

)
+
(1

2

)(1
2

)
+
(
−1

2

)(
−1

2

)
= 1,

ρ∗SρS + β∗SβS + τ∗SτS + α∗SαS = 1,
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(
−1

2 i
)(1

2 i
)

+
(1

2

)(1
2

)
+
(1

2 i
)(
−1

2 i
)

+
(
−1

2

)(
−1

2

)
= 1.

If two signals are input into the four-port coupler Chrestenson gate, the conservation
of energy causes the inner product of the two produced vectors of coupling coefficients
to be zero:

ρ∗W τE + β∗WαE + τ∗WρE + α∗WβE = 0,
(1

2

)(1
2

)
+
(1

2

)(
−1

2

)
+
(1

2

)(1
2

)
+
(1

2

)(
−1

2

)
= 0,

α∗NβS + ρ∗NτS + β∗NαS + τ∗NρS = 0,
(1

2

)(1
2

)
+
(
−1

2 i
)(
−1

2 i
)

+
(
−1

2

)(
−1

2

)
+
(1

2 i
)(1

2 i
)

= 0,

ρ∗WαN + β∗WρN + τ∗WβN + α∗W τN = 0,
(1

2

)(1
2

)
+
(1

2

)(1
2 i
)

+
(1

2

)(
−1

2

)
+
(1

2

)(
−1

2 i
)
,

α∗NτE + ρ∗NαE + β∗NρE + τ∗NβE = 0,
(1

2

)(1
2

)
+
(
−1

2 i
)(
−1

2

)
+
(
−1

2

)(1
2

)
+
(1

2 i
)(
−1

2

)
= 0,

τ∗EβS + α∗EτS + ρ∗EαS + β∗EρS = 0,
(1

2

)(1
2

)
+
(
−1

2

)(
−1

2 i
)

+
(1

2

)(
−1

2

)
+
(
−1

2

)(1
2 i
)

= 0,

ρ∗WβS + β∗W τS + τ∗WαS + α∗WρS = 0,
(1

2

)(1
2

)
+
(1

2

)(
−1

2 i
)

+
(1

2

)(
−1

2

)
+
(1

2

)(1
2 i
)

= 0.

Since these equations are satisfied with the elements of the derived radix-4 Chresten-
son transform matrix, the four-port coupler proves to act as an effective radix-4
Chrestenson gate.
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6 Conclusion

In this paper, an integrated photonic four-port coupler that has potential for inte-
gration in radix-4 qudit based quantum photonic circuits is discussed. By showing
that the radix-4 Chrestenson transfer function satisfies the operational conditions
imposed by the conservation of energy for the coupler, we demonstrate the com-
ponent’s ability to act as a radix-4 qudit Chrestenson gate in an optical quantum
system. The Chrestenson gate puts a radix-r qudit into a state of equal superposi-
tion between all orthogonal basis states, so the discovery of a physical realization of
such a gate is significant. Because a linear combination of radix-4 basis states can
be achieved in quantum optics whenever the four-port coupler is used, QIP algo-
rithms that utilize maximal qudit superposition can be realized with this element.
The introduction of new quantum applications for the four-port coupler as a radix-
4 Chrestenson gate will lead to additional gates and methods that make radix-4
quantum photonic systems more robust.
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Abstract

An amoeba-inspired electronic computing system that searches a solution of
a combinational optimization problem was developed. The computing system,
called electronic amoeba, electronically represents the spatiotemporal dynamics
of a single-celled amoeboid organism that is trying to maximize its food intake
while minimizing the risks. We implemented the system using a conventional
electronic circuit and successfully demonstrated its solution search capability
for a Boolean satisfiability problem, SAT. The electronic amoeba was applied
to autonomous walking of a four-legged robot without programming any leg ma-
neuvers. The robot could walk to the target direction by successively searching
a combination of the multi-valued leg joint states depending on the previous
states and sensor information. We also confirmed that our approach arose the
ability to travel over obstacles without prior information.

1 Introduction
Autonomous control of robots and other machines needs intelligence that succes-
sively finds appropriate behaviors in various situations even when unknown events
occur. Such intelligence is considered to arise from not only the machine learning
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but also the optimization; optimization makes it possible to find out an optimal ac-
tion that satisfies the various demands and constraints. Considering the mobility of
the robot, compact, fast, and low-power optimization computer is strongly required.
The conventional von Neumann-type computer usually has to use long computation
time and a lot of energy to solve the optimization problem: in general, there is no an-
alytical method for solving the optimization problem and solution search technique
is indispensable to find out a solution from the anomalous solution candidates. For
efficient solution search, several physical systems in nature have been investigated
recently. In particular, the systems based on Ising model [1–3] have been developed
intensively, where the system computes with the help of the spin relaxation process
in a ferromagnetic material. However, they have difficulties in compact implementa-
tion and problem mapping. Another potential approach for efficient solution search
can be seen biology, because organisms in nature have learned to optimize their
behaviors efficiently to survive in a harsh environment. An attractive example is
Physarum polycephalum, a single-celled amoeboid organism. It possesses intelligence
even though it has no a brain [4]. From the observation of the foraging behavior of
the amoeboid organism, Aono et al. developed an amoeba-inspired solution search
algorithm and confirmed its efficient solution capability [5, 6]. Based on the ab-
stract model developed by them, we designed a simple analogue electronic circuit
that represents its spatiotemporal dynamic behavior âĂĲelectronic amoebaâĂİ [7].
Recently, we successfully demonstrated its application to the autonomous walking
of the multi-legged robot [8], whereas most of the autonomous robots have been
controlled by the state machine and the machine learning [9]. In this paper, we
describe the details of the system implementation and mapping the problem in the
electronic amoeba, and discuss the relationship between the solution search time
and the error intentionally imposed for searching. We also give explanation on the
design of the constraints for searching leg maneuver in the multi-legged robot walk-
ing. Furthermore, we show that the optimization-based autonomous walking using
the electronic amoeba arises an ability of traveling over unknown obstacles.

2 Concept and implementation

Figure 1 shows the basic concept of the electronic amoeba together with an amoeba-
based computer as a counterpart. The amoeba-based computer shown in Fig. 1(a)
utilizes an amoeba organism for solution search. A state variable xi is the length
of pseudopod that stretches and shrinks along the groove on the substrate. If the
pseudopod i crosses the threshold, then xi = 1, else xi = 0. The electronic amoeba
shown in Fig. 1(b) consists of an analogue electronic circuit representing the spa-
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Amoeba core

If yi + ei = 1, then xi  0
else xi  1 

x5=0

Amoeboid
organism

Patterned substrate

x4=1

x3=0

x2=1
x1=1 x8=1

x

=00=0 x7=0

x6=1

Light
(a) (b)

F3=1

F5=1

F7=1

F8=1

x3=0

x2=1

x4=1 x5=0

x7=0

x8=0

x1=0

x6=0

y1 y8

Controller

y7 y6 y5

 yi = Fi

y2y4 y3

on

on

on

on

Figure 1: Basic concept of (a) amoeba-based computer and (b) electronic amoeba.

tiotemporal dynamics of the amoeba organism, called amoeba core. The amoeba
core has many pseudopod units with a star topology and each pseudopod includes a
capacitor, a diode, and a field-effect transistor (FET) together with an inverter for a
threshold device. The dynamic behaviors of the amoeboid organism are represented
by current in the pseudopod units and a state variable is represented with the cur-
rent in a unit; when current flows in the pseudopod i, then, xi = 1, else xi = 0. The
current flow is externally controlled by turning on/off the FET. The current in each
unit is converted to a voltage signal through the capacitor and the inverter. The
motive force of the amoeba organism for searching is to maximize food intake avoid-
ing the risk, whereas that of the electronic amoeba is to reach steady state where
the Kirchhoff laws are satisfied. The controller in the electronic amoeba maps a
problem to be solved and defines the interaction between the state variables of the
amoeba core. The interaction in the electronic amoeba is defined by bounceback
rule [5]. The controller always watches the state variables in the amoeba core, checks
them with the bounceback rule, and sends feedback signals to FETs for flipping the
variables that violate the rule. Hence, the amoeba core searches the state that is
not refused by the controller.

Aono et al. clarified that the amoeboid organism could search the solution of CSP
(constraint satisfaction problem) [10] and TSP (traveling salesman problem) [11].
After these demonstrations, they extracted an abstract model in terms of solution
search from the amoeba’s foraging behavior and found its efficient solution search for
SAT (satisfiability problem) [5]. The number of iterations of the amoeba-inspired
SAT algorithm was smaller than that of WalkSAT algorithm [5]. Their amoeba
model consists of three basic properties in terms of solution search as follows. (1)
Stretching the pseudopods unidirectionally with fluctuation. The electronic amoeba
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represents this behavior by unidirectional current through a diode in the pseudopod
unit. Fluctuation is represented by random error in the FET switching using ran-
dom bit sequence. (2) Volume conservation. This arises spatiotemporal correlation
between the pseudopods in the deformation. In the amoeba core, the volume con-
servation is represented by the Kirchhoff’s current law in the hub of a star-topology
network. (3) Photo avoidance. The pseudopod in the amoeba organism is shrunk
by irradiating light as shown in Fig. 1(a) and this property is used to control the
amoeba shape in the amoeba-based computer. The current in the amoeba core is
control by turning off the FET in the pseudopod unit.

An important issue in the physical computing systems is how to map the problem.
Here Boolean SAT is considered, which is the problem of determining whether there
exist a variable vector x = (x1, x2, ..., xN ) that makes a given Boolean formula
f(x) true, f(x) = 1. In the case of the electronic amoeba, the constraint function
is converted to âĂĲbounceback ruleâĂİ [5]. The bounceback rule {Fi_j} (i =
1, 2, ..., N and j = 0 or 1) consists of sub-rules that identify the variables which make
the constraint formula false. First, we introduce a redundant variable expression;
Xi_0 and Xi_1 for xi. If (Xi_0, Xi_1) = (1, 0) then xi = 0, else if (Xi_0, Xi_1) =
(0, 1) then xi = 1. Originally this expression was introduced because the pseudopod
of the amoeba organism can be controlled only from 1 to 0, but not from 0 to
1 [5]. The redundant expression is still very useful even in the electronic amoeba,
because this makes the numbers of variables 0 and 1 the same when the system
finds a solution. This means that the Hamming distance of the solution vector is
always N independent on the instance. Thereby the bounceback rule also includes
the sub-rule that avoids Xi_0 and Xi_1 are flipped to 0 at the same time, called
INTRA. The main part of the bounceback rule is to flip the variables that make
each clause in the given formula false. We call this sub-rule as INTER. This sub-
rule is derived from a conjunctive normal form (CNF) of f(x). To satisfy f(x) = 1,
each clause in the CNF of f(x) should be 1. The other part of the bounceback
rule is CONTRA which avoid inconsistency between INTER in terms of satisfying
INTRA. An example of the bounceback rule is summarized in Table 1 for the instance
f(x) = (x1 +x2 +x3)(x1 +x2 +x3)(x1 +x2 +x3). In this study we consider 3-SAT in
which each clause contains three laterals. Finally, the entire form of the bounceback
rule for variable Xi_j is given by Fi_j = INTERi_j∪ INTRAi_j∪ CONTRAi_j .

The bounceback rule for SAT can be systematically and easily derived from
the constraint formula. The electronic logic circuit can be used to map the given
constrain, since the rule is described with Boolean functions and the feedback signal
is binary. As a result, compared to the Ising model [12], the electronic amoeba can
map SAT simply and easily. It is not necessary to estimate and assign multiple value
to the interactions between the variables as in the Ising machine.
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f(x) = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3) = 1

→




X1_1 + X2_1 + X3_1 = 1
X1_0 + X2_0 + X3_0 = 1
X1_0 + X2_0 + X3_1 = 1

Variable INTRA INTER CONTRA
X1_0 X1_1 X2_0 · X3_0 X1_0 · X2_0 · X1_1 · X2_1

+ X1_0 · X3_0 · X1_1 · X3_1
+ X1_0 · X3_0 · X1_1 · X3_0

X1_1 X1_0 X2_1 · X3_1 + X2_1 · X3_0 X1_1 · X2_1 · X1_0 · X2_0
+ X1_1 · X2_1 · X1_1 · X2_1
+ X1_1 · X3_1 · X1_0 · X3_0
+ X1_1 · X3_0 · X1_0 · X3_0

X2_0 X2_1 X1_0 · X3_0 X2_0 · X3_0 · X2_1 · X3_1
+ X2_0 · X3_0 · X2_1 · X3_0
+ X1_0 · X2_0 · X1_1 · X2_1

X2_1 X2_0 X1_1 · X3_1 + X1_1 · X3_0 X2_1 · X3_1 · X2_0 · X3_0
+ X2_1 · X3_0 · X2_0 · X3_0
+ X1_1 · X2_1 · X1_1 · X2_1

X3_0 X3_1 X1_0 · X2_0 + X1_1 · X2_1 X2_0 · X3_0 · X2_1 · X3_1
+ X2_0 · X3_0 · X2_1 · X3_0
+ X1_0 · X3_0 · X1_1 · X3_1
+ X1_0 · X3_0 · X1_1 · X3_0

X3_1 X3_0 X1_1 · X2_1 X2_1 · X3_1 · X2_0 · X3_0
+ X1_1 · X3_1 · X1_0 · X3_0

Table 1: Example of SAT constraint formula and its bounceback rule. CONTRA
intentionally includes several redundant terms to show that the rule is systematically
derived.

