
Technical Report
Number 995

Computer Laboratory

UCAM-CL-TR-995
ISSN 1476-2986

Fragment-template power-analysis
attacks against microcontroller

implementations of the
32-bit stream cipher ChaCha

Henry Batchelor

July 2024

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/


© 2024 Henry Batchelor

This technical report is based on a dissertation submitted May
2024 by the author for the degree of Master of Engineering
(Computer Science Tripos) to the University of Cambridge,
Selwyn College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-995

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-995


Abstract

ChaCha is a widely adopted stream cipher, used for both random number generation

and encryption. I propose a factor graph of ChaCha to improve the success rate of side-

channel attacks that provide leakages throughout the entire execution of the algorithm.

I also assess (fragment) template attacks against several implementations of ChaCha

to demonstrate that the factor graph is helpful when working with actual side-channel

attacks.

These attacks could fully recover the correct key from an 8-bit implementation. In con-

trast, a 32-bit implementation, with most of the state held in registers, was significantly

more challenging to attack. An adversary with access to 10 power traces and an incre-

mented counter could achieve a success rate of 14.6%. For a 32-bit implementation, with

lots of SRAM activity, an attacker could successfully recover the key in 2.6% of cases from

a single trace.

3



Acknowledgements

I would like to thank Markus Kuhn, Shih-Chun You, and Eric Peng for support and

fruitful discussions throughout this project.

I would also like to thank Richard Watts, Director of Studies in Computer Science at

Selwyn College, for support throughout my degree and Mr Meakin, Head of Computer

Science at Bury Grammar School, for encouraging my interest in Computer Science.

4



Contents

1 Introduction 7

2 Background 9

2.1 ChaCha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Side-channel attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Soft analytical side-channel attack . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Key enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Rank estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Efficient template and fragment template attacks . . . . . . . . . . 19

2.6.2 Template attacks against Keccak and Ascon AEAD . . . . . . . 19

3 Factor graph design 21

3.1 Graph structure designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 ROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Combining small structures . . . . . . . . . . . . . . . . . . . . . . 26

3.1.5 Supporting several encryptions . . . . . . . . . . . . . . . . . . . . 27

3.2 Initial belief propagation experiments . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 ADD design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Factor optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Information flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Side-channel information generation 35

4.1 Simulated information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Noisy Hamming weights . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Value information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Actual template attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Recording setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



4.2.2 Traces recorded and trace validation . . . . . . . . . . . . . . . . . 39

4.2.3 Clock signal detection . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Interesting cycle detection . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 Template profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Evaluation 45

5.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Actual attack results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Template quality and combining them without belief propagation . 48

5.2.2 Results after belief propagation . . . . . . . . . . . . . . . . . . . . 51

6 Summary and conclusions 54

6



Chapter 1

Introduction

Side-channel attacks provide a method for attacking theoretically sound cryptographic

functions by looking at flaws in their implementations. The most basic type of side-

channel attack is a timing attack, where the amount of time an operation takes leaks

information about a value. Many other types of side-channel can be exploited, such as

the amount of power drawn and electromagnetic emissions.

ChaCha [1] is a widely used stream cipher for pseudo-random number generation, for

masking other cryptographic operations, or as part of an authenticated encryption with

associated data scheme (AEAD). It uses only addition (ADD), exclusive or (XOR), and

rotate (ROR) instructions, which means that constant-time implementations are relatively

easy to achieve, so side-channel attacks have to make use of another source of information.

It is valuable to examine how vulnerable ChaCha is to other side-channel attacks. This

project attempts to infer the secret values from a small number of power traces, which

naturally leads to performing a template attack [2].

Previous works [3] [4] have shown that template attacks can have their success rates

significantly increased by the soft analytical side-channel attack (SASCA) [5] technique

for algorithms based around permutations. The main rounds of ChaCha implement a

permutation; therefore, it is natural to examine the combination of a template attack with

SASCA for attacking ChaCha. SASCA provides a probabilistic model of the algorithm

that we can insert the side-channel leakages into and marginalise over to maximise the

chance of finding the correct values.

Initially, I focused on creating a probabilistic model of ChaCha, with particular interest

paid to the design of 32-bit ADD, which had not been previously explored. Afterwards, I

performed several actual attacks against ChaCha implementations, demonstrating that a

normal 32-bit implementation can have its key recovered in 14.6% of cases with ten traces

by an adversary. In contrast, an 8-bit implementation could have its key recovered from

a single trace in all cases. I also demonstrated that SRAM activity should be minimised

7



due to this providing more leakage.

Chapter 2 gives an overview of ChaCha’s design alongside the steps typically performed

in a side-channel attack. It also provides an overview of techniques for improving the

success rates of attacks and assessing how successful an attack would be for a more

powerful attacker, alongside a summary of related work.

Chapter 3 details designing the probabilistic model for ChaCha and experiments under-

taken to allow for effective operation with actual leakages.

Chapter 4 explains different types of leakage we can extract from encryptions, including

in simulations. It then covers the process I used for performing template attacks against

different implementations of ChaCha.

Chapter 5 assesses the success rates of the attacks performed in various scenarios (includ-

ing simulated leakages) and the template qualities.

8



Chapter 2

Background

2.1 ChaCha

ChaCha is a stream cipher proposed by Daniel Bernstein in 2008 [1], based on his existing

Salsa20 cipher. The only operations ChaCha uses are 32-bit addition (ADD), bitwise

exclusive or (XOR), and rotation (ROR). The cipher’s state consists of 16 32-bit words

with the initial configuration as specified in RFC 8439 [6] shown in table 2.1. The first

four words are taken as their ASCII value in little-endian order, so “expa” has the hex-

adecimal value 0x61707865. The counter is incremented between subsequent invocations

of ChaCha.

Table 2.1: The initial state configuration of ChaCha, where the words are ordered in row
major order

“expa” “nd 3” “2-by” “te k”

Key Key Key Key

Key Key Key Key

Counter Nonce Nonce Nonce

According to RFC 8439, the cipher’s operation consists of 20 rounds, alternating between

odd and even rounds; each round comprising four quarter rounds. Figure 2.1 shows the

design of the quarter round. The configurations of inputs for the odd and even rounds

are shown in tables 2.2 and 2.3, with each colour corresponding to a quarter round and

the top row going to a, second to b, and so on. The quarter round function is entirely

reversible; this means that the main of set of rounds is reversible. Therefore, to make

the cipher not a permutation, the input is added to the output of the final round for the

cipher’s final output, the 16 32-bit word state.

ChaCha has become widely adopted both as a cipher and for pseudo-random number

generation. Some of the more notable adoptions (often including Bernstein’s Poly1305 [8]

9



Figure 2.1: ChaCha quarter round function, diagram taken from [7]

Table 2.2: Odd round configuration of quarter rounds, each colour representing an in-
dividual quarter round and the numbers showing the position in the overall state. The
inputs to each quarter round are in order according to their position in the state

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Table 2.3: Odd round configuration of quarter rounds, each colour representing an in-
dividual quarter round and the numbers showing the position in the overall state. The
inputs to each quarter round are in order according to their position in the state

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

10



as a message authentication code) include as a cipher in TLS version 1.3 [9] and as a default

cipher in OpenSSH [10]. It is also used extensively as a pseudo-random number generator;

for example, in FreeBSD [11], OpenBSD [12], and NetBSD [13], it currently implements

the arc4random generator, replacing RC4, and in the Linux kernel has implemented the

/dev/urandom device since version 4.8 [14].

There has been some recent discussion about whether the number of rounds is too conser-

vative, unnecessarily sacrificing performance [15], with reduced round variants becoming

popular for random number generation. Go uses an 8-round version as the default PRNG

[16], and Rust uses a 12-round version [17]. ChaCha is also the basis of the BLAKE

hash function [18], a finalist in the NIST hash function competition [19]. There are many

reasons behind its popularity, but one of the main ones is that software can efficiently im-

plement it without specialised instructions and it allows for simple hardware accelerators.

2.2 Side-channel attacks

Side-channel attacks are a class of attacks against protocols and algorithms that use flaws

in their implementations to extract information about intermediate values rather than

flaws in their theoretical design. Side-channel attacks include timing and power analysis

attacks. In timing attacks, the attacker measures the time of specific operations to infer

the data they operate on. Timing attacks can be performed through the cache in transient

execution attacks, as shown in Spectre and Meltdown [20]. Power analysis attacks instead

look at the amount of power drawn by the hardware when performing certain operations

to infer the values operated on.

Power analysis side-channel attacks can be broken into two categories:

� Non-profiled attacks – The attacker does not have detailed knowledge of the im-

plementation. The attacker records lots of power traces with the same secret key,

and statistical relationships are found between the traces to recover the secret key.

Common types of non-profiled attacks are Differential Power Analysis (DPA) [21]

and Correlation Power Analysis (CPA) [22].

� Profiled attacks – The attacker has access to the implementation of the algorithm

they are attacking, and they have access to a set of input values with associated

power traces. This access allows the attacker to train a classifier on the implemen-

tation to classify the value a particular variable takes. Then, during the attack, the

classifier gives probabilities for all the values the variable could take. Profiled at-

tacks can extract significantly more information per attack trace, making it possible

to recover the key from a single trace.

A typical profiled attack consists of two main stages: training and attack. The training

stage generally consists of the following steps:

11



� Trace recording – the attacker makes power supply current recordings of the sys-

tem with known inputs. Ideally, they choose the inputs randomly to help avoid

correlations with environmental factors such as temperature.

� Building templates for different parts of the algorithm’s state. This can consist of

several sub-steps:

– Interesting point selection – analyse the traces to determine which samples

contain significant amounts of information related to a targeted location. The

high number of samples (for the attacks in section 4.2 over 650 000) makes it

infeasible to characterise the distributions over all of them. It is often helpful

to also select points around interesting points.

– Dimensionality reduction – is an optional step to reduce the number of di-

mensions the templates use, improving their runtime and (hopefully) accuracy.

This is commonly done by Principal Component Analysis (PCA) [23] or Linear

Discriminant Analysis (LDA) [24].

