
Causal closure for MSC languages

Bharat Adsul, Madhavan Mukund, K. Narayan Kumar, and Vasumathi
Narayanan

Chennai Mathematical Institute, Chennai, India
{abharat,madhavan,kumar,vasumathi}@cmi.ac.in

Abstract. Message sequence charts (MSCs) are commonly used to spec-
ify interactions between agents in communicating systems. Their visual
nature makes them attractive for describing scenarios, but also leads to
ambiguities that can result in incomplete or inconsistent descriptions.

One problem that arises in this context is that of implied scenarios—
a set of MSCs may imply new MSCs which are “locally consistent” with
the given set. Alur, Etessami and Yannakis showed that if local con-
sistency is defined in terms of local projections of actions along each
process, it is undecidable whether a set of MSCs is closed with respect
to implied scenarios, even for regular MSC languages.

We introduce a new and natural notion of local consistency called
causal closure, based on the causal view of a process—all the information
it collects, directly or indirectly, through its actions. Our main result is
that checking whether a set of MSCs is closed with respect to implied
scenarios modulo causal closure is decidable for regular MSC languages.

This decidability result yields an alternative definition of realizability
for MSC languages. It also allows us to interpret MSC graphs modulo
causal closure when modelchecking properties, so that we can retain rel-
atively simple visual specifications without compromising on the com-
pleteness and consistency of verification.

1 Introduction

Message Sequence Charts (MSCs) are an appealing visual formalism that are
suitable for modelling telecommunication software [11]. They are used in a
number of software engineering notational frameworks such as SDL [17] and
UML [4, 9]. A collection of MSCs is used to capture the scenarios that a de-
signer might want the system to exhibit (or avoid).

A standard way to generate a set of MSCs is via Hierarchical (or High-
level) Message Sequence Charts (HMSCs) [13]. Without losing expressiveness,
we consider only a subclass of HMSCs called Message Sequence Graphs (MSGs).
An MSG is a finite directed graph in which each node is labeled by an MSC.
An MSG defines a collection of MSCs by concatenating the MSCs labeling each
path from an initial vertex to a terminal vertex.

Though the visual nature of MSGs makes them attractive for describing
scenarios, it also leads to ambiguities that can result in incomplete or inconsistent
descriptions. An important issue is the presence of implied scenarios [2, 3]. An

MSC M is (weakly) implied by an MSC language L if the local actions of each
process p along M agree with its local actions along some good MSC Mp ∈ L.

Implied scenarios are naturally tied to the question of realizability—when
is an MSG specification implementable as a set of communicating finite-state
machines? In a distributed model with local acceptance conditions, it is natural
to expect the specification to be closed with respect to local projections. Thus,
a language is said to be weakly realizable if all weakly implied scenarios are
included in the language. Unfortunately, weak realizability is undecidable, even
for regular MSC languages [3].

Weak implication presumes that the only information a process can maintain
locally about an MSC is the sequence of actions that it participates in. How-
ever, we can augment the underlying message alphabet of an MSC by tagging
auxiliary information to each message. Using this extra information, processes
can maintain a bounded amount of information about the global state of the
system [14]. With this, we arrive at a stronger notion of implied scenario that
we call causal closure, based on the local view that each process has of an MSC
from the information it receives, directly or indirectly, about the system.

Our main result is that causal closure preserves regularity for MSC languages,
in contrast to the situation with weak closure. From this it follows that causal
realizability is effectively checkable for regular MSC languages, both in the case of
implementations with deadlocks and for safe, or deadlock-free, implementations.

Our result also allows us to interpret MSGs as incomplete specifications
whose semantics is given in terms of the causal closure. Thus, we can retain
relatively simple visual specifications without compromising on the complete-
ness and consistency of verification.

The paper is organized as follows. We begin with some basic definitions re-
garding MSCs, message sequence graphs and message-passing automata. In the
next section, we recall the results for weakly implied scenarios. In Section 4, we
define the notion of causal closure and establish our main result, that causal clo-
sure preserves regularity for MSC languages. Finally, in Section 5, we examine
the feasibility of using causal closure as a semantics for MSGs.

