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Abstract
As databases need to strike a good balance of high performance
at low costs, hardware-accelerators like FPGAs are increasingly
considered to improve core database operations. In this paper we
complement previous research, where hardware accelerators are
tightly integrated with the host CPU, and expose the FPGA as
a hardware data processing service to a cluster of databases to
delegate the asynchronous execution of compute-intensive database
operations.We apply our novel architecture, called DASH, to the use
case of string dictionary compression using the compute-intensive
RePair compression and demonstrate its benefit in this distributed
architecture. We also explain how DASH can be applied to other
database scenarios and propose a research agenda.

1 Introduction
Databases need to strike a good balance between high performance
at a low price. Hardware accelerators promise to accelerate or of-
fload compute-intensive operations from general purpose CPUs. As
hardware-accelerators like FPGAs become more widely available,
e. g., offered by cloud providers as dedicated FPGA-equipped com-
pute nodes [2, 6], researchers investigated how to apply FPGAs in
the context of databases [15]. In this research it was demonstrated
that FPGAs can help to accelerate database operations, to be more
energy efficient or in general more cost-efficient.

However, prior research assumes a setup where the FPGA is
deployed with the database processing server where the FPGA
communicates with the host CPU via PCIe or UPI interconnects
that offer high bandwidth and fairly low latencies as illustrated in
Figure 1 (marked green). Other options explored put the FPGA on
the I/O path – either to network, disk or memory as a "bump in the
wire" as shown in Figure 1 (marked blue). Still, the data transfer
between FPGA and host CPU is often considered a bottleneck which
is either limited by latency or bandwidth of the interconnect.

In this paper, we approach the use of hardware accelerators
from a different perspective. We focus on highly compute-intensive
database operations that can be performed asynchronously and
where the transfer time of the data and completion time of the
tasks relative to the initiation time are less critical. Examples of
such operations include reorganizing or compressing the persistent
data, collecting statistics or consistency checks. With the service
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Figure 1: Compute topologies in the cloud and data centers
with FPGAs. Focus of interest of this paper is marked red.

oriented architecture of the cloud native database services, such
tasks could be deployed on accelerators that are declared to the
system as accelerator-based services. As marked red in Figure 1,
these accelerator attached nodes are connected to other parts of the
database engines via network links. Exposing the FPGA operations
as a service enables sharing the FPGA between multiple database
instances and scaling the FPGAs based services elastically based
on the demand.

As we discuss in more detail in Section 2, this setup is consistent
with the trend to build cloud-native databases that factor data-
base operations into independent services, e. g., compute and store
nodes, optimizer services etc. [4, 5, 24]. Database implementers
seek to minimize the hardware costs to support database workloads
through this separation of components, and at the same time, it
allows them to scale components independently. As a logical con-
sequence of this development, we argue that certain components
can be deployed on specialized hardware. While, in principle, such
asynchronous operations could also be executed on CPUs, FPGAs –
or depending on the specific task GPUs or TPUs – may offer bet-
ter performance and energy efficiency than a CPU making them
attractive for the service-based architecture proposed in this paper.
The service-oriented approach also allows for choosing operations
that fit well to the processing model of the FPGA, i. e., compute-
intensive operations that can utilize the inherent pipelining and
parallelization of the FPGA. With this we also recognize the difficul-
ties implementing a full-fledged database on an accelerator where
prior work had to rely on simplifying assumptions related to the
transaction processing model or supported workload [7, 19, 23].
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In this paper, we present DASH which exposes compute inten-
sive data processing services to a cluster of databases and that runs
on FPGA-accelerated compute nodes, in Sect. 3. The architecture
we present for DASH can accommodate a broad set of use cases
that are not latency-critical, e. g., including machine learning or
non-relational data processing [12] like graph [10, 11] or JSON
processing [13]. We then exemplify the detailed use model of this
generic architecture in Sect. 4 through one use case, string dictio-
nary compression. String compression is known to be compute
intensive when the goal is to achieve high compression ratios for
arbitrary collections of strings [21]. In our experiments we quantify
the benefits of using the DASH architecture from a performance
and cost perspective. We then explain how the FPGA accelerators
are exposed to a cluster of database instances and how this setup
allows to accelerate different functions in parallel supporting elastic
scaling in response to fluctuating user demand. From our findings
with DASH we propose a research agenda in Sect. 5 as starting
point for further research in this area, before we conclude in Sect. 6.