– Template profiling – find the means and covariance matrices of the different

values the targeted location can take.

The attack stage consists of the following steps:

� Trace recording – the attacker collects power supply current recordings of the device

when performing the encryptions they want to attack.

� Point selection and dimensionality reduction – select the same interesting points

selected in the training stage and perform the same dimensionality reduction.

� Apply templates – use a multivariate Gaussian model, with the covariance matrices

and means from the template, to give the likelihood that the attack trace contains

each value.

� Increase success rate – if the templates are not of high quality, techniques such as

SASCA and key enumeration can increase the attack’s chance of success.

� Estimate the attack’s performance – in experimental settings it can be helpful to

find the suitability of attacks. This is often done by estimating the number of key

candidates that an attacker would have to enumerate to find the correct key.

In profiled attacks, various types of leakage can be extracted, including the Hamming

weight and the Hamming difference from the previous value of the register. It is also

possible to get probabilities of individual values. The values can be for the entire word

size as in template attacks [2] or for parts of the word as in fragment template attacks [3].

Examining the quality of templates these methods have created can also be helpful. Two

standard metrics [25] used for this purpose are:

12



� n-order success rate (n-SR) – the probability that the correct value is in the n

most likely. The higher the rate, the better the quality of the template. The most

common version used is first-order success rate, the probability that the most likely

value is correct. For a perfect template, the first-order success rate is 1; for an

informationless template (one giving equal likelihood to all values), it is 1
k
, where k

is the number of potential values.

� Logarithmic guessing entropy (LGE) – the base two logarithm of the expected num-

ber of guesses required to find the actual value. The lower the value, the better

the quality of the template. For a perfect template, it is 0; for an informationless

template, it is log2(k)− 1, where k is the number of potential values.

2.3 Soft analytical side-channel attack

A side-channel attack, as described above, gives probability distributions for each inter-

mediate value and part of the key. We can use these probabilities directly; however, they

only consider information that directly leaks their value. SASCA [5] allows for combining

leakages from all intermediate values by providing a probabilistic model of the algorithm

that we can marginalise over.

We can create a factor graph to represent the algorithm of interest, which consists of the

following types of node:

� Variable nodes – represent the distribution of values which a particular point in the

execution can take. They are the circular nodes in the graphical representation.

� Factor nodes – impose limitations on the values variables can take and their likeli-

hoods and are shown as rectangular nodes in the graphical representation. We can

break them down into two types:

– Constraint factors – represent the operations of the algorithm, imposing which

combinations of values are valid.

– Observation factors – represent the leakage probabilities output from the side-

channel attack.

Figure 2.2 shows a factor graph representing the code:

c = a+ b

d = b⊕ c

a = b & d

where the subscripts on the variables correspond to their version, and fa0 gives the leakage

probability distribution of a0.

13



f+

f⊕

f&

a0

b0

c0

d0

a1

fa0

fb0

fc0

fd0

fa1

Figure 2.2: Small example factor graph

Belief propagation marginalises the output probabilities in the factor graph and has been

implemented through message passing [26]. It will produce an exact marginalisation on

trees, whereas its marginalisation may not be exact for graphs containing cycles.

Belief propagation has two types of messages: factor-to-variable messages (rm→n) and

variable-to-factor messages (qn→m).

The factor-to-variable messages are calculated by:

rm→n(xn) =
∑
xm\n

(
fm(xm)

∏
n′∈Neigh(m)\n

qn′→m(xn′)
)

and the variable-to-factor messages are calculated by:

qn→m(xn) =
∏

m′∈Neigh(n)\m

rm′→n(xn)

where Neigh(n) gives the set of neighbours of node n, fm gives the factor’s data to the

graph (e.g. the outputted likelihoods from the side-channel attack or which combination

of values are valid), xm is the set of variables which the mth factor depends on, and xm\n
denotes xm with the variable xn excluded.

The marginal distribution for a variable can then be calculated by:

Pn(xn) =
Zn(xn)

Z
=

∏
m∈Neigh(n) rm→n(xn)

Z

where Z is a normalising constant (calculated by summing the numerators across all

values of xn, i.e. Z =
∑

Zn(xn)).

We can order the calculation of the messages in trees so that each only needs to be cal-

culated once. This is impossible for graphs containing loops, but we can use a similar

technique where we initialise all variable-to-factor messages as 1. Then, we perform iter-

ations of sending all factor-to-variable messages and then all variable-to-factor messages.

Iteration continues until the variables’ distributions converge to a stationary point or we

14



xa

xb

f=xc f1

f2

f3

Figure 2.3: Example factor graph for equality

reach an iteration limit.

Figure 2.3 shows a small example factor graph representing equality between three vari-

ables (in this case, assumed to be one bit), each of which has an associated observation

factor. The tables for the different constraints and observations are as follows:

f1(xa) =

0.8 xa = 0

0.2 xa = 1

f2(xb) =

0.7 xb = 0

0.3 xb = 1

f3(xc) =

0.9 xc = 0

0.1 xc = 1

f=(xa, xb, xc) =

1 if xa = xb = xc

0 otherwise

The following will be performed to calculate the marginal distribution of xa (using the

tree message passing order). Calculate the numerator in the xa = 0 case:

Za(xa = 0) = r1→a(xa = 0)× r=→a(xa = 0)

= f1(xa = 0)×
∑

xa=0,xb,xc

[f=(xa, xb, xc)× qb→=(xb)× qx→=(xc)]

= 0.8× [qb→=(0)× qc→=(0)]

The following rules can then be used to update the values:

qb→=(xb) = r2→b(xb) = f2(xb)

qc→=(xc) = r3→c(xc) = f3(xc)

15



hence:
Za(xa = 0) = 0.8× [f2(xb = 0)× f3(xc = 0)]

= 0.8× [0.7× 0.9]

= 0.504

Similarly:

Za(xa = 1) = f1(xa = 1)× [f2(xb = 1)× f3(xc = 1)]

= 0.2 [0.3× 0.1]

= 0.006

Therefore the marginal distribution is as follows:

Pa(xa) =

 0.504
0.504+0.006

= 0.988 xa = 0

0.006
0.504+0.006

= 0.012 xa = 1

When working with loopy graphs, it is possible to use a different schedule for sending

messages compared to sending between all nodes on every iteration. Different schedules

can improve convergence speed by allowing information to flow more efficiently around the

graph, but a poorly chosen schedule can significantly slow it down or prevent convergence

[27]. In an extreme example of variables that are either completely unknown or have a

set value, the only messages carrying information around the factor graph are those from

known variables to unknown variables (clearly, they must go through a factor).

Loops in factor graphs can lead to oscillations, which we want to avoid. The introduction

of oscillations makes us want to avoid introducing unnecessary loops (especially small

ones) into the factor graph. We can reduce these oscillations by damping the message

updates. Damping makes the messages sent the weighted sum of the new value calculated

and the previous value of the message. A message (u) sent around the graph is calculated

as follows:

u = α× unew + (1− α)× uprev

where α is the damping rate, the smaller the rate the greater the amount of damping,

unew is the message calculated by the previous equations and uprev is the previous value

for this message.

2.4 Key enumeration

Probability tables output directly from a side-channel attack or SASCA will be subject

to noise. This means that the correct values may not be the most likely. It is helpful to

test potential combinations in order of their likelihood when searching for the correct key.

To perform this enumeration, the attacker must have a known output and input (except

for the part they are enumerating) to verify that they have found the correct key.

16



Charvillon et al. [28] propose an algorithm that produces the keys in likelihood order

from a series of probability tables. Below, the basic ideas for combining two tables are

described.

Let s and w be two sorted probability tables for two parts of a key so that s1 (and w1)

represents the most likely value and sn represents the least likely value (assuming there

are n potential values). The algorithm maintains a frontier of the potential combinations

of values which could be the next most likely. Figure 2.4 shows the algorithm’s initial

state, where each cell represents combining the two values from the likelihood tables, with

white cells being completely unexplored and the red ones being in the frontier. The only

value initially in the frontier is the most likely combination.

s1 s2 s3 s4

w1

w2

w3

w4

Figure 2.4: Initial unexplored state through the probability tables

The attacker picks the most likely combination from the frontier when selecting the next

most likely combination. At that point, they must update the frontier to capture any new

combinations that could be the next most likely. Due to working with sorted probability

tables, cells in a row to the right of a cell will have a lower likelihood than that cell (and

the same applies to columns going downwards). This means they only need to add newly

created concave corners of the enumerated space to the frontier. Figure 2.5 shows the

locations the frontier contains part-way through exploring the keys, where the grey-shaded

cells have already been tested.

s1 s2 s3 s4

w1

w2

w3

w4

Figure 2.5: State part way through exploration of states, gray shaded cells have already
been explored and the frontier is in red

The above process continues until the attacker finds the correct combination of values or

17



reaches an iteration limit.

The above ideas can be extended to support having more than two probability tables in

various ways.

One method is to work directly in a higher dimensional space, where each sorted prob-

ability table has its own dimension. The frontier is maintained in this space, and the

concave corners added to the frontier as they are in the two table case.

An alternative method is to use a recursive binary tree like structure, where each node

outputs the next most likely combination of the tables they are combining. The leaf nodes

of the tree represent the individual probability tables and output them in order. Then the

remaining nodes implement the described method for combining two probability tables

outputting them in order with their probability. Each probability table (and combinations

of them) is accessed in order so the entire distribution does not need to be known when

expanding the frontier. This means that parent nodes only need to request the next most

likely combination on the first access to a cell in a particular row or column (which will

be the left most or top cell of that row or column).

2.5 Rank estimation

A powerful attacker can likely enumerate 264 key candidates but such a large amount of

key enumeration is often infeasible for people proposing attacks. This means it is helpful

to estimate how many keys would need to be enumerated from a given set of probability

tables without actually enumerating them (this problem is frequently called rank estima-

tion). Rank estimation is impossible in an actual attack because it requires knowledge of

the key used during the encryption. However, it is still useful when evaluating an attack

in an experimental scenario.

