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First Clay Mathematics Institute Millennium Prize Announced Today

Prize for Resolution of the Poincaré Conjecture a
Awarded to Dr. Grigoriy Perelman

The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg,
Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation
for the award reads:

The Clay Mathematics Institute hereby awards the Millennium Prize
for resolution of the Poincaré conjecture to Grigoriy Perelman.

The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in

2000. The Prizes were conceived to record some of the most difficult problems with which
mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness
of the general public the fact that in mathematics, the frontier is still open and abounds in important
unsolved problems; to emphasize the importance of working towards a solution of the deepest, most
difficult problems; and to recognize achievement in mathematics of historical magnitude.

The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules:
recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail
Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James
Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles),
with final decision by the Board of Directors (Landon T. Clay, Lavinia D. Clay, and Thomas M. Clay).

James Carlson, President of CMI, said today that "resolution of the Poincaré conjecture by Grigoriy
Perelman brings to a close the century-long quest for the solution. It is a major advance in the
history of mathematics that will long be remembered." Carlson went on to announce that CMI and
the Institut Henri Poincaré (IHP) will hold a conference to celebrate the Poincaré conjecture and its
resolution June 8 and 9 in Paris. The program will be posted on www.claymath.org. In addition, on
June 7, there will be a press briefing and public lecture by Etienne Ghys at the Institut
Océanographique, near the IHP.

Reached at his office at Imperial College, London for his reaction, Fields Medalist Dr. Simon
Donaldson said, "l feel that Poincaré would have been very satisfied to know both about the
profound influence his conjecture has had on the development of topology over the last century and
the surprising way in which the problem was solved, making essential use of partial differential
equations and differential geometry.

Poincaré's conjecture and Perelman's proof

Formulated in 1904 by the French mathematician Henri Poincaré, the conjecture is fundamental to
achieving an understanding of three-dimensional shapes (compact manifolds). The simplest of
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these shapes is the three-dimensional sphere. It is contained in four-dimensional space, and is
defined as the set of points at a fixed distance from a given point, just as the two-dimensional sphere
(skin of an orange or surface of the earth) is defined as the set of points in three-dimensional space
at a fixed distance from a given point (the center).

Since we cannot directly visualize objects in n-dimensional space, Poincaré asked whether there is a
test for recognizing when a shape is the three-sphere by performing measurements and other
operations inside the shape. The goal was to recognize all three-spheres even though they may be
highly distorted. Poincaré found the right test (simple connectivity, see below). However, no one
before Perelman was able to show that the test guaranteed that the given shape was in fact a three-
sphere.

In the last century, there were many attempts to prove, and also to disprove, the Poincaré conjecture
using the methods of topology. Around 1982, however, a new line of attack was opened. This was
the Ricci flow method pioneered and developed by Richard Hamilton. It was based on a differential
equation related to the one introduced by Joseph Fourier 160 years earlier to study the conduction of
heat. With the Ricci flow equation, Hamilton obtained a series of spectacular results in geometry.
However, progress in applying it to the conjecture eventually came to a standstill, largely because
formation of singularities, akin to formation of black holes in the evolution of the cosmos, defied
mathematical understanding.

Perelman's breakthrough proof of the Poincaré conjecture was made possible by a number of new
elements. He achieved a complete understanding of singularity formation in Ricci flow, as well as
the way parts of the shape collapse onto lower-dimensional spaces. He introduced a new quantity,
the entropy, which instead of measuring disorder at the atomic level, as in the classical theory of
heat exchange, measures disorder in the global geometry of the space. This new entropy, like the
thermodynamic quantity, increases as time passes. Perelman also introduced a related local
quantity, the L-functional, and he used the theories originated by Cheeger and Aleksandrov to
understand limits of spaces changing under Ricci flow. He showed that the time between formation
of singularities could not become smaller and smaller, with singularities becoming spaced so closely
— infinitesimally close — that the Ricci flow method would no longer apply. Perelman deployed his
new ideas and methods with great technical mastery and described the results he obtained with
elegant brevity. Mathematics has been deeply enriched.