In solution search process, the controller reads out state variables at time t,
X(t), and checks the bounceback rule Fi_j(X(t)) for all i and j. Here, X(t) =
(X1_0(t), X1_1(t), X2_0(t), X2_1(t), ..., XN_0(t), XN_1(t)). Then the bounceback
signal Yi_j = F i_j(X(t)) is feedbacked to the FET in the amoeba core so that the
state variable at time t + ∆t is flipped to follow Yi_j , Yi_j → Xi_j(t + ∆t). It
should be noted that, however, Xi_j(t + ∆t) does not always follow Yi_j , because
of the long capacitance charging time and externally introduced error. When the
system finds a solution, the bounceback rule does not flip the variables further and
the dynamics of the system is lost. It is also found that Hamming distance of the
solution variable vector is always N : the half of Xi_j take 1 and the other half take
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0. Additionally, when the system finds a solution, the half of Fi_j hold 0 and the
others hold 1, which stabilize Xi_j at 1 and 0, respectively.

3 Experiment
The electronic amoeba solving SAT was implemented by integrating the commercial
discrete electronic devices together with a microcomputer for the controller as shown
in Fig. 2(a). The capacitance C and resistance R in each pseudopod were 10 nF
and 100 Ω, respectively. The source current in the hub was 10 µA. The number of
variables N was 12, then the number of the redundant variables 2N was 24. The

Error, ei_j

Bounceback
signal, Yi_j

Output, Xi_j

Ii_j

R

C

(c) (d)

(b)

0 0.2 0.4 0.6 0.8

Time (ms)

Yi_j

Xi_j

Ii_j = 0.1 mA

without error

(a)

e2_0

e1_1

e1_0

Error period, 

Error probability, p=
error on

2N

Figure 2: (a) Photograph of the fabricated electronic amoeba, (b) circuit diagram
of a pseudopod unit, (c) example of the response of the pseudopod to bounceback
signal, and (d) typical error signal waveforms.
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bounceback rule was programmed in the microcomputer. The clock frequency of the
controller was 84 MHz. For fluctuation, we used random bit sequences generated
by Xorshift method. The error signal was randomly given to each pseudopod via
a FET in series with the FET for the bounceback control as shown in Fig. 2(b).
Figure 2(c) shows a measured response of the pseudopod unitXi_jto the bounceback
signal Yi_j . The output Xi_j immediately rose when Yi_j became high, since the
capacitance discharging rapidly occurred when the FET turned on. On the other
hand, when Yi_j became low, Xi_j showed a long delay. This was because the
capacitance charging took long time due to small injected current from the hub.
The long charging time biased the state variable to 1. When the current of the
current source in the hub was increased, this delay was linearly shortened. The
error signal was given to make the variable 0 regardless the bounceback signal. Here
we also investigated the effect of the two properties of the error on the solution search
as shown in Fig. 2(d). Error probability p means how many pseudopod units receive
error signal at an error period. Error period λ is defined by the sum of an error bit
width and average time interval between the neighboring error bits. Increasing λ,
both the error bit width and bit interval are increased. The state variables of the
electronic amoeba were read out from the output voltages of the inverters in the end
of the pseudopod units. The outputs were recorded using a 24-channel oscilloscope.

4 Results and discussion

Figure 3(a) shows the time evolutions of the variables in searching process of a 12-
variable SAT. The random error of p = 0.65 and λ = 0.6 ms was used. In this plot
selected four variables are shown. Starting from the initial state Xi_j = 1 for all
i and j, each variable irregularly flipped between 0 and 1, and sometimes showed
oscillatory behaviors. When the error signals were imposed to the pseudopod units,
the state of the amoeba core was forcibly changed. After imposing the errors several
times, the system reached a steady state and became stable. We confirmed that the
values of the variables in the stable state always satisfied the constraint, that is, the
amoeba core found a global solution. This was simply because the bounceback rule
continued to flip one of the state variables at least until the all variables satisfied
the constraint. The oscillatory state in the searching process suggested that the
amoeba core could not solve the inconsistency between the variables and the system
fell in a localized state. In the worst case, the electronic amoeba cannot escape from
the localized state and the oscillatory behavior maintains. However, this suggests
that we can identify when the state of the amoeba core should be forcibly changed.
This property is obviously different from the Ising machine where it is not easy to
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Figure 3: (a) Time evolution of state variables in the amoeba core solving 12-variable
SAT. p = 65 %, λ = 0.6 ms, only selected four variables are shown. (b) Evaluated
solution search time as a function of error period for various error probabilities, and
(c) minimum solution searching time as a function of error probability.

distinguish the global minimum from the local minimum. The random error in the
electronic amoeba was found to help the system escaping from the localized state,
similar to the annealing in the Ising machine.

The solution search of the electronic amoeba was expected to depend on the error
property. Figure 3(b) shows the evaluated SAT solution search time as a function
of the error period for various error probability p. Each data point was obtained by
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solving 25 instances 30 times. It was clearly found that the error property affected
the solution search efficiency. This behavior was not seen in the solution search
by the amoeba algorithm executed by a conventional computer. Each curve in the
plot had a minimum value, showing the existence of the optimal error period λ
that gave the minimum searching time. The minimum solution searching time also
depended on the error probability p as shown in Fig. 3(c) and this indicated that the
optimal error probability also existed. In addition, the optimal error period changed
depending on the error probability. The smallest solution search time of 0.28 s was
obtained with p = 65% and λ = 0.6 ms in the present system.

To understand the obtained behaviors, we considered the time scale of the
amoeba core dynamics and the distance in the variable space that the amoeba core
was moved by the errors in each error period. The circuit configuration of the pseu-
dopod unit in Fig. 3(b) indicates that an error signal fixes a variable at 0. Thus
the error signals effectively decreased the variable space where the amoeba could
move around. When the error probability is p, the number of the fixed variables
is approximately given by p · 2N . Then, Hamming distance from the origin of the
variable space, H, follows the condition H ≤ (1− p) · 2N . Considering the variables
are biased to 1 owing to the larger capacitance charging time than the discharging
time, H tends to be (1 − p) · 2N . Because the Hamming distance of the solution
vector is always N when the redundant variable expression is used, the state of the
amoeba core is found to be close to the solution vector when p = 0.5. This results
in the small solution search time around p = 50%, which reasonably explain the
obtained result.

The observed error-period dependence was attributed to the balance between the
capacitance charging time and the error period. The time scale of the amoeba motion
can be evaluated by the capacitor charging time in each pseudopod unit, which is
approximately given by τc ∼ C · Vth/(2N · (1− p) · I), where C is capacitance, Vth is
the threshold voltage of the inverter in the pseudopod unit, and I is the current from
the current source. When p is assumed to be 0.5, τc becomes 0.2 ms. The discharging
time of the capacitance τd is enough small compared to the charging time, τc � τd,
since the discharging immediately occurs when the FET turns on. When the error
period is much shorter than the charging time, τc � λ, the amoeba core cannot
search around whole the variable space, because it does not have enough time to
change the state in each error period. This makes the amoeba core frequently hop
from point to point in the variable space and then the amoeba core likely misses the
solution even when the solution exists near the hopping point. On the other hand,
when the error period is much longer than the charging time, τc � λ, the amoeba
core spends extra time when it falls in a localized state. This delays the amoeba core
to reach the solution. Therefore, it is found that τc ≈ λ is necessary and sufficient
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for searching around the variable space. The error period achieving the minimum
search time in Fig. 3(b) was around 1 ms, which was reasonably matched with
evaluated τc of 0.2 ms.

The discussion above suggests that the decreasing the charging time by reducing
the capacitance or increasing the current supplied to the hub decreases the solution
search time. From viewpoints of the low power consumption, decreasing the capac-
itance is appropriate. However, in this study, we used rather large capacitance to
make the dynamics of the amoeba core slow so that the controller with 84 MHz
clock could follow in detail the amoeba core behavior operating asynchronously. To
compare the speed and power consumption with the Ising machines, it is also nec-
essary to increase the number of the variables up to thousands [1, 2, 13] and this is
now under investigation. The obvious advantage is that the number of variables for
mapping SAT is 2N in the electronic amoeba, whereas N2 order in the Ising ma-
chine owing to the lattice configuration of the spatial arrangement of the variables.
Furthermore, the SAT instance can be easily mapped on the electronic amoeba by
Boolean logic gates, whereas Ising model needs to translate the instance to a set
of real numbers and assign it to each interaction of the variables. The advantages
above indicate the simple and small implementation of the electronic amoeba with
low power consumption compared to the Ising machines.

A separate study indicates that the number of iterations in the amoeba-inspired
SAT algorithm increases less than exponentially when N is increased, because the
several variables are updated simultaneously in each iteration step. In the case of
the electronic amoeba, a short period of the oscillations in the time evolution of the
variables effectively corresponds to an iteration. A period of the variable oscillation
is determined by capacitance charging time in the pseudopod unit and the clock
frequency of the controller is high enough compared to the oscillation period. Then
the controller can flip several variables in each period of the oscillation even though
the bounceback rule is evaluated in a serial manner. Thus the solution search time
is expected to increase less than exponentially as a function of N in the electronic
amoeba. Further study is necessary to confirm this point. It is noted that, in our
system, the controller requires computation power to evaluate the bounceback rule,
however the solution cannot be found without the amoeba core; if the amoeba core
completely follows the bounceback rule, the system cannot find a solution.

5 Application to autonomous robot walking

The feasibility of the electronic amoeba was investigated by the demonstration of
the autonomous control of the robot . We implemented the electronic amoeba to
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a commercially available four-legged robot as shown in Fig. 4(a) and examined its
autonomous walking. The robot was designed to walk straight without programing
the leg maneuver. Then the robot was only provided with the constraints to avoid
falling and straying. This robot is referred as amoeba robot hereafter. The electronic
amoeba was expected to find an appropriate leg maneuver according to its posture
in each step. Each leg had 3× 2 motion states as shown in Fig. 4(b). The posture
information was obtained from the touch sensor in each foot together with the
previous state variables. Then the electronic amoeba searched 24 state variables
(4 legs × 6 states) under the constraints described with the bounceback rule. In
this experiment, both the amoeba core and the controller were implemented in the
same microcomputer for simple and compact implementation at this time. The clock
frequency of the microcomputer was 16 MHz.

First we obtained information of the unfavorable actions for the robot walking.
If these actions were described as bounceback rule, the amoeba robot was expected
to search favorable actions by avoiding unfavorable actions depending on the envi-
ronment and its posture at each moment. We found 13 rules for the autonomous
walking by considering the body balance and careful observation of the robot behav-
iors under various test commands. Figure 5 shows the three major motions resulting
in failure in walking straight. The obtained bounceback rule is summarized in Table
2. The rule also includes a few codes suggesting the objective of the robot. A global
solution in this case corresponds to the balanced posture. Information of the envi-
ronment and the posture was obtained from the leg position and the touch sensor on
each foot. The error signal was also randomly imposed to the amoeba robot in the
solution search process, which was necessary to break the steady state and to take

Electronic 
amoeba

Touch sensor

(a)

forward

backward

ce
nt

er

down

up

(b)

Figure 4: (a) Photograph of a four-legged amoeba robot and (b) possible leg state
for walking control.
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(a) (b) (c)

Figure 5: Typical motion patterns avoided for walking: (a) falling backward, (b)
falling forward, and (c) moving backward.

the next walking step. In general case, the bounceback rule for autonomous walking
might be deduced from the body balance without empirical testing. A potential way
to improve the rule without observation is reinforcement learning through experience
and this approach is now under consideration.

Figures 6(a-e) and 6(f-j) show the movements of the robot with a controller
programmed with conventional walking patterns and the amoeba robot finding a
leg maneuver in realtime, respectively. The walking target was set at 80 cm from
the start position as indicated with arrows in Figs. 6(a) and 6(f). The amoeba
robot could reach the target, although its track was fluctuated compared to the
conventional walking robot. The movement was awkward and slow like a baby’s
crawl, however, it never fell. The deviation from the target position after walking
was evaluated by the error angle from the target direction. Figure 6(k) shows the
histogram of the error angle taken after 100 trials. The histogram showed a Gaussian
like distribution having a peak around 0◦ and 68 % of the trials was converged within
±30◦ deviation from the center. The results confirmed that the amoeba robot could
reach the target position with reasonable accuracy. The amoeba robot consumed
extra time to reach the target position: the average time to the target position was
83 s, whereas that of the robot with the conventional walking program was 25 s.
The average thinking time in one step, corresponding to the time to find a solution,
was estimated to be 1.5 s.