2 Preliminaries

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For each p ∈ P we define Σp = {p!q(m), p?q(m) | p 6= q ∈
P , m ∈ M} to be the set of communication actions in which p participates. The
action p!q(m) is to be read as p sends the message m to q and the action p?q(m)
is to be read as p receives the message m from q. We set ΣP =

⋃
p∈P

Σp and let
a, b range over ΣP . We also denote the set of channels by Ch = {(p, q) | p 6= q}
and let c, d range over Ch. Whenever the set of processes P is clear from the
context, we write Σ instead of ΣP , etc.

2

m1

m2

m3

e1 e2

e′
2

e′
1

e′
3

e3

p q r

Fig. 1. An MSC over {p, q, r}.

Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a poset and λ : E → Σ is a labelling function. For e ∈ E we define ↓e = {e′ |
e′ ≤ e}. As usual, for X ⊆ E, ↓X = ∪e∈X↓e. We say that X ⊆ E is a prefix of
M if X = ↓X .

For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and
|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with respect to each
message—if e <pq e′, the message m read by q at the receive event e′ is the one
sent by p at the send event e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that
satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e′, then |↓e ∩

(⋃
m∈M

Ep!q(m)

)
| = |↓e′ ∩

(⋃
m∈M

Eq?p(m)

)
|

4. The partial order ≤ is the reflexive, transitive closure of the relation
⋃

p,q∈P
<pq.

The second condition guarantees that for each message sent along a channel,
there exists a matching receive event. The third condition ensures that every
channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual order. The events of
each process are arranged in a vertical line and messages from p to q are displayed
as horizontal or downward-sloping directed edges from the line corresponding to
p to the line corresponding to q. Figure 1 shows an example with three processes
{p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to three messages—

m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of

(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one
linearization of the MSC in Figure 1.

MSC languages An MSC language is a set of MSCs. We can also regard an
MSC language L as a word language L over Σ consisting of all linearizations of
the MSCs in L. For an MSC language L, we set lin(L) =

⋃
{lin(M) | M ∈ L}.

3

q r s r sp p q
m m

M1 M2

mm

CGM1◦M2

p

r

q

s

⇒ M2M1

Fig. 2. A message sequence graph

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Σ.

2.2 Message sequence graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation, defined as follows.

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that
E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (

⋃
p,q∈P

<pq)
∗, where <pp=<1

pp ∪ <2
pp ∪{(e1, e2) | e1 ∈

E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} and for (p, q) ∈ Ch, <pq=<1
pq ∪ <2

pq.
A Message Sequence Graph (MSG) is a structure G = (Q,→, Qin, F, Φ),

where:

– Q is a finite and nonempty set of states.
– → ⊆ Q × Q.
– Qin ⊆ Q is a set of initial states.
– F ⊆ Q is a set of final states.
– Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such
that (qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦ M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn

is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}.

An example of an MSG is depicted in Figure 2. The initial state is marked
⇒ and the final state has a double line. The language L defined by this MSG is
not regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗

such that |σ↾p!q(m)| = |σ↾r!s(m)| ≥ 1, which is not a regular string language.
In general, it is undecidable whether an MSG describes a regular MSC lan-

guage [10]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (P , 7→) where:

4

– P is the set of processes of the system.
– (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices. An MSC language L is com-connected
in case each MSC M ∈ L is com-connected.

Locally synchronized MSGs The MSG G is locally synchronized1[15] if for
every loop π = q → q1 → · · · → qn → q, the MSC M(π) is com-connected.
We say that an MSC language L is a locally synchronized MSG-language if there
exists a locally synchronized MSG G with L = L(G). In Figure 2, CGM1◦M2

is not
com-connected, so the MSG is not locally synchronized. We have the following
result for MSGs [1].

Theorem 3. If G is locally synchronized, L(G) is a regular MSC language.

2.3 Message-passing automata

Message-passing automata are natural recognizers for MSC languages.

Definition 4. A message-passing automaton (MPA) over Σ is a structure
A = ({Ap}p∈P , ∆, sin, F) where:

– ∆ is a finite alphabet of auxiliary messages.
– Each component Ap is of the form (Sp,→p) where Sp is a finite set of p-local

states and →p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.
– sin ∈

∏
p∈P

Sp is the global initial state.
– F ⊆

∏
p∈P

Sp is the set of global final states.