Some other reactions

Fields medalist Stephen Smale, who solved the analogue of the Poincaré conjecture for spheres of
dimension five or more, commented that: "Fifty years ago | was working on Poincaré's conjecture
and thus hold a long-standing appreciation for this beautiful and difficult problem. The final solution
by Grigoriy Perelman is a great event in the history of mathematics."

Donal O'Shea, Professor of Mathematics at Mt. Holyoke College and author of The Poincaré
Conjecture, noted: "Poincaré altered twentieth-century mathematics by teaching us how to

think about the idealized shapes that model our cosmos. It is very satisfying and deeply inspiring
that Perelman's unexpected solution to the Poincaré conjecture, arguably the most basic question
about such shapes, offers to do the same for the coming century.



HISTORY AND BACKGROUND

In the latter part of the nineteenth century, the French mathematician Henri Poincaré was studying
the problem of whether the solar system is stable. Do the planets and asteroids in the solar system
continue in regular orbits for all time, or will some of them be ejected into the far reaches of the
galaxy or, alternatively, crash into the sun? In this work he was led to topology, a still new kind of
mathematics related to geometry, and to the study of shapes (compact manifolds) of all dimensions.

The simplest such shape was the circle, or distorted versions of it such as the ellipse or something
much wilder: lay a piece of string on the table, tie one end to the other to make a loop, and then
move it around at random, making sure that the string does not touch itself. The next simplest shape
is the two-sphere, which we find in nature as the idealized skin of an orange, the surface of a
baseball, or the surface of the earth, and which we find in Greek geometry and philosophy as the
"perfect shape." Again, there are distorted versions of the shape, such as the surface of an egg, as
well as still wilder objects. Both the circle and the two-sphere can be described in words or in
equations as the set of points at a fixed distance from a given point (the center). Thus it makes
sense to talk about the three-sphere, the four-sphere, etc. These shapes are hard to visualize, since
they naturally are contained in four-dimensional space, five-dimensional space, and so on, whereas
we live in three-dimensional space. Nonetheless, with mathematical training, shapes in higher-
dimensional spaces can be studied just as well as shapes in dimensions two and three.

In topology, two shapes are considered the same if the points of one correspond to the points of
another in a continuous way. Thus the circle, the ellipse, and the wild piece of string are considered
the same. This is much like what happens in the geometry of Euclid. Suppose that one shape can
be moved, without changing lengths or angles, onto another shape. Then the two shapes are
considered the same (think of congruent triangles). A round, perfect two-sphere, like the surface of a
ping-pong ball, is topologically the same as the surface of an egg.

In 1904 Poincaré asked whether a three-dimensional shape that satisfies the "simple connectivity
test" is the same, topologically, as the ordinary round three-sphere. The round three-sphere is the
set of points equidistant from a given point in four-dimensional space. His test is something that can
be performed by an imaginary being who lives inside the three-dimensional shape and cannot see it
from "outside." The test is that every loop in the shape can be drawn back to the point of departure
without leaving the shape. This can be done for the two-sphere and the three-sphere. But it cannot
be done for the surface of a doughnut, where a loop may get stuck around the hole in the doughnut.

The question raised became known as the Poincaré conjecture. Over the years, many outstanding
mathematicians tried to solve it—Poincaré himself, Whitehead, Bing, Papakirioukopolos, Stallings,
and others. While their efforts frequently led to the creation of significant new mathematics, each
time a flaw was found in the proof. In 1961 came astonishing news. Stephen Smale, then of the
University of California at Berkeley (now at the City University of Hong Kong) proved that the
analogue of the Poincaré conjecture was true for spheres of five or more dimensions. The higher-
dimensional version of the conjecture required a more stringent version of Poincaré's test; it asks
whether a so-called homotopy sphere is a true sphere. Smale's theorem was an achievement of
extraordinary proportions. It did not, however, answer Poincaré's original question. The search for
an answer became all the more alluring.