The awkward walking of the amoeba robot was attributed to not only the fluc-
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1 If number of legs with sensor on < 2, then prohibit legs up.
2 If one of forelegs is twisted back, then prohibit another from moving back.
3 If one of hind legs is twisted forward, then prohibit another from moving for-

ward.
4 If Leg(i) is twisted forward, prohibit leg in diagonal position from moving

excepting forward.
5 If Leg(i) is twisted back, prohibit leg in diagonal position from moving except-

ing back.
6 If Sensor(i) is on, then prohibit Leg(i) from moving forward + down, and

permit Leg(i) moving back + down.
7 If Sensor(i) is off, then prohibit Leg(i) from moving back + up and permit

Leg(i) moving forward + up.
8 If Leg(i) is down and Sensor(i) is off, then permit Leg(i) moving laterally.
9 If Leg(i) is up and Sensor(i) is off, then permit Leg(i) down and keeping

lateral position.
10 If Leg(i) is up and Sensor(i) is off, then permit Leg(i) down and laterally

moving to another side.
11 If Leg(i) dis own and Sensor(i) is on, then permit Leg(i) up keeping lateral

position.
12 If Leg(i) is down and Sensor(i) is on, then permit Leg(i) up and laterally

moving to another side.
13 If Leg(i) is up and Sensor(i) is on, then permit Leg(i) down keeping lateral

position.

Table 2: Bounceback rule for autonomous waking of a four-legged amoeba robot.

tuation of the walking direction but also the variation of the thinking times in step
by step. The thinking time mainly arose from the solution search. Increase of the
searching speed of the electronic amoeba would contribute to the fast and smooth
walk. High speed solution search is also indispensable for the safe recovery when the
unexpected accident occurs in walking. The delay in each action makes it difficult
to recover from the sudden change of the body balance, resulting in falling down.

To clarify the feasibility of optimization-based autonomous walking, the amoeba
robot was examined walking when there were obstacles preventing its walking. An
expectation of the autonomous robot walking based on the optimization could keep
walking by finding appropriate leg maneuvers even when unexpected things hap-
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Figure 6: Snapshots of movements of the four-legged robots: (a)-(e) conventional
walk programmed with standard leg maneuver and (f)-(j) amoeba robot with au-
tonomous walking control. Red line is equidistance of 80 cm from the start position,
and (k) histogram of walking direction of amoeba robot at 80 cm from start point
with a map indicating direction angles. 0◦ corresponds to arrival at target point.

pened. As the obstacle, the two poles with pedestals were set in front of the robot
as shown in Fig. 7. No information of the obstacles was given to the robot before-
hand. In the case of the conventional walking program, the robot repeated the same
motions and never escaped from the obstacles (Figs. 7(a-c)). On the other hand,
the amoeba robot could go over the obstacles without falling after several trials and
errors as shown in Figs. 7(d-f). The result indicated that the optimization-based
autonomous control arose the ability to find a way to deal with unknown events and
unexpected situations.
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(d)

(e)

Amoeba robot

(f)

(a)

(b)

(c)

Conventional

obstacles

Figure 7: Snapshots of movement of four-legged robot with obstacles on its lane:
(a)-(c) conventional walking program and (d)-(f) autonomous walking control by an
electronic amoeba.

6 Conclusion

We have developed an amoeba-inspired electronic computing system, electronic
amoeba. This system searched for a solution to a combinational optimization prob-
lem, as inspired by foraging behavior of a single-celled amoeboid organism that
maximizes its food intake under given constraints. We electronically implemented
the system and demonstrated its solution search capability for solving Boolean sat-
isfiability problem (SAT), where the constraint function was mapped on the system
using bounceback rule. We applied the electronic amoeba to autonomous walking
control of a four-legged robot. It was demonstrated that the electronic amoeba suc-
cessively searched a combination of the leg joint states to satisfy the objective of
moving straight depending on the state of the robot and it also had a ability to
deal with unknown situations. Combination of the amoeba-inspired solution search
system with the machine learning is expected to achieve smart autonomous control
of the robot and other machines.
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Abstract

This paper presents a new analysis method for estimating the detectability
of a hardware trojan (HT) that causes a path delay fault (PDF) to parallel
multipliers. The proposed method characterizes a parallel multiplier with the
average delay of all paths in a multiplier. We show that the average delay, which
is determined by its multiplier structure, has a relation to the HT detectabil-
ity. The validity of our method is evaluated by an experiment using Monte
Carlo tests that measure the detection probabilities of HTs inserted into typi-
cal multipliers, and multiple regression analysis. In addition, we demonstrate
how the amounts of inserted delay have impacts on the HT detectability. The
result shows that, given an inserted delay amount and a multiplier structure,
our analysis is useful for estimating the detectability.

Keywords: Hardware trojans, Arithmetic algorithms, Multipliers, Path delay faults

1 Introduction
Hardware Trojan (HT) threats have been a topic of significant interest in hardware
security research. An HT is a hardware-oriented backdoor that can be inserted into
cryptographic hardware to retrieve secret information. Modern IC chips including
cryptographic hardware are manufactured by work division among many parties
(e.g., fabless companies, design houses, IP venders, and semiconductor foundries),
which might not be always trustworthy. In other words, a malicious party may
insert an HT into cryptographic hardware to retrieve secret information from the
chip users and/or their clients.

There are many previous works on HT insertion and detection (i.e., countermea-
sures). In earlier related works, many HTs that employ circuit function modification
have been investigated. For example, one HT modifies the cryptographic datapath
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to output the secret key when the HT is triggered. Another HT described in [1]
modifies the datapath to cause one or more faults in the cryptographic operations
to extract the secret key by using a type of fault-based cryptanalysis called differen-
tial fault analysis [2]. The abovementioned HTs consist of trigger and payload units.
The trigger unit activates the payload unit only when the cryptographic hardware
has specific input values. Since the trigger values are very limited and unknown to
chip testers, it is difficult to detect them during Monte-Carlo-based chip tests. Fur-
thermore, it is impractical to perform an exhaustive test for cryptographic hardware
because the primary inputs are usually longer than 128 bits. However, as these HTs
modify the chip geometry and/or explicitly add extra specific blocks/paths, many
countermeasures against them exploits the differences between the malicious chips
and the Trojan-free golden models. For example, it is known to check products with
scanning electron microscope (SEM) images of manufactured chips, or compare the
side channel information of chips with the golden models. Similarly, an HT that
modifies the dopant polarities of cells to cause stuck-at faults intentionally [3] can
even be detected by SEM imaging with feasible additional procedures.

In contrast, a new type of HT called a Path Delay HT (PDHT), presented
in [4], causes faults (i.e., bugs) in multipliers seemingly without modifying the circuit
functions at the logic or cell level (i.e., without additional trigger/payload units or
stuck-at faults). While integer multiplication is one of the major operations in
public key cryptography (e.g., RSA [5] and elliptic curve cryptography [6]), bugs
in multipliers in public key cryptographic hardware can be exploited by attackers
to retrieve secret keys [7]. The approach used by a PDHT involves finding a rarely
sensitized path called a rare path (RP) in a multiplier1 and replacing gates along the
RP with the same functional gates with larger delays such that the RP delay becomes
larger than the critical delay. The output of a PDHT-inserted multiplier is buggy due
to the setup time violation only when the inputs are the specific values required to
sensitize the RP. Note that it is quite difficult to detect PDHTs by performing Monte
Carlo tests because RPs are sensitized by few inputs. It is also difficult to detect
PDHTs even with SEM images because PDHTs are inserted without additional units
or faulty cells. Thus, PDHTs are considered to pose a serious threat to information
system security.

On the other hand, while there are many hardware algorithms for parallel mul-
tiplication [8], the generality and applicability of PDHTs to such various multipliers
are unclear. Although RPs are fully sensitized only by specific inputs, the extra
delay added to an RP also influences other paths. If this influence is non-negligible,

1A path is sensitized if all of the gates on the path switch in a clock cycle. Note that gate
switching due to glitch effects (or dynamic hazard) is not discussed in this paper, as in [4].
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a PDHT-inserted multiplier can generate faulty output values even when the RP is
not fully sensitized. In other words, PDHTs can be detected during Monte Carlo
tests in such cases. The influence depends on the characteristics of the RP in the
multiplier related to its hardware algorithm. While a method of suppressing the
detectability (i.e., influence) of PDHT insertion was proposed in [4], the detectabil-
ity of the inserted PDHT was evaluated through only one multiplication algorithm.
Accordingly, the characteristics of RPs in multipliers, namely, the extent to which
hardware algorithms for multiplication impact the insertion of PDHTs with low
detection probabilities in Monte Carlo tests, should be studied to develop PDHT
countermeasures.

In this paper, we present analyses of some typical multipliers from the viewpoints
of RP characteristics and PDHT insertion/detection probability. We discuss how the
delay added to an RP affects other paths. In particular, we present analyses of the
statistical properties of the switching probability and number of gates along an RP.
As a result, we demonstrate that the detectability is closely related to the difference
between the critical delay and average delay of all of the paths in the multiplier in
addition to the first-order statistical moment of the switching probability and the
number of gates along the RP. We validate our argument by presenting the results of
experimental PDHT insertion into some typical multipliers of different bit lengths.
Here, we attempt various amounts of inserted delays in order to clarify the effect of
delay insertion. Consequently, we demonstrate that multipliers based on redundant
binary trees provide greater detectability than other multipliers.

2 Path Delay HT

The basic approach used by a PDHT involves modifying a path in a multiplier
and letting the multiplier output faulty values when specific values that sensitize
the path are input. The faulty outputs of such PDHT-inserted multipliers enable
the attackers who inserted the PDHT to retrieve the secret key based on the bug
attack [7]. While the conventional HTs are based on circuit function modification
or stuck-at faults caused by added/modified blocks, paths, and gates, PDHTs are
based on path delay faults [9]. In the path delay fault model, the path delay becomes
longer than the clock period due to the long delays of gates along the path. The
PDHT intentionally causes such path delay faults by replacing the gates along the
RP with gates with the same function but longer delays.

An RP is a path sensitized with an extremely low probability. The RP can be
sensitized only by attackers who know specific values, while it cannot be sensitized
and detected by Monte Carlo tests. In addition, as PDHTs employ only valid and
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Figure 1: Flowchart of PDHT insertion.

correct cells (i.e., gates), it is difficult to detect PDHTs via conventional HT detec-
tion methods, which employ reverse-engineering techniques to find added/modified
suspicious blocks, paths, and cells (even at the dopant level).

Figure 1 shows the flowchart of PDHT insertion presented in [4], which consists
of two phases: RP selection and delay distribution. The RP selection phase finds
an RP. Since the detectability of a PDHT depends on the probability of activating
the RP (i.e., the total switching probability of the gates throughout the RP), the
RP selection exploits two values related to switching probability: controllability
and observability [10]. Hence, in the RP selection phase, the controllabilities and
observabilities are first calculated.

Controllability is the probability of 0 or 1 on a wire, which connects two gates,
if the primary inputs of the circuit are uniformly distributed. Observability is the
probability that a value on a wire affects the primary output of the circuit.

Let C0(m) and C1(m) be the controllabilities of 0 and 1 on wire m, respectively,
and let B0(m) and B1(m) be the observabilities of 0 and 1 on wire m, respectively.
For example, let us consider a two-input AND gate. Let i and j be the input wires
to the AND gate and the value of each wire be independent. Let k be the output
signal. In this case, some controllabilities and observabilities are as follows:

C0(k) = 1 − C1(i)C1(j), (1)
C1(k) = C1(i)C1(j), (2)

B0(i) = B0(k)
[

C1(j) − C1(k)
C0(i)

]
, (3)

B1(i) = B1(k)C1(k)
C1(i) , (4)
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Figure 2: Example circuit.

where C0(k) and C1(k) are represented by the controllabilities of inputs i and
j. The above equations indicate that the path activation probabilities (i.e., PDHT
detectability) can be roughly calculated based on the controllabilities of the primary
inputs. For RP selection, the controllabilities and observabilities are asymptotically
calculated using a Monte Carlo method with logic simulation due to the difficulty
of calculating their exact values for large multipliers deductively.

An RP is then selected according to the calculated controllabilities and observ-
abilities. When an output wire of a gate has low controllability, it can be said to
have low switching probability. A wire with low observability has a small influence
on the primary output. Therefore, the RP is selected by identifying a series of wires
(i.e., path) with lowest possible controllability and observability. More precisely, the
wire with the lowest controllability is selected and is then extended to a primary in-
put and an output with lowest possible controllabilities and observabilities. On the
other hand, since the selected path is not always sensitizable, a SAT solver is used
to check whether the path can be sensitized. Thus, an RP with a lowest possible
probability of activation can be selected. In the delay distribution phase, a delay is
added to each gate along the selected RP to minimize the probability of setup time
violations (i.e., PDHT detection) during Monte Carlo testing. Since the number
of paths in the multiplier increases exponentially as the gate depth increases, it is
difficult to determine how an added delay affects other paths. Therefore, in [4], a
genetic algorithm was used to determine how to add a delay to each gate along an
RP.