The local transition relation →p specifies how the process p sends and re-
ceives messages. The transition (s, p!q(m), x, s′) says that in state s, p can send
the message m to q tagged with auxiliary information x and move to state s′.
Similarly, the transition (s, p?q(m), x, s′) signifies that at state s, p can receive
the message m from q tagged with information x and mvoe to state s′.

The set of global states of A is given by
∏

p∈P
Sp. For a global state s, we

let sp denote the pth component of s.
A configuration is a pair (s, χ) where s is a global state and χ : Ch →

(M × ∆)∗ is the channel state that specifies the queue of messages present in
each channel c. The initial configuration of A is (sin, χε) where χε(c) is the empty
string ε for every channel c. The set of final configurations of A is F × {χε}.

The set of reachable configurations of A, ConfA, is defined in the obvi-
ous way. The initial configuration (sin, χε) is in ConfA. If (s, χ) ∈ ConfA and

(sp, p!q(m), x, s′p) ∈ →p, then there is a global move (s, χ)
p!q(m)
=⇒ (s′, χ′) where for

r 6= p, sr = s′r, for each r ∈ P , χ′((p, q)) = χ((p, q)) · (m, x), and for c 6= (p, q),
χ′(c) = χ(c). Similarly, if (s, χ) ∈ ConfA and (sp, p?q(m), x, s′p) ∈ →p, then

1 This notion is called “bounded” in [1]

5

s1

s2

s3

p!q(m)

t2

t1 q?p(m)

p!q(m)

q!p(m′)
q?p(m)

⇓ ⇓

t3

p?q(m′)

p q

m m′

m

m

m′

Fig. 3. A message-passing automaton.

there is a global move (s, χ)
p?q(m)
=⇒ (s′, χ′) where for r 6= p, sr = s′r, for each

r ∈ P , χ((q, p)) = (m, x) · χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c).
Let prf(σ) denote the set of prefixes of a word σ ∈ Σ∗. A run of A over σ is

a map ρ : prf(σ) → ConfA such that ρ(ε) = (sin, χε) and for each τa ∈ prf(σ),

ρ(τ)
a

=⇒ ρ(τa). The run ρ is accepting if ρ(σ) is a final configuration.
We define L(A) = {σ | A has an accepting run over σ}. L(A) corresponds

to the set of linearizations of an MSC language. To simplify notation, we shall
usually write L(A) = L, where L is an MSC language, rather than the technically
correct statement L(A) = lin(L).

For B ∈ N, we say that a configuration (s, χ) of A is B-bounded if |χ(c)| ≤ B
for every channel c ∈ Ch. We say that A is a B-bounded automaton if every
reachable configuration (s, χ) ∈ ConfA is B-bounded.

Figure 3 depicts an MPA with two components, p and q. The initial state is
(s1, t1) and there is only one final state, (s2, t3). A typical MSC accepted by this
automaton is displayed at the right.

Deterministic message-passing automata We say that A is deterministic if
the transition relation →p for each component satisfies the following conditions:

– (s, p!q(m), x′, s′) ∈ →p and (s, p!q(m), x′′, s′′) ∈ →p imply x′ = x′′, s′ = s′′.
– (s, p?q(m), x, s′) ∈ →p and (s, p?q(m), x, s′′) ∈ →p imply s′ = s′′.

For deterministic MPAs, the global state at the end of an MSC is independent
of the choice of linearization.

Proposition 5. Let A be a deterministic MPA, M = (E,≤, λ) an MSC and
E′ ⊆ E a prefix of M . Let w and w′ be linearizations of E′ and let ρ and ρ′ be
the runs of A on w and w′, respectively. Then, ρ(w) = ρ(w′).

Thus, if A is deterministic, for any prefix E′ of an MSC M = (E,≤, λ),
we can unambiguously write ρ(E′) to denote the unique run of A on E′. In
particular, the unique run of A on M can be written as ρ(M).