Glowacz et al. [29] propose an algorithm for rank estimation. It works by constructing a

histogram for each given probability distribution in a logarithmic scale. Then, it approx-

imates the overall histogram of the distribution of keys by convolving all the individual

histograms together. Then, to estimate the number of keys that need to be enumerated,

it sums the values of all bins that are more or equally likely than the actual key.

Convolving all the histograms together is not trivial due to the large number of potential

secret values (e.g. for ChaCha’s key there are 2256), preventing the use of standard library

fast convolution functions due to not fitting in standard sized integers.

One way to perform the convolution is to slide the two histograms over each other, mul-

tiplying and summing them with arbitrary sized integers.

Better performance can be achieved by using the Chinese Remainder Theorem, because

it allows the use of standard library fast convolution functions. This works by having

a set of prime numbers where the convolutions are done modulo each prime number in

18



this set, meaning that the values can fit in standard sized integers. This means that the

number of convolutions will be higher but can still achieve better performance. Then the

set of resulting histograms can be combined together to produce the final histogram with

arbitrary sized integers. For ChaCha’s key of 256 bits, the 20 largest prime numbers below

10 000 allow the unique identification of every potential value in the final histogram.

2.6 Related work

2.6.1 Efficient template and fragment template attacks

Choudary and Kuhn [30] cover several techniques which are useful when performing tem-

plate attacks. These include using a pooled covariance matrix across all values, rather

than each value having its own covariance matrix, because it reduces the number of traces

required to get a good estimate. They also compare several methods for compressing the

recorded samples, including selecting several points per clock cycle, PCA and LDA. Their

practical guidance and our desired attack setting of few attack traces suggests using a

pooled covariance matrix with LDA.

Choudary and Kuhn did not provide methods that would scale well for working directly

with 32-bit templates. Several approaches have been proposed for working with 32-bit

parallel buses, including the fragment template attack [3]. Fragment template attacks

break down the 32-bit values into a series of fragments. Each fragment has a template

built independently, with the other bits treated as noise. It has been shown to work well

for Keccak [3], which naturally contains lots of memory accesses, allowing the building

of high-quality templates, and also works for Ascon [4] although not as well.

In contrast, Cassiers et al. [31] show further optimisations that make creating 32-bit

templates feasible. Allowing for better performance than fragment template attacks when

run on a small number of operations, such as single XOR or an Ascon-p permutation,

which fit entirely in registers. They also performs SASCA on the Ascon-p permutation

with 32-bit values to maximise the use of the extracted information. Their implementation

of SASCA requires storing 35 distributions, using 1.13 TiB of RAM and taking 2.7 hours.

The memory and time requirements show that performing SASCA directly on 32-bit

values is currently challenging for more extensive algorithms such as ChaCha.

2.6.2 Template attacks against Keccak and Ascon AEAD

Kannwischer et al. [32] propose a factor graph for Keccak, evaluated with simulated

leakages, and serves as a base design for actually attacking Keccak in [3].

This shows that working with simulated leakages is useful when designing a factor graph

before working with actual attacks. They also show how clustering bits together (even

independently of the processor’s word size) can help achieve good results. However, factor-

19



to-variable messages will have runtimes of O(2cd), with c bits per cluster and d connected

variables. They also show methods which can improve the performance of certain factors

(e.g. XOR) compared to the naive method of multiplying full probability distributions for

larger clusters.

You et al. [4] perform a fragment template attack against Ascon [33], the winner of

the NIST Lightweight Cryptography competition (2019–2023) [34], on a 32-bit microcon-

troller.

They attacked several implementation variations, such as changing the compiler’s opti-

misation level and with or without boolean masking. Boolean masking [35] is a technique

that helps prevent leakage through power side-channels by obfuscating values. The tar-

geted masked implementation of Ascon [33] used ChaCha to generate the values used for

masking. If a fragment template attack from a single trace is possible against ChaCha,

then an attacker could attack this masked implementation from just the power leakage

without knowing what values were used for the masking because the factor graph can also

model the masking steps.

20



Chapter 3

Factor graph design

This chapter describes several structures that can be combined to create a factor graph

for ChaCha. It also describes some initial experimentation with belief propagation on a

factor graph. This experimentation helps support the choice of certain parameters for

belief propagation in actual attack scenarios.

3.1 Graph structure designs

ChaCha consists of three types of operation (ADD, XOR and ROR), each of which must

be modelled in the factor graph. The factor graph will naturally contain loops due to the

structure of ChaCha. Most implementations of ChaCha stick closely to the description

in the original paper, meaning it is sensible to have a factor graph for that version.

The 32-bit values operated on in ChaCha would be a natural size for the variables in

the factor graph, but it is currently challenging to work with 32-bit values in large factor

graphs. Breaking each value in the algorithm into clusters of c bits (with C clusters per

32-bit value, so c×C = 32) will improve performance due to the smaller sizes. However,

we may lose information by treating the clusters independently.

When operating on clusters, it is possible to implement any operation (⊙) as a single

factor. For representing x⊙ y = z, a factor with the following table could be used:

f⊙(x1, . . . , xC , y1, . . . , yC , z1, . . . , zC) =

1 if (xC || · · · ||x1)⊙ (yC || · · · ||y1) = (zC || · · · ||z1)

0 otherwise

This does not lead to the desired performance improvements because the factor is still

really operating on 32-bit values despite only working with variables of c bits. When

operating on clusters, the factors cannot be connected directly to all clusters that make

up a value.

The structures proposed in this section were checked by several techniques including:

21



� Running with a known input of the ChaCha test vectors (provided in RFC 8439

[6]) with all other values unknown until it reaches a fixed point and then taking the

output. This ensures that the factor graph correctly implements the algorithm for

values flowing forwards through the graph.

� Running with a known input and output of ChaCha with all other values unknown

until it reaches a fixed point, and checking that the distributions of variables remain

valid. This allows the checking that information can also flow effectively backwards

through the graph as would be expected in ChaCha due to the main rounds imple-

menting a permutation.

� Running with all variables set to a particular encryption and checking that it re-

mains at the fixed point. This ensures that it will stay at a valid fixed point of an

encryption.

� Running with all variables set to a particular encryption except one is perturbed.

This ensures that the invalid distributions can propagate through the entire graph.

� Running with all variables set initially to uniform distributions and ensuring that

a fixed point is reached with all variables having a distribution near uniform. This

gives us confidence that the algorithm has been correctly implemented and that the

structures do not lead to prefering certain values which are not preferred in the

actual algorithm.

3.1.1 XOR

f⊕

zi

xi yi

Figure 3.1: Structure for XOR in factor graph

XOR is the simplest operation to implement in a clustered factor graph because it is

entirely bitwise. x⊕y = z can be implemented by the structure shown in figure 3.1 where

f⊕ has a function of:

f⊕(xi, yi, zi) =

1 if xi ⊕ yi = zi

0 otherwise

and is between xi, yi and zi.

22



3.1.2 ROR

Rotation by amounts divisible by the cluster size can be performed by renaming other

operations’ input/output clusters, requiring no additional factors. However, unless we

use 1-bit clusters, not all rotations can be performed this way. Therefore, we must add

a structure for performing these rotations, which can be limited to less than the cluster

width. This structure will introduce loops into the factor graph because it rotates a value.

Several structures can perform an r-bit rotation (x ≪ r = y) by connecting to the ith

cluster and (i− 1)th cluster (looping around to the top cluster from the bottom cluster).

fconcatenate

yi

bottom bitstop bits

fmarg bottom (c−r) bits fmarg top r bits

xi xi−1

Figure 3.2: Potential structure for ROR in factor graph with explicit bit selection

f≪r

yi

xi xi−1

Figure 3.3: Potential structure for ROR in factor graph

Figure 3.2 shows a structure that selects the lower (c−r)-bits and upper r-bits of clusters

combined for the output value. Figure 3.3 shows an alternative structure which does

23



not select the bits explicitly, instead taking the full values of both clusters, and having a

constraint table of:

f≪r(xi−1, xi, yi) =

1 if (xi−1 ≫ (c− r)) ∨ (xi ≪ r) = yi

0 otherwise

where ≫ and ≪ are (zero-padded) shifts right and left. The version shown in figure 3.3

was selected for use due to it introducing fewer nodes into the factor graph, not leading to

much shorter loops and having a very similar structure without the explicit bit selection.

3.1.3 ADD

Addition is a more complicated operation to implement inside a clustered factor graph

because the output value for each cluster depends on the values from the corresponding

clusters in the input values and their other clusters. The structure of a ripple carry adder

is helpful to examine when considering how to model addition in the factor graph, due

to its ability to create a 32-bit adder by using only single-bit full adders with carry bits

between them. It is natural to introduce carry bits between each cluster to simplify the

movement of information between the clusters.

Below, I propose a couple of potential structures for c-bit addition with carry bits

(x+y+cin = z+2c ·cout). For the lowest cluster, an observation factor can set the carry-in

bit to 0.

cin x y

fadd output fadd carry

z cout

Figure 3.4: Potential structure for ADD in a factor graph introducing loops

Figure 3.4 shows the most direct structure for implementing c-bit addition with carry

bits. The two constraint factors have the following tables:

fadd carry(cin, x, y, cout) =

1 if ((cin + x+ y) >= 2c) = cout

0 otherwise

24



fadd output(cin, x, y, z) =

1 if ((cin + x+ y) mod 2c) = z

0 otherwise

cin x y

fadd full

full outputfmarg output fmarg carry

z cout

Figure 3.5: Potential tree structure for ADD in a factor graph

The design in figure 3.4 introduces many small loops into the factor graph. Generally, we

want to avoid small loops in factor graphs because they can lead to oscillations, potentially

preventing convergence to the correct value. Figure 3.5 shows an alternative structure

which does not introduce loops into the factor graph. It adds a new variable full output

representing the (c+1)-bit output of the addition, which can then have its top bit selected

for the carry-out bit and the remaining bits for the output of this cluster. The constraint

factors have the following tables:

fadd full(cin, x, y, full output) =

1 if cin + x+ y = full output

0 otherwise

fmarg output(full output, z) =

1 if full output mod 2c = z

0 otherwise

fmarg carry(full output, cout) =

1 if (full output >= 2c) = cout

0 otherwise

25



3.1.4 Combining small structures

ai bj ck dl

f+

ai+1

f⊕,≪16

dl+1f+

ck+1f⊕,≪8

bj+1

f≪4

bj+2

Figure 3.6: Overview of first half of a quarter round factor graph when using 8-bit clusters,
the variables and factors would actually be implemented by the clustered versions so it
would consist of 54 variables and 38 factors when using the tree structure for ADD

The previous structures provide ways to implement the basic operations of ChaCha. To

make the factor graph for ChaCha, they can be combined to make the quarter round,

which can then be combined into complete rounds and, subsequently, the entire algorithm

with a final ADD at the end. Figure 3.6 shows an overview of the variables and factors

needed for the first half of a quarter round. The subscripts indicate the version of the

variable and XOR can perform rotations by amounts divisible by 8 bits because it is

assumed to be working with 8-bit clusters. The variables and factors shown would actually

consist of several variables for each cluster and be replaced with the previously discussed

26



structures.