3 Analysis of RP characteristics

In this section, we present analyses of RP characteristics and discuss their relations
to PDHT detectability. We assume here that a PDHT can be detected if a setup time
violation (i.e., an erroneous output) occurs during a Monte Carlo test with a clock
period equal to the critical delay. Our analysis method focuses on the controllability
and number of gates along the RP. When a setup time violation occurs, a primary
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input vector should partially sensitize the RP. In other words, it is important to
analyze the number of switched gates along the RP when the delay is longer than
the critical delay. To clarify the importance of the signal controllability and number
of gates along the RP, we first consider an example circuit into which a PDHT has
been inserted. This circuit is depicted in Fig. 2, where α is the original gate delay
and β(= α + γ) is the modified gate delay obtained by adding an extra delay γ. For
simplicity we assume that α is roughly the same regardless of the gate function. In
Fig. 2, the RP is denoted by the red and green lines, and each gate along the RP
has a delay of β. A path including some of the gates along the RP is denoted by the
blue and green lines, and this path can be sensitized by Monte Carlo testing. The
two paths share the partial path denoted by the green line.

In this case, when the path is sensitized, a setup time violation occurs if 2α +
2β > dCP , where dCP (≈ 5α) is the critical delay. More generally, let x and y
be the numbers of switched gates with delays of α and β, respectively, along an
sensitized path. Note that x + y should be less than the number of gates along the
critical path (and x + y ≤ 5 in this case). Since the delay of the path is given by
xα + yβ = (x + y)α + yγ, the added delay yγ mainly determines whether or not
a setup time violation occurs. The added unit delay γ is smaller if the number of
gates along the RP is larger. In addition, y is smaller if the controllability of signals
along the RP is smaller. Thus, the controllability and number of gates along the
RP have essential roles in determining the possibility of PDHT insertion/detection.

Let us then consider the general case. Let PRP and P be an RP and a path that
can be sensitized by Monte Carlo testing, respectively. In addition, let dg and d′

g

denote the delays of gate g before and after delay insertion, respectively2. A path
is defined as a set of gates. For example, gate g in path P is denoted as g ∈ P and
the delay of P is denoted as dP . The delay of P after delay insertion is

d′
P = dP +

∑

g∈P ∩PRP

(d′
g − dg), (5)

where P ∩ PRP denotes a set of switched gates on both P and PRP (i.e., sensitized
gates on RP). The condition that causes a setup time violation by activating P is
d′

P > dCP , where dCP denotes the critical path delay. For simplicity, the added
delay is assumed to be uniformly distributed over the gates3. Then, Eq. (5) can be
rewritten as

2In general, each gate delay differs owing to whether a rising or falling transition happends in
the gate and which input port is active. The following discussion can also applied to such a more
precise model.

3This assumption was made because it enabled the effects of switched gates along the RP to
be estimated. In [4], it was demonstrated that an optimally distributed delay based on the genetic
algorithm can reduce the detectability to at most one-fourth of its original value in comparison with

1820



Characterizing Parallel Multipliers

d′
P = dP + |P ∩ PRP |d

′
RP − dRP

|PRP | , (6)

where |PRP | and |P ∩ PRP | denote the number of gates along PRP and switched
gates, respectively. In addtion, dRP and d′

RP are the RP delays before and after
delay insertion, respectively. Thus, the |P ∩ PRP | condition that represents PDHT
detection by activating P is

|P ∩ PRP | > |PRP | dCP − dP

d′
RP − dRP

. (7)

Since P of Eq. (7) represents an arbitrary path in a multiplier, we analyze the
statistical properties of the right hand side (RHS) of Eq. (7). Let E[f(P )] be the
first-order statistical moment of a function f(P ) (i.e., the average value of f(P )).
The average value of the RHS of Eq. (7) can be written as

E

[
|PRP | dCP − dP

d′
RP − dRP

]
= |PRP |dCP − E[dP ]

d′
RP − dRP

. (8)

Thus, if the value obtained from Eq. (8) is smaller, the PDHT detection prob-
ability is larger. The derived equation indicates that the detection probability is
larger (or smaller) if

1. The total delay added to the RP is larger (or smaller).

2. The number of gates in the RP is smaller (or larger).

3. The difference between the critical delay and average delay of paths (i.e.,
E[dP ]) is smaller (or larger).

In the following, we describe the relations between the above conditions and
hardware algorithms for parallel multiplication. In general, a multiplier consists of
three parts: a partial product generator, partial product accumulator (PPA), and
final stage adder (FSA). In this study, we focus on the PPA and FSA because there
are various algorithms for them and the latency and circuit area of a multiplier
heavily depend on the algorithms. Here, we consider two typical types of PPAs:
Wallace trees [11] and redundant binary addition (RBA) trees [12]. Wallace trees are

a uniformly distributed delay. However, it is too difficult to analyze the effects of such non-uniformly
distributed delays.
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among the fastest PPAs and are the optimal trees of three-input, two-output carry-
save adders (CSAs) in terms of gate depth (i.e., delay). RBA trees are binary trees of
four-input, two-output redundant CSAs based on a redundant binary representation.
In an RBA tree, each digit of an integer is represented redundantly using 0, 1, and
-1, which makes it possible to construct a PPA by using a symmetrical tree of four-
input, two-output CSAs. Thus, Wallace trees have short delays while RBA trees
have high efficiencies in terms of area-delay.

The path delay difference in a Wallace tree is large due to the asymmetrical tree
structure. Thus, it would be difficult to detect PDHTs in multipliers with Wallace
trees according to the above conditions. On the other hand, the path delay difference
in an RBA tree is small owing to the symmetrical structure of binary trees, which
implies that multipliers with RBA trees are more resistant to PDHT insertion than
those with Wallace trees.

As FSAs, we focus on three typical carry-propagation adders (CPAs): ripple-
carry adders (RCAs), block carry-lookahead adders (BCLAs) [13], and KoggeStone
adders (KSAs) [14]. RCAs, BCLAs, and KSAs are among the optimal CPAs for
circuit area, area-delay efficiency, and delay, respectively. RCAs are the simplest
and most compact two-input CPAs. An n-bit RCA consists of n full adders, and
the i-th (0 ≤ i ≤ n − 1) full adder computes the i-th sum bit si and (i + 1)-th carry
bit ci+1 from the i-th input bit and i-th carry bit ci. The critical delays of RCAs
are the largest among the common CPAs due to the long carry propagation path.
BCLAs have smaller critical delays than RCAs due to the use of the carry-lookahead
technique. A BCLA consists of several small RCAs and a carry-lookahead unit. It
generates some carry bits directly from the inputs using the carry-lookahead unit to
make its critical delay smaller than that of an RCA. The main drawback of BCLAs is
that their carry-lookahead units require gates with large fan-in and fan-out, which
diminish the circuit performance. KSAs are the fastest CPAs based on parallel
prefix operations, which define how to implement each carry bit generation block.
KSAs perform addition with minimal gate depth (i.e., delay) of O(log(n)) and only
gate with a fan-out of two. Thus, KSAs usually achieve the smallest delays at the
expense of circuit area. Since the lengths of most paths in RCAs are short, the
average delay of an RCA is small relative to the critical delay. On the other hand,
since BCLAs and KSAs calculate carries in parallel, many paths would be related
to carry propagation. Therefore, KSAs and BCLAs have more long paths (whose
delays are close to the critical delay) than RCAs. Thus, the differences between
the critical and average delays for BCLAs and KSAs are small, and, consequently,
PDHTs in multipliers with BCLAs and KSAs should be more easily detected than
those in multipliers with RCAs according to the above conditions.
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4 Experiments
Our argument in Section 3 was validated by experimentally inserting PDHTs into
the six above-mentioned types of multipliers with 16-, 24-, and 32-bit operands
combining two PPAs and three FSAs. In total, we evaluated 18 multipliers in the
experiment. Note that such multipliers are frequently used for public key cryptog-
raphy with more than 100-bit multiplication.

4.1 Evaluation of PDHT detection probability
To evaluate the probability of PDHT detection during Monte Carlo testing, we
applied 107 random input vectors to PDHT-inserted multipliers and then counted
the number of setup time violations by performing gate-level timing simulations. In
addition, to analyze the dependencies of the setup time violations on the switching
probabilities and gate counts of the delay-added paths, we randomly selected a path
in each multiplier, added a delay to the selected path like a PDHT, and applied
106 random input vectors to the multiplier. We uniformly added a unit delay to
each gate along the randomly selected path such that the resulting path delay was
from 1.2 to 2.0 times the critical delay. For each multiplier, we repeated the above
evaluation process 1,000 times.

Figure 3 presents the histograms of the numbers of such multipliers with ran-
domly selected delay-added paths, where the horizontal axes indicate the detection
probabilities of 107 random inputs, and the red, green, blue, cyan and purple bars
denote the detection probabilities where the total path delays are from 1.2, 1.4, 1.6,
1.8 and 2.0 times the critical delay, respectively. Figures 4, 5 and 6 show the PDHT
detection probabilities for all 18 multipliers, where the values of zero indicate that
the corresponding RPs could not be detected in our experiment. From Figs 3 – 6, we
can confirm that the average detection probabilities of the RCAs are smaller than
those of the BCLAs and KSAs for any operand length and that all of the average
detection probabilities tend to be smaller if the operand length is larger.

We discuss these results in detail in the following subsections.

4.2 Evaluation of path delays
We then evaluated the average path delay in each multiplier. As described in Section
3, Eq. (8) is essential for evaluating PDHT detectability (i.e., the number of setup
time violations), which is closely related to the number of gates switched along the
RP to cause setup time violation. Table 1 shows the critical delay, average delay of
a randomly selected path, and difference between them for each multiplier. Table 1
reveals that the critical and average delays of the multipliers with Wallace trees are
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Figure 4: Detection probabilities of RPs inserted into 16-bit multipliers.
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Figure 5: Detection probabilities of RPs inserted into 24-bit multipliers.
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Figure 6: Detection probabilities of RPs inserted into 32-bit multipliers.

smaller than those of the multipliers with RBA trees, although both logic depths
are given as O(log(n)), where n is the number of input bits of the multiplier. This
tendency occurred because extra logic for converting redundant binary into common
binaries exists in multipliers with RBAs due to the redundant binary representation.
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Regarding the FSAs, the critical delays of the RCA-based multipliers are larger
than those of the BCLA- and KSA-based multipliers, and the magnitude relation
of the average delays is opposite to that of the critical delays. Note again that the
detection probability is higher when the value obtained from Eq. (8) is smaller. The
result indicates that it is easier to detect PDHTs in multipliers with KSAs rather
than BCLAs or RCAs. In contrast, the difference between the critical and average
delays in a PPA would be trivial.

Based on the above results, we discuss the detection probabilities of randomly-
inserted PDHTs where the insertion delays vary from 1.2 to 2.0 times the critical
path delay in Fig. 3. From the figure, we can first confirm that the detection prob-
abilities are lower when the insertion delay is smaller. This corresponds to the first
condition described in Section 3. In addition, the result indicates that the detec-
tion probabilities of PDHTs inserted into the multipliers based on RCA vary greatly
depending on the insertion delay value, compared to those of PDHTs inserted into
the KSA based multipliers. We can explain the difference by our analysis method
mentioned in Section 3 as follows.

The basic idea of our method is to estimate at least how many gates are needed
to cause the setup time violations. For example, let us consider the case where
the original delays of all gates are zero and only the gates on RP have the delays
inserted by introducing the PDHT. The half number of gates on RP is needed to be
switched in order to cause an error when the insertion delay is twice the critical delay.
However, since the all gates on the circuit have delays in practice, the number of
gates required to cause an error would be smaller than the half number. In addition,
the number of required gates depends on the ratio of each gate delay on the circuit
to the critical delay. If each gate delay is much smaller than the critical delay, the
almost half of gates on RP is needed to detect the PDHT. On the other hand, if
each gate delay is large, the number of gates required to be detected is smaller. In
our analysis mentioned in Section 3, we substitute the average path delays for each
gate delays.

From the table, we confirm that the difference in the average delay of randomly
selected paths between the multipliers based on RCA and KSA is small. On the
other hand, the difference of the critical delays between them is large. The number
of gates needed to cause an error is larger in the case of RCA–based multipliers in
comparison with KSA–based ones. This effect would be larger when the insertion
delay is smaller. In our experiments, at the smallest insertion delay (i.e., 1.2 times
the critical path delay), an error must cause when 83% of gates were activated. In
the case of KSA–based multiplier, it is highly likely that the number of gates required
to cause an error is actually smaller than the above number, but in the case of RCA,
it is considered that almost the same number is required. As mentioned above, the
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PPA FSA bit
length

dCP

[ns]
E[dP ]
[ns] Diff.