2 Background and Related Work
In this section we provide some background on recent trends in
FPGA hardware and especially how they are used in cloud envi-
ronments in general. We also discuss related work in the field of
hardware acceleration using FPGAs in the database context.

2.1 Accelerator Hardware in the Cloud
Hardware accelerators in the cloud exist in different deployment

variants and form factors. All major hyperscalers either employ
FPGA internally in their infrastructure [5, 17] or expose them to
customers as compute instances [2, 6] for offload accelerators, which
can be extended to a FPGA-as-a-Service to accelerate distributed
micro services in the cloud [5]. Tightly packed server instances are
available with multiple accelerator cards1 that offer large amounts
of accelerator compute capacity to be exposed as a service.

PCIe-based cards are the most widely used form factor for FPGAs
or GPUs. In addition, tightly integrated CPU+FPGA systems that
utilize both the PCIe and UPI interfaces offere higher bandwidth for
the data exchange between CPU and FPGA tasks as well as reduced
communication latency [8, 20] between different end points.

Prior work showed the benefits of pushing FPGA-accelerated
computation on the I/O path [28]. Another major use case of FPGA
in the cloud is to keep the infrastructure flexible with smartNICs
and to use these for inline processing on the network interface [18].

The above-mentioned scenarios might becomemore attractive in
the future as Compute Express Link (CXL)2 offers coherency for the
cache (CXL.cache) and memory expansion (CXL.memory) on the
accelerator nodes on top of the usual IO exchanges (CXL.io) over
the PCIe interface. PCIe- or CXL-attached FPGA boards may be
equippedwith on-boardmemory.With CXL, suchmemory is visible
to the host CPU as additional NUMA node. Moreover, FPGAs can
provide abstraction for different memory and storage technologies
to get used seamlessly within the server application.

1NVidia DGX servers, visited 12/22: https://www.nvidia.com/en-us/data-center/dgx-
systems/ or Bittware Terabox servers https://www.bittware.com/fpga/servers-systems/
2https://www.computeexpresslink.org/about-cxl

2.2 Related Work: Hardware Accelerators for
Databases

Abadi [1] and Narasayya [24] confirm the trend that databases
are increasingly offered as managed services in the cloud. In this
context, the cloud service provider may have more control over the
deployed hardware than in an on-premise setup where the lifecycle
of deployed hardware and software is completely under control of
the customer. Hence, the availability of new hardware, in particular
hardware accelerators like FPGA or GPUs, in cloud environments
opens the opportunity to use accelerators for databases in these
managed service environments [5, 25, 26].

Various options were explored to integrate FPGAs with database
system, and most of these approaches follow an architecture where
the FPGA attached via fast interconnects like UPI or PCIe to the
host where the main database executes following a "bump-in-the-
wire" approach to accelerate database operations [15]. FPGA were
deployed on the storage path, e. g., [9, 28] to reduce the amount of
data to transfer to the host, or to compress and encrypt data on the
I/O path. FPGA were also used to accelerate core database oper-
ations, e.g. the join operation [8, 20] where the FPGA was either
tightly coupled to the host CPU via UPI interconnect or deployed on
an discrete card with on-board memory available during query pro-
cessing. Additional work regarding database query processing with
FPGAs shows competitive performance of the database sort-merge
operator with a morphing operator approach to save resources on
the FPGA and be able to implement pipeline breaking operators in
an single FPGA [22]. The authors describe how they accelerated the
sort-merge operation with an FPGA on average up to 5x compared
to MonetDB using a modern CPU. Similarly, FPGA were deployed
on the network path [27] of data processing systems. Finally, FPGAs
served as accelerators to offload work from the host CPU, e. g., [3].
In most of these architectures, the latency of data transfer from and
to the FPGA is an important factor.