3.1.5 Supporting several encryptions

Using several encryptions with the same key can take advantage of more leakages. There

are several methods for modelling multiple encryptions in a factor graph.

A simple method is to make an independent factor graph for each encryption, where the

values that should be equal between the different encryptions (e.g. the key) have an extra

constraint factor added between them, for enforcing equality. Leakages for the variables

can be added as they are in single runs. This method introduces additional factors which

negatively impact performance.

Another method is to have the factor graphs for each encryption share the variables which

are equal; this requires no additional factors. I chose the second method due to its better

runtime and additional flexibility in combining leakages.

If several traces have the same input state, then only the factor graph for a single execution

is required, where the leakage probabilities for each variable have been calculated from

the collection of traces.

It can be helpful to enforce simple known differences between variables in different en-

cryptions. For example, if the counter (part of the input which is incremented between

consecutive encryptions) is unknown between runs, then an ADD could be introduced

between each run with a constant value of 1 for one of its inputs. ADDs could also be in-

serted between all pairs of encryptions with varying differences, which should allow faster

information propagation between runs, but the additional ADDs would also introduce

loops into the graph, which we want to avoid. There are other ways to enforce differences,

such as having a shared value from which each run has a known difference, which may

lead to fewer loops. I did not use these methods to introduce differences between values

because I assume the counter is known for each encryption in the multi-trace scenarios

and the remaining part of the input is constant between encryptions.

There are several ways to combine a set of leakages for a shared variable. The set of

leakages can be added to the factor graph as a set of individual observation factors. This is

not ideal because it can lead to a higher chance of floating point errors due to (potentially)

very small values, and their product is taken on every iteration despite not changing. A

single observation factor of the product of the individual leakage probabilities provides

the same information while removing the product on every iteration. It also simplifies

ensuring that values do not get too extreme. Alternative methods can be used, such as

averaging the set of traces before making the probability distribution. The best technique

for combining several runs will depend on the type of noise that affects the traces and

how well additional traces reduce it.

27



3.2 Initial belief propagation experiments

We can change several parameters inside the factor graph and belief propagation, such

as the structure for ADD, the size of clusters, the schedule for sending messages, and the

amount of damping. The values for these were chosen to try and maximise the chance

and speed of convergence for actual attacks by performing several experiments described

below. These initial experiments also highlighted a need for optimising belief propagation

and revealed interesting findings about information flow.

3.2.1 ADD design

Table 3.1: Statistics for known inputs and outputs with unknown intermediate values
with the loopy add structure

Bits per cluster Number of iterations Time per iteration Total time

1 189 0.627 s 119 s

2 117 0.389 s 46 s

4 72 1.383 s 100 s

Table 3.2: Statistics for known inputs and outputs with unknown intermediate values
with the tree add structure

Bits per cluster Number of iterations Time per iteration Total time

1 181 0.668 s 121 s

2 114 0.426 s 49 s

4 79 2.168 s 171 s

Tables 3.1 and 3.2 show the number of iterations (of the simple schedule, with no damping)

taken to converge when run with known input and output (and uniformly distributed

intermediate values), for the loopy and tree structures respectively. They also show the

time taken which has been timed by the Julia macro @benchmark on an AMD Ryzen 9

8945H.

They clearly show that reducing the size of the clusters increases the number of iterations

required to converge but can reduce the time each iteration takes. The 2-bit clusters take

less time per iteration than the 1-bit clusters due to having fewer nodes in the graph, so

fewer messages are sent, while the time taken to compute each message has not increased

significantly.

They also show that the tree structure takes fewer iterations to converge for smaller

clusters than the loopy structure, although this inverts for larger clusters. Each iteration

for a particular cluster size takes longer for the tree version due to having more nodes

28



and introducing a larger variable. This shows how the loopy structure for ADD can lead

to faster information flow in cases of known values propagating through the graph.

(a) Initial Shannon entropies of variables with known input and output

(b) Shannon entropies of variables after 50
iterations with loopy adds when run with
known input and output

(c) Shannon entropies of variables after 50
iterations with tree adds when run with
known input and output

Figure 3.7: Comparison of the state after 50 iterations of belief propagation in the case
of known input and output, but no observation factors for intermediate variables, with
2-bit clusters with also the initial state shown

Figure 3.7 shows the state of the factor graph initially and also after fifty iterations of

belief propagation when using the loopy and tree structures. Each heatmap shows the

Shannon entropy of each intermediate value (which is present in ChaCha and the factor

graph). The black pixels have completely known values while the light yellow ones have

a uniform distribution. The y-axis represents the cipher’s state, and the x-axis represents

moving an operation through ChaCha. Each variable can occupy several pixels due to

operations not affecting the whole state.

It shows that the information in these cases flows from the outside (the input and output of

ChaCha), where the known values start, into the centre. It also shows that the information

flows significantly faster backwards through the graph when using the tree structure for

ADD than the loopy structure, there is a larger area of no entropy near the output.

However, information flows slightly slower forwards through the factor graph with the

tree structure than the loopy structure.

Faster information flow is helpful when working with leakages because we want the in-

29



formation to flow as quickly as possible from the different parts of the graph to each

other. Section 3.2.3 contains a comparison with XOR and explains the overall reason for

information flowing faster backwards than forwards.

Table 3.3: First-order success rates with different structures for adds with the leakages
taken from previous Keccak experiments

Cluster size Tree adds Loopy adds

1 0.84 0.35

2 0.95 0.88

4 0.99 0.97

It is essential to consider the success rates of the different ADD structures with more

realistic leakages rather than just with known inputs and outputs. Table 3.3 shows the

first-order success rate of the key after 200 iterations (or fewer if converged beforehand)

for both the loopy and tree versions with different cluster sizes. The leakages used are

from the Keccak template set described in section 4.1.2 with the keys using set A, ADD

set C, ROR set B and a damping value of 0.8. The tree structure obtains higher success

rates than the loopy structure, particularly with smaller cluster sizes. Larger cluster sizes

help improve the chance of converging to the correct values in both cases because they

allow bits inside the cluster to not be independent.

Going forward I will use the tree structure for ADD to maximise the chance of converging

to the correct value with as large a cluster as feasible.

3.2.2 Factor optimisations

We want to use large clusters because they do not enforce independence between bits

inside them, potentially increasing the amount of information used. The problem with

larger clusters is that calculating a variable-to-factor message takes O(d2c) steps, and a

factor-to-variable message takes O(2cd) steps, where c is the number of bits per cluster

and d is the number of connected nodes.

The optimisations described below focus on improving the performance of factors, which

can be done by using information about their purpose, and dramatically reducing their

memory use.

The performance of marginalisation and rotation factors can be improved by just working

with the distributions of each value. For example, if a factor wants to marginalise the top

bit from a cluster, the message to the top bit can be calculated by summing the first half

(when the top bit is zero) and second half (when the top bit is one) of the message from

the cluster. We can calculate other messages sent by these clusters in similar ways.

Improving the performance of XOR factors is more complex because it is not obvious

30



how to avoid the general multiplication. However, previous work [32] has shown how they

can be efficiently implemented by first applying the Hadamard transform to all input

messages, multiplying the transformed versions together before transforming back.

Previous work [36] has shown that factors can efficiently implement modular addition by

using the Fourier transform due to the addition really performing a circular convolution.

I extended these ideas to support adding three values and variables of different sizes.

The optimisations for XOR and ADD introduce small values (lower bits of the mantissa)

which are not present when just performing multiplications. These small values can be

negative, which are invalid inside messages, and larger than values that are actually of

interest. We can resolve these problems by replacing all values less than a threshold with

that threshold. The larger the threshold, the smaller the chance of an invalid distribution,

but information cannot flow as far through the factor graph. The messages sent around

the factor graph are also normalised to prevent them from getting increasingly large or

small.

Table 3.4: Execution time of a full iteration before and after optimisations (both single
threaded), timing is done via the Julia macro @benchmark on an AMD Ryzen 9 8945H

Cluster size Original implementation Optimised version

1 0.668 s 0.675 s

2 0.426 s 0.481 s

4 2.168 s 0.549 s

8 1.352 h 0.847 s

The results of the optimisations to the factors computations’ are shown in table 3.4,

where the original implementation represents all factors by multi-dimensional probability

distributions, and the optimised version uses the previously discussed specialisations per

factor type. It shows that optimisations do not have a large effect for smaller cluster sizes

but that the improvement is significant for larger clusters.

We can apply other optimisations to belief propagation, such as ensuring that factors

that will never change their message (e.g. observation factors) only calculate it on the

first iteration. It is also simple to use multi-threading to improve performance because

the calculation of all factor-to-variable and variable-to-factor messages are independent

of each other.