RBA tree

RCA
16 0.663 0.127 0.536
24 0.975 0.144 0.830
32 1.290 0.154 1.136

BCLA
16 0.332 0.132 0.200
24 0.347 0.149 0.198
32 0.400 0.162 0.238

KSA
16 0.257 0.142 0.115
24 0.268 0.162 0.106
32 0.310 0.171 0.139

Wallace tree

RCA
16 0.58 0.100 0.480
24 0.885 0.116 0.769
32 1.190 0.129 1.061

BCLA
16 0.246 0.104 0.142
24 0.290 0.123 0.167
32 0.319 0.136 0.183

KSA
16 0.197 0.111 0.085
24 0.224 0.131 0.093
32 0.247 0.142 0.105

Table 1: Critical and average delays of randomly chosen paths of various multipliers

number fo gates to cause an error is thought to be inversely proportional to the
ratio of the insertion delay to the critical delay. In fact, the ratio appears in the
denominator of Eq. 8 when we divide its numerator and denominator by the critical
delay. From the above reasons, it cecomes more difficult to detect RBA rather than
KSA and the detection becomes harder as the insertion delay decreases.

4.3 Evaluation of switching probability
The controllability of signals along the path significantly influences the detection
probability because a random vector can easily sensitize a path consisting of gates
with high switching probabilities. Figure 7 shows the histograms of the gate switch-
ing probabilities for 1,000 randomly selected paths in each multiplier, where the
horizontal axes indicate the logarithmic mean switching probabilities. Table 2 also
lists the corresponding average switching probabilities of the gates along the RPs.

Figure 7 confirms that the logarithmic means differ considerably depending on
the PPA algorithm. The multipliers with Wallace trees have smaller logarithmic
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PPA FSA 16-bit 24-bit 32-bit

RBA
tree

RCA 0.1589 0.1505 0.1523
BCLA 0.1099 0.0641 0.0455
KSA 0.1013 0.0459 0.0234

Wallace
tree

RCA 0.0378 0.0317 0.0322
BCLA 0.0640 0.0600 0.0517
KSA 0.0641 0.0449 0.0374

Table 2: switching probabilities of RPs

mean switching probabilities than those with RBA trees. In other words, there
are many paths with high activation probabilities in RBA trees, basically because
Wallace trees have asymmetric structures including many gates with switching prob-
abilities close to 0 or 1 while RBA trees have symmetric binary tree structures. The
critical delays of the above FSAs and PPAs are given by O(log(n)), except for the
RCAs. Since the logic depths of the paths in such FSAs and PPAs increase gradu-
ally with increasing operand length, the switching probability of each path does not
strongly depend on the operand length. Similarly, as mentioned in Section 3, many
paths in an RCA have far smaller logic depths than the critical path, which indicates
that the switching probability also does not strongly depend on the operand length
for an RCA.

4.4 Evaluation of our method

To conduct a theoretic validation of our argument, we performed multiple regression
analysis between the detection probabilities of 1,000 paths randomly selected from
each multiplier and predictor variables: (i) the controllabilities, (ii) the numbers of
gates along randomly selected paths, and (iii) M , given by (dCP − E[dP ])/(d′

RP −
dRP ). Note that each variable is normalized to unit variance in order to make
the influence of the variable on the multiple regression model meaningful and un-
derstandable. In this evaluation, we focus on 32-bit multipliers, which are more
frequently used in practical cryptographic HW than 16- and 24-bit ones. Table 3
shows the multiple regression analysis coefficients and t-stats. The R-squared value
obtained from the multiple regression was 0.699. Table 3 confirms that |t-stat| is
large for M and the switching probability, which indicates their significant influ-
ence on the model. Thus, M and the switching probability are good variables for
explaining PDHT detectability.
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5 Conclusion
This paper presented analyses of parallel multiplication hardware algorithms from
the viewpoints of RP characteristics and PDHT detectability. We discussed the
theoretical aspects of RPs in multipliers and their relations to PDHT detectability.
Our argument was validated through the experimental insertion of PDHTs into var-
ious multipliers. In addition, we confirmed the effectiveness of our method through
the experimental insertion with different amounts of inserted delays. The results
of multiple regression analysis confirmed that the proposed evaluation method pri-
marily explains PDHT detectability. The multiplier combined with an RBA tree
and KSA yielded the highest detectability among the evaluated multipliers. The
development of dedicated multiplication hardware algorithms that impede PDHT
insertion remains a topic for future work.
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Abstract
A noise-shaping analog-to-digital converter (ADC) using a ∆Σ modulator

network is proposed, and signal-level simulations are carried out as a proof of
concept. The present architecture is based on a feedforward artificial neural
network, where an N -bit digital output is generated through N channels con-
taining one ∆Σ modulator per channel. A moving average taken from each ∆Σ
modulator is optimized to obtain a multi-level feedforward signal. Simulation
results show proper noise-shaping characteristics for both the first-order and
second-order ∆Σ modulators. The effective number of bits (ENOB) increases
as the number of channels increases up to six. A non-binary conversion scheme
suggests a further advance in the ENOB. Finally, the present ADC is compared
with conventional multi-bit ∆Σ modulators.

1 Introduction
As an interface between the real analog world and digital systems, analog-to-digital
converters (ADCs) are indispensable in wireline/wireless communications, consumer
electronics, and sensor networks [1, 2]. They are also expected to play a key role
even in the future Internet of Things (IoT). These applications strongly require low
power consumption as well as a bit resolution of 8 bits or higher. A good balance
between these performances and the operation speed is also an important design
challenge. Various architectures have been investigated to meet these conditions,
including successive approximation, pipelined, and ∆Σ architectures [3]. Another
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interesting architecture, which we have focused on, is based on the artificial neural
network (ANN) first proposed in 1986 [4].

In the ANN-based ADC architecture, the input analog signal is applied to several
channels in a neural network, and neurons at the end of the channels generate the
output bits. Multilevel or analog signals flow between the channels to perform A/D
conversion. This makes the circuit configuration compact. The learning capability
inherent to the ANN is also attractive to achieve self-calibration, which is essential
for improving the ADC resolution [5]. However, ANN-based ADCs suffered from
the local minimum problem, which could result in unacceptably large conversion
errors [6].

To solve the problem, simple comparators conventionally used as neurons were
replaced with ∆Σ modulators [7]. Signal-level simulation showed that the bit resolu-
tion was increased to more than 15 bits by increasing the oversampling ratio (OSR)
to around 1000. Noise shaping characteristics, being unique to the ∆Σ modulation,
were also observed. An alternative method was also presented to further increase
the conversion resolution [8]: i.e., Increasing the number of channels in the ANN
network instead of increasing the OSR. Taking the moving average of a 1-bit ∆Σ
modulator output was proposed to generate multi-level signals, which were then
used as intermediate signals connecting the channels.

The purpose of this paper is to further discuss the alternative method [8] by
presenting detailed simulation results, and to confirm its effectiveness as a "hybrid"
approach to high-performance ADCs. In Section II, ANN-based ADC architectures
are briefly reviewed, and the present approach is described. Then, signal-level simu-
lation results are presented in Section III as a proof of concept, followed by discussion
in Section IV.

2 ANN-based ADC Architectures

A Hopfield-type 4-channel ANN-based ADC is shown in Fig. 1(a) [4]. The output
of channels represents the digital output. D1 and D4 are the most significant bit
(MSB) and the least significant bit (LSB), respectively. In the work of Tank and
Hopfield [4], sub-ADCs were simply comparators. However, they suffered from the
local minimum problem that caused a large quantization error. To solve it, an
asymmetric network shown in Fig. 1(b) was proposed [9–11]. This network is
equivalent to a feedforward one shown in Fig. 1(c), which is the basis of the present
architecture.

An alternative method to suppress the local minimum effect is to replace the
comparators with ∆Σ modulators [7]. Apparently random nature of ∆Σ modulator
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(a)

(b)

(c)

Figure 1: Block diagrams of 4-channel ADCs using Hopfield (a), asymmetric (b),
and feedforward (c) networks.

outputs effectively recovers the system from a local minimum. On the basis of this,
a feedforward architecture using ∆Σ modulators as neurons is investigated in this
study. As an example, the present architecture consisting of four channels is shown
in Fig. 2. This converts the analog input, x, into the digital output, y. DSM1 to
DSM4 are ∆Σ modulators used as sub-ADCs. In the present study, a 1-bit first-
order or second-order modulator shown in Fig. 3 was assumed. The constant α is
the radix in the conversion, which is equal to 2 unless otherwise mentioned. Circled
A’s represent to take a moving average, which was introduced in Ref. [8]. As will
be proved later, this was essential to improve the conversion resolution, because a
moving average can effectively suppress high-frequency quantization noises due to
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Figure 2: Proposed 4-channel ADC based on a feedforward network. Circled A’s
represent a moving average.
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Figure 3: Block diagrams of first-order (a) and second-order ∆Σ modulators used
in this study.

the noise shaping in ∆Σ modulation.
A 2-channel ADC with α = 2 is depicted in Fig. 4. Here, the outputs of ∆Σ

modulators are represented as

y1(n) = x(n) + E1(n) (1)

and

y2(n) = q(n) + E2(n). (2)

Here, q(n) is a moving average of p(n), which is written as

q(n) = p(n) = 1
M

n∑

i=n−M+1
p(i), (3)
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Figure 4: Proposed 2-channel ADC based on a feedforward network. Radix α in
Fig. 2 is 2, resulting in a 4-level output.

where

p(i) = 2x(i)− y1(i), (4)

and M is the number of samples taken for the moving average. Ei(n) is the quanti-
zation error associated with the ∆Σ modulation. If a first-order modulator is used,

Ei(n) = ei(n)− ei(n− 1), (5)

where ei(n) is the quantization error due to the quantizer (e(n) shown in Fig. 3) in
the modulator [12]. For a second-order ∆Σ modulator,

Ei(n) = (ei(n)− ei(n− 1))− (ei(n− 1)− ei(n− 2)). (6)

The input to DSM2 q(n) is an (M + 1)-valued feedforward signal from the first
channel to the second channel. The output y(n) is obtained as

y(n) = y1(n)2−1 + y2(n)2−2. (7)

In this 2-channel case, the output y(n) is one of four values (-0.75, -0.25, +0.25, and
+0.75) because yi(n) = ±1. Similarly, for an N -channel case, y(n) is a 2N -valued
output.

3 Simulation results
3.1 Output waveform and spectrum
The sinusoidal input and corresponding output waveforms obtained from the 2-
channel structure shown in Fig. 4 are presented in Fig. 5. As shown in this figure,
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y1(n) and y2(n) are normal ∆Σ modulator outputs for the input signals x(n) and
q(n) respectively, q(n) is the moving average of p(n)(= 2x(n)− y1(n)), and y(n) is
the 4-valued output as was described in Eq. 7. In the present study, M = 8 was
assumed unless otherwise mentioned. The operation of the present ADC is thus
confirmed.
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Figure 5: Output waveforms at several nodes in Fig. 4.

The input and output waveforms obtained from a present 4-channel ADC as
shown in Fig. 2 with α = 2 is also plotted in Fig. 6. In this case, the output y(n) is
a 16-level signal (-0.9375, -0.8125, -0.6875, · · · , +0.9375) as was explained above. In
other words, the analog input is represented by the oversampled 16-level output. The
output spectrum obtained by FFT analysis is shown in Fig. 7. Clear noise-shaping
characteristics with a slope of about 20dB/dec indicate a proper first-order ∆Σ
modulation. Note that simulation conditions used to obtain the time-domain and
frequency-domain results were different from each other for the purpose of showing
them clearly.

The sinusoidal input and corresponding output waveforms obtained from a 4-
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Figure 6: Input sinusoidal (dashed line) and 16-level output waveforms obtained
from a present 4-channel ADC using four first-order ∆Σ modulators.

-140

-120

-100

-80

-60

-40

-20

0

0.1 1 10 100 1000

M
a
g
n

it
u
d
e

 (
d
B

)

Frequency (Hz)

4096 pts. 

DSM1

Figure 7: Spectral density obtained from a present 4-channel ADC using first-order
∆Σ modulators.

channel ADC with second-order ∆Σ modulators are shown in Fig. 8. The output
y(n) is, again, a 16-level signal: -0.9375, -0.8125, -0.6875, · · · , +0.9375. Although
the difference between the output waveforms of Figs. 6 and 8 is not clear, the output
spectrum shown in Fig. 9 reveals a clear difference in a noise-shaping slope; it is
almost 40dB/dec, being twice as large as that in Fig. 7. This shows the second-order
∆Σ noise-shaping characteristics.