According to Eryilmaz et al. [14] FPGAs become more widely
offered by hyperscalers as another accelerator option next to GPUs
and others. But they also raise several challenges which have to
be considered and overcome to increase the adoption rate in the
database community. These are resource ceiling, reprogramming
time, available interface bandwidth on-board and to the host and
also difficulty of programming. These challenges are well-known
in the community, and later in the description of DASH we discuss
how to overcome some of these system-level limitations. In general
a lot of experience was already collected with the programming
of FPGA without RTL design knowledge, e. g., with high level lan-
guages like Intel® oneAPITM. Therefore we argue that options exist
for programmers capable in C++ to also address FPGAs as target
platform for acceleration. We also expect that new generations
of FPGAs will lift important hardware limits, e. g., the bandwidth
limitation to the host with CXL.

3 DASH – Hardware Data Processing Services
In this section, we present our vision on asynchronous hardware
data processing services, short DASH. DASH leverages cloud com-
puting and next generation re-configurable hardware technology
for complementing current cloud data processing off the critical

https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.bittware.com/fpga/servers-systems/
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Figure 2: Asynchronous data processing with hardware offloading services (DASH components in blue)

path (i. e., offloading). Based on our vision, we describe a prototypi-
cal implementation with current cloud computing technology that
we use in our experimental evaluation.

3.1 DASH Architecture
For efficient data processing off the critical path, we present

DASH’s architecture and high-level components (in blue), as shown
in Fig. 2. We assume cloud databases or data processing systems
with separate compute and storage components (e. g., [4, 5]), in
which the query processing is done by scalable workers that get
their data from the storage as ephemeral storage in memory. The
storage component could be database storage or cloud object stores.
Asynchronous Data Processing. To keep the hardware accelerators

off the critical path of data processing systems, the offloading
coordinator is an (intelligent) component that observes the sys-
tems’ internal states (e. g., metrics, statistics) and automatically
decides on actions that improve their efficiency or health (e. g.,
reduce storage, memory through stronger compression of string
dictionaries). The coordinator enqueues identified actions as hard-
ware tasks for asynchronous processing and informs itself about the
result of the task execution by checking the offloading monitor
component to check and adapt for future actions (e. g., redo pre-
vious task on failure). The changes to the data resulting from the
processing within the hardware services are re-distributed to the
storage and eventually to the compute instances. One coordinator
is sufficient for observing data processing instances of a data center.
Scheduling and Observing Hardware Services. For scheduling the

hardware tasks while allowing for prioritization and flow control,
we envision a topic-based hardware task scheduler. The sched-
uler gets hardware task specifications which it offers as topics to the
hardware service components. The internal state of the hardware
service is observed by the scheduler and forwarded to a offloading
monitor component. The monitor allows users for checking the

efficiency (e. g., compression times) and health of the service (e. g.,
failure rates, security attacks). Based on the observations, the co-
ordinator can be instructed to apply countermeasures (e. g., take
malfunctioning FPGAs out of the scheduling). The coordinator –
without the need for user interaction – checks the success and effi-
ciency of scheduled hardware tasks and reacts as discussed before.
Hardware Services / Compute. A hardware service denotes the

compute component with attached hardware resources (e. g., FP-
GAs, GPUs). Each of the services has several software workers /
accelerator (i. e., hosts), which use cloud-specific drivers, called
device plugins, to attach and access hardware resources. Several
resources can be bound to one worker. The resources have specific
functions, whose bit-stream is configured on the hardware (e. g., Re-
Pair compression [21], JSON parsing [13]) during the provisioning
(not shown). Through the task specification and the pre-provisioned
functions, the workers match and find tasks they can handle with
the attached resources. The input data (e. g., string dictionary, ta-
ble partition) can either be fetched by the workers or is directly
streamed into the available resources. The processed data is routed
in the same way. The workers collect and forward statistics of the
tasks as well as device information through the device plugins to
the scheduler.
Disaggregated Compute.While co-location is possible, DASH de-

notes elastic compute, that is separate of database / data processing
compute (i. e., no co-location needed) and can be combined with
multiple distributed compute clusters within the same data center.
To address concerns like security and cost of transferred data, exist-
ing technologies for virtual networks or virtual private clouds like
Private Link3 could be used. Economic feasibility of disaggregated
compute depends on data transfer pricing of the given platform or
solution used.