The following theorem characterizes regular MSC languages in terms of
message-passing automata [10].

6

Theorem 6. An MSC language L is regular iff there is a deterministic B-
bounded MPA A such that L(A) = L.

3 Implied scenarios: the weak case

When we use MSC languages to specify sets of scenarios, it is important to
identify whether the specification is complete. A natural requirement is that the
language be closed with respect to local views—for an MSC M , if every process
locally believes that M belongs to the language L, M should in fact be in L.

One way to formalize closure with respect to local views is in terms of local
projections [2, 3].

Definition 7. – Let M = (E,≤, λ) be an MSC and p ∈ P a process. The
projection of M onto p, M↾p, is the Σ-labelled partial order (Ep,≤p, λp),
where ≤p = ≤ ∩ (Ep × Ep) is a total order and λp = λ↾Ep

.
– An MSC M is said to be weakly implied by L if for every process p ∈ P

there is an MSC Mp ∈ L such that Mp↾p = M↾p.
– The weak closure of L is the collection of MSCs

WeakCl(L)
△
= {M | M is weakly implied by L}.

Unfortunately, the weak closure of a language can admit unbounded channels
even when every channel in the original language is uniformly bounded. An
example is shown in Figure 4, where we assume all messages are labelled m and
omit the labels.

Both M and M ′ are com-connected, so the language consisting of arbitrary
concatenations of M and M ′ is a regular MSC language. However, for every
natural number k, the weak closure of this language contains the MSC Mk in
which the actions of p and q correspond to the sequence M2k ◦ M ′k while the
actions of r and s match the sequence M ′k ◦M2k. In Mk, the buffer from p to s
contains k messages at the global state where p and q make the transition from
M to M ′ and r and s make the transition from M ′ to M . The figure shows the
case where k = 2. The dotted line marks the global cut where the channel from
p to s has maximum capacity.

Implied scenarios have a close link to implementability, or realizability. An
MSC language recognized by a communicating finite-state machine with a local
acceptance condition must be closed with respect to local views. We say that an
MSC language L is weakly realizable if L = WeakCl(L). We have the following
negative result [3], which arises from the fact that the weak closure of a regular
MSC language may have unbounded buffers.

Theorem 8. Let G be a locally synchronized MSG. It is undecidable if L(G) is
weakly realizable.

To overcome this negative result, a more restrictive definition of realizability
is proposed in [2, 12]. An MSC language is said to be safely realizable if it
admits a deadlock-free implementation, where a deadlock is defined as a global

7

p q r s p q r sp q r s

M M ′

Fig. 4. A regular MSC language whose weak closure has unbounded buffers

state from which no accepting state is reachable. In a safe implementation, it
turns out that all implied scenarios must have bounded buffers, yielding the
following result [3].

Theorem 9. Let G be a locally synchronized MSG. It is decidable if L(G) is
safely realizable.

4 Causal closure for regular MSC languages

Weak closure assumes that the only information that a process can maintain
locally about the current MSC is the sequence of actions that it participates in.
However, as we have observed when characterizing regular MSC languages in
terms of message-passing automata, we can tag each underlying message with
extra information. Using this information, processes can maintain a bounded
amount of information about the global state of the system. This leads us to a
stronger notion of local view called causal view.

We begin by defining p-views. For an MSC M = (E,≤, λ) and p ∈ P , let
maxp(M) denote the maximum event from Ep in M—since all p events in M
are linearly ordered by ≤pp, maxp(M) is well-defined whenever Ep 6= ∅.

Definition 10. Let M = (E,≤, λ) be an MSC and p ∈ P a process. The p-view
of M , ∂p(M), is the Σ-labelled partial order (E′,≤′, λ′) where E′ = {e | e ≤
maxp(M)}, ≤′ = ≤ ∩ (E′ × E′) and λ′ = λ↾E′ . If Ep = ∅, ∂p(M) = (∅, ∅, ∅).

It is easy to observe that ∂p(M) is always a prefix of M . Causal realizability
captures the intuition that each process p can keep track of the events in ∂p(M).

Definition 11. Let L be an MSC language.

– An MSC M is said to be causally implied by L if for every process p ∈ P
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp).