1839



Waho

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time

Figure 8: Input sinusoidal (dashed line) and 16-level output waveforms obtained
from a present 4-channel ADC using second-order ∆Σ modulators.
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Figure 9: Spectral density obtained from a present 4-channel ADC using four second-
order ∆Σ modulators.

3.2 Bit resolution

From the output spectrum shown in Figs. 7 and 9, the bit resolution of ADCs (more
specifically, the effective number of bits (ENOB) [1]) can be calculated. The increase
in ENOB indicates an improvement in the bit resolution. Fig. 10(a) shows ENOB
values obtained from the present ADC with first-order ∆Σ modulators. Each plot
corresponds to a single output spectrum shown in Fig. 7. Because the ENOB is
equivalent to the signal-to-noise ratio, and because the quantization noise power is
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Figure 10: Effective number of bits (ENOB) as a function of the input amplitude
obtained from present ADCs using first-order ∆Σ modulators (a) and peak ENOB
as a function of the number of channels (b).

independent of the input amplitude, the ENOB improves as the input amplitude
increases. The slope can be theoretically predicted to be 3 bits/dec, which agrees
well with the simulation results. This figure also shows that the ENOB increases as
the number of channels increases from one to six. The input full-scale was assumed
to be ±0.5. As the amplitude approaches the full-scale value, the ENOB saturates
and drops abruptly. This abrupt decrease in ENOB results from the instability of
∆Σ modulators. In other words, if the input value exceeds the feedback signal in
the ∆Σ loop, ±0.5 in this case, the ∆Σ loop becomes unstable.

From Fig. 10(a), the peak ENOB was obtained as an average over the three
largest ENOB values to avoid a fluctuation effect in the estimated ENOB. Fig. 10(b)
shows the results obtained from ADCs with first-order ∆Σ modulators. When an
oversampling ratio (OSR) is larger than 500, the peak ENOB increases by 1 bit
for every increase in the number of channels. This shows that every channel in
the present ADC provides 1-bit digital output, just as the same in the conventional
neural-network ADCs. In contrast, however, the increase in the peak ENOB satu-
rated for smaller OSR values. This will be discussed below.

Fig. 11 shows the ENOB and the peak ENOB obtained from the ADCs with
second-order ∆Σ modulators. For OSR > 500, it is observed, again, that the peak
ENOB increases by 1 bit for every increase in the number of channels. Fig. 11(a)
shows that the input amplitude corresponding to the maximum ENOB is smaller for

1841



Waho

the second-order ∆Σ ADCs than for the first-order ones. This is because the second-
order modulator tends to be unstable for smaller input values than the first-order
modulator [12].
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Figure 11: Effective number of bits (ENOB) as a function of the input amplitude
obtained from present ADCs using second-order ∆Σ modulators (a) and peak ENOB
as a function of the number of channels (b).

The peak ENOBs obtained for OSR = 125 are replotted in Fig. 12 as well as
well as those without taking the moving averages. As was explained above, the peak
ENOB with the moving averages increases as the number of channels increases. On
the other hand, without the moving average, it was not enhanced even if the number
of channels increased. In the second-order modulator case, the ENOB became even
worse when the number of the channels increased. Therefore, it is proved that
taking the moving average, as shown in Figs. 2 and 4, is indispensable to increase
the ENOB, or to improve the bit resolution by effectively suppress high-frequency
quantization noises due to ∆Σ modulation.

To clarify the effect of moving average, the peak ENOB was calculated for various
sample numbers in the moving average. Fig. 13 shows the results. By taking the
moving average, high-frequency quantization noise components is suppressed, which
results in the increase in the peak ENOB. However, if the sample number in the
moving average is too large, the signal can be blurred out and the peak ENOB
decreases. Therefore, the optimum number of samples for the best peak ENOB
exists, as shown in this figure. In this simulation, since the sampling period was
kept constant, the optimum number for OSR = 500 is 4 times larger than that
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Figure 12: Peak ENOB as a function of the number of channels obtained from
present ADCs using first-order (DSM1) and second-order (DSM2) ∆Σ modulators
with and without moving averages (M. A.).

for OSR = 125. Also, it should be mentioned that the peak ENOBs for 4-channel
and 6-channel ADCs are almost the same if OSR = 125 and M/2 > 10. This
agrees with the saturations in the peak ENOB shown in Figs. 10(b) and 11(b). The
moving average is a lowpass filter, the bandwidth of which is inversely proportional
to the sample number in the average. Thus, as the ample number increases, the
bandwidth decreases. It should be also noted that this lowpass filter is cascaded in
the present ADC as shown in Fig. 2. Therefore, the more the number of channels,
the narrower the bandwidth, which probably results in the saturation. In fact, for
OSR = 16, since the input wavelength is only 4 times longer than the moving
average period, only a small portion of the input signal is transmitted to higher
channels, and therefore, virtually no improvement was obtained in the peak ENOB.

Results presented above were obtained by assuming α = 2, or the binary conver-
sion. Recently, non-binary schemes are sometimes effectively used in ADCs [13]. By
introducing redundancy, the requirement on the mismatch in device characteristics
can be relaxed, resulting in the better ENOB. Fig. 14 shows the results obtained
by changing the value of α. It is found that α = 2 is a reasonable choice both for
first- and second-order ∆Σ modulators. Slightly better ENOBs are observed in the
second-order case, which might be related to the potential instability. Reducing the
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Figure 13: Peak ENOB as a function of the number of samples in moving averages.
Note that the horizontal axis is M/2.

radix can effectively improve the stability by introducing a redundancy. This figure
suggests that high accuracy in α is not required because the ENOB remains almost
constant even if α varies from 1.8 by ±10%, for example. However, α at the output
summing node should be matched with α at the input node.

4 Discussion
Conventional ∆Σ modulators with architecture similar to the present ADC shown
in Fig. 2 are known as cascaded multi-stage ∆Σ modulators, or MASH [14], and
multibit ∆Σ modulators [12]. In the MASH architecture, the difference between the
output and input of the comparator in the ∆Σ modulator is used as the feedback
signal. In contrast, in the present structure, the difference between the terminals
of the ∆Σ modulator itself, for instance DSM1, is used as the feedforward signal.
While higher-order operation is achieved in the MASH architecture, the multi-bit
operation, as shown in Figs. 10 and 11, is achieved in the present architecture.
These two operation modes can be used complementarily, or combined into a single
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channels. For comparison, peak ENOB for conventional first-order and second-order
∆Σ modulators are shown by arrows (a) and (b), respectively.

ADC in the future.
It is interesting to compare the present ADC with conventional multibit ∆Σ

modulators. Fig. 15 compares the peak ENOB of the present ADCs with that
of conventional multibit ∆Σ modulators. For the first-order case, the present and
conventional configurations show the peak ENOB comparable to each other. For
the second-order case, the peak ENOB of conventional multibit modulators is better
than that of the present ADC for the number of bits larger than 3. The reason for this
is related to the stability of the ∆Σ negative feedback loop. As the number of bits
increases, the quantization noise decreases, which results in a better stability. This
allows the multibit modulator to operate with a larger input amplitude, resulting
a higher peak ENOB. In contrast, the present ADC uses 1-bit modulators in each
channel, so even if the number of channels increases, the stability is unchanged, and
the enhancement in the peak ENOB is not obtained.

Table. ?? compares the two architectures with respect to the number of compara-
tors and opamps needed for circuit implementation. The comparison was carried
out by assuming the same bit resolutions of 18 bits and 23 bits for the first-order and
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Figure 15: Peak ENOB as a function of the number of channels in the present
ADCs using the first-order (4) and second-order (◦) ∆Σ modulators (NN). For
comparison, peak ENOB as a function of the number of bits in conventional first-
order (N) and second-order (•) multibit ∆Σ modulators are also plotted (MB).

1st order @18 bits 2nd order @23 bits
Comparator Opamp Comparator Opamp

This work 6 12 5 ∼6 15 ∼18
Multibit ∆Σ 32 (= 25) 1 8 (= 23) 2

Table 1: Comparison between this work and multibit ∆Σ modulator

second-order cases, respectively, based on the results shown in Fig. 15. In this work,
to obtain a peak ENOB of 18 bits with the first-order configuration, 6 channels are
required, which consists of 6 comparators, 6 opamps in the integrators, 5 opamps for
the moving average, and 1 opamp in the summing node. A conventional 5-bit ∆Σ
modulator was assumed for comparison. In this case, 25 comparators are necessary
to obtain 5-bit resolution, but only one integrator is enough due to the single first-
order negative feedback loop. As for the second order case, the number of channels
is assumed to be 5 or 6 for this work, while 3-bit is assumed for a conventional
multibit modulator. Therefore, the advantage of this work is the reduced number
of comparators, while the drawback is the large number of opamps required here.
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In addition, it should be noted that dynamic element matching (DEM) circuits are
required to improve the linearity [15], because a digital-to-analog converter is used
in the ∆Σ feedback loop. Such DEM circuits are not necessary in the present ADC,
because it has only feedforward paths.

Since opamps consume much power, the number of opamps should be reduced
by introducing novel circuit design techniques, such as ring amplifiers [16], dynamic-
common-source circuits [17], and passive-mode circuits [18] [19]. These techniques
are worth introducing into future circuit implementations. Another challenge might
be designing the moving average circuit. The FIR filter based on the switched-
capacitor technique [20] can be applied here because the moving average is a special
case of the FIR filter, where the weighting coefficients are all the same, typically 1.

5 Conclusion

A novel analog-to-digital converter (ADC) architecture, which is based on a multi-
channel feedforward network including ∆Σ modulators, was investigated. Multilevel
signals were obtained by taking the moving average of the ∆Σ modulator output and
used as feedforward signals. Our signal-level simulation revealed that the effective
number of bits (ENOBs) increased by almost one bit at every one additional channel.
An ENOB as high as 20 bits was predicted for the present 6-channel ADC with
an oversampling ratio (OSR) of 250. This architecture is expected to provide a
promising alternative approach for improving the ADC performance with a compact
circuit configuration.
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Abstract

This paper proposes a method using zero-suppressed binary decision diagrams
(ZDDs) to find an exact optimum linear decomposition of symmetric index genera-
tion functions. The proposed optimization method recursively divides an index set of
a symmetric index generation function, based on a branch and bound approach. The
method uses ZDDs to represent partitions of an index set compactly and uniquely, and
thus, it reuses partial solutions (partitions of an index set) efficiently to prune redun-
dant solution search. In addition, by taking advantages of the symmetry property, the
method reduces search space significantly, and can find an optimum solution quickly.
Experimental results using benchmark symmetric index generation functions show ef-
fectiveness of the proposed method.

1 Introduction

Many network applications, such as detection of computer viruses and packet classification,
use index searches as a basic operation. As network communication speeds increase, index
searches have become a bottleneck. Especially, now virus patterns and classification rules
need frequent updating. Thus, fast programmable hardware is essential in performing these
index searches.

This paper is an extension of [5].
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Index searches can be implemented as Index generation functions [7, 8]. To overcome
the above challenges, an efficient memory-based hardware design method for index gener-
ation functions has been proposed [10]. The design method is based on linear decompo-
sition [1, 6] of index generation functions, and decomposes an index generation function
f (x1,x2, . . . ,xn) into two parts: L and G, as shown in Fig. 1. The first part L realizes linear
functions yi (i = 1,2, . . . , p) in a linear decomposition of f . L is realized by a programmable
architecture [10] with EXOR gates, registers, and multiplexers. The second part G realizes
a remaining function (general function) in a linear decomposition of f . G is realized by a
(2p×q)-bit memory, where p is the number of linear functions, and q is the number of bits
needed to represent function values of f .

In this design method, minimization of the number of linear functions, p, is indispens-
able to obtain a practical implementation because memory size of G strongly depends on p.
Various minimization methods have been proposed [3,4,9,10,12,13,14,15]. Most of them
are heuristic, and as far as we know, only a few exact minimization methods [4, 5, 14, 15]
have been proposed. Although heuristic methods are more scalable, devising an efficient
exact minimization method is not only academically but also practically significant. This is
because it becomes a basis for evaluating the quality of heuristic methods.

Since the exact minimization methods proposed in [14, 15] reduce the linear decom-
position problem to a SAT problem, and solve it using a SAT solver, they no longer have
much room for improvement unless the SAT solver is improved. On the other hand, the
methods proposed in [4, 5] are emerging methods dedicated to solving the linear decompo-
sition problem, and thus, they still have enough room for improvement. This paper focuses
on improvement of the emerging methods, and proposes an exact optimization method for
linear decomposition of symmetric index generation functions.