Smale's theorem suggested that the theory of spheres of dimensions three and four was unlike the
theory of spheres in higher dimension. This notion was confirmed a decade later, when Michael
Freedman, then at the University of California, San Diego, now of Microsoft Research Station Q,
announced a proof of the Poincaré conjecture in dimension four. His work used techniques quite
different from those of Smale. Freedman also gave a classification, or kind of species list, of all
simply connected four-dimensional manifolds.



Both Smale (in 1966) and Freedman (in 1986) received Fields medals for their work.

There remained the original conjecture of Poincaré in dimension three. It seemed to be the most
difficult of all, as the continuing series of failed efforts, both to prove and to disprove it, showed. In
the meantime, however, there came three developments that would play crucial roles in Perelman's
solution of the conjecture.

Geometrization

The first of these developments was William Thurston's geometrization conjecture. It laid out a
program for understanding all three-dimensional shapes in a coherent way, much as had been done
for two-dimensional shapes in the latter half of the nineteenth century. According to Thurston, three-
dimensional shapes could be broken down into pieces governed by one of eight geometries,
somewhat as a molecule can be broken into its constituent, much simpler atoms. This is the origin
of the name, "geometrization conjecture."

A remarkable feature of the geometrization conjecture was that it implied the Poincaré conjecture as
a special case. Such a bold assertion was accordingly thought to be far, far out of reach—perhaps a
subject of research for the twenty-second century. Nonetheless, in an imaginative tour de force that
drew on many fields of mathematics, Thurston was able to prove the geometrization conjecture for a
wide class of shapes (Haken manifolds) that have a sufficient degree of complexity. While these
methods did not apply to the three-sphere, Thurston's work shed new light on the central role of
Poincaré's conjecture and placed it in a far broader mathematical context.

Limits of spaces

The second current of ideas did not appear to have a connection with the Poincaré conjecture until
much later. While technical in nature, the work, in which the names of Cheeger and Perelman figure
prominently, has to do with how one can take limits of geometric shapes, just as we learned to take
limits in beginning calculus class. Think of Zeno and his paradox: you walk half the distance from
where you are standing to the wall of your living room. Then you walk half the remaining distance.
And so on. With each step you get closer to the wall. The wall is your "limiting position," but you
never reach it in a finite number of steps. Now imagine a shape changing with time. With each
"step" it changes shape, but can nonetheless be a "nice" shape at each step— smooth, as the
mathematicians say. For the limiting shape the situation is different. It may be nice and smooth, or it
may have special points that are different from all the others, that is, singular points, or
“singularities.” Imagine a Y-shaped piece of tubing that is collapsing: as time increases, the diameter
of the tube gets smaller and smaller. Imagine further that one second after the tube begins its
collapse, the diameter has gone to zero. Now the shape is different: it is a Y shape of infinitely thin
wire. The point where the arms of the Y meet is different from all the others. It is the singular point
of this shape. The kinds of shapes that can occur as limits are called Aleksandrov spaces, nhamed
after the Russian mathematician A. D. Aleksandrov who initiated and developed their theory.

Differential equations

The third development concerns differential equations. These equations involve rates of change in
the unknown quantities of the equation, e.g., the rate of change of the position of an apple as it falls
from a tree towards the earth's center. Differential equations are expressed in the language of
calculus, which Isaac Newton invented in the 1680s in order to explain how material bodies (apples,
the moon, and so on) move under the influence of an external force. Nowadays physicists use
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differential equations to study a great range of phenomena: the motion of galaxies and the stars
within them, the flow of air and water, the propagation of sound and light, the conduction of heat,
and even the creation, interaction, and annihilation of elementary particles such as electrons,
protons, and quarks.

In our story, conduction of heat and change of temperature play a special role. This kind of physics
was first treated mathematically by Joseph Fourier in his 1822 book, Théorie Analytique de la
Chaleur. The differential equation that governs change of temperature is called the heat equation. It
has the remarkable property that as time increases, irregularities in the distribution of temperature
decrease.