– The causal closure of L is the collection of MSCs

CausalCl(L)
△
= {M | M is causally implied by L}.

8

– The language L is said to be causally realizable if L = CausalCl(L).

An MSC language is causally realizable if each local process can recognize
whether an MSC belongs to the language based purely on its causal view of
the MSC. Observe that it is always the case that L ⊆ CausalCl(L). Thus, a
language L is not causally realizable iff there is an MSC M ∈ CausalCl(L) such
that M /∈ L.

We also have the inclusion CausalCl(L) ⊆ WeakCl(L). In general,
CausalCl(L) 6= WeakCl(L)—for instance, the implied MSCs in Figure 4 are not
in the causal closure of the language. Figure 5 illustrates the difference between
weak and causal closure. Here M ′ is in the weak closure of {M1, M2} but not
in the causal closure, because the causal view of process s includes information
about whether or not p has sent a message to q.

p q sr p q sr p q sr

M2M1 M ′

m

m

m m

m

m

m

Fig. 5. Illustrating the difference between weak and causal closure

A bounded time-stamping protocol for B-bounded message-passing automata
is described in [14] by which each process can maintain the latest known state of
every other process and channel. From this, we can derive the following result.

Theorem 12. Let A = ({Ap}p∈P , ∆, sin, F) be a deterministic B-bounded MPA.
We can augment A with time-stamping information to get a deterministic B-
bounded MPA Aτ = ({Aτ

p}p∈P , ∆τ , sτ
in, F τ) such that:

– For each process p, let Ap = (Sp,→p) and Aτ
p = (Sτ

p ,→τ
p) be the p compo-

nents of A and Aτ , respectively. Then:

– Sτ
p is of the form Sp × Γ , where Γ contains a bounded amount of time-

stamped data about all the processes and channels in the system.

– →τ
p is such that for every MSC M = (E,≤, λ) and for every prefix E′

of M , the unique run ρτ (E′) of Aτ on E′ corresponds to the unique run
ρ(E′) of A on E′ in the sense that ρ(E′) matches the first component of
ρτ (E′).

– sτ
in =

∏
p∈P

(sp, γ
0
p) where sin =

∏
p∈P

sp and
∏

p∈P
γ0

p is a fixed set of initial
time-stamps.

– F τ =
{∏

p∈P
(sp, γp) |

∏
p∈P

sp ∈ F
}
.

– Let M = (E,≤, λ) be an MSC. For each p ∈ P, from the p-state (sp, γp)
assigned by ρτ (∂p(M)) we can recover the configuration (s, χ) reached by A
at the end of ∂p(M).

9

When we augment a deterministic MPA A with time-stamping data to obtain
Aτ , after any sequence of actions w, the local state of p in Aτ allows us to recover
the global configuration reached by A after processing all actions in the p-view
of w. Thus, incrementally each process can keep track of the global configuration
of the automaton A for the portion of the MSC that it has seen so far.

Theorem 13. Let L be a regular MSC language. Then, its causal closure
CausalCl(L) is also a regular MSC language.

Proof. Since L is a regular MSC language, by Theorem 6 there is a deterministic
B-bounded MPA A such that L(A) = L.

We apply Theorem 12, to obtain a new automaton Aτ that augments A
with time-stamped information. For each process p, we define a subset of local
final states F τ

p ⊆ Sτ
p as follows. A state (sp, γp) belongs to F τ

p iff, starting
from the configuration (s, χ) of A that we recover from (sp, γp), A can reach
a configuration (f, χε), where f ∈ F , without performing any actions involving
process p. Notice that the sets F τ

p are effectively computable.

In Aτ , we replace the set of global final states F τ by the product of local
final states

∏
p∈P

F τ
p and call this modified MPA ACl

τ .

Claim L(ACl
τ) = CausalCl(L).