3VPC technology, visited 12/22: AWS https://aws.amazon.com/de/privatelink/, MS
Azure https://azure.microsoft.com/de-de/products/private-link/

https://aws.amazon.com/de/privatelink/
https://azure.microsoft.com/de-de/products/private-link/
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3.2 Using DASH: Compression-as-a-Service
We implemented Compression-as-a-Service (CaaS) on a DASH

prototype as part of SAP HANA Cloud4 to illustrate and experi-
mentally evaluate DASH in practice. As compression technique we
selected the RePair algorithm, which we implemented in previous
work [21], and use it to compress string dictionaries used in HANA
Cloud. By default SAP HANA [16] workers compresses string dic-
tionaries using front coding on the critical path. We assume that
data can be compressed asynchronously with RePair directly using
the image of the compressed string dictionary from storage. To
illustrate the inner workings of the hardware service workers,
as shown in Fig. 3, we subsequently explain its components in more
detail and describe its realization with current cloud concepts as
well as the execution flow.
CaaS Hardware Service Worker.We recall that hardware tasks are

available in the hardware task schedulerwith task specifications,
and the data is provided by the database / data processing system, as
shown in Fig. 3. A specification ⟨𝑖𝑑, 𝑓 𝑢𝑛𝑐, 𝑠𝑖𝑑, 𝑡𝑖𝑑⟩ contains a unique
task identifier 𝑖𝑑 , a function identifier 𝑓 𝑢𝑛𝑐 , which corresponds to
available logic on attached resources, a handle for source data 𝑠𝑖𝑑
and one for target data 𝑡𝑖𝑑 (sink), among others.

For our prototype, we assume enterprise-ready, multi-cloud in-
frastructure such as Gardener5 and realize the hardware service
workers in Fig. 3 as kubernetes6 (short k8s) pod that runs in a k8s
cluster. A pod binds resources that are available via k8s nodes, using
device plugins, for which we adapted the Intel IOFS7 FPGA driver to
run with k8s. The worker has a local function scheduler to man-
age a collection of hardware functions, which represent specific
logic resources that denote a function on an FPGA (e. g., compres-
sion like RePair, 𝐾2). To run a function, optional ⟨{𝑐𝑜𝑛𝑓 𝑖𝑔}, 𝑑𝑎𝑡𝑎⟩
information might be required, with a collection 𝑐𝑜𝑛𝑓 𝑖𝑔 of configu-
ration parameters and 𝑑𝑎𝑡𝑎 (in a non-streaming case). The sched-
uler reports at least ⟨𝑖𝑑, 𝑒𝑥𝑐, {𝑠𝑡𝑎𝑡𝑠}⟩ including the task identifier
𝑖𝑑 , a status 𝑒𝑥𝑐 , and a name-value pair collection of statistics 𝑠𝑡𝑎𝑡𝑠 .
The required data sources and targets are managed by a storage
gateway, which is able to resolve ⟨𝑠𝑖𝑑⟩ and ⟨𝑡𝑖𝑑⟩, when reading data
or initializing streams into the FPGA resources via on-board NICs.
The overall architecture scales in three dimensions. Depending on
their size, current FPGAs are able to configure few functions that
correspond 1:1 to hardware functions within the workers. Tasks
like RePair compression can be scaled by partitioning the data and
distributing them to separate functions within one FPGA (only lim-
ited by bandwidth to the pod). Additionally, on-chip resources of
FPGAs can be re-configured to impersonate another function. For
example, if the provisioned 𝐾2 function is not used, the resources
could be used to configured another RePair function and update
the corresponding hardware function in the pod. The number of
functions can be scaled by adding multiple FPGAs as resources
into the k8s cluster. With current data center architectures, we
see eight to ten FPGAs attached to one hardware service worker.
Consequently, scaling several workers might be necessary to fit the

4SAP HANA Cloud, visited 8/2022: https://bit.ly/3bqsxxm
5Gardener, visited 12/22: https://gardener.cloud/
6Kubernetes, visited 12/22: https://kubernetes.io/de/
7Intel IOFS, visited 12/22: https://github.com/otcshare/ofs-docs
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Figure 3: HW service worker and execution flow

various workloads of databases and data processing systems within
one data center.
CaaS Execution Flow. To understand the interaction between the

main components within one hardware service worker, we step
through the flow of executions by example of string dictionary
compression with our RePair implementation.