The proposed method uses zero-suppressed binary decision diagrams (ZDDs) to repre-
sent partial solutions of the problem compactly and uniquely. By using ZDDs, the proposed
method can reuse partial solutions efficiently to prune redundant solution search. In ad-
dition, by taking advantages of the symmetry property of functions, the method reduces
search space significantly, and can find an optimum solution much faster than the existing

Linear functions General function

q

L G

x

f

1

x
2

xn

y
1

y
2

yp

Figure 1: Linear decomposition of an index generation function [10].
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methods [4, 5].
The rest of this paper is organized as follows: Section 2 defines symmetric index gen-

eration functions and linear decomposition. Section 3 formulates the optimization problem
of linear decomposition, provides a brief overview of the existing exact optimization meth-
ods [4, 5], and proposes its improvement method using ZDDs and the symmetry property
of functions. Section 4 shows experimental results using some benchmark symmetric index
generation functions, and Section 5 concludes the paper.

2 Preliminaries

We briefly define index generation functions [7,8] and their linear decompositions [1,6,10].

Definition 1. An incompletely specified index generation function, or simply index gen-
eration function, f (x1,x2, . . . ,xn) is a multi-valued function, where k assignments of values
to binary variables x1,x2, . . . ,xn map to K = {1,2, . . . ,k}. That is, the variables of f are
binary-valued, while f is k-valued. Further, there is a one-to-one relationship between the
k assignments of values to x1,x2, . . . ,xn and K. Other assignments are left unspecified. The
k assignments of values to x1,x2, . . . ,xn are called the set of registered vectors. K is called
the set of indices. k = |K| is called the weight of the index generation function f .

Example 1. Fig. 2 shows 4-variable index generation functions with weight four. Note that,
in Fig. 2(a), input values other than 0001, 0010, 0100, and 1101 are NOT assigned to any
function values.

Definition 2. A characteristic function χ of an index generation function f (x1,x2, . . . ,xn)
is a logic function: {0,1}n→{0,1} defined as

χ(x1,x2, . . . ,xn) =

{
1 ( f (x1,x2, . . . ,xn) ∈ K)
0 (Otherwise).

Registered vectors indices
x1 x2 x3 x4 fa

0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 1 0 1 4
(a) Asymmetric function.

Registered vectors indices
x1 x2 x3 x4 fs

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4

(b) Symmetric function.

Figure 2: Example of index generation functions [4].
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Definition 3. A symmetric logic function χ satisfies

χ(x1,x2, . . .xi, . . . ,x j, . . . ,xn) = χ(x1,x2, . . .x j, . . . ,xi, . . . ,xn) (∀xi,x j).

In this function, function values are decided only by the number of 1’s in an assignment of
values to x1,x2, . . . ,xn. An elementary symmetric function Sn

m is a special case of symmetric
logic functions where Sn

m = 1 if and only if the number of 1’s in an assignment to x1,x2, . . . ,xn

is m.

Definition 4. Let χ(x1,x2, . . . ,xn) be a characteristic function of an index generation func-
tion f . When χ is symmetric, f is a symmetric index generation function.

Note that “ f is a symmetric index generation function” does not mean f is a symmetric
function (where any permutation of the input values leaves the function value unchanged).
This is because, for each e ∈ K, there is only one assignment of values to the variables
which maps to e. Therefore, only very few symmetric index generation functions are sym-
metric. An example of a symmetric index generation function that is symmetric is f1, where
f1(0,0, . . . ,0) = 1, f1(1,1, . . . ,1) = 2, and f1 = 0 otherwise.

This paper considers only the case where χ is an elementary symmetric function. Thus,
in this paper, symmetric index generation function means that its χ is an elementary sym-
metric function, unless otherwise stated.

Example 2. Fig. 2(b) shows a symmetric index generation function.

Definition 5. Let K = {1,2, . . . ,k} be a set of indices of an index generation function. If
K = S1 ∪ S2 ∪ . . .∪ Su, each Si 6= /0, and Si ∩ S j = /0 (i 6= j), then P = {S1,S2, . . . ,Su} is
a partition of the set of indices K. When all the subsets Si are singletons (i.e., |Si| = 1),
|P |= |K|= k.

An arbitrary n-variable index generation function with weight k can be realized by a
(2n×q)-bit memory, where q= dlog2(k+1)e. Linear decomposition is effective in reducing
the memory size [10].

Definition 6. Linear decomposition of an index generation function f (x1,x2, . . . ,xn) is a
representation of f using a general function g(y1,y2, . . . ,yp) and linear functions yi:

yi(x1,x2, . . . ,xn) = ai1x1⊕ai2x2⊕ . . .⊕ainxn

(i = 1,2, . . . , p),

where ai j ∈ {0,1} ( j = 1,2, . . . ,n), and, for all registered vectors of the index generation
function, the following holds:

f (x1,x2, . . . ,xn) = g(y1,y2, . . . ,yp).

1852



OPTIMIZATION FOR LINEAR DECOMPOSITION OF IGFS

y1 y2 g1 g2

0 0 1 2
0 1 2 1
1 0 3 3
1 1 4 4

Table 1: General functions g1 and g2 in linear decomposition of fa [4].

Each yi is called a compound variable. For each yi, ∑n
j=1 ai j is called a compound degree

of yi, denoted by deg(yi), where ai j is viewed as an integer, and ∑ as an integer sum.

Definition 7. An inverse function of a general function z = g(y1,y2, . . . ,yp) in a linear
decomposition is a mapping from K = {1,2, . . . ,k} to a set of p-bit vectors {0,1}p, denoted
by g−1(z). In this inverse function g−1(z), a mapping obtained by focusing only on the i-th
bit of the p-bit vectors: K→ {0,1} is called an inverse function to a compound variable
yi, denoted by (g−1)i(z).

Definition 8. Let ON(yi) = {z | z∈K,(g−1)i(z) = 1}, where K = {1,2, . . . ,k} and (g−1)i(z)
is an inverse function of g(y1,y2, . . . ,yn) to yi. |ON(yi)| is called the cardinality of yi or
informally the number of 1s included in yi.

Example 3. The index generation function fa in Example 2 can be represented by y1 = x2,
y2 = x1⊕ x3, and g1(y1,y2) shown in Table 1. In this case, deg(y1) = 1 and deg(y2) = 2,
respectively. fa can be also represented by y1 = x2, y2 = x4, and g2(y1,y2) in the same
table. In this case, both deg(y1) and deg(y2) are 1. In either case, fa can be realized by the
architecture in Fig. 1 with a (22×3)-bit memory.

For g2(y1,y2) in Table 1, its inverse functions to y1 and y2 are (g−1
2 )1(z) and (g−1

2 )2(z),
respectively. We have (g−1

2 )1(2) = 0, (g−1
2 )1(1) = 0, (g−1

2 )1(3) = 1, and (g−1
2 )1(4) = 1.

Similarly, (g−1
2 )2(2) = 0, (g−1

2 )2(1) = 1, (g−1
2 )2(3) = 0, and (g−1

2 )2(4) = 1. The cardinali-
ties of both y1 and y2 are 2.

In this way, linear decomposition can significantly reduce memory size needed to realize
an index generation function. But, in linear decomposition, not only memory, but also
EXOR gates, registers, and multiplexers are required to realize a compound variable (i.e.,
block L in Fig. 1). Since circuit size of L depends on compound degrees, lower compound
degrees are desirable when the memory size is equal.
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3 Exact Optimization of Linear Decomposition

This section formulates the optimization problem of linear decomposition, and shows exact
optimization methods to solve the problem.

3.1 Formulation of Optimization Problem

Linear decomposition of an index generation function is realized by the architecture in
Fig. 1 using EXOR gates, registers, multiplexers, and a (2p×q)-bit memory. Among these
components, only memory requires size exponentially growing with the number of linear
functions p. To reduce memory size, we address the following problem:

Problem 1. Given an index generation function f and an integer t, find a linear decompo-
sition of f such that the number of linear functions p is minimum, and compound degrees
are at most t.

The constraint on compound degrees t is given to constrain not only solution space, but
also delay and area of the circuit L realizing the linear functions.

Example 4. For linear decompositions of fa in Example 3, the decomposition with y1 = x2,
y2 = x4, and g2(y1,y2) is optimum when t = 1.

3.2 Existing Methods Based on Partition of Indices

This subsection shows a brief review of existing exact optimization methods [4, 5] that are
basis of the proposed method.

3.2.1 Overview of Existing Methods

We consider Problem 1 as a problem of minimizing the height of a binary decision tree
constructed by compound variables [3].

Example 5. Fig. 3 shows a binary decision tree of the smallest height that divides the set of
indices into singletons by compound variables y1 and y2. It corresponds to g2 in Table 1.

The existing methods [4, 5] search for a binary decision tree with the smallest height,
based on a branch and bound approach. They select a candidate of an optimum compound
variable one by one in a top-down manner, and divide a given set of indices recursively
by selected variables while constructing a binary decision tree. By comparing heights of
the trees, the best combination of compound variables is found. Algorithm 1 shows the
overview of the branch and bound approach.
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Figure 3: Binary decision tree for g2 of Table 1 [5].

Algorithm 1. Overview of the branch and bound approach in [4, 5]

Input: an index generation function with weight k and a compound degree t
Output: a set of compound variables and its size hmin

Let P = {K},h = 0, and iterate the following recursively.
min_search(P ,h) {

if (|P |= k) { update_solution(h); return; }
if (bound_condition(P ,h) is satisfied) return;
branch(P , t, h);

}

Algorithm 1 searches for a solution recursively while constructing a binary decision tree
with height h. When |P | = k (i.e., the set of indices is divided into singletons), a solution
(a set of h compound variables) is obtained. The procedure update_solution() compares the
obtained solution with the current solution, and updates the current solution if the obtained
one is better. The procedure branch() explores the solution space by selecting a compound
variable using two cost functions proposed for the heuristic method [3]:

cost1(P ,yi) =

√√√√∑
S∈P

( |S|
2
−|S∩ON(yi)|

)2

and
cost2(P ,yi) = max

S∈P
{max{|S∩ON(yi)|, |S\ON(yi)|}} ,
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where P is a partition of a set of indices with already selected compound variables. The pro-
cedure bound_condition() detects an ineffective solution using the lower bound discussed
below in Theorem 1, and prunes it.

Theorem 1. [4] Let m be the number of indices in a set, and c be the number of 1s in
compound variables. When c < m

2 , at least

lower(m,c) =
⌊m

c

⌋
+ dlog2(c)e−1

compound variables are needed to divide the set into m singletons.

3.2.2 Previous Improvement Method Using ZDDs [5]

Before describing the improvement method using ZDDs [5], we briefly define ZDDs.

Definition 9. A zero-suppressed binary decision diagram (ZDD) [2] is a rooted directed
acyclic graph (DAG) representing a logic function. It consists of two terminal nodes repre-
senting function values 0 and 1, and nonterminal nodes representing input variables. Each
nonterminal node has two outgoing edges, 0-edge and 1-edge, that correspond to the values
of the input variables. Neither terminal node has outgoing edges.

A ZDD is obtained by repeatedly applying the Shannon expansion f = xi f0∨ xi f1 to a
logic function, where f0 = f (0→ xi), and f1 = f (1→ xi), and by applying the following
two reduction rules:

1. Coalesce equivalent sub-graphs.

2. Delete nonterminal nodes whose 1-edge points to the terminal node representing 0,
and redirect edges that point to the deleted node, to the node, to which the 0-edge of
the deleted node has pointed.

As is well known, ZDDs represent partitions compactly and uniquely [2], and thus, a
partition of an index set P = {S1,S2, . . . ,Su} can be also represented compactly and uniquely
using a ZDD. Example 6 below shows an example of the use of ZDDs.

Example 6. Let an index set be K = {1,2,3,4,5,6}, and a partition of K be P = {{1,3,6},
{2,5},{4}}. Fig. 4 shows a ZDD for P . In Fig. 4, dashed lines and solid lines denote
0-edges and 1-edges, respectively. The number of nonterminal nodes is 6.

Theorem 2. [5] Let an index set be K = {1,2, . . . ,k}. For any partition P of K, the number
of nonterminal nodes in a ZDD for P is k, regardless of the variable order.
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Figure 4: ZDD for P = {{1,3,6},{2,5},{4}} [5].

As described in Section 3.2.1, Algorithm 1 searches for an optimum solution while
dividing a given index set repeatedly. Thus, a same partition of indices tends to repeatedly
appear during solution search. However, once the minimum number of compound variables
needed to divide a partition of indices into singletons is found, we do not need to divide
the same partition again to obtain its minimum number of compound variables. By reusing
subsolutions obtained by past solution search, we can prune such redundant search space.
The question is how to store subsolutions (i.e. partitions of indices) compactly and uniquely
in memory. To answer this question, we use ZDDs.