Proof of claim (⇐) Suppose that M ∈ CausalCl(L). Then, for every process p,
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp). Fix p ∈ P and let (sp, γp)
be the state of p in the run ρτ of Aτ on ∂p(M). The configuration (s, χ) recorded
in (sp, γp) is the configuration reached by A at the end of ∂p(M) = ∂p(Mp). Since
Mp ∈ L, A can reach a configuration (f, χε), f ∈ F , starting from (s, χ), without
performing any actions involving p. Thus, (sp, γp) ∈ F τ

p . Since p does not make
any moves outside ∂p(M), the state of p in ρτ (M) also belongs to F τ

p . Since

every process p reaches a state in F τ
p at the end of M , M ∈ L(ACl

τ).

(⇒) Suppose that M ∈ L(ACl
τ). Fix a process p, and let (sp, γp) ∈ F τ

p be the

state of p in the accepting run ρτ (M) of ACl
τ on M . Since p does not participate

in any action outside ∂p(M), the state of p in ρτ (∂p(M)) must also be (sp, γp).

Let (s, χ) be the configuration of A that we recover from (sp, γp)—by Theo-
rem 12, (s, χ) is the configuration reached by A at the end of ∂p(M). From the
definition of F τ

p , we know that A can reach a configuration (f, χε) from (s, χ),
where f ∈ F , without perfoming any actions involving p. Let wp be linearization
of ∂p(M) and let w be the sequence of actions processed by A when going from
the configuration (s, χ) to the configuration (f, χε). All messages sent during
wp but not received in wp must be received in w since all channels are empty
in the final configuration. It is not difficult to see that wpw corresponds to the
linearization of an MSC Mp. By construction, A has an accepting run on Mp,
so Mp ∈ L, with ∂p(M) = ∂p(Mp).

Thus, whenever p reaches a state in F τ
p after M , there is an MSC Mp ∈ L

such that ∂p(M) = ∂p(Mp). If M is in L(Aτ), then we find such a witness Mp

for every p ∈ P , so M ∈ CausalCl(L). ⊓⊔

10

Since we can construct a B-bounded MPA recognizing CausalCl(L) for any
regular MSC language L, we can effectively check whether L = CausalCl(L).
Thus, we have the following.

Corollary 14. For any regular MSC language L (respectively, locally synchro-
nized MSG G), it is decidable if L (respectively, L(G)) is causally realizable.

Every regular MSC language is recognized by a deterministic MPA. Our
construction for the causal closure preserves determinacy. We can check this
deterministic MPA for deadlocked states, which immediately yields the following.

Corollary 15. Let L be a regular MSC language. It is decidable if L is causally
realizable and admits a deadlock-free implementation.

Not all regular MSC languages are MSG-definable. A regular MSC language
is MSG-definable precisely when it is finitely generated—that is, there is a finite
set of MSCs Atoms = {M1, M2, . . . , Mk} such that every MSC in the language
can be written out as a sequence Mi1◦Mi2◦· · ·◦Miℓ

where each Mij
∈ Atoms [10].

Proposition 16. There exist regular MSC languages L such that L is MSG-
definable but CausalCl(L) is not.

Proof. The MSG in Figure 6 is locally synchronized and hence defines a regular
MSC language. In the same figure is shown a family of MSCs {Mn}n∈N, each
of which is causally implied by the language of this MSG. However, observe
that each Mn is an atomic MSC that cannot be written as the asynchronous
concatenation M1 ◦M2 of two nontrivial MSCs. Thus, the causal closure of this
MSG language is regular but not MSG-definable. ⊓⊔

p sq r

p sq r

p sq r

p sq r

p sq r

... n copies

⇓

⇓

Fig. 6. MSG definability and causal closure

Moving to arbitrary MSGs takes us into the realm of undecidability.

Theorem 17. For an arbitrary MSG G, it is undecidable whether L(G) is causally
realizable.

11

Proof. We use the reduction from the Post Correspondence Problem (PCP)
in [16] for proving the undecidability of determining if the trace closure of a
star-free language remains star-free. In this reduction, each instance of PCP is
associated with a trace alphabet [6] Σ∪{c} such that ΣI{c} and (Σ×Σ)∩I = ∅,
where I is the independence relation. A regular language R is then defined over
Σ ∪ {c} such that the trace closure of R is (Σ ∪ {c})∗ if the PCP instance has
no solution and is not regular otherwise. In particular the words in R are those
that do not encode solutions to the PCP instance.