31



3.2.3 Information flow

(a) 1-bit clusters factor graph entropies be-
fore finishing

(b) 2-bit clusters factor graph entropies be-
fore finishing

(c) 4-bit clusters factor graph entropies be-
fore finishing

(d) 8-bit clusters factor graph entropies be-
fore finishing

Figure 3.8: Entropies of variables in the factor graph with varying cluster sizes when run
with known input and output, and no observation factors for intermediate variables

Figure 3.9: ADD replaced by XOR in the ChaCha factor graph with a known output and
input, and no observation factors for intermediate variables

The design of ChaCha means that if the output of a quarter round is known, then the input

can be calculated by performing the operations of the quarter round in reverse, which in

turn means that the main twenty rounds are reversible. Figure 3.8 shows several runs of

belief propagation slightly before it has converged to a steady state, with different cluster

sizes. Figure 3.9 shows a modified version of ChaCha where XOR has replaced ADD.

32



In every case, information flows faster from the output than the input (the remaining

entropy is nearer the input than the output). The faster flow of information is caused

by the backwards version of the quarter round function having more instruction-level

parallelism than the forward version, which belief propagation can take advantage of.

The ADDs introduce more uncertainty in the top bits of each value, which is introduced

by the carry bits. This is most evident in the bit-wise factor graph, where there are visible

triangles of entropy.

3.2.4 Scheduling

The schedule in which we send messages can dramatically affect the execution time of

belief propagation by changing the number of messages required to converge or potentially

stopping convergence altogether [27].

There are lots of potential schedules including:

� Simple schedule – every iteration sends all factor-to-variable messages and then all

variable-to-factor messages. This guarantees that information can flow any way it

wants inside the factor graph but potentially wastes a significant amount of time.

� Forwards backwards – every iteration runs through the factor graph of ChaCha

forwards and then backwards. This is effective for other algorithms [32] and was

helpful for unit tests with known information flowing through the graph.

� End rounds – every iteration performs the basic belief propagation schedule in the

first and last n rounds of ChaCha, allowing it to take advantage of higher levels of

information present at the end and start of ChaCha.

The best schedule to use depends on the quality of the templates and their distribution

through the algorithm. For high quality templates throughout the entire algorithm, us-

ing a simple schedule is helpful because it allows the templates to provide information

throughout the factor graph. The end rounds schedule is helpful with lower quality tem-

plates for intermediate values but much higher quality for the input and output (including

known counter, nonce and output) because it still makes good use of the information pro-

vided while sending significantly fewer messages. The forwards backwards schedule was

not very helpful when run with realistic leakages.

Animations showing the entropies of variables for an actual 8-bit attack are shown at

https://tbeakl.github.io/Part-III-Project-Visualisations/, which clearly show

how the information flows around the graph with different schedules.

The schedule selected in the evaluation depends on the scenario. Mainly the end rounds

schedule was used (with a few iterations across the entire factor graph). The simple

schedule was used when leakages were provided for every value (including the counter,

nonce, and output) and for the simulations.

33

https://tbeakl.github.io/Part-III-Project-Visualisations/


I briefly experimented with a greedy schedule, which attempted to remove as much entropy

as possible. I found it to be useful for very high-quality templates and unit tests. However,

for more realistic leakages, I found that it reduced the entropy quickly but brought the

graph towards an incorrect solution. Another dynamic schedule would likely lead to better

performance, such as dynamically selecting the rounds of ChaCha to pass messages in.

3.2.5 Damping

Different amounts of damping were experimented with; in cases of very high-quality or

low-quality templates, it made little difference. However, damping significantly affects

the results from borderline templates. Table 3.5 shows the first-order success rate for

different damping rates. It shows that a small amount of damping can significantly

improve performance but that larger amounts slow down the convergence to good values.

For evaluating attacks, I used a damping rate of 0.95 due to it striking a good balance

between finding solutions and good performance.

Table 3.5: The first-order success rate for different damping rates from 100 key combina-
tions after 200 iterations of belief propagation with the simple schedule. The templates
are in four dimensions where each bit has a 1 vector plus an offset picked randomly from
a Gaussian with a standard deviation of 0.1. The noise level added was a Gaussian with
a standard deviation of 0.4 with 2-bit clusters in the factor graph

Damping rate 1-SR

1.00 0.25

0.99 0.46

0.95 0.49

0.90 0.48

0.75 0.41

0.50 0.33

34



Chapter 4

Side-channel information generation

There are several leakage models for information that can be extracted from traces. These

leakage models include the Hamming weight of values being operated on, the Hamming

difference between the current value and the previous value of a register, and the actual

value operated on. I first tested my factor graph on simulated leakage data where I have

full control over the SNR, before attempting attacks on real traces. This chapter first

describes some leakage models used in simulations, before describing the process I used

for performing actual template attacks against ChaCha.

4.1 Simulated information

To simulate a side-channel attack, we need to extract the algorithm’s intermediate values

along with its input and output, which we can then convert into leakage values and

probability distributions of potential values.

For extracting the intermediate values from ChaCha, the Julia package

CryptoSideChannel.jl [37] was used, which introduces specialised logging types that

emit their value on every write. These types allow a regular implementation of ChaCha

in Julia to output intermediate values. It is essential to use only values that are likely to be

present in an implementation of ChaCha. For example, if two shifts and an OR implement

rotation, only the final value and input should be used because of rotate instructions in

instruction sets, or for more complex ALUs which potentially combine together several

operations.

I found the use of simulated information to be helpful when designing the factor graph

because it allows fast experimentation with new structures with varying the amount of

information given by the templates. However it is important to also work with real

attack data because it is quite hard to judge the quality of templates which would be

achievable and especially when combining multiple traces simulations can give a much

more optimistic view than in reality due to assumptions about independent noise.

35



4.1.1 Noisy Hamming weights

The power drawn by a processor is often correlated to the Hamming weight of the values

being processed. Therefore, the processor’s word size significantly affects the values which

leak out. When measuring the power supply current drawn by real processors, many

noise sources affect the measurement, which means that the estimated Hamming weight

is subject to noise, which we can model as Gaussian noise.

The simulated version breaks each 32-bit intermediate value into w bit words. Then, each

of these has its Hamming weight calculated with one-dimensional Gaussian noise (with

standard deviation σ) added to it to produce the noisy Hamming weight.

The noisy Hamming weights (generated through simulation or from a real trace) must be

converted into a probability distribution for each cluster of c bits. Assuming that c divides

w exactly, the clusters that make up a particular word will have the same distribution

due to only having access to the Hamming weight of the word, and each value in a cluster

with a particular Hamming weight will have the same likelihood.

The following formula gives the likelihood of getting a value v ∈ [0, 2c) in a cluster when

the leakage value is l (to get the probability, it can be normalised once calculated for all

values):

Pr(x = v|l) =
w∑

n=0

(
PrNormal(l,σ)(n)×

HW(v)∏
i=0

n− i

w − i
×

c−HW(v)∏
i=0

w − n− i

w − HW(v)− i− 1

)

The basic idea behind the calculation is to calculate the likelihood of the processor word

having a Hamming weight n given the leakage l. Then, with that particular word Ham-

ming weight, what is the probability of drawing the Hamming weight of v in c tries.

Then, sum across all possible Hamming weights for the processor word, giving the overall

likelihood that the cluster has a particular value.

It is also possible to have a classifier give probabilities for each potential Hamming weight

the processor word can take. These probabilities can replace PrNormal(l,σ)(n) in the above

equation.

4.1.2 Value information

The leakage can give more information about the particular value than its Hamming

weight. This is possible because of manufacturing and design differences between different

bits, so building a signal for each bit is possible. The Hamming weight will still be a

significant component of the signal, although subsequent transformations may make this

component hard to see.

Below, several methods are described for finding mean vectors and a pooled noise dis-

tribution (every value has the same distribution) to provide probabilities for each value.

36



Table 4.1: Average first-order success rates and logarithmic guessing entropies of tem-
plates taken from different sets in the Keccak paper [3]

Template set Actual performance Simulated performance
1-SR LGE 1-SR LGE

A 0.356 3.20 0.369 2.89
B 0.052 5.51 0.053 5.37
C 0.037 5.67 0.049 5.58
D 0.013 6.43 0.013 6.38

Other methods can also produce probability distributions of the values.

One method is to have a defined signal-to-noise ratio (SNR) where the mean vectors are

sampled from the same distribution as the noise and multiplied by that SNR.

A second method is to have a vector associated with every bit of the word, which are then

added together based on the set bits for the value to produce the mean vector for that

value. This model allows the Hamming weight to significantly affect the emitted value

compared to having a defined SNR.

A third method for selecting the mean vectors and noise distribution is to use a set

of templates from a previous experiment, with different templates selected for different

intermediate locations in the algorithm. This method allows the leakage to more closely

resemble an actual attack. The main set of templates used come from [3], a fragment

template attack on an implementation of Keccak, recorded using the same setup as in

section 4.2.1. The average first-order success rates and logarithmic guessing entropies are

shown in table 4.1; the randomly sampled versions achieve slightly better performance

than with real traces in the original paper.

These leakage models provide a set of mean vectors and a pooled noise distribution. We

can create a leakage for a particular intermediate value by adding the mean vector for

that value to a random vector sampled from the noise. We can then apply the standard

procedure for finding the likelihoods of each potential value by calculating the likelihoods

of the mean vectors in a Gaussian distribution (with the pooled covariance matrix) centred

on the leakage vector, which can then be normalised to produce probabilities.

We can insert leakages into the factor graph at most intermediate values. It is not possible

to insert leakages directly on the output of the XORs because they will be highly related

to the results of their rotations (and the variable might not be present in the factor graph).

The outputs of ADD and ROR can have their templates selected from different sources,

allowing for different qualities. We may want to do this because we expect that ROR will

have higher quality leakage given their similarity to the outputs of XOR. The key (and

nonce/counter/output) also allows different sets of templates to reflect their wider use.

37



4.2 Actual template attack

I then attacked several implementations of ChaCha on a 32-bit microcontroller. The steps

required for performing the attack are detailed below.