Differential equations apply to geometric and topological problems as well as to physical ones. But
one studies not the rate at which temperature changes, but rather the rate of change in some
geometric quantity as it relates to other quantities such as curvature. A piece of paper lying on the
table has curvature zero. A sphere has positive curvature. The curvature is a large number for a
small sphere, but is a small number for a large sphere such as the surface of the earth. Indeed, the
curvature of the earth is so small that its surface has sometimes mistakenly been thought to be flat.
For an example of negative curvature, think of a point on the bell of a trumpet. In some directions
the metal bends away from your eye; in others it bends towards it.

An early landmark in the application of differential equations to geometric problems was the 1963
paper of J. Eells and J. Sampson. The authors introduced the "harmonic map equation," a kind of
nonlinear version of Fourier's heat equation. It proved to be a powerful tool for the solution of
geometric and topological problems. There are now many important nonlinear heat equations—the
equations for mean curvature flow, scalar curvature flow, and Ricci flow.

Also notable is the Yang-Mills equation, which came into mathematics from the physics of quantum
fields. In 1983 this equation was used to establish very strong restrictions on the topology of four-
dimensional shapes on which it was possible to do calculus [D]. These results helped renew hopes
of obtaining other strong geometric results from analytic arguments—that is, from calculus and
differential equations. Optimism for such applications had been tempered to some extent by the
examples of René Thom (on cycles not representable by smooth submanifolds) and Milnor (on
diffeomorphisms of the six-sphere).

Ricci flow

The differential equation that was to play a key role in solving the Poincaré conjecture is the Ricci
flow equation. It was discovered two times, independently. In physics, the equation originated with
the thesis of Friedan [F, 1985], although it was perhaps implicit in the work of Honerkamp [Ho, 1972].
In mathematics it originated with the 1982 paper of Richard Hamilton [Ha1]. The physicists were
working on the renormalization group of quantum field theory, while Hamilton was interested in
geometric applications of the Ricci flow equation itself. Hamilton, now at Columbia University, was
then at Cornell University.

On the left-hand side of the Ricci flow equation is a quantity that expresses how the geometry
changes with time —the derivative of the metric tensor, as the mathematicians like to say. On the
right-hand side is the Ricci tensor, a measure of the extent to which the shape is curved. The Ricci
tensor, based on Riemann's theory of geometry (1854), also appears in Einstein's equations for
general relativity (1915). Those equations govern the interaction of matter, energy, curvature of
space, and the motion of material bodies.

The Ricci flow equation is the analogue, in the geometric context, of Fourier's heat equation. The

idea, grosso modo, for its application to geometry is that, just as Fourier's heat equation disperses
temperature, the Ricci flow equation disperses curvature. Thus, even if a shape was irregular and
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distorted, Ricci flow would gradually remove these anomalies, resulting in a very regular shape
whose topological nature was evident. Indeed, in 1982 Hamilton showed that for positively curved,
simply connected shapes of dimension three (compact three-manifolds) the Ricci flow transforms the
shape into one that is ever more like the round three-sphere. In the long run, it becomes almost
indistinguishable from this perfect, ideal shape. When the curvature is not strictly positive, however,
solutions of the Ricci flow equation behave in a much more complicated way. This is because the
equation is nonlinear. While parts of the shape may evolve towards a smoother, more regular state,
other parts might develop singularities. This richer behavior posed serious difficulties. But it also
held promise: it was conceivable that the formation of singularities could reveal Thurston's
decomposition of a shape into its constituent geometric atoms.

Richard Hamilton

Hamilton was the driving force in developing the theory of Ricci flow in mathematics, both
conceptually and technically. Among his many notable results is his 1999 paper [Ha2], which
showed that in a Ricci flow, the curvature is pushed towards the positive near a singularity. In that
paper Hamilton also made use of the collapsing theory [C-G] mentioned earlier. Another result
[Ha3], which played a crucial role in Perelman's proof, was the Hamilton Harnack inequality, which
generalized to positive Ricci flows a result of Peter Li and Shing-Tung Yau for positive solutions of
Fourier's heat equation.