We set P = {p, q, r, s} and associate with each letter a ∈ Σ, a message type
ma in M. Now, we encode a as an MSC Ma in which processes p and q exchange
a message of type ma in each direction. Similarly, the letter c is encoded as an
MSC Mc that exchanges a message of type mc between processes r and s.

Under this scheme, a word w = a1a2 . . . an over Σ naturally gets encoded as
Mw = Ma1

◦ Ma2
. . .Man

. Since R is a regular language, we can easily convert
a DFA for R into an MSG G such that L(G) = {Mw | w ∈ R}. Note that w is
trace equivalent to w′ iff Mw = Mw′, so L(G) is also equal to the trace closure
of R.

Since the words in R are those that do not encode solutions to the PCP
instance, for any w ∈ Σ∗ and any w ∈ {c}∗, we have w ∈ R and hence Mw ∈
L(G). From this, it follows that CausalCl(L(G)) = WeakCl(L(G)) = {Mw | w ∈
(Σ ∪ {c})∗}. Thus, CausalCl(L(G)) 6= L(G) iff the PCP instance has a solution,
whereby the trace closure of R is not regular and hence not equal to (Σ ∪{c})∗.

⊓⊔

Theorem 18. For an arbitrary MSG G, it is undecidable whether the causal
closure of L(G) is a regular MSC language.

Proof. It is undecidable whether the language of an arbitrary MSG is regu-
lar [10]. Let G = (Q,→, Qin, F, Φ) be an arbitrary MSG. We transform G into a
new MSG G′ such that CausalCl(L(G)) is regular iff L(G′) is regular.

We add a new process ℓ to P and a new message type mf and let Mf be an
MSC in which there is one message of type mf from every process p ∈ P to the
new process ℓ. The order in which ℓ receives these messages does not matter.
We also pick a fresh state qf /∈ Q.

We then define G′ = (Q′,→′, Q′
in, F ′, Φ′) as follows.

– Q′ = Q ∪ {qf}
– →′ = →∪ {(q, qf) | q ∈ F}
– Q′

in = Qin

– F ′ = {qf}

– ∀q′ ∈ Q′, Φ′(q′) =

{
Φ(q′) , if q′ ∈ Q
Mf , if q′ = qf

Every MSC M̂ in L(G′) is of the form M ◦ Mf for some M ∈ L(G). From

the structure of Mf it it is clear that for each M̂ ∈ L(G′), ∂ℓ(M̂) = M̂ , so
CausalCl(L(G′)) = L(G′). From this, it follows that CausalCl(L(G′)) is a regular
MSC language iff L(G) is a regular MSC language, which is undecidable. ⊓⊔

12

5 MSGs as partial specifications

The realizability question for MSGs asks whether the set of scenarios represented
by an MSG corresponds exactly to the language of a suitably defined message-
passing automaton. To ensure that a specification is realizable, we need to impose
severe restrictions on the structure of the MSG. This leads to an explosion in
the complexity of the MSG and detracts significantly from the main motivation
for using this notation, which is to have a transparent and visually appealing
formalism to describe the behaviour of communicating systems.

An alternative is to view MSGs as partial specifications and interpret them
modulo the closure conditions required by distributed implementations. This
approach was studied in the context of Petri nets in [5]. For message-passing
automata, we cannot use weak closure as the semantics of MSGs because weak
closure does not preserve regularity. However, since the causal closure does pre-
serve regularity, it is feasible to use this as a semantics for MSGs.

Under the exact interpretation, locally synchronized MSGs correspond to
the class of finitely-generated regular MSC languages [10]. If we interpret MSGs
modulo causal closure, an MSG can represent languages that are not finitely
generated (like the example in Figure 6). This increases the expressive power
of the MSG notation. Another advantage is that we can sensibly analyze less
complicated MSG specifications, making the notation more usable.

Model checking

MSC languages can also be used to specify desirable properties of communicating
systems. Two interpretations are possible: positive scenarios are those that the
system must be able to exhibit, while negative scenarios should be avoided.