4.2.1 Recording setup

Figure 4.1: The recording setup used

Figure 4.1 shows the recording setup used: a ChipWhisperer-Lite [38] board with an

STM32F303 32-bit microcontroller using a Cortex-M4 as the target. The ChipWhisperer

has an integrated clock and oscilloscope. I did not use these for recording traces due to

their inability to acquire lots of samples per clock cycle and limitations with the number

of samples they can record. An NI PXIe-5160 10-bit oscilloscope and an NI PXIe-5423

function generator (generating a square wave) were used, with a synchronised clock input

so clock drift does not need to be considered. The oscilloscope is connected to a high-side

resistor through a high pass filter with a time constant of 0.5 µs. The target raises an IO

pin to high for the duration of the execution to trigger the recording.

All implementations of ChaCha that I attacked were compiled by gcc with the option

-Os and run with a target frequency of 5 MHz. The three implementations were:

� Normal 32-bit implementation – Taken from [39], which keeps most of the state in

registers during the execution. The oscilloscope had a sampling rate of 2.5 GHz.

� Custom 8-bit implementation – A custom ChaCha implementation that exclusively

uses 8-bit values so that fewer bits were operated on simultaneously and more op-

erations would need to spill to SRAM. The oscilloscope had a sampling rate of 250

MHz.

38



� Volatile 32-bit implementation – A modified 32-bit implementation so that the state

is marked as volatile, meaning every operation required loading from and storing to

SRAM. The oscilloscope had a sampling rate of 500 MHz.

4.2.2 Traces recorded and trace validation

(a) An example raw power trace from the normal 32-bit implementation with the different stages
of the algorithm approximately shaded with different colours

(b) An example raw power trace from the normal 32-bit implementation, where it has been
shaded based on time spent in each location (the clear horizontal lines are plotting artefacts)

Figure 4.2: Example power traces from the normal 32-bit implementation with different
methods of shading

Table 4.2: Number of traces collected for different purposes for the different implemen-
tations (the attack number represents the number of keys used, each of which can have
several traces recorded with it)

Purpose 32-bit implementations 8-bit implementation

Trace validation 2 000 2 000

Detection 16 000 8 000

Profiling (Training) 64 000 48 000

Validation 1 000 1 000

Attack 1 000 1 000

39



Figure 4.2 shows an example power trace from the normal 32-bit implementation, with

the different stages of the execution highlighted. Table 4.2 shows the number of traces

recorded and their purpose.

We must validate that all recorded traces were of correct executions and that other sources

of error do not make them unusable. This was done by creating a mean trace out of the

validation traces against which all traces can then have their correlation calculated and

traces below a certain threshold (e.g. 0.98) are highlighted for potential removal from

the set of usable traces. This highlighted several traces for potential removal. Upon

inspection, it was clear that they were correct executions but had either been triggered

slightly early or late. Their correlations can be improved by shifting them to better align

with each other. After aligning the traces, they all had correlations above the threshold,

so were not removed from the set of usable traces.

4.2.3 Clock signal detection

The high number of samples in each trace makes it infeasible to build templates directly

from the entire trace for each location in the execution. Most samples in the trace will

contain little or no information about a particular intermediate value due to it not being

operated on. It is helpful to consider only points which contain significant information

about a particular value. Detecting interesting points on a per-sample basis across all

traces is impractical due to the large number of samples and intermediate values. Specific

clock cycles will likely contain all the interesting points because their instruction modifies

the value. Hence, finding the clock edge allows the samples in each cycle to be combined

to calculate the interesting clock cycles.

Several different statistics have been proposed for detecting interesting clock cycles, such

as correlation with a linear model [3], SNR [40], t-test [41], and normalised inter-class

variance (NICV) [42].

40



(a) Correlation of samples with the Hamming weight

(b) Correlation of samples with a bitwise linear model

(c) NICV of samples

Figure 4.3: Statistics reported for the first word of the key, where K1 refers to the first
byte and Kµ the average over each byte in the normal 32-bit implementation

Figure 4.3 shows several ways of detecting where the clock cycles fall in terms of samples.

It shows that the different metrics highlight the same samples as being interesting. It is

interesting to observe that the Hamming weight model leads to quite different results than

the others, showing that there is more information in the samples than just the Hamming

weights. The bitwise linear model and NICV show very similar trends.

4.2.4 Interesting cycle detection

I used the mean of the samples in each clock cycle to detect the interesting clock cycles for

each intermediate value because it provides enough information about whether a partic-

ular value is operated on. Each intermediate value was broken into bytes for calculating

41



if a clock cycle was interesting. For the 32-bit implementations, the metrics were com-

bined across the bytes because they only operate on 32-bit values, whereas for the 8-bit

implementation, the bytes were kept separate.

The metric I selected for determining interesting clock cycles was correlation with a bitwise

linear model (each bit is a separate variable in the model). This metric was selected

because it is simple to combine the different bytes of an intermediate value, and it provides

a clean result for whether a cycle is of interest compared to other metrics, such as NICV.

A clock cycle is interesting if its summed R2 is greater than 0.04, as was done in [3].

(a) Number of interesting cycles of every
intermediate value in the normal 32-bit im-
plementation

(b) Number of interesting cycles of every
intermediate value in the volatile 32-bit im-
plementation

(c) Number of interesting cycles of every
intermediate value in the 8-bit implemen-
tation

Figure 4.4: Number of interesting cycles detected for different intermediate values, the
white pixels are where a template is not created (the outputs of XOR before the complete
rotation)

Figure 4.4 shows the number of interesting clock cycles for each intermediate value in the

different implementations. As expected, the input has the most interesting clock cycles

because it is not only used inside a regular round but also in the final addition and is

copied at the start of the execution. The 8-bit implementation has many more interesting

clock cycles due to the need for more SRAM accesses and operations potentially taking

more than a single cycle.

42



4.2.5 Template profiling

A vector of the values being targeted (either the fragment of the word or the whole word)

and the cycle level bitmask of interesting cycles for the corresponding intermediate value

are required to create a template for an intermediate value. The cycle level bitmask can

then be dilated around the interesting clock cycles to ensure we have captured all helpful

information for a particular value. Dilating in front of the interesting samples helps give

more characteristics about the noise, such as the previous input power to the high pass

filter, which allows for LDA to more successfully deal with the noise.

I created the templates using downsampled versions of the traces. For the normal 32-bit

implementation I used 10 samples per clock cycle, for the 8-bit implementation 25 samples

per clock cycle, and for the volatile 32-bit implementation 20 samples per clock cycle. I

found that changing the number of clock cycles did not significantly change the templates’

performance.

To create the templates, I used a similar procedure to what is described in [3]. I fitted

a bitwise linear model for every sample independently. These models can then create

expected mean vectors for every potential value. I then calculated the intra-class and

inter-class covariance matrices from the original samples and these mean vectors. The

inter-class covariance matrix (B) is calculated by:

B =
1∑
b nb

∑
b

nb(x̄b − x̄)(x̄b − x̄)⊤

with the total intra-class covariance matrix (W ) calculated by:

W =
1∑
b nb

∑
b

nb∑
t=1

(xb,t − x̄b)(xb,t − x̄b)
⊤

where nb is the number of traces with value b, x̄b is the mean vector for value b, x̄ is the

overall mean vector and xb,t is the t-th vector with value b.

These matrices are then input into LDA, which projects the data into the space which

maximises the SNR. The first d dimensions are selected (when ordered by eigenvalue size),

where d is the number of bits in the linear model. Previous works [43] have found that

the number of bits corresponds well to the number of significant eigenvalues returned.

Many parameters can be changed when designing templates, including the amount of dila-

tion before and after, the number of samples per clock cycle, the use of an NICV weighted

mean for downsampling, and the number of samples per cycle between dilated regions and

interesting regions. None of them had a large effect on the quality of the templates. For

example, table 4.3 shows how the average first-order success rate of templates changes

as the number of cycles dilated in front of interesting cycles varies. I used four cycles of

dilation in front and two cycles behind, with all selected cycles having the same number

43



of samples, which have been downsampled by an unweighted mean.

Table 4.3: Average first-order success rate for 8-bit fragment templates on the normal
32-bit implementation with differing amounts of dilation in front

Dilation amount (clock cycles) 1-SR

0 0.0096

2 0.0100

4 0.0100

6 0.0100

8 0.0100

I considered breaking down the leakages into separate leakage events (the different regions

that exceeded the threshold) and then taking the product of their distributions rather than

just putting all the values into a single LDA. This was found to lead to significantly worse

performance.

44



Chapter 5

Evaluation

This chapter describes the results of simulated and actual attacks against ChaCha as well

as the quality of templates in the different cases.

Unless stated otherwise for attacks, I assumed that the encryption’s counter, nonce and

output were known rather than just having leakage information. In all cases, I assumed

that only the key section of the input must be enumerated.

When the number of keys required for enumeration was less than 220, the number of key

candidates was calculated by actually performing key enumeration. For larger values,

the number of key candidates was estimated by the rank estimation algorithm described

in the section 2.5. A powerful attacker can likely enumerate between 250 and 270 key

candidates, going forward I use 264 key candidates when calculating success rates for an

attacker.

5.1 Simulation results

The simulated results of the attack help show the SNR required to reach certain per-

formance levels in different scenarios. They are not necessarily representative of the

performance of actual attacks due to the varying quality of templates and potential cor-

relation between the different leakages. For this reason, I only considered a single trace

because it is likely that the noise would not be independent between multiple traces, so

the simulation would give an unrepresentatively high chance of success. The templates

evaluated are all for byte values with eight dimensions (which have equal and uncorrelated

variance), using the first method described in section 4.1.2. The simulations also validate

that the factor graph correctly represents ChaCha.

Table 5.1 shows the average first-order success rates and logarithmic guessing entropies

of templates with differing SNRs. As expected, the lower the SNR, the worse the quality

of the templates.