Hamilton had established the Ricci flow equation as a tool with the potential to resolve both
conjectures as well as other geometric problems. Nevertheless, serious obstacles barred the way to
a proof of the Poincaré conjecture. Notable among these obstacles was lack of an adequate
understanding of the formation of singularities in Ricci flow, akin to the formation of black holes in the
evolution of the cosmos. Indeed, it was not at all clear how or if formation of singularities could be
understood. Despite the new front opened by Hamilton, and despite continued work by others using
traditional topological tools for either a proof or a disproof, progress on the conjectures came to a
standstill.

Such was the state of affairs in 2000, when John Milnor wrote an article describing the Poincaré
conjecture and the many attempts to solve it. At that writing, it was not clear whether the conjecture
was true or false, and it was not clear which method might decide the issue. Analytic methods
(differential equations) were mentioned in a later version (2004). See [M1] and [M2].

Perelman announces a solution of the Poincaré conjecture

It was thus a huge surprise when Grigoriy Perelman announced, in a series of preprints posted on
ArXiv.org in 2002 and 2003, a solution not only of the Poincaré conjecture, but also of Thurston's
geometrization conjecture [P1, P2, P3].

The core of Perelman's method of proof is the theory of Ricci flow. To its applications in topology he
brought not only great technical virtuosity, but also new ideas. One was to combine collapsing
theory in Riemannian geometry with Ricci flow to give an understanding of the parts of the shape
that were collapsing onto a lower-dimensional space. Another was the introduction of a new
quantity, the entropy, which instead of measuring disorder at the atomic level, as in the classical
theory of heat exchange, measures disorder in the global geometry of the space. Perelman’s
entropy, like the thermodynamic entropy, is increasing in time: there is no turning back. Using his
entropy function and a related local version (the L-length functional), Perelman was able to
understand the nature of the singularities that formed under Ricci flow. There were just a few kinds,
and one could write down simple models of their formation. This was a breakthrough of first
importance.
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Once the simple models of singularities were understood, it was clear how to cut out the parts of the
shape near them as to continue the Ricci flow past the times at which they would otherwise form.
With these results in hand, Perelman showed that the formation times of the singularities could not
run into Zeno's wall: imagine a singularity that occurs after one second, then after half a second
more, then after a quarter of a second more, and so on. If this were to occur, the "wall," which one
would reach two seconds after departure, would correspond to a time at which the mathematics of
Ricci flow would cease to hold. The proof would be unattainable. But with this new mathematics in
hand, attainable it was.

The posting of Perelman's preprints and his subsequent talks at MIT, SUNY-Stony Brook, Princeton,
and the University of Pennsylvania set off a worldwide effort to understand and verify his
groundbreaking work. In the US, Bruce Kleiner and John Lott wrote a set of detailed notes on
Perelman's work. These were posted online as the verification effort proceeded. A final version was
posted to ArXiv.org in May 2006, and the refereed article appeared in Geometry and Topology in
2008. This was the first time that work on a problem of such importance was facilitated via a public
website. John Morgan and Gang Tian wrote a book-long exposition of Perelman's proof, posted on
ArXiv.org in July of 2006, and published by the American Mathematical Society in CMI's monograph
series (August 2007). These expositions, those by other teams, and, importantly, the multi-year
scrutiny of the mathematical community, provided the needed verification. Perelman had solved the
Poincaré conjecture. After a century's wait, it was settled!

Among other articles that appeared following Perelman's work is a paper in the Asian Journal of
Mathematics, posted on ArXiv.org in June of 2006 by the American-Chinese team, Huai-Dong Cao
(Lehigh University) and Xi-Ping Zhu (Zhongshan University). Another is a paper by the European
group of Bessieres, Besson, Boileau, Maillot, and Porti, posted on ArXiv.org in June of 2007. It was
accepted for publication by Inventiones Mathematicae in October of 2009. It gives an alternative
approach to the last step in Perelman's proof of the geometrization conjecture.

Perelman's proof of the Poincaré and geometrization conjectures is a major mathematical advance.
His ideas and methods have already found new applications in analysis and geometry; surely the
future will bring many more.

— JC, March 18, 2010 (corrections, 3/19/2010)
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