First, during the data processing in the compute of the data-
base system, 1 statistical records are gathered about table sizes,
number of distinct values per column, sizes of dictionaries and
column vectors, and storage requirements, and they are exposed
via monitoring views. The coordinator (not shown) analyzes these
statistical records an decides to conduct an action 2 and enqueues
a hardware task in the hardware task scheduler. In our prototype,
we first check if a table was merged because the merge operation
creates a new version of a dictionary. We trigger the compression
on the FPGA only for sufficiently large dictionaries. As we detail in
Section 4 we also check for a minimal average size per dictionary
element after applying front coding when scheduling the compres-
sion on the FPGA. When a hardware function within a worker
is free and the task specification matches the function’s abilities,
3 , the scheduler dequeues and 4 assigns a task to that function.
The function starts coordinating data access through the storage
gateway to get the data from a data store 5a or 5b initiates the
data stream into the function on the FPGA. During the execution of
the task 6 , the hardware function cannot work on newly arriving
hardware tasks, but will collect statistics, 7 which it reports to
the hardware task scheduler together with a status. As soon as the
function is free, the hardware service worker can pick up new tasks
fitting to the function, thus balancing the load.

https://bit.ly/3bqsxxm
https://gardener.cloud/
https://kubernetes.io/de/
https://github.com/otcshare/ofs-docs
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4 Preliminary Experiments
In this section we present experiments that demonstrate how a
disaggregated setup of FPGAs can be highly beneficial for core
database workloads. We first confirm earlier experiments [21] on
new, real-world datasets that RePair compression indeed can sig-
nificantly reduce the memory consumption for string dictionaries
in SAP HANA. We also show that in the setup of DASH the data
transfer from and to the FPGA is not the bottleneck for compute-
intensive tasks like RePair compression of string dictionaries. We
also identify under which conditions the overheads associated with
RePair compression and the DASH architecture do not justify the
potential reduction inmemory consumption. Finally, we analyze the
use of shared FPGAs for a cluster setup where multiple databases
delegate string dictionary compression to the FPGA.
Setup. To run the FPGAworkload on the server a Docker container

was created with CentOs 7.6, IOFS runtime and a FPGA bit-stream
for the compression. As programming language this setup uses
OpenCLTM version 20.4. In the hardware service worker, a simple
function scheduler queues the compression requests (i. e., hardware
tasks) of different dictionaries from different HANA instances.

We extracted 4923 columns of productive SAP HANA systems
with data type (N)VARCHAR and CLOB (89 columns). Overall, the
uncompressed strings of these column dictionaries consume 47GB
memory; after front-coding – the default compression technique
used for string dictionaries in SAP HANA - these string dictionaries
consume 22GB of main memory. In total the data of the analyzed
systems consumed 166GB of memory. We performed RePair com-
pression or regular front coding in SAP HANA on every column
and collected the runtime. For FPGA, the uncompressed dictionary
resides on host memory and was also transferred to the FPGA.
RePair Compression Performance. In our first experiment we con-

firm our earlier results [21] that RePair compression indeed results
in a better compression ratio than plain front coding as it is used
in SAP HANA in most cases today. Therefore, we executed both
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alternatives on string columns extracted from various productive
SAP HANA systems for SAP applications like SAP S/4 HANA.

In Fig. 4 we present the compression ratio achieved for these
columns grouped by the resulting compression ratio (lower is bet-
ter). Evidently, for the majority of columns the compression ratio us-
ing RePair is between 10% and 60%, and significantly fewer columns
achieve this compression ratio for front coding. Also less than 7%
of the columns compressed with RePair have compression ratios
above 60%, while this is the case for more than 40% of the columns
with front coding. In summary, RePair compression reduces the
size of the string dictionaries from 22GB to 12.33GB.