45



Table 5.1: Average first-order success rates and logarithmic guessing entropies of random
templates generated with different success rates

SNR 1-SR LGE
0.2 0.016 6.48
0.4 0.045 5.82
0.6 0.103 5.05
0.8 0.189 4.23
1.0 0.300 3.39
1.2 0.423 2.59
1.4 0.542 1.87
1.6 0.653 1.28

(a) The n-SR of the key with varying the signal-to-noise ratio with simulated value templates
without performing belief propagation with a known counter, nonce and output

(b) The n-SR of the key with varying the signal-to-noise ratio with simulated value templates
after performing belief propagation with a known counter, nonce and output. No key enumera-
tion was required for SNRs greater than or equal to 0.6

Figure 5.1: The amount of key enumeration required for differing SNRs to find the correct
key with a known counter, nonce and output

Figure 5.1 shows the proportion of keys successfully found after differing amounts of

key enumeration for different SNRs in the standard attack scenario. Belief propagation

significantly reduces the number of key candidates that must be enumerated to find the

correct result. Without enumeration, the correct solution is always found when the SNR

is greater than or equal to 0.6.

46



(a) The n-SR of the key with varying the signal-to-noise ratio with simulated value templates
without performing belief propagation with only leakages for the counter, nonce and output

(b) The n-SR of the key with varying the signal-to-noise ratio with simulated value templates
after performing belief propagation with only leakages for the counter, nonce and output. No
key enumeration was required for SNRs greater than or equal to 0.8

Figure 5.2: The amount of key enumeration required for differing SNRs to find the correct
key with only leakages for the counter, nonce and output

Figure 5.2 shows the same information as figure 5.1, but with leakages for the output,

nonce and counter. The different scenario does not affect the results with belief prop-

agation compared to known information (because it captures the same information as

before). The post belief propagation results are worse at lower SNRs than in the stan-

dard scenario. The correct solution is always found without enumeration, when the SNR

is greater than or equal to 0.8.

47



5.2 Actual attack results

5.2.1 Template quality and combining them without belief prop-

agation

Table 5.2 shows the average first-order success rates and logarithmic guessing entropies

for several cases with figure 5.3 showing their distribution across the algorithm. The

8-bit implementation has significantly higher success rates and lower guessing entropies.

Interestingly, the lowest bits of the 32-bit words are where the lowest logarithmic guessing

entropy and highest first-order success rates occur. The volatile implementation has much

more consistent quality across the algorithm due to the SRAM activity providing much

of the signal. That activity is very consistent between intermediate values.

Table 5.2: Average first-order success rates and logarithmic guessing entropies of different
types of (fragment) templates before SASCA. Details of the implementations are described
in section 4.2.1. The maximum LGE is one less than the fragment size.

Template type 1-SR LGE

Fragment size (bits) Implementation

8 Normal 32-bit 0.0119 6.62

16 Normal 32-bit 0.0003 14.39

8 8-bit 0.0914 4.95

8 Volatile 32-bit 0.0189 6.15

48



(a) First-order success rates of 16-bit frag-
ment templates in normal 32-bit implemen-
tation

(b) Logarithmic guessing entropies of 16-bit
fragment templates in normal 32-bit imple-
mentation

(c) First-order success rates of byte tem-
plates on 8-bit implementation

(d) Logarithmic guessing entropies of byte
templates on 8-bit implementation

(e) First-order success rates of 8-bit frag-
ment templates in volatile 32-bit implemen-
tation

(f) Logarithmic guessing entropies of 8-bit
fragment templates in volatile 32-bit imple-
mentation

Figure 5.3: First-order success rates and logarithmic guessing entropies of templates across
the algorithm before SASCA

Figure 5.4 shows the proportion of keys correctly obtained after differing amounts of key

enumeration in different scenarios. It clearly shows that for a single trace without belief

propagation, only the 8-bit implementation can succeed with just key enumeration, and

that 8-bit and 16-bit fragments perform similarly once marginalised to 8-bits. It also

shows that simply combining more traces is not a very effective method for reducing the

amount of enumeration required.

49



(a) Amount of key enumeration required for single traces with different types of template

(b) Amount of key enumeration required when combining ten traces with a constant counter

(c) Amount of key enumeration required when combining ten traces with an incremented counter

Figure 5.4: Amount of key enumeration required for different scenarios without performing
belief propagation

50



5.2.2 Results after belief propagation

(a) Amount of key enumeration required for single traces with different types of template

(b) Amount of key enumeration required when combining ten traces with a constant counter

(c) Amount of key enumeration required when combining ten traces with an incremented counter

Figure 5.5: Amount of key enumeration required for different scenarios after performing
belief propagation

Figure 5.5 shows the results of the running belief propagation with different types of

template and ways of combining several traces. It shows that the fragment templates for

the normal 32-bit implementation do not provide enough information from a single trace

to make the results enumerable. The 8-bit implementation managed to achieve a 100%

success rate without key enumeration. The performance for the 8-bit implementation is

worse when only having leakage information for the output, nonce and counter. However,

in all cases for the 8-bit implementation, the correct key is within an enumeration range

51



of 264. The volatile 32-bit implementation achieves a first-order success rate of 1.8% and

that 2.6% of keys are within an enumeration range of 264 on a single trace. The increased

success rate shows that more SRAM activity significantly improves the chance of attacks

succeeding and means that SRAM activity should be avoided as much as possible in the

inner parts of cryptographic algorithms. However, this additional leakage can only be

exploited when combined across the algorithm.

When combining several traces run with identical parameters in the normal 32-bit im-

plementation, the results are not significantly improved compared to a single trace. In

contrast, for the volatile implementation, 95.1% of keys can be recovered with fewer than

264 key candidates enumerated. This difference in behaviour shows how the noise affecting

the two implementations is distinct and can be removed more effectively with additional

traces for the volatile version. When combining traces with an incremented counter, the

normal 32-bit implementation becomes more vulnerable, with 14.6% of keys recoverable

within 264 candidate keys. In the volatile 32-bit implementation, 90.1% of keys require

no enumeration, and 99.6% of keys are in the first 264 candidate keys.

Calculating the mean of leakages for shared values before calculating their likelihoods in

all cases provided better results (after belief propagation) than taking the product of their

individual likelihoods. We would not expect this with independent samples, showing how

the noise affecting the traces is not independent. The lack of independence is probably

caused by factors such as deterministic pipeline effects and the unmodelled bits in the

word. The lack of independence means other techniques for combining several traces may

be helpful with fragment template attacks (or complete algorithm executions) compared

to those discussed in [30] for regular template attacks, which recommends using a product.

Figure 5.6 shows the entropies of variables in the factor graph after different number

of iterations of belief propagation in the case that only leakages are provided from the

8-bit implementation. It shows that SASCA is able to successfully calculate part of the

intermediate state despite not having access to any known values at that point, and

then this known information can flow backwards through the graph to find the values for

the input state. This shows that it is able to make use of leakage information provided

throughout the entire trace compared to just on the key directly. It is also interesting to

see how initially the entropy drops rapidly due to enforcing local constraints before taking

a longer time to find a solution in one part of the factor graph.

52



(a) Entropies of variables after 0 iterations
of belief propagation

(b) Entropies of variables after 60 iterations
of belief propagation

(c) Entropies of variables after 130 itera-
tions of belief propagation

(d) Entropies of variables after 180 itera-
tions of belief propagation

Figure 5.6: Entropies of variables for an attack against the 8-bit implementa-
tion, using 2-bit clusters, with only access to leakages for all values. It is highly
recommended to see the corresponding animation at https://tbeakl.github.io/

Part-III-Project-Visualisations/

53

https://tbeakl.github.io/Part-III-Project-Visualisations/
https://tbeakl.github.io/Part-III-Project-Visualisations/


Chapter 6

Summary and conclusions

This project has accomplished its initial aim of creating a factor graph for ChaCha,

which allows for effective belief propagation with simulated leakages. The proposed tree

structure for ADD led to a better chance of convergence than the loopy structure. A

potentially valuable piece of future work would be to design a compiler for automatically

converting an implementation of an algorithm into a factor graph.

I then performed template attacks against several implementations of ChaCha on an

ARM Cortex-M4. The different implementations (described in section 4.2.1) led to very

different levels of performance, with the following proving to be most successful scenarios:

� 8-bit implementation with known or unknown counter and nonce from a single

trace – it was possible to achieve a 100% success rate with minimal amounts of key

enumeration.

� Volatile 32-bit implementation with a known counter and nonce from 10 traces – it

was possible to recover the key over 95% of the time when enumerating the first 264

most likely key candidates.

The following scenarios are more borderline in being successful:

� Volatile 32-bit implementation with a known counter and nonce from a single trace –

it was possible to recover the key 2.6% of the time within the first 264 key candidates.

� Normal 32-bit implementation with a known counter and nonce from 10 traces with

an incremented counter – it was possible to recover the key 14.6% of the time within

the first 264 key candidates.

The following scenarios were not able to successfully recover the key within a reasonable

amount of key enumeration:

� Normal 32-bit implementation with a known counter and nonce from a single trace.

� Normal 32-bit implementation with a known counter and nonce from multiple traces

54



with a constant counter.

The different success rates achieved show that the number of SRAM accesses should be

minimised when implementing and designing cryptographic functions similar to ChaCha,

due to their much higher leakage.

A natural piece of future work (for someone with more computational capacity than me)

would be to make 32-bit templates as was shown in [31] to see how effective they are at

attacking a 32-bit algorithm on a 32-bit machine.

It would also be helpful to look at more methods for combining several traces due to

correlated noise between runs. This could involve creating several noise distributions, for

example, one for deterministic sources of noise, which is not reduced by more traces, and

a second for noise, which is reduced by additional traces.

A repository containing the code used for both the implementations of ChaCha and

performing the attacks can be found at https://github.com/Tbeakl/PartIIIProject.

55

https://github.com/Tbeakl/PartIIIProject


Bibliography

[1] D. Bernstein, “ChaCha, a variant of Salsa20,” 01 2008. https://cr.yp.to/chacha/

chacha-20080128.pdf.

[2] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic Hardware

and Embedded Systems – CHES 2002 (B. S. Kaliski, ç. K. Koç, and C. Paar, eds.),

(Berlin, Heidelberg), pp. 13–28, Springer Berlin Heidelberg, 2003.

[3] S.-C. You and M. G. Kuhn, “Single-trace fragment template attack on a 32-bit imple-

mentation of Keccak,” in Smart Card Research and Advanced Applications (V. Grosso

and T. Pöppelmann, eds.), (Cham), pp. 3–23, Springer International Publishing,

2022.