Algorithm 2 shows the overview of the improved method using ZDDs. A ZDD is con-
structed for each partition using Change and Union operations that are basic operations in a
ZDD package [2]. Then, the ZDD is checked to determine whether the current subsolution
has already been obtained. This checking is made by searching the history of ZDDs for
the equivalent one. Such a search (equivalence checking) is what ZDDs do best; it is done
in O(1) time. If the subsolution has already been obtained, and it does not improve the
current solution, then the solution search is pruned. On the other hand, when any subsolu-
tion has not been obtained yet, the solution search is performed, and after that, the ZDD is
stored to the history with the obtained subsolution. In this way, redundant solution search
is efficiently pruned using ZDDs.
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Algorithm 2. Overview of the improved method using ZDDs

Input: an index generation function with weight k and a compound degree t
Output: a set of compound variables and its size hmin

Let P = {K},h = 0, and iterate the following recursively.
min_search(P ,h) {

if (|P |= k) { update_solution(h); return; }
Construct a ZDD for P ;
Search for ZDD_subsolution in ZDD_History();
if ((ZDD_subsolution has been obtained) and (its min_lower + h≥ hmin))

return;
if (bound_condition(P ,h) is satisfied) return;
min_lower = branch(P , t, h);
Add the ZDD and min_lower to ZDD_History;

}

3.3 Proposed Improvement Method Using ZDDs and Symmetry Property

The method described in Section 3.2.2 can be improved further by targeting symmetric
index generation functions. This subsection proposes an improvement method using ZDDs
in combination with the symmetry property of functions.

In Section 3.2.2, ZDDs directly represent partitions of indices, and the ZDDs are used
to prune redundant solution search. However, for symmetric index generation functions,
each value of index itself has no meaning, and thus, it can be abstracted. Each index can be
used only to distinguish from others. This is because indices of symmetric index generation
functions are exchangeable when Problem 1 is considered. Thus, in a partition of indices,
we define a relation between size of subset in the partition and the number of subsets with
the same size, and then, we represent the relation using a ZDD.

Example 7. In a partition of indices {{1,3,6}, {2,5},{4}}, size of each subset is 3, 2, and
1. Thus, we have a relation {(3,1),(2,1),(1,1)}. In another partition of indices {{1,2},
{3,4},{5,6}}, size of all the three subsets is 2. Thus, we have a relation {(2,3)}.

In this way, for symmetric index generation functions, we can remove index values
when considering the minimum number of compound variables needed to divide a partition
of indices into singletons. This is because only sizes of subsets are important. By using this
representation to remove index values, partitions of indices can be classified into equiva-
lence classes. Since a ZDD represents a representative of each equivalence class, we can
prune redundant solution search significantly.
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Figure 5: ZDD for a relation Pr = {(3,1),(2,1),(1,1)} of P = {{1,3,6},{2,5},{4}}.

Example 8. Fig. 5 shows a ZDD for a relation Pr = {(3,1),(2,1),(1,1)} of a partition of
indices P = {{1,3,6}, {2,5},{4}} in Example 7. In Fig. 5, 1s, 2s, and 3s denote subset
sizes 1, 2, and 3, respectively. And, 1n denotes that the number of subsets with the same
size is 1. Since the size of each subset is different than others, all the pairs in Pr share the
nonterminal node of 1n in the ZDD.

Theorem 3. Let an index set be K = {1,2, . . . ,k}, a partition of K be P , and a relation
between subset size and the number of subsets in P be Pr. An upper bound on the number
of nonterminal nodes in a ZDD for Pr is

√
8k+1−1.

Proof: Let P = {S1,S2, . . . ,Su}. The number of elements in Pr is maximum when the size
of each subset Si differs from each other. Without loss of generality, let |S1| = 1, |S2| =
2, . . . , |Su|= u. Then, the total number of elements in all Si’s is

u

∑
i=1

i =
u(u+1)

2
.

Since P is a partition of indices, the total number of elements is not larger than k, and we
have

u(u+1)
2

≤ k.

From u≥ 0 and k ≥ 0, we have

u≤
√

8k+1−1
2

. (1)
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Let a 1-path in a ZDD be a sequence of edges and nodes leading from the root node to
the terminal node representing 1. A 1-path in a ZDD for Pr represents an ordered pair in
Pr, and a pair of a 1-edge and its nonterminal node on the 1-path represents an element in
the ordered pair. Thus, the number of 1-paths is exactly |Pr|, and the number of pairs of a
1-edge and its nonterminal node on each 1-path is exactly 2. Unless nonterminal nodes are
shared, the number of nonterminal nodes is |Pr|×2 From (1), we have the theorem.

While the number of nonterminal nodes in a ZDD directly representing a partition of
indices P is O(k), the number of nodes in a ZDD representing a relation of P is O(

√
k).

Thus, this method improves not only search time but also memory size.

4 Experimental Results

The proposed exact minimization method is implemented in the C language, and run on the
following computer environment: CPU: Intel Core2 Quad Q6600 2.4GHz, memory: 4GB,
OS: CentOS 5.7 Linux, and C-compiler: gcc -O2 (version 4.1.2).

4.1 On Reduction of Search Space

To evaluate the effectiveness of the proposed improvement method, we compare the pro-
posed method with the existing methods [4, 5] in terms of search space size. Table 2 shows
the number of times that the procedure branch() is invoked in each method for some bench-
mark symmetric index generation functions shown in [10]. The bold values in Table 2 show
where the proposed method significantly outperforms the other two methods.

As shown in Table 2, the search space size of the proposed method using ZDDs in
combination with the symmetry property of functions is several orders of magnitude smaller
than the search space of the existing ones. Search space is reduced by using ZDDs, as
achieved by the existing method of [5]. And, by taking advantages of the symmetry property
together, effectiveness of ZDDs is significantly improved. Even for functions where the
existing methods could not find the optimum solution because of large search space, the
proposed method can find the optimum solution in a short computation time by avoiding
redundant solution searching. From these results, we can see that the proposed improvement
method has a significant effect on the reduction of the redundant solution searching.

4.2 On Number of Nonterminal Nodes

Table 3 shows the total number of nonterminal nodes in ZDDs needed to represent all parti-
tions of an index set that appeared during a search for solutions in the proposed method and
the existing method [5]. Note that this number does not include unused nodes after ZDD
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Number of times branch() is invoked
Benchmark Compound hmin Existing Existing Proposed
functions degrees method [4] method [5] method

1-out-of-10 t = 1 9 9 9 9
t = 2 6 1,975,364 5,310 13
t = 3 5 151,773 2,268 6
t = 4 4 4 4 4
t = 5 4 4 4 4

1-out-of-12 t = 1 11 11 11 11
t = 2 8 † † 29
t = 3 6 † † 16
t = 4 5 † 6,274 6
t = 5 4 † † 4

1-out-of-16 t = 1 15 15 15 15
t = 2 11 † † 57
t = 3 8 † † 78
t = 4 6 † † 10
t = 5 5 5 5 5

2-out-of-16 t = 1 15 † † 15
t = 2 11 † † 62
t = 3 9 † † 26
t = 4 8 8 8 8
t = 5 8 9 9 9

3-out-of-16 t = 1 15 † † 15
t = 2 13 † † 142
t = 3 11 † † 113
t = 4 10 10 10 10
t = 5 10 † † 32,239

† Computation was terminated when it exceeded one hour.

Table 2: Comparison of methods in terms of search space.

operations (that is, Table 3 shows the number of nodes after garbage collection is applied).
These results correspond to space (memory size) complexities of both the methods.

Since a ZDD is constructed every time branch() is invoked, the number of ZDDs is
equal to the search space shown in Table 2. As shown in Table 3, the number of ZDDs in
the proposed method is smaller than that in the existing method because the search space of
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Benchmark Compound k Existing method [5] Proposed method
functions degrees No. of No. of No. of No. of

ZDDs nodes ZDDs nodes
1-out-of-10 t = 1 10 9 59 9 26

t = 2 10 5,310 11,564 13 33
t = 3 10 2,268 4,765 6 19
t = 4 10 4 36 4 14
t = 5 10 4 38 4 12

1-out-of-12 t = 1 12 11 84 11 32
t = 2 12 † † 29 72
t = 3 12 † † 16 43
t = 4 12 6,274 13,451 6 19
t = 5 12 † † 4 15

1-out-of-16 t = 1 16 15 144 15 44
t = 2 16 † † 57 136
t = 3 16 † † 78 187
t = 4 16 † † 10 27
t = 5 16 5 67 5 18

2-out-of-16 t = 1 120 † † 15 62
t = 2 120 † † 62 262
t = 3 120 † † 26 102
t = 4 120 8 939 8 44
t = 5 120 8 1,069 9 47

3-out-of-16 t = 1 560 † † 15 77
t = 2 560 † † 142 910
t = 3 560 † † 113 979
t = 4 560 10 5,595 10 74
t = 5 560 † † 32,239 186,256

† Computation was terminated when it exceeded one hour.

Table 3: Total number of nonterminal nodes in ZDDs.

the proposed method is smaller. In addition, each ZDD in the proposed method has fewer
nodes than one in the existing method. Therefore, not only theoretical space complexity
shown in Theorem 3 but also practical space complexity of the proposed method is much
lower than that of the existing method.
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Benchmark Compound Existing Existing Proposed
functions degrees method [4] method [5] method

1-out-of-10 t = 1 *<0.01 *<0.01 *<0.01
t = 2 216.62 0.84 *<0.01
t = 3 127.23 1.12 *<0.01
t = 4 0.02 *<0.01 *<0.01
t = 5 0.14 *<0.01 *<0.01

1-out-of-12 t = 1 *<0.01 *<0.01 *<0.01
t = 2 † † *<0.01
t = 3 † † *<0.01
t = 4 † 18.34 *<0.01
t = 5 † † *<0.01

1-out-of-16 t = 1 *<0.01 *<0.01 *<0.01
t = 2 † † 0.01
t = 3 † † 0.09
t = 4 † † 0.04
t = 5 3.68 0.18 0.06

2-out-of-16 t = 1 † † *<0.01
t = 2 † † 0.07
t = 3 † † 0.17
t = 4 2.76 5.24 0.17
t = 5 36.32 14.13 0.52

3-out-of-16 t = 1 † † 0.01
t = 2 † † 0.75
t = 3 † † 2.96
t = 4 16.17 207.65 0.95
t = 5 † † 479.05

* Time is less than 0.01 sec..
† Computation was terminated when it exceeded one hour.

Table 4: Computation time of methods (in seconds).

4.3 On Computation Time

Although the proposed improvement method reduces search space significantly, as shown
in Table 2, computational overhead can negate such an improvement. To show that the
overhead is small enough and reduction of search space leads to shortening of computation
time, we compare computation time of the three methods. Table 4 shows computation time,
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Benchmark Compound k hmin Space No. of Time
functions degrees nodes (sec.)

1-out-of-20 t = 1 20 19 19 56 *<0.01
t = 2 20 13 91 203 0.03
t = 3 20 10 196 439 0.53
t = 4 20 8 149 348 1.92
t = 5 20 7 62 163 2.78

2-out-of-20 t = 1 190 19 19 82 *<0.01
t = 2 190 14 189 784 0.50
t = 3 190 12 1,732 8,938 34.39
t = 4 190 10 78 440 5.73
t = 5 190 9 10 55 2.66

3-out-of-20 t = 1 1,140 19 19 105 0.02
t = 2 1,140 16 414 2,866 6.93
t = 3 1,140 13 328 4,046 33.38
t = 4 1,140 12 1,866 11,122 1,137.29

4-out-of-20 t = 1 4,845 19 19 118 0.12
t = 2 4,845 16 129 1,195 8.36

* Time is less than 0.01 sec..

Table 5: Experimental results for larger benchmark functions.

in seconds, of the three methods for the same benchmark functions.
For “2-out-of-16” with t = 4 and “3-out-of-16” with t = 4, the existing method using

ZDDs [5] is slower than the method without using ZDDs [4]. This is because, for these
functions, search space is not reduced at all, and garbage collection is applied frequently
due to many unused nodes produced as a by-product of ZDD operations. However, the
proposed method is faster than the existing method [4] even though ZDD operations are
performed. This is because the number of nodes in the proposed method is smaller.

These results show that the proposed method using ZDDs in combination with the sym-
metry property of functions is effective in reducing overheads of ZDD operations as well as
search space, resulting in fast computation.

4.4 For Larger Benchmark Functions

Since the proposed method is much faster than the existing methods, we applied it to larger
benchmark symmetric index generation functions. Here, existing methods cannot find an
optimum solution in a reasonable computation time due to a huge search space. Table 5
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shows their results.
From these results, we can see that the proposed method is promising for the problem

of finding an optimum solution of large symmetric index generation functions.

5 Conclusion and Comments

This paper proposes an exact optimization method for linear decomposition of symmetric
index generation functions. By taking advantages of the symmetry property of functions in
combination with ZDDs, space of solution search and computational overhead of ZDD op-
erations are reduced significantly. Thus, the proposed method can find an optimum solution
for symmetric index generation functions that the existing methods could not find. Experi-
mental results show that time and space complexities of the proposed method for symmetric
index generation functions are reasonable.

Since the proposed method quickly finds an exact optimum design for symmetric in-
dex generation functions, circuit complexities of L and G in linear decomposition for the
functions can be analyzed more precisely. Investigating relations between those circuit
complexities and the compound degree t would be interesting.
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