In a second experimentwe analyze if the network transfer needed
in the DASH architecture becomes a performance bottleneck. In
Fig. 5 we report the compression throughput as uncompressed
size of a column in MB divided by the time required for RePair
compression in seconds. The compression time also includes the
data transfer from the host to the FPGA and back as well as over-
heads for invoking the FPGA logic. It can be seen that for ca. 40%
of the columns the throughput is below 25 MB/s and for 80% of
the columns below 75 MB/s. Only for 45 columns the compression
speed exceeds 200 MB/s. From these numbers we can conclude that
network transfer is likely not a bottleneck for RePair compression
using the DASH architecture. The results also highlight that RePair
compression is a heavy, compute-bound operation.
RePair Compression using DASH. Considering that RePair com-

pression in the DASH architecture adds latency and may not even
improve the compression ratio for some columns, we analyze in
Fig. 6 when RePair compression is expected to be beneficial. The
chart shows the compression ratio grouped by the average mem-
ory size per element in the string dictionary after applying front
coding. For example, the left-most group indicates that an average
entry in the front-coded string dictionary consumes less than 2
Bytes. Our results confirm the intuition that applying RePair com-
pression on front-coded string dictionaries as a post-processing
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Figure 6: RePair with DASH is beneficial when the average
front-coded entry in the string dictionary exceeds three Bytes

step does not improve the compression ratio anymore when the
elements in the dictionary are short. Concretely, as soon as the
memory size per element exceeds 3 Bytes, the Re-Pair algorithm
improves the compression ratio in most cases. Consequently, we
suggest to use Re-Pair compression when the average memory size
per dictionary element after front coding is greater than 3 Bytes.
This can be checked before transferring the data from the HANA
instance to the FPGA. Using the heuristic slightly reduces the mem-
ory consumption of all string dictionaries from 12.33GB (always
using RePair compression) to 12.16GB (using the heuristics).
Cost analysis of DASH.We conclude our experiments with a cost-

analysis. In our experiments above we learned that RePair front-
coding reduces the memory consumption of string dictionaries by
50%, and RePair compression of the remaining uncompressed suffix
improves the compression ratio by another 50%. Furthermore, at
100MB/s we can compress about 8.6TB of string dictionaries per day.
Assuming two merge operations per day this corresponds to 4.3TB
of uncompressed string dictionary data that could be compressed
to 2.3TB of front-coded dictionaries on the CPU and to 1.075TB
of RePair-compressed dictionary data using RePair compression
and DASH (i. e., 1.075TB main memory savings). Using the pub-
lic HANA Cloud capacity unit estimator8 we see that one GB of
DRAM is charged at 0.023 CU/GB/hour, i. e., 18050 CU for 1.075TB
of DRAM at 730 hours usage per month. At 0.80€/CU this maps
to 14,440€/month for provisioning the DRAM of string dictionar-
ies. We compare this to a f1.2xlarge reserved instance at AWS [6]
which is charged at 1,06USD/hour (i. e., 671€ per month). The total
saving of RePair compression in this setup using an F1 instance at
Amazon would be 13.769 € per month per FPGA. We can assume
linear scaling of these savings as the data sizes increase.

8HANA Cloud capacity unit estimator, visited 12/22: https://bit.ly/3OSyml8

From our experiments we conclude, that technically but also
economically the disaggregated accelerator architecture of DASH
can be highly beneficial for compute-intensive data management
operations.

5 Research Agenda
In this section, we discuss some opportunities for further research
and open research challenges in the context of DASH.

5.1 Cloud Infrastructure and Operation
The scenario outlined in this paper assumes a setup within the

same data center infrastructure. While some cloud platform ven-
dors start to offer FPGAs in their compute instances [2, 6] it may
still be the case that different FPGAs are needed for the targeted ac-
celeration task. For example, in our setup we use Intel FPGAs which
are not yet offered as compute instances at AWS, Azure or GCP.
However, using secure connections which can be implemented in
the FPGA or in the HW Service Worker used to access the FPGA
it should also be feasible to use FPGAs in another data center of
another vendor or hosted on premises. In our cost analysis this
adds the costs for network outgoing traffic from the cloud platform
vendor, but there is still a cost benefit. We also emphasize, that in
the DASH architecture the additional latencies of this cross-data
center access should be acceptable.