[4] S.-C. You, M. G. Kuhn, S. Sarkar, and F. Hao, “Low trace-count template attacks

on 32-bit implementations of ASCON AEAD,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2023, Issue 4, pp. 344–366, 2023.

[5] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Soft analytical side-channel

attacks,” in Advances in Cryptology – ASIACRYPT 2014 (P. Sarkar and T. Iwata,

eds.), (Berlin, Heidelberg), pp. 282–296, Springer Berlin Heidelberg, 2014.

[6] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols.” RFC 8439,

June 2018.

[7] T. Arcieri, “ChaCha cipher quarter round function,” 2020. https://commons.

wikimedia.org/wiki/File:ChaCha_Cipher_Quarter_Round_Function.svg

File:ChaCha Cipher Quarter Round Function.svg.

[8] D. J. Bernstein, “The Poly1305-AES message-authentication code,” in Fast Software

Encryption (H. Gilbert and H. Handschuh, eds.), (Berlin, Heidelberg), pp. 32–49,

Springer Berlin Heidelberg, 2005.

[9] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.” RFC 8446,

Aug. 2018.

[10] M. Damien, “/openbsd/usr.bin/ssh/protocol.chacha20poly1305,” Feb 2020. http:

//bxr.su/OpenBSD/usr.bin/ssh/PROTOCOL.chacha20poly1305.

56

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://commons.wikimedia.org/wiki/File:ChaCha_Cipher_Quarter_Round_Function.svg
https://commons.wikimedia.org/wiki/File:ChaCha_Cipher_Quarter_Round_Function.svg
http://bxr.su/OpenBSD/usr.bin/ssh/PROTOCOL.chacha20poly1305
http://bxr.su/OpenBSD/usr.bin/ssh/PROTOCOL.chacha20poly1305


[11] markm, “Revision 317015,” Apr 2017. https://svnweb.freebsd.org/base?view=

revision&revision=r317015.

[12] “/openbsd/lib/libc/crypt/arc4random.c,” Jul 2022. http://bxr.su/OpenBSD/lib/

libc/crypt/arc4random.c.

[13] “/netbsd/lib/libc/gen/arc4random.c,” May 2024. http://bxr.su/NetBSD/lib/

libc/gen/arc4random.c.

[14] T. Ts’o, “[git pull] /dev/random driver changes for 4.8.” https://lkml.iu.edu/

hypermail/linux/kernel/1607.3/00275.html.

[15] J.-P. Aumasson, “Too much crypto.” Cryptology ePrint Archive, Paper 2019/1492,

2019. https://eprint.iacr.org/2019/1492.

[16] R. Cox and F. Valsorda, “Secure randomness in Go 1.22,” May 2024. https://go.

dev/blog/chacha8rand.

[17] “Rust Docs rand::rngs::StdRng.” https://docs.rs/rand/latest/rand/rngs/

struct.StdRng.html.

[18] J.-P. Aumasson, W. Meier, R. Phan, and L. Henzen, The Hash Function BLAKE.

Springer Berlin, 2016.

[19] NIST, “SHA-3 project,” 2012. https://csrc.nist.gov/projects/

hash-functions/sha-3-project.

[20] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting

speculative execution,” in 2019 IEEE Symposium on Security and Privacy (SP),

pp. 1–19, 2019.

[21] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryp-

tology — CRYPTO’ 99 (M. Wiener, ed.), (Berlin, Heidelberg), pp. 388–397, Springer

Berlin Heidelberg, 1999.

[22] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage

model,” in Cryptographic Hardware and Embedded Systems – CHES 2004 (M. Joye

and J.-J. Quisquater, eds.), (Berlin, Heidelberg), pp. 16–29, Springer Berlin Heidel-

berg, 2004.

[23] K. Pearson, “LIII. on lines and planes of closest fit to systems of points in space,”

Philosophical Magazine Series 1, vol. 2, pp. 559–572, 1901.

[24] R. A. Fisher, “The statistical utilization of multiple measurements,” Annals of Eu-

genics, vol. 8, no. 4, pp. 376–386, 1938.

[25] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the analysis

of side-channel key recovery attacks,” in Advances in Cryptology – EUROCRYPT

57

https://svnweb.freebsd.org/base?view=revision&revision=r317015
https://svnweb.freebsd.org/base?view=revision&revision=r317015
http://bxr.su/OpenBSD/lib/libc/crypt/arc4random.c
http://bxr.su/OpenBSD/lib/libc/crypt/arc4random.c
http://bxr.su/NetBSD/lib/libc/gen/arc4random.c
http://bxr.su/NetBSD/lib/libc/gen/arc4random.c
https://lkml.iu.edu/hypermail/linux/kernel/1607.3/00275.html
https://lkml.iu.edu/hypermail/linux/kernel/1607.3/00275.html
https://eprint.iacr.org/2019/1492
https://go.dev/blog/chacha8rand
https://go.dev/blog/chacha8rand
https://docs.rs/rand/latest/rand/rngs/struct.StdRng.html
https://docs.rs/rand/latest/rand/rngs/struct.StdRng.html
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project


2009 (A. Joux, ed.), (Berlin, Heidelberg), pp. 443–461, Springer Berlin Heidelberg,

2009.

[26] D. MacKay, Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.

[27] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-

niques. Adaptive Computation and Machine Learning series, MIT Press, 2009.

[28] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert, “An optimal

key enumeration algorithm and its application to side-channel attacks.” Cryptology

ePrint Archive, Paper 2011/610, 2011. https://eprint.iacr.org/2011/610.

[29] C. Glowacz, V. Grosso, R. Poussier, J. Schueth, and F.-X. Standaert, “Simpler

and more efficient rank estimation for side-channel security assessment.” Cryptol-

ogy ePrint Archive, Paper 2014/920, 2014. https://eprint.iacr.org/2014/920.

[30] O. Choudary and M. G. Kuhn, “Efficient template attacks,” in Smart Card Research

and Advanced Applications (A. Francillon and P. Rohatgi, eds.), (Cham), pp. 253–

270, Springer International Publishing, 2014.

[31] G. Cassiers, H. Devillez, F.-X. Standaert, and B. Udvarhelyi, “Efficient regression-

based linear discriminant analysis for side-channel security evaluations: Towards

analytical attacks against 32-bit implementations,” IACR Transactions on Crypto-

graphic Hardware and Embedded Systems, vol. 2023, p. 270–293, Jun. 2023.

[32] M. J. Kannwischer, P. Pessl, and R. Primas, “Single-trace attacks on Keccak.” Cryp-

tology ePrint Archive, Paper 2020/371, 2020. https://eprint.iacr.org/2020/371.

[33] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2: Lightweight

authenticated encryption and hashing,” J. Cryptol., vol. 34, no. 3, p. 33, 2021.

[34] NIST, “Lightweight cryptography,” 2023. https://csrc.nist.gov/projects/

lightweight-cryptography.

[35] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to

counteract power-analysis attacks,” in Advances in Cryptology — CRYPTO’ 99

(M. Wiener, ed.), (Berlin, Heidelberg), pp. 398–412, Springer Berlin Heidelberg,

1999.

[36] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks on masked

lattice-based encryption,” in Cryptographic Hardware and Embedded Systems – CHES

2017 (W. Fischer and N. Homma, eds.), (Cham), pp. 513–533, Springer International

Publishing, 2017.

[37] S. Schwarz, “CryptoSideChannel.jl: A customizable side-channel modelling

and analysis framework in Julia,” Jul 2021. https://parablack.github.io/

CryptoSideChannel.jl/dev/.

58

https://eprint.iacr.org/2011/610
https://eprint.iacr.org/2014/920
https://eprint.iacr.org/2020/371
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://parablack.github.io/CryptoSideChannel.jl/dev/
https://parablack.github.io/CryptoSideChannel.jl/dev/


[38] C. O’Flynn and Z. D. Chen, “ChipWhisperer: An open-source platform for hardware

embedded security research,” in Constructive Side-Channel Analysis and Secure De-

sign (E. Prouff, ed.), (Cham), pp. 243–260, Springer International Publishing, 2014.

[39] R. Weatherley, “Lightweight cryptography primitives documentation,” Apr 2021.

https://rweather.github.io/lightweight-crypto/index.html.

[40] S. Mangard, “Hardware countermeasures against DPA – a statistical analysis of their

effectiveness,” in Topics in Cryptology – CT-RSA 2004 (T. Okamoto, ed.), (Berlin,

Heidelberg), pp. 222–235, Springer Berlin Heidelberg, 2004.

[41] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for side chan-

nel resistance validation,” 2011. https://api.semanticscholar.org/CorpusID:

16852899.

[42] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “NICV: Normalized inter-class

variance for detection of side-channel leakage,” in 2014 International Symposium on

Electromagnetic Compatibility, Tokyo, pp. 310–313, 2014.

[43] S.-C. You, Single-trace template attacks on permutation-based cryptography. PhD

thesis, Apollo – University of Cambridge Repository, 2022.

59

https://rweather.github.io/lightweight-crypto/index.html
https://api.semanticscholar.org/CorpusID:16852899
https://api.semanticscholar.org/CorpusID:16852899

	Introduction
	Background
	ChaCha
	Side-channel attacks
	Soft analytical side-channel attack
	Key enumeration
	Rank estimation
	Related work
	Efficient template and fragment template attacks
	Template attacks against Keccak and Ascon AEAD


	Factor graph design
	Graph structure designs
	XOR
	ROR
	ADD
	Combining small structures
	Supporting several encryptions

	Initial belief propagation experiments
	ADD design
	Factor optimisations
	Information flow
	Scheduling
	Damping


	Side-channel information generation
	Simulated information
	Noisy Hamming weights
	Value information

	Actual template attack
	Recording setup
	Traces recorded and trace validation
	Clock signal detection
	Interesting cycle detection
	Template profiling


	Evaluation
	Simulation results
	Actual attack results
	Template quality and combining them without belief propagation
	Results after belief propagation


	Summary and conclusions