Suppose we use MSC languages both to specify the communicating system
as well as to describe the scenarios that the system should exhibit. To verify
that a set of positive scenarios P is included in the set of system behaviours S,
it is important that both P and S are causally closed to avoid missing out some
scenarios when checking this inclusion.

When model checking a negative property, it is again important to use the
causal closure of the property. We have argued that reasonable implementations
are causally closed. If the property is not causally closed, the implementation may
exhibit an implied scenario that is forbidden, but this fact could go undetected.

In [8], it is shown that model checking of positive and negative scenarios under
the exact interpretation can be performed for MSC languages where channels
are existentially bounded—there is at least one linearization for each MSC in the
language for which all channels are uniformly bounded. This is contrast to regular
MSC languages, where channels are universally bounded across all linearizations.
The properties of existentially bounded MSC languages are further elaborated
in [7].

Unfortunately, the causal closure of an existentially bounded MSC language
need not be existentially bounded. Figure 7 shows an MSG consisting of three

13

⇓ ⇓ ⇓

p q r p q r

p q rp q r p q r

p q r

p q r

Fig. 7. Causal closure does not preserve existential boundedness

disconnected components. Like all MSGs, the language of this MSG is existen-
tially bounded. However, the causal closure of the language accepted by this
MSG includes MSCs such as the one shown to the right. This MSC has three
consecutive messages between each pair of processes and hence has channel ca-
pacities of three. In general, for any natural number k, we have a causally implied
MSC with this structure with k consecutive messages between each pair of pro-
cesses and a channel capacity of k. Thus, the causal closure of this MSG language
is not existentially bounded.

It would be interesting to identify when the causal closure of an existentially
bounded MSC languages remains existentially bounded so that the results of [8]
can be applied modulo causal closure.

14

References

[1] Alur, R., Yannakakis, M.: Model checking of message sequence charts. Proc. CON-
CUR 1999), Lecture Notes in Computer Science 1664, Springer-Verlag (1999)
114–129

[2] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs.
IEEE Trans. Software Engg 29(7) (2003) 623–633.

[3] Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. Theor. Comput. Sci. 331(1) (2005) 97–114.

[4] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley (1997)

[5] Caillaud, B., Darondeau, P., Hélouët, L. and Lesventes, G.: HMSCS as partial
specifications . . . with PNs as completions. In Modeling and Verification of Parallel
Processes, 4th Summer School, MOVEP 2000, Nantes, France (2000).

[6] Diekert, V., Rozenberg, G. (Eds.): The Book of Traces. World Scientific (1995)
[7] Genest, B., Muscholl, A., and Kuske, D.: A Kleene Theorem for a Class of Com-

municating Automata with Effective Algorithms. Proc DLT 2004, Lecture Notes
in Computer Science 3340, Springer-Verlag (2004) 30–48.

[8] Genest, B., Muscholl, A., Seidl, H. and Zeitoun, M.: Infinite-State High-Level
MSCs: Model-Checking and Realizability. Proc ICALP 2002, Lecture Notes in
Computer Science 2380, Springer-Verlag (2002) 657–668.

[9] Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer,
July 1997 (1997) 31–42

[10] Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., and
Thiagarajan, P.S.: A Theory of Regular MSC Languages. Infor-
mation and Computation (to appear). Preprint available online at
http://www.cmi.ac.in/ madhavan/papers/hmnst-ic.html

[11] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva (1997)

[12] Lohrey, M.: Safe Realizability of High-Level Message Sequence Charts. Proc CON-
CUR 2002, Lecture Notes in Computer Science 2421, Springer-Verlag (2002) 177–
192.

[13] Mauw, S., Reniers, M. A.: High-level message sequence charts, Proc SDL’97, El-
sevier (1997) 291–306.

[14] Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in
message-passing systems. Theoretical Computer Science, 290(1) (2003) 221–239.

[15] Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proc. MFCS 1999), Lecture Notes in Computer Science
1672, Springer-Verlag (1999) 81–91.

[16] Muscholl, A., and Peterson,H.: A Note on the Commutative Closure of Star-Free
Languages, Information Processing Letters, 57(2), (1996), 71–74.

[17] Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
In Computer Networks and ISDN Systems — SDL and MSC 28 (1996)

15