Deploying and operating FPGAs in a public cloud offering is
still in its infancy. While the internal use of FPGAs in a data center
as done in [5, 26] allows for full control of lifecycle operations
like upgrading or undeployment, this is more challenging in a
more loosely coupled architecture as in DASH. Further research
is needed to understand how fundamental software engineering
aspects (e. g., security, testing, debugging, monitoring) apply to
large-scale deployment of FPGAs.

The deployment of hardware service workers in DASH offers
options to scale the number of deployed hardware accelerators or
the number of instances of a hardware-accelerated service to meet
the elasticity requirements of the databases in the cluster. The setup
also allows to implement high-availability setups where failures of
accelerators are transparently handled by redundantly deployed
instances of the same hardware-accelerated service. We intend to
analyze these use cases as part of our future work.

5.2 Heterogeneous Compute
In next generation data management systems, boundaries of

storage, compute and network are more fuzzy and compute is dis-
tributed to all of those hierarchies in the form of in-line processing
near memory or storage and distributed over multiple nodes. A
cloud-native application can be assumed to have different services
running on different underlying technologies such as CPU, GPU,
FPGAs or even smart NICs. We presented the DASH architecture
using FPGAs as accelerators for database operations. However the
concept can be similarly applied to any other relevant platform.
Multiple HW tasks (security, compression, ML etc) can be targeted
to execute on the same accelerator device, or with multiple devices.

5.3 Load-Balancing and Data Movement
DASH’s architecture offers several options for de-centralized,

elastic scaling of hardware components, even scaling them down to

https://bit.ly/3OSyml8
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zero. For example, components like the HW Service Worker could
also be realized following a Function-as-a-Service pattern. More-
over, the load-balancing dynamics of DASH should be studied in
practice, e. g., partial reconfiguration to make hardware tasks avail-
able on the FPGA on demand. While in DASH a central scheduler
assigns work to the hardware devices, the scheduling could also
be delegated further to the accelerators when they communicate
directly, e. g., via network interface for FPGA or NVLink for GPUs.

We expect CXL to provide a standardized way for coherent
memory transfers and accelerator-to-accelerator connectivity in
such heterogeneous systems. More sophisticated scheduler schemes
in DASH’s HW Task Scheduler could manage an orchestration of
hardware services which communicate directly by wiring source
and target devices directly, e. g., via CXL, instead of returning data
to the storage and the next task reads it from there, while tasks
normally report back to the scheduler. This would enable the DASH
architecture to further offload work from the CPU because the
communication with the host is further reduced.

We assume DASH to be used by multiple databases for which
the asynchronous scheduling might result in a large number of en-
queued hardware tasks. When having tasks with specified service-
level agreements, e. g., scheduling strategies with priorities or iden-
tification and handling of long-running tasks should be considered.

6 Conclusion
While previous research has demonstrated the benefit of FPGAs in
the context of databases, they have not yet enjoyed wide-spread
deployments. We argue that the tight integration of FPGAs with
the database engine is one of main limiting factors of a broader
adoption of FPGAs in this area.

To address this issue, we propose DASH as a disaggregated ar-
chitecture that exposes FPGAs as a service for compute-intensive
data management operations. While we illustrate the benefits of
this architecture using string dictionary compression with RePair
compression, we argue that this setup can be applied to a wide
range of similar scenarios. For example, in [13] we show how JSON
parsing can be accelerated using FPGAs, and this approach can
be used as a JSON validation service that can reject invalid JSON
documents without investing expensive CPU cycles on the database
server. Similarly, FPGA-accelerated machine learning operations [3]
deployed in a separate, shared process can be used by multiple data-
base instances. Such shared accelerated database services become a
viable deployment option in the cloud to accelerate or offload com-
pute intensive workload. Along this trend, hardware docomposition
could complement the effort to decompose database operations into
hardware microservices and become a logical next step to schedule
those microservices on heterogenous hardware devices.
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